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Abstract

Pathogen traits can vary greatly and heavily impact the ability of a pathogen to persist in a
population. Although this variation is fundamental to disease ecology, little is known about the
evolutionary pressures that drive these differences, particularly where they interact with host
behavior. We hypothesized that host behaviors relevant to different transmission routes give rise
to differences in contact network structure, constraining the space over which pathogen traits can
evolve to maximize fitness. Our analysis of 232 contact networks across mammals, birds,
reptiles, amphibians, arthropods, fish, and mollusks found that contact network topology varies
by contact type, most notably in networks that are representative of fluid-exchange transmission.
Using infectious disease model simulations, we showed that these differences in network
structure suggest pathogens transmitted through fluid-exchange contact types will need traits
associated with high transmissibility to successfully proliferate, compared to pathogens that
transmit through other types of contact. These findings were supported through a review of
known traits of pathogens that transmit in humans. Our work demonstrates that contact network
structure may drive the evolution of compensatory pathogen traits according to transmission
strategy, providing essential context for understanding pathogen evolution and ecology.

1 Introduction

Pathogens vary in a range of important characteristics including transmission mode, infectivity,
and duration of infection, many of which determine epidemiological characteristics such as their
ability to persist in a population (1-5). Although this diversity in pathogen traits is fundamental
to disease ecology, we know little about the ecological factors driving the evolution of such
traits; in particular, it is unclear how transmission ecology determines the evolution of pathogen
characteristics.

Pathogens are spread by a range of different contact types facilitated by specific host behaviors
such as respiration, physical contact, or shared space use, which define different pathogen
transmission modes (6). In a contact network, the behavior that defines its edges (i.e. a contact
type) can be associated with different transmission modes (e.g. mating vs. grooming vs. spatial
associations), and exhibit distinctive contact patterns (7—11). For instance, when analyzing
contact types in mice (Mus musculus), researchers found that agonistic, grooming, and sniffing
events were associated with distinct network properties such as density, average path length, and
node centrality (12). Such network properties can influence the transmission efficiency of
pathogens, with downstream impacts on the evolution of their traits (13—19). Furthermore, it is
known that individual contact effort across contact types can be heterogeneous (a concept known
as social fluidity), and can lead to the formation of weak ties (9). These weak ties play an
important role in defining network structure (18), but the extent to which they impact the
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evolution of pathogen traits remains unknown. Understanding variation in these characteristics is
essential for understanding pathogen ecology, and therefore for developing control measures and
testing hypotheses regarding their evolutionary origins.

Pathogens should evolve to maximize their fitness, principally described by their R, (basic
reproduction number, i.e. the total number of new infections caused by one infection in a totally
susceptible population) (20). To persist in a population, a pathogen’s R, must be greater than 1.
A pathogen’s R, depends on both the behavior of its host population, and on its own
transmissibility (1,21,22). Host behaviors create the relevant contact that defines the path of
transmission for a pathogen, while transmissibility represents the epidemiological characteristics
(e.g. infectious duration, infection probability) that determine effective transmission upon a
relevant contact. Consequently, host behavior can affect Ry which could drive the evolution of
pathogen traits.

Associations between contact network structure and pathogen traits are well-supported by theory.
For example, sexually transmitted pathogens such as gonorrhea (Neisseria gonorrhoeae) or
herpes simplex virus rely on rare, dyadic transmission events, likely producing a sparse contact
network; to compensate for this sparseness, they are thought to exhibit longer duration infections
and higher infection probability respectively (1,5,23). In contrast, tick-borne flaviviruses are only
infectious for about 2—3 days in mammal hosts, but persist in tick populations due to their host’s
aggregated co-feeding behaviors and consequently high rates of contact (24). Despite these kinds
of anecdotal observations, there is no comparative or meta-analytic evidence to demonstrate the
relationship between transmission routes and pathogen characteristics.

Thus, a critical gap in disease ecology is our understanding of how different contact types
required for pathogen transmission routes might exhibit distinct contact network structure, and
how they might alter the evolution of adaptive pathogen characteristics required to capitalize on
these host networks. Thus, we sought to answer the following questions: 1) How does non-
human contact network structure differ depending on the transmission mode associated with its
contact type? 2) How does the resulting contact network structure affect a pathogen’s ability to
persist on that network? 3) How might these results be reflected in known pathogen traits? To
address these questions, we conducted a quantitative analysis on 232 animal contact networks
spanning eight taxonomic classes to investigate the impact of contact type on pathogen traits.
First, we categorized networks into four different horizontal transmission mode categories based
on their contact types (Table 1). Next, we used a multivariate generalized linear mixed model
(GLMM) to identify how network structure is predicted by its associated transmission mode
category. We then mathematically examined how pathogen traits (i.e. critical transmissibility)
may change in order to persist on these different contact networks and compare our results to
current knowledge of pathogen traits. We provide practical evidence that contact network
structure is influenced by contact types, and that this structural variation causes differences in
pathogen transmissibility thresholds that are reflective of our current knowledge of pathogen
infection characteristics.

