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Abstract 10 
Pathogen traits can vary greatly and heavily impact the ability of a pathogen to persist in a 11 
population. Although this variation is fundamental to disease ecology, little is known about the 12 
evolutionary pressures that drive these differences, particularly where they interact with host 13 
behavior. We hypothesized that host behaviors relevant to different transmission routes give rise 14 
to differences in contact network structure, constraining the space over which pathogen traits can 15 
evolve to maximize fitness. Our analysis of 232 contact networks across mammals, birds, 16 
reptiles, amphibians, arthropods, fish, and mollusks found that contact network topology varies 17 
by contact type, most notably in networks that are representative of fluid-exchange transmission. 18 
Using infectious disease model simulations, we showed that these differences in network 19 
structure suggest pathogens transmitted through fluid-exchange contact types will need traits 20 
associated with high transmissibility to successfully proliferate, compared to pathogens that 21 
transmit through other types of contact. These findings were supported through a review of 22 
known traits of pathogens that transmit in humans. Our work demonstrates that contact network 23 
structure may drive the evolution of compensatory pathogen traits according to transmission 24 
strategy, providing essential context for understanding pathogen evolution and ecology. 25 
 26 
1 Introduction 27 
Pathogens vary in a range of important characteristics including transmission mode, infectivity, 28 
and duration of infection, many of which determine epidemiological characteristics such as their 29 
ability to persist in a population (1–5). Although this diversity in pathogen traits is fundamental 30 
to disease ecology, we know little about the ecological factors driving the evolution of such 31 
traits; in particular, it is unclear how transmission ecology determines the evolution of pathogen 32 
characteristics. 33 
 34 
Pathogens are spread by a range of different contact types facilitated by specific host behaviors 35 
such as respiration, physical contact, or shared space use, which define different pathogen 36 
transmission modes (6). In a contact network, the behavior that defines its edges (i.e. a contact 37 
type) can be associated with different transmission modes (e.g. mating vs. grooming vs. spatial 38 
associations), and exhibit distinctive contact patterns (7–11). For instance, when analyzing 39 
contact types in mice (Mus musculus), researchers found that agonistic, grooming, and sniffing 40 
events were associated with distinct network properties such as density, average path length, and 41 
node centrality (12). Such network properties can influence the transmission efficiency of 42 
pathogens, with downstream impacts on the evolution of their traits (13–19). Furthermore, it is 43 
known that individual contact effort across contact types can be heterogeneous (a concept known 44 
as social fluidity), and can lead to the formation of weak ties (9). These weak ties play an 45 
important role in defining network structure (18), but the extent to which they impact the 46 



evolution of pathogen traits remains unknown. Understanding variation in these characteristics is 47 
essential for understanding pathogen ecology, and therefore for developing control measures and 48 
testing hypotheses regarding their evolutionary origins. 49 
 50 
Pathogens should evolve to maximize their fitness, principally described by their 𝑅0 (basic 51 
reproduction number, i.e. the total number of new infections caused by one infection in a totally 52 
susceptible population) (20). To persist in a population, a pathogen’s 𝑅0 must be greater than 1. 53 
A pathogen’s 𝑅0 depends on both the behavior of its host population, and on its own 54 
transmissibility (1,21,22). Host behaviors create the relevant contact that defines the path of 55 
transmission for a pathogen, while transmissibility represents the epidemiological characteristics 56 
(e.g. infectious duration, infection probability) that determine effective transmission upon a 57 
relevant contact. Consequently, host behavior can affect 𝑅0 which could drive the evolution of 58 
pathogen traits.  59 
 60 
Associations between contact network structure and pathogen traits are well-supported by theory. 61 
For example, sexually transmitted pathogens such as gonorrhea (Neisseria gonorrhoeae) or 62 
herpes simplex virus rely on rare, dyadic transmission events, likely producing a sparse contact 63 
network; to compensate for this sparseness, they are thought to exhibit longer duration infections 64 
and higher infection probability respectively (1,5,23). In contrast, tick-borne flaviviruses are only 65 
infectious for about 2–3 days in mammal hosts, but persist in tick populations due to their host’s 66 
aggregated co-feeding behaviors and consequently high rates of contact (24). Despite these kinds 67 
of anecdotal observations, there is no comparative or meta-analytic evidence to demonstrate the 68 
relationship between transmission routes and pathogen characteristics. 69 
 70 
Thus, a critical gap in disease ecology is our understanding of how different contact types 71 
required for pathogen transmission routes might exhibit distinct contact network structure, and 72 
how they might alter the evolution of adaptive pathogen characteristics required to capitalize on 73 
these host networks. Thus, we sought to answer the following questions: 1) How does non-74 
human contact network structure differ depending on the transmission mode associated with its 75 
contact type? 2) How does the resulting contact network structure affect a pathogen’s ability to 76 
persist on that network? 3) How might these results be reflected in known pathogen traits? To 77 
address these questions, we conducted a quantitative analysis on 232 animal contact networks 78 
spanning eight taxonomic classes to investigate the impact of contact type on pathogen traits. 79 
First, we categorized networks into four different horizontal transmission mode categories based 80 
on their contact types (Table 1). Next, we used a multivariate generalized linear mixed model 81 
(GLMM) to identify how network structure is predicted by its associated transmission mode 82 
category. We then mathematically examined how pathogen traits (i.e. critical transmissibility) 83 
may change in order to persist on these different contact networks and compare our results to 84 
current knowledge of pathogen traits. We provide practical evidence that contact network 85 
structure is influenced by contact types, and that this structural variation causes differences in 86 
pathogen transmissibility thresholds that are reflective of our current knowledge of pathogen 87 
infection characteristics. 88 
 89 
2 Methods 90 
In this study, we used a GLMM to examine how contact types associated with different pathogen 91 
transmission modes predict eight different descriptors of network structure. We then calculated a 92 



