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ABSTRACT

Machine learning models that sense human speech, body place-

ment, and other key features are commonplace in human-robot

interaction. However, the deployment of such models in themselves

is not without risk. Research in the security of machine learning

examines how such models can be exploited and the risks associ-

ated with these exploits. Unfortunately, the threat models of risks

produced by machine learning security do not incorporate the rich

sociotechnical underpinnings of the defenses they propose; as a

result, efforts to improve the security of machine learning models

may actually increase the difference in performance across different

demographic groups, yielding systems that have riskmitigation that

work better for one group than another. In this work, we outline

why current approaches to machine learning security present DEI

concerns for the human-robot interaction community and where

there are open areas for collaboration.

CCS CONCEPTS

· Security and privacy→ Social aspects of security and pri-

vacy; · Computing methodologies → Speech recognition; ·

Human-centered computing→ Collaborative interaction.
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1 INTRODUCTION

A robot’s ability to sense a human interacting with it is the first step

in many human-robot interaction software architectures [2, 10].

The new standard method for such sensing is to employ a machine

learning model, more specifically, deep learning models, to process
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human inputs such as speech, pose, eye tracking, and even mood.

The literature is mounting on how these models fail to equitably

sense humans along race, gender, accent, and socioeconomic status

axes. At the same time, an additional layer is being added that

attempts to protect the model from misuse through the concept of

adversarial attacks. We refer to this layer as the machine learning

security layer, which has been the subject of significant recent

research efforts. However, very little research exists on how such

safety and security mitigation can result in unfairness in human-

robot interaction.

Within this manuscript, we will address two questions: łWhy

should the human-robot interaction community consider adversar-

ial attacks in robotic security?ž and łWhy do the currently proposed

defenses contribute to the unfairness already faced when deploy-

ing human-sensing models?ž The core answer to both questions

is that commonly used defenses to adversarial attacks have the

potential to worsen performance differentially across groupsÐthat

is, the application of a security intervention may protect against

attacks for some kinds of people but not others, or may worsen the

performance of the overall system more for certain kinds of human

interactors.

To discuss these risks, we will use a running example of a collabo-

rative human-robot system in a workplace, such as a manufacturing

setting. In this example, the goals of the robotic cooperator are to

sense the human’s current pose in order to plan actions safely

around them and to process speech commands such as łpausež and

łstart.ž We make a particular note that such a robotic system can

cause harm to humans if improper sensing is done. Adversarial at-

tacks themselves represent a threat to human safety. An adversary

could craft an attack in that a human’s body was not recognized

or misinterpreted, inducing the robot’s motion planning to cause

dangerous movement. Such attacks are not theoretical and have

been physically implemented through printable stickers, clothing,

and even simple dots on the camera [5].

These possibilities address the first question of why adversarial

attacks pose a risk for human-robot interaction. Naturally, machine

learning model researchers and developers have begun integrating

methods to mitigate such risks. While these techniques may help

avoid risk, they introduce a plethora of novel problems. In this

abstract, we will discuss these novel problems and argue that to

ensure robots can perform appropriately when interacting with a

wide diversity of humans, it is necessary to consider the security

provisions of underlying machine learning-based approaches.
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2 SECURITY INTERVENTIONS AND RISKS

As mentioned, successful attacks on machine learning-based sens-

ing models have been demonstrated, leading to the need for defense

mechanisms. One primary method is a form of training augmenta-

tion called adversarial training [7], which incorporates adversarial

attacks during learning. Recent works [6] suggest that this method

is insufficient for the necessary performance in robotic learning;

prior work in less human-centric spaces reports the performance

degradation for minority groups [13]. These methods then repre-

sent a trade-off between fairness, accuracy, and robustness. This

trade-off behavior is not well studied, especially given the limited

representativeness of datasets concerning social labels and other

factors. Returning to our running example, as a result of the secu-

rity layer, the human-sensing model may have further performance

degradation on people less represented in the dataset, exacerbating

an existing issue in machine learning. We can see this occurring as

cobots misinterpreting commands spoken by women or improperly

failing to detect people with darker skin tones.

Conversely, methods have been introduced that center around

the rejection of data points that the model may classify as an attack.

Rejection methods [9] do not necessarily reduce average perfor-

mance but may reject users outside the training set. Using a re-

jection method to detect adversarial attacks on a robotic platform

meant to detect objects was successful [9]. However, it is less clear

how such methods should be applied when people in the environ-

ment are being sensed rather than objects. Extrapolating from this

method using the distance from the training data as a measure, we

can hypothesize that user demographics not seen during training

would face rejection. In our running example, this would look like

a robotic cooperator refusing to work with specific employees sys-

temically rejected by such a module sitting on top of the machine

learning model.