2 Methods
In this study, we used a GLMM to examine how contact types associated with different pathogen
transmission modes predict eight different descriptors of network structure. We then calculated a



93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

pathogen’s critical transmissibility (T,) value on these different network types, or the value of
transmissibility (T') necessary for a pathogen to persist on a network (basic reproduction number
(Ry) > 1) where epidemics might occur. Finally, we collate published information on pathogen
traits in humans (due to the lack of this data in non-human systems) that make up T, (e.g.
probability of infection, infectious period) and provide a preliminary comparison between these
pathogen traits, their transmission routes, and our model predictions. Therefore, we aimed to
provide evidence that transmission mode affects emergent contact networks, and therefore
selects for specific pathogen traits to maximise transmission and persistence.

2.1 Dataset

We compiled a dataset of animal contact networks where edges represent one of twelve different
contact types, using the Animal Social Network Repository (ASNR) (25,26). The ASNR is an
open-source animal behavior network library in which we have compiled network data from the
available literature across eight animal taxonomic classes (Mammalia, Aves, Reptilia, Amphibia,
Insecta, Arachnida Actinopterygii, and Cephalapoda). Contact types include group membership,
nonphysical social interactions, spatial proximity, foraging interactions, trophallaxis (mouth-to-
mouth food sharing), synchronous and asynchronous resource sharing, agonistic behaviors,
grooming, other physical contact, or mating interactions. Our sample size for this study consisted
of 232 contact networks from all eight taxonomic classes (Figure S1). Of these 232 networks,
181 had weighted edges determined by the duration, frequency, or association probability (e.g.
half-weight index) of the contact type. We assume that these networks were observed without the
presence of a pathogen or active infection.

2.2 Defining and characterizing contact networks

For each network in our dataset, nodes represented an individual animal and edges represented
a contact type between two animals. Based on the contact type, we divided our dataset into four
different transmission mode categories (Table 1). We focus on four transmission modes that our
sample represents well: fluid-exchange, direct physical, nonphysical close, and indirect. We
define each transmission mode category as follows:

1. Fluid-exchange contact: host interactions that result in the exchange of bodily fluids. This
includes sexual contact such as cloacal transfer, intromission and spermataphore transfer, as well
as direct food sharing interactions such as trophallaxis.

2. Direct Physical contact: interactions of physical touch that include grooming, agonistic host
behaviors (e.g. head-butting, fighting), and other physical social contact.

3. Nonphysical Close contact: close spatial proximity in which face-to-face contact, or
respiratory droplet exchange, could occur. This includes group memberships, or spatial
proximity.

4. Indirect contact: asynchronous resource sharing interactions. Indirect contact is unique in that
individuals do not need to be using the resource at the same time to be connected in the network.
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We note that our nonphysical, physical, and fluid-exchange categories have an inherent nested
structure with nonphysical the broadest category, and fluid exchange the most selective (Figure
S2). In other words, pathogens that transmit on nonphysical networks (i.e. respiratory droplet
pathogens such as SARS-CoV-2) can also transmit on direct physical and fluid exchange
networks, but fluid-exchange transmitted pathogens (e.g. sexually transmitted pathogens such as
gonorrhea (Neisseria gonorrhoeae)) can only transmit on fluid-exchange networks. We manage
this nested structure by classifying each empirical network into the most specific category
possible using the definitions above.

For each network, we calculated the following eight network metrics that are known to influence
infection dynamics and social structure, ignoring edge weights (Table 2): total network density,
degree heterogeneity, degree assortativity, average clustering coefficient, average betweenness
centrality, network diameter, fragmentation, and subgroup cohesion. Fragmentation (i.e. the
number of communities in each network), was estimated using the Louvain method (27) and the
remaining network metrics were calculated using the NetworkX package in Python
(https://networkx.github.io/).

2.3 Identifying how network structure depends on transmission mode

To examine how contact network structure differs depending on its associated transmission mode
category, we fitted a multivariate generalized linear mixed model using the MCMCglmm
package in R (28), where the eight network metrics (Table 2) made up our multivariate response,
and the associated transmission mode category was our predictor variable.

We also controlled for the effect of network size on these metrics by including the number of
nodes as a predictor. Edge weight type (weighted vs unweighted) was also included to control for
data sampling design and edge weighting criteria. As the spatial scale of data collection has been
shown to influence network structure (18), we also included sampling scale as a predictor.
Studies that collected data on captive animal populations (where all nodes and interactions are
theoretically known) were labeled as captive sampling. Studies that focused data collection on
specific social groups were categorized as social sampling, and those that focused data collection
on all individuals within a fixed spatial boundary were labeled as spatial sampling. Since the
social system of an animal species is also shown to influence network structure (18), we included
species social structure (relatively solitary, gregarious, and socially hierarchical defined in Table
S1 based on (18)) as a predictor. Finally, we controlled for repeated measurements within studies
by including study id as a random effect in the analysis. We were unable to include a random
effect for taxonomic class or use a phylogenetically controlled model, because there was an
unbalanced representation of different taxa across the four transmission mode categories that
made these effects difficult to fit successfully (Figure S1).