pathogen’s critical transmissibility (𝑇𝑐) value on these different network types, or the value of 93 
transmissibility (𝑇) necessary for a pathogen to persist on a network (basic reproduction number 94 
(𝑅0) > 1) where epidemics might occur. Finally, we collate published information on pathogen 95 
traits in humans (due to the lack of this data in non-human systems) that make up 𝑇𝑐 (e.g. 96 
probability of infection, infectious period) and provide a preliminary comparison between these 97 
pathogen traits, their transmission routes, and our model predictions. Therefore, we aimed to 98 
provide evidence that transmission mode affects emergent contact networks, and therefore 99 
selects for specific pathogen traits to maximise transmission and persistence. 100 
 101 
2.1 Dataset 102 
 103 
We compiled a dataset of animal contact networks where edges represent one of twelve different 104 
contact types, using the Animal Social Network Repository (ASNR) (25,26). The ASNR is an 105 
open-source animal behavior network library in which we have compiled network data from the 106 
available literature across eight animal taxonomic classes (Mammalia, Aves, Reptilia, Amphibia, 107 
Insecta, Arachnida Actinopterygii, and Cephalapoda). Contact types include group membership, 108 
nonphysical social interactions, spatial proximity, foraging interactions, trophallaxis (mouth-to- 109 
mouth food sharing), synchronous and asynchronous resource sharing, agonistic behaviors, 110 
grooming, other physical contact, or mating interactions. Our sample size for this study consisted 111 
of 232 contact networks from all eight taxonomic classes (Figure S1). Of these 232 networks, 112 
181 had weighted edges determined by the duration, frequency, or association probability (e.g. 113 
half-weight index) of the contact type. We assume that these networks were observed without the 114 
presence of a pathogen or active infection. 115 
 116 
2.2 Defining and characterizing contact networks 117 
 118 
For each network in our dataset, nodes represented an individual animal and edges represented 119 
a contact type between two animals. Based on the contact type, we divided our dataset into four 120 
different transmission mode categories (Table 1). We focus on four transmission modes that our 121 
sample represents well: fluid-exchange, direct physical, nonphysical close, and indirect. We 122 
define each transmission mode category as follows: 123 
 124 
1. Fluid-exchange contact: host interactions that result in the exchange of bodily fluids. This 125 
includes sexual contact such as cloacal transfer, intromission and spermataphore transfer, as well 126 
as direct food sharing interactions such as trophallaxis. 127 
 128 
2. Direct Physical contact: interactions of physical touch that include grooming, agonistic host 129 
behaviors (e.g. head-butting, fighting), and other physical social contact. 130 
 131 
3. Nonphysical Close contact: close spatial proximity in which face-to-face contact, or 132 
respiratory droplet exchange, could occur. This includes group memberships, or spatial 133 
proximity. 134 
 135 
4. Indirect contact: asynchronous resource sharing interactions. Indirect contact is unique in that 136 
individuals do not need to be using the resource at the same time to be connected in the network. 137 
 138 



We note that our nonphysical, physical, and fluid-exchange categories have an inherent nested 139 
structure with nonphysical the broadest category, and fluid exchange the most selective (Figure 140 
S2). In other words, pathogens that transmit on nonphysical networks (i.e. respiratory droplet 141 
pathogens such as SARS-CoV-2) can also transmit on direct physical and fluid exchange 142 
networks, but fluid-exchange transmitted pathogens (e.g. sexually transmitted pathogens such as 143 
gonorrhea (Neisseria gonorrhoeae)) can only transmit on fluid-exchange networks. We manage 144 
this nested structure by classifying each empirical network into the most specific category 145 
possible using the definitions above. 146 
 147 
For each network, we calculated the following eight network metrics that are known to influence 148 
infection dynamics and social structure, ignoring edge weights (Table 2): total network density, 149 
degree heterogeneity, degree assortativity, average clustering coefficient, average betweenness 150 
centrality, network diameter, fragmentation, and subgroup cohesion. Fragmentation (i.e. the 151 
number of communities in each network), was estimated using the Louvain method (27) and the 152 
remaining network metrics were calculated using the NetworkX package in Python 153 
(https://networkx.github.io/). 154 
 155 
2.3 Identifying how network structure depends on transmission mode 156 
To examine how contact network structure differs depending on its associated transmission mode 157 
category, we fitted a multivariate generalized linear mixed model using the MCMCglmm 158 
package in R (28), where the eight network metrics (Table 2) made up our multivariate response, 159 
and the associated transmission mode category was our predictor variable. 160 
 161 
We also controlled for the effect of network size on these metrics by including the number of 162 
nodes as a predictor. Edge weight type (weighted vs unweighted) was also included to control for 163 
data sampling design and edge weighting criteria. As the spatial scale of data collection has been 164 
shown to influence network structure (18), we also included sampling scale as a predictor. 165 
Studies that collected data on captive animal populations (where all nodes and interactions are 166 
theoretically known) were labeled as captive sampling. Studies that focused data collection on 167 
specific social groups were categorized as social sampling, and those that focused data collection 168 
on all individuals within a fixed spatial boundary were labeled as spatial sampling. Since the 169 
social system of an animal species is also shown to influence network structure (18), we included 170 
species social structure (relatively solitary, gregarious, and socially hierarchical defined in Table 171 
S1 based on (18)) as a predictor. Finally, we controlled for repeated measurements within studies 172 
by including study id as a random effect in the analysis. We were unable to include a random 173 
effect for taxonomic class or use a phylogenetically controlled model, because there was an 174 
unbalanced representation of different taxa across the four transmission mode categories that 175 
made these effects difficult to fit successfully (Figure S1). 176 
 177 
All response variables were continuous; to encourage proper model fitting we log-transformed 178 
then centered them (by subtracting the mean) and then scaled to unit variances (by dividing by 179 
the standard deviation). We ran 1 MCMC chain for 10,500 iterations, with a thinning interval of 180 
10 after burn-in of 500 with uninformative priors. Non-physical contact transmission was the 181 
intercept factor level for the transmission mode category fixed effect. For each response variable, 182 
if the effect sizes of the three remaining transmission mode categories overlapped with zero then 183 
it was considered not different from non-physical contact. To examine differences between the 184 