3 DIFFERENTIAL PERFORMANCE BY
DEFENSE METHODS

Our recent results showcased how such unfairness can be realized

[12]. We examined the neural rejection method proposed in robotic

object detection [9]. They suggest hardening an already-trained

neural network for a task by using the final embedding layer to

learn a support vector machine (SVM). The SVM has the property

of being a compact abating probability (CAP) model [9], meaning

the model’s probability outputs can be a proxy for distance from

training data. The intuition is that adversarial examples exist out-

side of this training distribution. While many defenses, including

this one, have been questioned regarding effectiveness [11], it is a

helpful lens for empirically showcasing the principle.

Rather than applying this method to just objects in an environ-

ment, we are interested in the case where such a method is in use

for human interaction, such as speech commands. We used a single-

word speech classification dataset, Common Voice Clips [1], with

age, accent, and gender labels. This dataset could be analogous to

simple commands a robotic collaborator would recognize during

operation. We trained a one-dimensional convolutional neural net-

work modeled after the M5 architecture [3] on this training subset

and then trained an SVM on the produced embeddings afterward.

We measured the parity of rejection between examples from groups

without attack, allowing us to determine the rejection rates a user

would face with honest use. Since the neural rejection method op-

erates over a threshold, we measure differences in groups’ false

positivity rates over these thresholds. Ideally, we would see similar

trends of erroneous flagging as security measures increase for all

users of all demographics. Our false positivity parity (𝐴𝑈𝐶𝐹𝑃𝑅 )

is the difference between the smallest and largest area under the

false positive curve for a given demographic. An example would

be the difference in the rejection rate between users who identify

as women and men. A smaller value here represents more parity,

the ideal case.
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Figure 1: 𝐴𝑈𝐶𝐹𝑃𝑅 parity between age, accent, and gender

groups in Common Voice Clips dataset. This demonstrates

that different groups face differential performance when

adding a security layer to themodel. Here, we see that adding

a security layer creates a disparity in how often ‘honest’ com-

mands are rejected for different groups.

Our findings (Figure 1) show that groups along the axes of age,

accent, and gender do, in fact, have differential performance. We

can see the differential performance for the users, especially those

in different accent groups, followed by gender having the smallest

difference. This result supports the claim that machine learning

security methods introduced can have unfair harms when deployed

in human sensing for interaction.

4 OPPORTUNITIES IN HRI STUDIES

We propose contextualizing proposed ML defense methods through

human-robot interaction studies to discover bias before deployment

and adoption. Methods like neural rejection have only ever been

evaluated in terms of accuracy. This evaluation paradigm ignores

unfairness and richer questions of usability. Discovering systemic

failure modes poses an issue relating to the diversity of participants.

Our example of a cooperative robot would require studies with

diverse participants across social demographics, accents, body types,

and communication styles. This challenge increases with additional

sensing modalities and possible interactions.

We have already outlined how defense methods exacerbate the

existing bias in machine learning models. How users respond to

such methods, particularly rejection of a user’s command or body in

space, raises sensitive social and psychological questions that can be

studied in the context of users’ perceptions when interacting with

robots that deploy ML defense methods. Mental models of threat

models in human-robot interaction present another understudied

area. Questions such as łHow do users react to a model rejecting a
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command and conveying that this is due to security concerns?ž offer

an opportunity that bridges the machine learning, usable security,

and human-robot interaction communities. While graphical user

interfaces offer a simple disclaimer, interactions with a robot do

not offer as straightforward an explanation.

We can see how this can present challenges when returning to

the example of a robotic collaborator in the workplace. An expla-

nation may be possible through verbal cues when an example is

rejected. However, users may find such behavior frustrating, es-

pecially when repeatedly given only to particular users. Finding

thresholds of security implementations that satisfy usability, fair-

ness, and the underlying threat model must have practical study

designs to be deployed in multiple contexts. The threat model for a

home robot’s primary purpose is in social interaction, and home

monitoring offers less risk than an industrial robot working around

humans. Such taxonomies of risk from the human-robot interaction

community [4, 8, 14] can deeply inform the strength of mitigation

at deployment while also expanding to encapsulate these novel

threat vectors.

5 CONCLUSION

The social and economic impacts of machine learning security meth-

ods being implemented in robots caring for humans in a healthcare

environment, collaborating in a manufacturing environment, and

offering other services are profoundly understudied. Bridging the

communities of machine learning security with human-robot in-

teraction will nourish deeply needed discussions on evaluation

methods and the development of fairness-aware security methods

in human-robot interaction. While the machine learning commu-

nity is still addressing bias in models alone, adding components

addressing operational constraints and safety must be brought into

the same conversation.
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