All response variables were continuous; to encourage proper model fitting we log-transformed
then centered them (by subtracting the mean) and then scaled to unit variances (by dividing by
the standard deviation). We ran 1 MCMC chain for 10,500 iterations, with a thinning interval of
10 after burn-in of 500 with uninformative priors. Non-physical contact transmission was the
intercept factor level for the transmission mode category fixed effect. For each response variable,
if the effect sizes of the three remaining transmission mode categories overlapped with zero then
it was considered not different from non-physical contact. To examine differences between the
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remaining three modes, we observed the proportional overlap between their effect sizes across all
1000 iterations, multiplied by 2 per a two-tailed test; if it was less than 0.05, then the response
variables were considered different between the transmission mode categories.

Within the ASNR, several studies provided more than one network for the study species or
population. To avoid biasing our sample towards these studies, we randomly selected a
maximum of 15 networks from each study (n=232). To ensure that our results were not affected
by this random subsampling, we reran our model 1000 times, each time choosing a different
sample of networks from each study with more than fifteen networks. We then chose a random
estimate from each model run and computed an average of model estimates across the 1000
different subsamples.

2.3.1 Investigating the role of weak ties

To determine if weak ties (i.e. low edge weights) might drive contact network structure across
transmission modes, we recalculated all eight network metrics for each network in our dataset
when the lowest 5, 10 and 15% of weighted edges were dropped from the network. We then
reran our GLMM to see if differences in network metrics among our different transmission mode
categories still hold true when low weight edges are no longer accounted for.

2.4 Characterizing critical transmission thresholds

We assume that our dataset consists of contact networks constructed in the absence of pathogens
or active infections. Therefore, to examine how network structure affects a pathogen’s ability to
persist on a network, we must model the way a pathogen spreads on these networks using
mathematical models.

We sought to identify a pathogen’s critical transmissibility (7,) on contact networks based on
transmission mode. For a pathogen to persist in a network, its basic reproduction number (R)
must be greater than 1, and Ry depends on both a pathogen’s T and the contact patterns of the
network it travels on. Therefore, for each network, we sought T, for which T,(contact) = R, >
1. To estimate T, we considered the impact of contact network structure by calculating R, using
Monte Carlo simulations of a susceptible-infected-recovered (SIR) model of infection spread
through each network. We ignored edge weights because the impact of interaction weight (e.g.
contact duration or frequency) on infection spread is not well understood generally. We used an
SIR percolation simulation model (29), where each outbreak was initiated by infecting a
randomly chosen individual in the network. For the first generation of the simulation, the
individual is given an opportunity to infect all its contacts, with transmissibility T, and then
recover. This process is then repeated for each infected node, until no infections remain in the
network. For each network, we simulated 250 disease outbreaks and of those classified large-
scale epidemics as those where at least 10% of the population is infected. We repeated this for
each T value in the range (0.01-0.8), and recorded the first T value for which at least 10% of the
outbreaks were large-scale epidemics. Percolation theory suggests that our expectation for the
probability of having a large-scale epidemic should match the expected size of a large-scale
epidemic (29). This reported T value is our estimate of the network’s critical transmissibility 7.
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Past studies suggest that degree (i.e. density) and degree heterogeneity are the most important
aspects of network structure affecting how a pathogen will transmit across a network (30). In
order to test this, we considered two control scenarios where we 1) isolated the effect of
homogeneous degree (i.e. all individuals have the same number of contacts) on T, and 2) isolated
the effect of heterogeneous degree (i.e. on average, individuals have the number of contacts as
scenario 1, but individual degree varies around this mean) on T,. Therefore, we sought T, for
which T.(k.) = Ry, > 1, where (k,) is the average excess degree of the network. The excess
degree is the potential number of contacts an individual can infect after they have been infected
by one of their contacts, and on average this value is larger for networks with degree
heterogeneity than for homogeneous degree networks (22).

For the first control scenario, we considered a pathogen’s T, in a homogeneous degree network,
in which the average excess degree, (k,), is:

(ke) = (k) —1 (E1)
where (k) is the average degree of the network. For the second control scenario, we considered a
network with degree heterogeneity, thus the average excess degree is:

(k*) = (k)
(ke) = s (E2)
We consider these to be “control” scenarios because Equations 1 and 2 allow us to consider only
the two network metrics of interest (density and degree heterogeneity), while our simulation
method will inherently take in to account all aspects of network structure (centrality, clustering,
etc.). By isolating how homogeneous and heterogeneous degree effects T,, and comparing these
results to our full network structure simulation method, we can elucidate how much of the
variation in T,may be attributed to the degree (density) and degree heterogeneity of a network.