remaining three modes, we observed the proportional overlap between their effect sizes across all 185 
1000 iterations, multiplied by 2 per a two-tailed test; if it was less than 0.05, then the response 186 
variables were considered different between the transmission mode categories. 187 
 188 
Within the ASNR, several studies provided more than one network for the study species or 189 
population. To avoid biasing our sample towards these studies, we randomly selected a 190 
maximum of 15 networks from each study (n=232). To ensure that our results were not affected 191 
by this random subsampling, we reran our model 1000 times, each time choosing a different 192 
sample of networks from each study with more than fifteen networks. We then chose a random 193 
estimate from each model run and computed an average of model estimates across the 1000 194 
different subsamples. 195 
 196 
2.3.1 Investigating the role of weak ties 197 
 198 
To determine if weak ties (i.e. low edge weights) might drive contact network structure across 199 
transmission modes, we recalculated all eight network metrics for each network in our dataset 200 
when the lowest 5, 10 and 15% of weighted edges were dropped from the network. We then 201 
reran our GLMM to see if differences in network metrics among our different transmission mode 202 
categories still hold true when low weight edges are no longer accounted for. 203 
 204 
2.4 Characterizing critical transmission thresholds 205 
 206 
We assume that our dataset consists of contact networks constructed in the absence of pathogens 207 
or active infections. Therefore, to examine how network structure affects a pathogen’s ability to 208 
persist on a network, we must model the way a pathogen spreads on these networks using 209 
mathematical models. 210 
 211 
We sought to identify a pathogen’s critical transmissibility (𝑇𝑐) on contact networks based on 212 
transmission mode. For a pathogen to persist in a network, its basic reproduction number (𝑅0) 213 
must be greater than 1, and 𝑅0 depends on both a pathogen’s 𝑇 and the contact patterns of the 214 
network it travels on. Therefore, for each network, we sought 𝑇𝑐 for which 𝑇𝑐(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) =  𝑅0 >215 1. To estimate 𝑇𝑐, we considered the impact of contact network structure by calculating 𝑅0 using 216 
Monte Carlo simulations of a susceptible-infected-recovered (SIR) model of infection spread 217 
through each network. We ignored edge weights because the impact of interaction weight (e.g. 218 
contact duration or frequency) on infection spread is not well understood generally. We used an 219 
SIR percolation simulation model (29), where each outbreak was initiated by infecting a 220 
randomly chosen individual in the network. For the first generation of the simulation, the 221 
individual is given an opportunity to infect all its contacts, with transmissibility 𝑇, and then 222 
recover. This process is then repeated for each infected node, until no infections remain in the 223 
network. For each network, we simulated 250 disease outbreaks and of those classified large-224 
scale epidemics as those where at least 10% of the population is infected. We repeated this for 225 
each 𝑇 value in the range (0.01-0.8), and recorded the first 𝑇 value for which at least 10% of the 226 
outbreaks were large-scale epidemics. Percolation theory suggests that our expectation for the 227 
probability of having a large-scale epidemic should match the expected size of a large-scale 228 
epidemic (29). This reported 𝑇 value is our estimate of the network’s critical transmissibility 𝑇𝑐. 229 
 230 



Past studies suggest that degree (i.e. density) and degree heterogeneity are the most important 231 
aspects of network structure affecting how a pathogen will transmit across a network (30). In 232 
order to test this, we considered two control scenarios where we 1) isolated the effect of 233 
homogeneous degree (i.e. all individuals have the same number of contacts) on 𝑇𝑐 and 2) isolated 234 
the effect of heterogeneous degree (i.e. on average, individuals have the number of contacts as 235 
scenario 1, but individual degree varies around this mean) on 𝑇𝑐. Therefore, we sought 𝑇𝑐 for 236 
which 𝑇𝑐〈𝑘𝑒〉 =  𝑅0 > 1, where 〈𝑘𝑒〉 is the average excess degree of the network. The excess 237 
degree is the potential number of contacts an individual can infect after they have been infected 238 
by one of their contacts, and on average this value is larger for networks with degree 239 
heterogeneity than for homogeneous degree networks (22). 240 
 241 
For the first control scenario, we considered a pathogen’s 𝑇𝑐 in a homogeneous degree network, 242 
in which the average excess degree, 〈𝑘𝑒〉, is: 243 
 244 〈𝑘𝑒〉 =  〈𝑘〉 − 1                (𝐸1) 245 
where 〈𝑘〉 is the average degree of the network. For the second control scenario, we considered a 246 
network with degree heterogeneity, thus the average excess degree is: 247 〈𝑘𝑒〉 =  〈𝑘2〉 −  〈𝑘〉〈𝑘〉                      (𝐸2) 248 

We consider these to be “control” scenarios because Equations 1 and 2 allow us to consider only 249 
the two network metrics of interest (density and degree heterogeneity), while our simulation 250 
method will inherently take in to account all aspects of network structure (centrality, clustering, 251 
etc.). By isolating how homogeneous and heterogeneous degree effects 𝑇𝑐, and comparing these 252 
results to our full network structure simulation method, we can elucidate how much of the 253 
variation in 𝑇𝑐may be attributed to the degree (density) and degree heterogeneity of a network. 254 
 255 
We compared the 𝑇𝑐 values for each transmission mode category of contact networks (non-256 
physical close, direct physical, fluid-exchange, indirect) within each scenario using a one-way 257 
ANOVA, and pairwise t-tests with a Tukey HSD familywise error-rate correction. 258 
 259 
2.5 Examining diversity of empirical pathogen characteristics 260 
To examine how our results are reflected in known pathogen traits, we considered the 261 
transmissibility of a pathogen (𝑇) as a function of its infectious duration (𝐺) and its probability 262 
of infection (𝛽)(21,22): 263 𝑇 =  𝛽𝛽 + 1𝐺             (𝐸3) 264 

 265 
To provide context for the covarying characteristics of known pathogens, we examine known β 266 
and 𝐺 values (infection characteristics) for a small set of well characterized pathogens to see how 267 
they compare to our findings. Because data on pathogen traits in non-human animals is limited, 268 
we instead focus on these traits in common human pathogens. We use two systematic reviews on 269 
the natural histories of pathogens for common diseases in preschools(31,32) to summarize data 270 
on pathogens that use each transmission mode. We only included the pathogens in our summary 271 
if the source of the data was from a well-designed study, using the levels of evidence I and II 272 
provided in the first review (31) (Table S2). If there was no data, or the source of the data was 273 



poor (level of evidence III or IV) for the pathogen’s infectious period (𝐺), we instead used the 274 
shedding periods, defined as the period of time during which an individual excretes the 275 
pathogen; the shedding period can be used to estimate the duration of infectiousness when there 276 
is lack of direct evidence (31). If there was no or poor data for the shedding period, then it was 277 
not included in this summary. We then verified the data for these pathogens using the second 278 
review (32). 279 
 280 
Since these reviews did not contain any sexually transmitted pathogens, we took the ten sexually 281 
transmitted pathogens listed on the CDC website (www.cdc.gov/std) and examined the literature 282 
for their natural histories. We found studies that estimated both the probability of infection (𝛽) 283 
and infectious period (𝐺) of four of the ten pathogens (syphilis (33,34), gonorrhea (35,36), 284 
chlamydia (37,38), and trichomoniasis (39,40)).  285 
 286 
3 Results 287 
 288 
3.1 Network structure is dependent on host behavior type 289 
We examined how network structure was predicted by the pathogen transmission mode 290 
represented by specific contact types using a multivariate GLMM. We summarized network 291 
structure with eight topological characteristics (Table 2), and all the metrics except subgroup 292 
cohesion and fragmentation differed among transmission mode categories. The predicted 293 
distributions for the six remaining network metrics by transmission mode category are 294 
summarized in Figure 1 and all other effect sizes from our model are in Tables S3, S4, S5, and 295 
S6. 296 
 297 
Fluid-exchange contact networks differed from physical and nonphysical contact networks in all 298 
six network metrics and differed from indirect contact networks for clustering and network 299 
diameter. Indirect contact networks only differed from physical and nonphysical networks in 300 
their degree heterogeneity. Physical and non-physical networks could not be differentiated by the 301 
network metrics we tested. This suggests that fluid exchange contact types create the most 302 
unique contact patterns. 303 
 304 
Physical and nonphysical contact networks had higher density values and shorter network 305 
diameters than fluid-exchange networks, and lower degree heterogeneity than both fluid-306 
exchange and indirect contact networks. This indicates that physical and nonphysical contact 307 
types create networks that are more connected, with less variation in each individual’s number of 308 
contacts. 309 
 310 
Fluid-exchange contact networks also had lower degree assortativity than physical and 311 
nonphysical contact networks. That is, high degree individuals in fluid-exchange contact 312 
networks tend to be connected  to low degree individuals,  whereas high degree individuals in 313 
physical and nonphysical contact networks are more likely to be connected to other high degree 314 
individuals. Indirect contact networks did not differ in their degree assortativity from any other 315 
contact network. Fluid-exchange contact networks also had lower average clustering values than 316 
all other contact networks. 317 
 318 