We compared the T, values for each transmission mode category of contact networks (non-
physical close, direct physical, fluid-exchange, indirect) within each scenario using a one-way
ANOVA, and pairwise t-tests with a Tukey HSD familywise error-rate correction.

2.5 Examining diversity of empirical pathogen characteristics
To examine how our results are reflected in known pathogen traits, we considered the
transmissibility of a pathogen (T') as a function of its infectious duration (&) and its probability
of infection (£)(21,22):

T = L (E3)

- 1
B+g

To provide context for the covarying characteristics of known pathogens, we examine known f3
and G values (infection characteristics) for a small set of well characterized pathogens to see how
they compare to our findings. Because data on pathogen traits in non-human animals is limited,
we instead focus on these traits in common human pathogens. We use two systematic reviews on
the natural histories of pathogens for common diseases in preschools(31,32) to summarize data
on pathogens that use each transmission mode. We only included the pathogens in our summary
if the source of the data was from a well-designed study, using the levels of evidence I and II
provided in the first review (31) (Table S2). If there was no data, or the source of the data was
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poor (level of evidence III or IV) for the pathogen’s infectious period (G), we instead used the
shedding periods, defined as the period of time during which an individual excretes the
pathogen; the shedding period can be used to estimate the duration of infectiousness when there
is lack of direct evidence (31). If there was no or poor data for the shedding period, then it was
not included in this summary. We then verified the data for these pathogens using the second
review (32).

Since these reviews did not contain any sexually transmitted pathogens, we took the ten sexually
transmitted pathogens listed on the CDC website (www.cdc.gov/std) and examined the literature
for their natural histories. We found studies that estimated both the probability of infection (£)
and infectious period (G) of four of the ten pathogens (syphilis (33,34), gonorrhea (35,36),
chlamydia (37,38), and trichomoniasis (39,40)).

3 Results

3.1 Network structure is dependent on host behavior type

We examined how network structure was predicted by the pathogen transmission mode
represented by specific contact types using a multivariate GLMM. We summarized network
structure with eight topological characteristics (Table 2), and all the metrics except subgroup
cohesion and fragmentation differed among transmission mode categories. The predicted
distributions for the six remaining network metrics by transmission mode category are
summarized in Figure 1 and all other effect sizes from our model are in Tables S3, S4, S5, and
Se.

Fluid-exchange contact networks differed from physical and nonphysical contact networks in all
six network metrics and differed from indirect contact networks for clustering and network
diameter. Indirect contact networks only differed from physical and nonphysical networks in
their degree heterogeneity. Physical and non-physical networks could not be differentiated by the
network metrics we tested. This suggests that fluid exchange contact types create the most
unique contact patterns.

Physical and nonphysical contact networks had higher density values and shorter network
diameters than fluid-exchange networks, and lower degree heterogeneity than both fluid-
exchange and indirect contact networks. This indicates that physical and nonphysical contact
types create networks that are more connected, with less variation in each individual’s number of
contacts.

Fluid-exchange contact networks also had lower degree assortativity than physical and
nonphysical contact networks. That is, high degree individuals in fluid-exchange contact
networks tend to be connected to low degree individuals, whereas high degree individuals in
physical and nonphysical contact networks are more likely to be connected to other high degree
individuals. Indirect contact networks did not differ in their degree assortativity from any other
contact network. Fluid-exchange contact networks also had lower average clustering values than
all other contact networks.
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Finally, fluid-exchange contact networks have higher betweenness centrality values than
physical and nonphysical contact networks. This means that these networks tend to have more
"bridge nodes", or nodes that connect different communities together: this is despite the fact that
the number of communities (fragmentation) and the cohesiveness of those communities do not
differ among contact networks.

3.1.1 Weak Ties

To examine the role of weak interactions (i.e. low edge weights) in determining unique network
structure, we reran the GLMM on our dataset after dropping the lowest 5%, 10%, or 15% of
weighted edges in each network. We found that the significant differences in average clustering
and degree assortativity in networks across the four transmission mode categories are maintained
as we filter low weight edges. However, as edges are filtered, there are no longer any differences
in density and degree heterogeneity (Figure S3) among transmission mode categories. In other
words, without low weight edges, contact networks in each transmission mode category become
more similar in their number and variation of contacts.

3.2 Pathogen transmissibility must be higher for contact networks with lower connectivity

We demonstrated the effect of full contact structure on critical transmissibility values (T ) in
networks for each of our four transmission mode categories. We then specifically examined the
effect of network density (average number of contacts) and degree heterogeneity (variation in
number of contacts) on T, in two different control scenarios.