Finally, fluid-exchange contact networks have higher betweenness centrality values than 319 
physical and nonphysical contact networks. This means that these networks tend to have more 320 
"bridge nodes", or nodes that connect different communities together: this is despite the fact that 321 
the number of communities (fragmentation) and the cohesiveness of those communities do not 322 
differ among contact networks. 323 
 324 
3.1.1 Weak Ties 325 
 326 
To examine the role of weak interactions (i.e. low edge weights) in determining unique network 327 
structure, we reran the GLMM on our dataset after dropping the lowest 5%, 10%, or 15% of 328 
weighted edges in each network. We found that the significant differences in average clustering 329 
and degree assortativity in networks across the four transmission mode categories are maintained 330 
as we filter low weight edges. However, as edges are filtered, there are no longer any differences 331 
in density and degree heterogeneity (Figure S3) among transmission mode categories. In other 332 
words, without low weight edges, contact networks in each transmission mode category become 333 
more similar in their number and variation of contacts. 334 
 335 
3.2 Pathogen transmissibility must be higher for contact networks with lower connectivity 336 
 337 
We demonstrated the effect of full contact structure on critical transmissibility values (𝑇𝑐 ) in 338 
networks for each of our four transmission mode categories. We then specifically examined the 339 
effect of network density (average number of contacts) and degree heterogeneity (variation in 340 
number of contacts) on 𝑇𝑐 in two different control scenarios.  341 
 342 
We find that generally pathogens needed significantly higher critical transmissibility values on 343 
fluid-exchange contact networks than on physical, nonphysical, and indirect transmission contact 344 
networks (Figure 2). By comparing our empirical simulation scenario to the two control 345 
scenarios, we find that fluid exchange and indirect contact networks are more vulnerable to 346 
disease invasion (i.e. lower 𝑇𝑐) than expected based on their average connectivity (Figure 2). 347 
This result is consistent with network epidemiology theory which predicts that higher degree 348 
heterogeneity (as we find in fluid-exchange and indirect contact networks) make disease invasion 349 
more likely. For physical and non-physical contact networks, on the other hand, the critical 350 
transmissibility is comparable in all three scenarios, suggesting that the average network 351 
connectivity (or network density) is sufficient to predict disease invasion in such networks. 352 
 353 
3.3 The structure of a contact network can influence the infection characteristics of associated 354 
pathogens 355 
 356 
We compiled peer-reviewed data from common human pathogens as life history data on 357 
pathogens in non-human animals was extremely limited. We visualized two of the characteristics 358 
that define a pathogen’s transmissibility: its infectious period and its infection probability (Figure 359 
3). 360 
 361 
First, we showed that pathogens that transmit on indirect contact networks (e.g. food/waterborne, 362 
fecal-oral) have relatively short infectious periods, and varied between low to moderate infection 363 
probability. Next, we found pathogens that transmit on fluid-exchange contact networks (e.g. 364 



sex, saliva) have the longest infectious periods. Of those, the two pathogens (herpes, syphilis) 365 
that tend to have shorter infectious periods (despite intermittent infectivity over long periods)  366 
alternatively have moderate to high infectivity. . These results suggest that fluid-exchange 367 
pathogens do in fact have higher 𝑇𝑐  values than other pathogens, and they tend to increase their 368 𝑇𝑐 by extending their infectious periods over increasing their infection probability. Finally, we 369 
see that pathogens that transmit on physical and nonphysical contact networks have some of the 370 
shortest infectious periods and a range of infection probabilities, but most pathogens with high 371 
infectivity are associated with these transmission modes. 372 
 373 
4 Discussion 374 
 375 
Our study shows that networks characteristic of different pathogen transmission modes differ in 376 
terms of their structure. We then go on to demonstrate that differences in network structure will 377 
affect the transmissibility required for a pathogen to successfully proliferate. Finally, we suggest 378 
these network structures likely impact the evolution of a focal pathogen’s infection 379 
characteristics, supported by a review of human pathogen traits. 380 
 381 
4.1 Differences among contact networks and their implications for pathogen spread 382 
 383 
Most notably, compared to physical and nonphysical contact networks, fluid exchange networks 384 
were less dense and had more heterogeneous degree values, with greater diameters, reduced 385 
clustering, and greater disassortativity by degree. They also had more bridge nodes than all other 386 
network types. That is, these networks tend to be more poorly connected, and with greater skew 387 
in nodes’ importance in the network. This selection of network traits likely arises through a 388 
combination of mechanisms, linked to the fact that many of these networks were based on sexual 389 
interactions. 390 
 391 
First, the infrequency of copulation events will drive low network density, with correlated 392 
increases in the diameter of the network and the prevalence of bridge connections; second, the 393 
fact that all networks solely included male-female copulation events likely increase clustering 394 
and reduce the tendency for assortative mating; and finally, the common nature of polygyny and 395 
overdispersed mating events (i.e., few individuals monopolizing sexual resources) will drive 396 
greater degree heterogeneity, as well as driving disassortativity. These latter traits agree with our 397 
understanding of the overdispersed nature of sexual interaction networks (41–43). The fluid 398 
exchange category also included trophallaxis networks, which are also generally highly 399 
heterogeneous; in ants, more than 50% of trophallaxis interactions may come from less than 25% 400 
of individuals (44). While the majority of the trophallaxis networks represented in our dataset are 401 
indeed in ants, many other species such as birds and mammals also partake in trophallaxis, 402 
usually in the form of parental care (45); these unique parent-offspring interactions would also 403 
likely result in sparse, heterogeneous, and highly fragmented networks. 404 
 405 
These traits could have a selection of important consequences for transmission of pathogens 406 
through fluid exchange networks. First, less dense networks are likely to provide fewer 407 
transmission opportunities for fluid-borne pathogens (46), while larger diameters will inhibit the 408 
spread of an outbreak. Second, degree heterogeneity is known to be a key driver of sexually 409 
transmitted pathogen risk in human contact networks (16,47). Where contact numbers are highly 410 



heterogeneous, superspreaders can lead to rapid, explosive outbreaks, allowing pathogens to 411 
persist (21). Indeed, past work has shown that HIV, a sexually transmitted pathogen, can exploit 412 
this contact heterogeneity to attain sufficient transmissibility, and other sexually transmitted 413 
pathogens likely do the same (48). However, previous work on contact networks has shown that 414 
network density and individual variation in contact are negatively correlated (49). Our results 415 
support these findings, as we found fluid exchange and indirect contact networks have lower 416 
densities and higher degree heterogeneity compared to physical and nonphysical contact 417 
networks. This suggests that while having high degree heterogeneity might make a network more 418 
vulnerable to explosive outbreaks (18,21), this may trade off with lower overall transmission 419 
probabilities (49). Third, low clustering values might be beneficial for pathogens, especially 420 
given the low densities, as a pathogen may be less likely to get stuck in cliques that might form 421 
among individuals (50). Fourth, the common nature of bridge nodes in fluid exchange networks 422 
might be especially important when considering control measures for pathogens on these 423 
networks. Previous work has shown that pathogens with high transmissibility are able to persist 424 
in socially fragmented networks because bridge nodes allow for transmission amongst 425 
communities (30). Therefore, the removal of these nodes will prevent or slow pathogen spread 426 
through a population (47). While both physical and fluid exchange transmission require 427 
relatively close contact, controlling disease spread by identifying bridge nodes might be more 428 
powerful for fluid-exchange pathogens than for others.  429 
 430 
Notably, indirect contact networks had a more heterogeneous degree distribution than physical 431 
and nonphysical contact networks, meaning there is more between-individual variation in 432 
asynchronous resource sharing compared to that in close proximity or physical touch. Past 433 
research has demonstrated this phenomenon in many solitary desert species that asynchronously 434 
burrow share, and while there are many ecological factors that might drive these individual 435 
preferences for resource use patterns (such as differences in sex, age, and environment) (30,51), 436 
we still do not have a full mechanistic understanding of them. It is possible that this pattern will 437 
drive greater heterogeneity in infection with indirectly transmitted pathogens. 438 
 439 
4.2 Network structure and the pressures on pathogen characteristics 440 
 441 
Pathogens that transmit on indirect contact networks (e.g. food/waterborne, fecal-oral) seem to 442 
have relatively short infectious periods, and vary between low to moderate infection probabilities 443 
(Figure 3). However, we found many aspects of indirect contact network structure were not 444 
different from fluid-exchange networks (i.e. low network densities and high degree 445 
heterogeneity) (Figure 1). These results contradict expectations that these indirect networks 446 
should be highly connected since individuals need to have only used the same space at some 447 
point in time to be connected. For example, many individuals sharing the same sanitation 448 
facilities through time such as on airplanes (52), cruise ships (53), and hotels (54) can cause 449 
recurring outbreaks of Norwalk virus, a common fecal-oral pathogen; since there is no need to 450 
physically contact an individual to be infected by them, these contact networks are known to be 451 
extremely highly connected (55). There are several possible explanations for our surprising 452 
finding: first, our results may be driven by the fact that relatively solitary species (which have 453 
low connectivity due to their social structure (30)) are highly represented in our indirect 454 
networks sample. Additionally, these networks often involve territorial species; resource sharing 455 
(both synchronous and asynchronous) is likely minimized in species that hold territories (e.g. 456 



(56)). Moreover, territoriality can be sex specific in that males very rarely use the same space 457 
and resources even asynchronously but females can move freely between male territories, which 458 
can result in a sex-specific degree heterogeneity in some species (e.g. (57,58)). Indeed, our 459 
GLMM showed a high amount of variation in the effect sizes of indirect contact networks and 460 
we found that pathogens using indirect contact networks do not need high 𝑇𝑐 values to persist on 461 
these networks. This suggests that a species’ social system strongly influences the structure of 462 
indirect contact networks. Including additional species with other social systems may increase 463 
the average connectivity of indirect contact networks, which would be more representative of 464 
their associated pathogen characteristics. This paucity of variation in social systems is a common 465 
problem in meta-analyses of social network structure, and ongoing data collection may help to 466 
ameliorate this difficulty in the future. 467 
 468 
Our simulations revealed that contact network structure should motivate the evolution of higher 469 
transmissibility for fluid exchange pathogens to persist (Figure 2); a prediction that was 470 
supported by our literature review (Figure 3). This supports what we know about the host 471 
behaviors involved in bodily fluid exchange; individuals usually have long temporal gaps in 472 
between fluid exchange events compared to other potential disease transmission host behaviors 473 
(1). Therefore, pathogens would benefit more from longer infectious periods giving them more 474 
time to spread. 475 
 476 
4.3 The role of weak ties in defining relevant disease spreading contact 477 
Previous studies have shown that structural differences between networks are primarily driven by 478 
“weak ties" that are disproportionately lower in intensity, frequency, or duration than other 479 
contacts (18). When we eliminated weak ties, we found that differences between transmission 480 
mode categories persisted for some structural features (e.g. average clustering and degree 481 
assortativity), but others (density and degree heterogeneity) were lost; in other words, removing 482 
the weak ties from contact networks makes them more similar to each other in their number and 483 
variation of contacts. Given that the structural features of density and degree heterogeneity were 484 
most different among fluid-exchange networks, this finding suggests that not only do individuals 485 
tend to vary in the number of fluid-exchange contacts they have compared to their other types of 486 
contacts, but individuals also vary more in the strength of connections between their different 487 
fluid-exchange contacts, compared to their other types of contacts. We hypothesize that this 488 
might be the crucial difference between pathogens that spread via fluid exchange and others, but 489 
additional data would be required to confirm this hypothesis. 490 
 491 
This heterogeneity in how individuals distribute their contact effort is known as "social fluidity", 492 
where higher social fluidity suggests a higher prevalence of weak ties (9). Past work has shown 493 
that nonphysical contact networks (e.g. spatial association) have smaller values of social fluidity 494 
than fluid-exchange networks (e.g. trophallaxis), suggesting that social fluidity and weak ties are 495 
especially relevant when considering disease transmission potential in these networks (9). In 496 
some instances, not considering a very brief or infrequent contact as "relevant" for disease 497 
transmission might make sense, such as for pathogens that propagate on networks with low 498 
social fluidity (e.g. flu). However, for pathogens that are spread via fluid exchange, we found 499 
that the density and degree heterogeneity of contact networks are important predictors for 500 
determining their transmissibility and traits. This suggests it is imperative to include short or 501 
infrequent fluid exchange interactions when considering the definition of relevant contact for 502 