We find that generally pathogens needed significantly higher critical transmissibility values on
fluid-exchange contact networks than on physical, nonphysical, and indirect transmission contact
networks (Figure 2). By comparing our empirical simulation scenario to the two control
scenarios, we find that fluid exchange and indirect contact networks are more vulnerable to
disease invasion (i.e. lower T,) than expected based on their average connectivity (Figure 2).
This result is consistent with network epidemiology theory which predicts that higher degree
heterogeneity (as we find in fluid-exchange and indirect contact networks) make disease invasion
more likely. For physical and non-physical contact networks, on the other hand, the critical
transmissibility is comparable in all three scenarios, suggesting that the average network
connectivity (or network density) is sufficient to predict disease invasion in such networks.

3.3 The structure of a contact network can influence the infection characteristics of associated
pathogens

We compiled peer-reviewed data from common human pathogens as life history data on
pathogens in non-human animals was extremely limited. We visualized two of the characteristics
that define a pathogen’s transmissibility: its infectious period and its infection probability (Figure
3).

First, we showed that pathogens that transmit on indirect contact networks (e.g. food/waterborne,
fecal-oral) have relatively short infectious periods, and varied between low to moderate infection
probability. Next, we found pathogens that transmit on fluid-exchange contact networks (e.g.
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sex, saliva) have the longest infectious periods. Of those, the two pathogens (herpes, syphilis)
that tend to have shorter infectious periods (despite intermittent infectivity over long periods)
alternatively have moderate to high infectivity. . These results suggest that fluid-exchange
pathogens do in fact have higher T, values than other pathogens, and they tend to increase their
T, by extending their infectious periods over increasing their infection probability. Finally, we
see that pathogens that transmit on physical and nonphysical contact networks have some of the
shortest infectious periods and a range of infection probabilities, but most pathogens with high
infectivity are associated with these transmission modes.

4 Discussion

Our study shows that networks characteristic of different pathogen transmission modes differ in
terms of their structure. We then go on to demonstrate that differences in network structure will
affect the transmissibility required for a pathogen to successfully proliferate. Finally, we suggest
these network structures likely impact the evolution of a focal pathogen’s infection
characteristics, supported by a review of human pathogen traits.

4.1 Differences among contact networks and their implications for pathogen spread

Most notably, compared to physical and nonphysical contact networks, fluid exchange networks
were less dense and had more heterogeneous degree values, with greater diameters, reduced
clustering, and greater disassortativity by degree. They also had more bridge nodes than all other
network types. That is, these networks tend to be more poorly connected, and with greater skew
in nodes’ importance in the network. This selection of network traits likely arises through a
combination of mechanisms, linked to the fact that many of these networks were based on sexual
interactions.

First, the infrequency of copulation events will drive low network density, with correlated
increases in the diameter of the network and the prevalence of bridge connections; second, the
fact that all networks solely included male-female copulation events likely increase clustering
and reduce the tendency for assortative mating; and finally, the common nature of polygyny and
overdispersed mating events (i.e., few individuals monopolizing sexual resources) will drive
greater degree heterogeneity, as well as driving disassortativity. These latter traits agree with our
understanding of the overdispersed nature of sexual interaction networks (41—43). The fluid
exchange category also included trophallaxis networks, which are also generally highly
heterogeneous; in ants, more than 50% of trophallaxis interactions may come from less than 25%
of individuals (44). While the majority of the trophallaxis networks represented in our dataset are
indeed in ants, many other species such as birds and mammals also partake in trophallaxis,
usually in the form of parental care (45); these unique parent-offspring interactions would also
likely result in sparse, heterogeneous, and highly fragmented networks.

These traits could have a selection of important consequences for transmission of pathogens
through fluid exchange networks. First, less dense networks are likely to provide fewer
transmission opportunities for fluid-borne pathogens (46), while larger diameters will inhibit the
spread of an outbreak. Second, degree heterogeneity is known to be a key driver of sexually
transmitted pathogen risk in human contact networks (16,47). Where contact numbers are highly
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heterogeneous, superspreaders can lead to rapid, explosive outbreaks, allowing pathogens to
persist (21). Indeed, past work has shown that HIV, a sexually transmitted pathogen, can exploit
this contact heterogeneity to attain sufficient transmissibility, and other sexually transmitted
pathogens likely do the same (48). However, previous work on contact networks has shown that
network density and individual variation in contact are negatively correlated (49). Our results
support these findings, as we found fluid exchange and indirect contact networks have lower
densities and higher degree heterogeneity compared to physical and nonphysical contact
networks. This suggests that while having high degree heterogeneity might make a network more
vulnerable to explosive outbreaks (18,21), this may trade off with lower overall transmission
probabilities (49). Third, low clustering values might be beneficial for pathogens, especially
given the low densities, as a pathogen may be less likely to get stuck in cliques that might form
among individuals (50). Fourth, the common nature of bridge nodes in fluid exchange networks
might be especially important when considering control measures for pathogens on these
networks. Previous work has shown that pathogens with high transmissibility are able to persist
in socially fragmented networks because bridge nodes allow for transmission amongst
communities (30). Therefore, the removal of these nodes will prevent or slow pathogen spread
through a population (47). While both physical and fluid exchange transmission require
relatively close contact, controlling disease spread by identifying bridge nodes might be more
powerful for fluid-exchange pathogens than for others.

Notably, indirect contact networks had a more heterogeneous degree distribution than physical
and nonphysical contact networks, meaning there is more between-individual variation in
asynchronous resource sharing compared to that in close proximity or physical touch. Past
research has demonstrated this phenomenon in many solitary desert species that asynchronously
burrow share, and while there are many ecological factors that might drive these individual
preferences for resource use patterns (such as differences in sex, age, and environment) (30,51),
we still do not have a full mechanistic understanding of them. It is possible that this pattern will
drive greater heterogeneity in infection with indirectly transmitted pathogens.

4.2 Network structure and the pressures on pathogen characteristics

Pathogens that transmit on indirect contact networks (e.g. food/waterborne, fecal-oral) seem to
have relatively short infectious periods, and vary between low to moderate infection probabilities
(Figure 3). However, we found many aspects of indirect contact network structure were not
different from fluid-exchange networks (i.e. low network densities and high degree
heterogeneity) (Figure 1). These results contradict expectations that these indirect networks
should be highly connected since individuals need to have only used the same space at some
point in time to be connected. For example, many individuals sharing the same sanitation
facilities through time such as on airplanes (52), cruise ships (53), and hotels (54) can cause
recurring outbreaks of Norwalk virus, a common fecal-oral pathogen; since there is no need to
physically contact an individual to be infected by them, these contact networks are known to be
extremely highly connected (55). There are several possible explanations for our surprising
finding: first, our results may be driven by the fact that relatively solitary species (which have
low connectivity due to their social structure (30)) are highly represented in our indirect
networks sample. Additionally, these networks often involve territorial species; resource sharing
(both synchronous and asynchronous) is likely minimized in species that hold territories (e.g.
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(56)). Moreover, territoriality can be sex specific in that males very rarely use the same space
and resources even asynchronously but females can move freely between male territories, which
can result in a sex-specific degree heterogeneity in some species (e.g. (57,58)). Indeed, our
GLMM showed a high amount of variation in the effect sizes of indirect contact networks and
we found that pathogens using indirect contact networks do not need high T, values to persist on
these networks. This suggests that a species’ social system strongly influences the structure of
indirect contact networks. Including additional species with other social systems may increase
the average connectivity of indirect contact networks, which would be more representative of
their associated pathogen characteristics. This paucity of variation in social systems is a common
problem in meta-analyses of social network structure, and ongoing data collection may help to
ameliorate this difficulty in the future.

Our simulations revealed that contact network structure should motivate the evolution of higher
transmissibility for fluid exchange pathogens to persist (Figure 2); a prediction that was
supported by our literature review (Figure 3). This supports what we know about the host
behaviors involved in bodily fluid exchange; individuals usually have long temporal gaps in
between fluid exchange events compared to other potential disease transmission host behaviors
(1). Therefore, pathogens would benefit more from longer infectious periods giving them more
time to spread.

4.3 The role of weak ties in defining relevant disease spreading contact

Previous studies have shown that structural differences between networks are primarily driven by
“weak ties" that are disproportionately lower in intensity, frequency, or duration than other
contacts (18). When we eliminated weak ties, we found that differences between transmission
mode categories persisted for some structural features (e.g. average clustering and degree
assortativity), but others (density and degree heterogeneity) were lost; in other words, removing
the weak ties from contact networks makes them more similar to each other in their number and
variation of contacts. Given that the structural features of density and degree heterogeneity were
most different among fluid-exchange networks, this finding suggests that not only do individuals
tend to vary in the number of fluid-exchange contacts they have compared to their other types of
contacts, but individuals also vary more in the strength of connections between their different
fluid-exchange contacts, compared to their other types of contacts. We hypothesize that this
might be the crucial difference between pathogens that spread via fluid exchange and others, but
additional data would be required to confirm this hypothesis.

This heterogeneity in how individuals distribute their contact effort is known as "social fluidity",
where higher social fluidity suggests a higher prevalence of weak ties (9). Past work has shown
that nonphysical contact networks (e.g. spatial association) have smaller values of social fluidity
than fluid-exchange networks (e.g. trophallaxis), suggesting that social fluidity and weak ties are
especially relevant when considering disease transmission potential in these networks (9). In
some instances, not considering a very brief or infrequent contact as "relevant" for disease
transmission might make sense, such as for pathogens that propagate on networks with low
social fluidity (e.g. flu). However, for pathogens that are spread via fluid exchange, we found
that the density and degree heterogeneity of contact networks are important predictors for
determining their transmissibility and traits. This suggests it is imperative to include short or
infrequent fluid exchange interactions when considering the definition of relevant contact for
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modeling the transmission of these pathogens. By not including these "weak" contacts, it is likely
that estimates of fluid-exchange pathogen spread would be inaccurate, and proposed control
measures based on these estimates could be unreliable.