modeling the transmission of these pathogens. By not including these "weak" contacts, it is likely 503 
that estimates of fluid-exchange pathogen spread would be inaccurate, and proposed control 504 
measures based on these estimates could be unreliable. 505 
 506 
4.4 Study Limitations 507 
Our study has some important limitations. First, we investigated non-human animal networks, 508 
while using pathogen traits in humans to understand the implications of network structure on 509 
infection characteristics. We would expect some aspects of human contact networks to differ 510 
from animal contact networks, particularly with fluid-exchange transmission. For example, 511 
human sexual networks have much higher clustering values than what we observed in our animal 512 
networks (59). However, this could be due to the lack of recorded same-sex sexual host 513 
behaviors in non-human animal species; same sex host behaviors including fluid exchange do 514 
occur in many non-human animals and are therefore likely underrepresented in our sample (60). 515 
Regardless, even if true clustering values are higher than observed, we would expect this to 516 
reduce the 𝑅0 of a pathogen in a network; this might further increase the transmissibility needed 517 
to persist (59), further supporting our current results. Overall, we found that network density and 518 
degree heterogeneity were the most important metrics when considering a pathogen’s ability to 519 
persist on a network; we show that fluid-exchange contact networks have low densities and high 520 
degree of variation which holds true in human networks (1,16,47). Future studies could further 521 
validate this work by exploring the contact structures of available human contact networks. 522 
Alternatively, future work could provide a better overview of the natural histories of pathogens 523 
in wildlife. While we would expect infection characteristics to be similar based on our network 524 
analysis, we suggest a more thorough review of these characteristics across different taxa. 525 
 526 
Our available network datasets likewise restricted our ability to test and untangle some factors. 527 
First, because we had a lack of data on indirect contact networks in wildlife species, we were 528 
unable to investigate the evolution of traits of environmentally transmitted pathogens. We also 529 
did not have good representation of contact networks representative of each transmission mode 530 
category across all taxonomic classes, which reduced our ability to control for host taxonomy in 531 
our model. Future work may be able to ameliorate these difficulties by measuring indirect 532 
contact networks from species with gregarious and hierarchical social makeups, as well 533 
increasing the taxonomic sample size of each transmission mode category, for a better 534 
representation of contact networks across species and social systems. 535 
 536 
Lastly, our work does not consider the impacts of pathogen-mediated changes to contact 537 
structure as caused by sickness behavioral changes due to host immune response or pathogen 538 
virulence, nor due to pathogen manipulation of host behavior (15). For example, rabies can cause 539 
increased aggression and biting in hosts, which could increase the number of edges in some 540 
physical contact networks (61) . In contrast, some pathogens cause "sickness behaviors" in their 541 
hosts, such as bacterial pneumonia in kudu antelope (Tragelaphus strepsiceros), where 542 
individuals have been shown to develop fevers and reduce their daily activities by 60% (62). In 543 
cases where infected individuals exhibit sickness behaviors like these, they may reduce their 544 
contact rates such that the subsequent contact networks will have fewer edges. We assume the 545 
networks in our dataset represent host behavior in absence of active infections, but recognize that 546 
such disease-mediated behavior change can alter both network structure and realized pathogen 547 
characteristics (e.g. infectious periods can be effectively reduced via sickness behaviors). Future 548 