4.4 Study Limitations

Our study has some important limitations. First, we investigated non-human animal networks,
while using pathogen traits in humans to understand the implications of network structure on
infection characteristics. We would expect some aspects of human contact networks to differ
from animal contact networks, particularly with fluid-exchange transmission. For example,
human sexual networks have much higher clustering values than what we observed in our animal
networks (59). However, this could be due to the lack of recorded same-sex sexual host
behaviors in non-human animal species; same sex host behaviors including fluid exchange do
occur in many non-human animals and are therefore likely underrepresented in our sample (60).
Regardless, even if true clustering values are higher than observed, we would expect this to
reduce the R, of a pathogen in a network; this might further increase the transmissibility needed
to persist (59), further supporting our current results. Overall, we found that network density and
degree heterogeneity were the most important metrics when considering a pathogen’s ability to
persist on a network; we show that fluid-exchange contact networks have low densities and high
degree of variation which holds true in human networks (1,16,47). Future studies could further
validate this work by exploring the contact structures of available human contact networks.
Alternatively, future work could provide a better overview of the natural histories of pathogens
in wildlife. While we would expect infection characteristics to be similar based on our network
analysis, we suggest a more thorough review of these characteristics across different taxa.

Our available network datasets likewise restricted our ability to test and untangle some factors.
First, because we had a lack of data on indirect contact networks in wildlife species, we were
unable to investigate the evolution of traits of environmentally transmitted pathogens. We also
did not have good representation of contact networks representative of each transmission mode
category across all taxonomic classes, which reduced our ability to control for host taxonomy in
our model. Future work may be able to ameliorate these difficulties by measuring indirect
contact networks from species with gregarious and hierarchical social makeups, as well
increasing the taxonomic sample size of each transmission mode category, for a better
representation of contact networks across species and social systems.

Lastly, our work does not consider the impacts of pathogen-mediated changes to contact
structure as caused by sickness behavioral changes due to host immune response or pathogen
virulence, nor due to pathogen manipulation of host behavior (15). For example, rabies can cause
increased aggression and biting in hosts, which could increase the number of edges in some
physical contact networks (61) . In contrast, some pathogens cause "sickness behaviors" in their
hosts, such as bacterial pneumonia in kudu antelope (Tragelaphus strepsiceros), where
individuals have been shown to develop fevers and reduce their daily activities by 60% (62). In
cases where infected individuals exhibit sickness behaviors like these, they may reduce their
contact rates such that the subsequent contact networks will have fewer edges. We assume the
networks in our dataset represent host behavior in absence of active infections, but recognize that
such disease-mediated behavior change can alter both network structure and realized pathogen
characteristics (e.g. infectious periods can be effectively reduced via sickness behaviors). Future
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work must consider this critical feedback loop between contact structure and pathogen
characteristics, in light of different pathogen transmission modes.

4.5 Broader disease ecology implications

It is widely accepted in disease ecology that host behavior drives pathogen spread, and we have
demonstrated how this relationship is affected by the type of contact necessary for transmission.
For epidemic dynamics, understanding transmission routes are also necessary as they determine
how the density and structure of the population affect the rate at which the disease will spread.
Typically, if disease spreads indirectly or through co-incident contact then the transmission rate
is assumed to scale proportionally with population density (density-dependence), whereas if
transmission requires close, intentional contacts then we expect social connectivity to determine
the outcome (frequency-dependence). Classically, this scaling of transmission with population
density has been based on the transmission route of the pathogen, with sexually-transmitted
diseases generally assumed to be transmitted in a frequency-dependent manner (63) (59), and
respiratory-transmitted disease expected to spread in a density-dependent manner. However, past
work has demonstrated that the scaling relationship depends more explicitly on heterogeneity in
contacts (9, 64), with higher heterogeneity being associated with less density-dependence, rather
than pathogen biology. Our work empirically links these two concepts by demonstrating that
pathogen transmission mode is associated with contact structure, e.g. contact networks relevant
to sexually-transmitted diseases are more heterogeneous in contacts and thus are expected to be
frequency-dependent. However, our a priori classification of behaviors by transmission mode
may be obscuring structural variability that exists within modes. For example, Colman et al (9)
demonstrate that networks with aggressive contacts (e.g. head-butting) have low heterogeneity
(thus suggesting density-dependence), while networks with bonding contacts (e.g. grooming)
have high heterogeneity (thus suggesting frequency-dependence). In our work, we classified both
of these contact types in the physical transmission category, thus limiting the ability to detect this
variation in scaling within transmission modes. Future work would benefit from a
characterization of transmission scaling based on contact network structure, rather than
assumptions about pathogen transmission modes.

Additional variation in host behavior can be attributed to social differences among and within
species (18). For example, the pace-of-life-history can explain variation in social relationships
and across taxonomic scales. While we control for different social systems in our model, there is
also potential for further network variation within these social systems and within species. For
example, mating system dynamics and patterns of sexual promiscuity can vary widely within
groups and populations of the same species, as a function of ecological variation and population
sex ratios (43, 65, 66). Moreover, two ungulate species Grevy’s zebra (Equus grevyi) and
onagers (Equus hemionus khur), which both have gregarious social systems, have been shown to
have significantly different network structures, likely due to species traits that have evolved from
inhabiting different environments (67). Additionally, recent work has shown the importance of
considering spatial components of individual behavior (e.g. home ranges, landscape use) when
modeling social networks and disease transmission (68) as they allow for more accurate model
estimates, including a better inference of pathogen transmission modes (69). We do expect there
to be variation in host contact network structure related to traits and spatial behaviors, and
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suggest that future meta-analytic work that captures host heterogeneities and spatial structure
will be necessary to better address this problem empirically.
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Figures and Tables

Table 1: The four transmission mode categories used to define our 232 contact networks based
on the contact types present in our dataset, and the host behaviors that represent each type.

Transmission mode Contact types in dataset
Fluid-Exchange Fluid-exchange mating
Trophallaxis
Direct Physical Dominance interactions

Physical contact
Non-Fluid exchange mating
Nonphysical Close Nonphysical social

interactions

Synchronous resource sharing

Indirect Asynchronous resource
sharing

Example host behaviors
Mammal intromission
Bird cloacal transfer
Spermatophore transfer to
genitals in insects
Mouth to mouth food sharing
Headbutting
Biting
Physical contests
Grooming
Petting
Touching
Spermatophore transfer to not
genital body part
Non-amplexus spawning
Group membership
Spatial proximity
Group foraging
Birds or bats using the same
roost
Possums sharing the same
den
Birds using the same feeders
Voles caught in the same
traps
Tortoises using same burrow
at different times
Birds building nests in same
chamber at different times



Table 2: The eight network metric response variables used in the multivariate GLMM: Degree

heterogeneity, degree assortativity, average betweenness centrality, average clustering

coefficient, fragmentation, cohesion, and network diameter.

Network Metric Definition Visualization
Degree The coefficient of
Heterogeneity variation (CV) in the

frequency distribution of
each node’s number of
contacts (also known as
the degree distribution).

Homogenous Heterogenous

r'e.

Node Degree Node Degree
Equal to the network’s
mean degree divided by
the standard deviation.
Degree The tendency of contacts
Assortativity to have a similar degree Assortative Disassortative

(darker node color
indicates higher degree). A
disassortative network has
high degree individuals
associating with low-
degree individuals. An
assortative network has
high-degree individuals
forming social bonds with

each other.
Average Betweeness The tendency of nodes to
Centrality occupy a central position .
within the social network High Low

(darker node color
indicates a more central
position).

Average Clustering The tendency for a set of
Coefficient three individuals to be
interconnected

O
(represented by triangles), @yai
indicating the propensity c \k
of an individual’s social e
partners to interact with O
. o

each other (darker node O




Fragmentation

Cohesion

Network Diameter

Network Density

color indicates higher
clustering value).

The number of subgroups,
within a network (grey
edges are within
subgroups and red edges
are among subgroups)

Cohesion is the tendency
of individuals to interact
with members of their own
subgroups (grey edges)
compared to members of
other subgroups (red
edges).

A measure of the longest
of all the shortest paths
lengths between pairs of
nodes in a network.
Shown is an example of a
network with long
network diameter of 6, and
a similar network with
shorter network diameter
of 4, indicated by red
colored edges.

The proportion of existing
edges to possible edges in
a network.

High

Low
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Figure 1: The predicted distributions of six of the eight network metrics for each transmission
mode category, based on the results of the GLMM. Letters represent significant differences
between transmission mode categories. Results for fragmentation and cohesion were not
different among transmission mode categories and are therefore not included in this figure.
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Figure 2: The critical transmissibility values (7,) needed for a pathogen to persist (R, > 1) on
networks in each transmission mode category. T, was estimated empirically using SIR
simulations on each network to account for the effect of full network structure. Tc was then
calculated in two control scenarios that examined the effects of homogeneous degree (Equation
1) and heterogeneous degree (Equation 2). Colors represent the different transmission mode
categories, and letters indicate significant differences within each method based on a One-Way
ANOVA and Tukey’s HSD



Giardiasis 1

Rotavirus A

Norwalk Virus 1

Astrovirus -

Shigellosis 1

Cyrptosporidiosis 1

Hepatitis A 1

Campylobacter enteritis

Escherichia coli enteritis

Measles 1

Influenza A

Rubella 1

Tuberculosis

Pertussis 1

Varicella (ChickenPox) 1
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Figure 3: The typical infectious periods of 25 different human pathogens from two literature
reviews (31,32) (pathogens with asterisks came from alternative sources (33—40)). Color denotes

the transmission mode category of each pathogen. Shapes indicate the pathogen’s probability of
infecting a host given contact.
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