work must consider this critical feedback loop between contact structure and pathogen 549 
characteristics, in light of different pathogen transmission modes. 550 
 551 
4.5 Broader disease ecology implications 552 
 553 
It is widely accepted in disease ecology that host behavior drives pathogen spread, and we have 554 
demonstrated how this relationship is affected by the type of contact necessary for transmission. 555 
For epidemic dynamics, understanding transmission routes are also necessary as they determine 556 
how the density and structure of the population affect the rate at which the disease will spread. 557 
Typically, if disease spreads indirectly or through co-incident contact then the transmission rate 558 
is assumed to scale proportionally with population density (density-dependence), whereas if 559 
transmission requires close, intentional contacts then we expect social connectivity to determine 560 
the outcome (frequency-dependence). Classically, this scaling of transmission with population 561 
density has been based on the transmission route of the pathogen, with sexually-transmitted 562 
diseases generally assumed to be transmitted in a frequency-dependent manner (63) (59), and 563 
respiratory-transmitted disease expected to spread in a density-dependent manner. However, past 564 
work has demonstrated that the scaling relationship depends more explicitly on heterogeneity in 565 
contacts (9, 64), with higher heterogeneity being associated with less density-dependence, rather 566 
than pathogen biology. Our work empirically links these two concepts by demonstrating that 567 
pathogen transmission mode is associated with contact structure, e.g. contact networks relevant 568 
to sexually-transmitted diseases are more heterogeneous in contacts and thus are expected to be 569 
frequency-dependent. However, our a priori classification of behaviors by transmission mode 570 
may be obscuring structural variability that exists within modes. For example, Colman et al (9) 571 
demonstrate that networks with aggressive contacts (e.g. head-butting) have low heterogeneity 572 
(thus suggesting density-dependence), while networks with bonding contacts (e.g. grooming) 573 
have high heterogeneity (thus suggesting frequency-dependence). In our work, we classified both 574 
of these contact types in the physical transmission category, thus limiting the ability to detect this 575 
variation in scaling within transmission modes. Future work would benefit from a 576 
characterization of transmission scaling based on contact network structure, rather than 577 
assumptions about pathogen transmission modes.   578 
 579 
Additional variation in host behavior can be attributed to social differences among and within 580 
species (18). For example, the pace-of-life-history can explain variation in social relationships 581 
and across taxonomic scales. While we control for different social systems in our model, there is 582 
also potential for further network variation within these social systems and within species. For 583 
example, mating system dynamics and patterns of sexual promiscuity can vary widely within 584 
groups and populations of the same species, as a function of ecological variation and population 585 
sex ratios (43, 65, 66). Moreover, two ungulate species Grevy’s zebra (Equus grevyi) and 586 
onagers (Equus hemionus khur), which both have gregarious social systems, have been shown to 587 
have significantly different network structures, likely due to species traits that have evolved from 588 
inhabiting different environments (67). Additionally, recent work has shown the importance of 589 
considering spatial components of individual behavior (e.g. home ranges, landscape use) when 590 
modeling social networks and disease transmission (68) as they allow for more accurate model 591 
estimates, including a better inference of pathogen transmission modes (69). We do expect there 592 
to be variation in host contact network structure related to traits and spatial behaviors, and 593 



suggest that future meta-analytic work that captures host heterogeneities and spatial structure 594 
will be necessary to better address this problem empirically. 595 
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Table 1: The four transmission mode categories used to define our 232 contact networks based 
on the contact types present in our dataset, and the host behaviors that represent each type. 

Transmission mode Contact types in dataset Example host behaviors 
Fluid-Exchange Fluid-exchange mating Mammal intromission 

Bird cloacal transfer 
Spermatophore transfer to 
genitals in insects 

 Trophallaxis Mouth to mouth food sharing 
Direct Physical Dominance interactions Headbutting 

Biting 
Physical contests 

Physical contact Grooming 
Petting 
Touching 

Non-Fluid exchange mating Spermatophore transfer to not 
genital body part 
Non-amplexus spawning 

Nonphysical Close Nonphysical social 
interactions 

Group membership 
Spatial proximity 
Group foraging 

Synchronous resource sharing Birds or bats using the same 
roost 
Possums sharing the same 
den 
Birds using the same feeders 
Voles caught in the same 
traps 

Indirect Asynchronous resource 
sharing 

Tortoises using same burrow 
at different times 
Birds building nests in same 
chamber at different times 

 
 

 

 

 

 

 

 

 



 

 

 

 

Table 2: The eight network metric response variables used in the multivariate GLMM: Degree 
heterogeneity, degree assortativity, average betweenness centrality, average clustering 
coefficient, fragmentation, cohesion, and network diameter. 

Network Metric Definition Visualization 

Degree 

Heterogeneity 

The coefficient of 
variation (CV) in the 
frequency distribution of 
each node’s number of 
contacts (also known as 
the degree distribution). 
Equal to the network’s 
mean degree divided by 
the standard deviation. 

 

Degree 

Assortativity 

The tendency of contacts 
to have a similar degree 
(darker node color 
indicates higher degree). A 
disassortative network has 
high degree individuals 
associating with low-
degree individuals. An 
assortative network has 
high-degree individuals 
forming social bonds with 
each other. 

 

Average Betweeness 

Centrality 

The tendency of nodes to 
occupy a central position 
within the social network 
(darker node color 
indicates a more central 
position). 

     

 
Average Clustering 

Coefficient 

The tendency for a set of 
three individuals to be 
interconnected 
(represented by triangles), 
indicating the propensity 
of an individual’s social 
partners to interact with 
each other (darker node 

 



color indicates higher 
clustering value). 

Fragmentation The number of subgroups, 
within a network (grey 
edges are within 
subgroups and red edges 
are among subgroups) 

     

 
Cohesion Cohesion is the tendency 

of individuals to interact 
with members of their own 
subgroups (grey edges) 
compared to members of 
other subgroups (red 
edges). 

 
Network Diameter A measure of the longest 

of all the shortest paths 
lengths between pairs of 
nodes in a network. 
Shown is an example of a 
network with long 
network diameter of 6, and 
a similar network with 
shorter network diameter 
of 4, indicated by red 
colored edges. 

 

Network Density The proportion of existing 
edges to possible edges in 
a network. 

 
 
 
 
 
 



 
Figure 1: The predicted distributions of six of the eight network metrics for each transmission 
mode category, based on the results of the GLMM. Letters represent significant differences 
between transmission mode categories. Results for fragmentation and cohesion were not 
different among transmission mode categories and are therefore not included in this figure. 
 



 
Figure 2: The critical transmissibility values (𝑇𝑐) needed for a pathogen to persist (𝑅0 > 1) on 
networks in each transmission mode category. 𝑇𝑐 was estimated empirically using SIR 
simulations on each network to account for the effect of full network structure. Tc was then 
calculated in two control scenarios that examined the effects of homogeneous degree (Equation 
1) and heterogeneous degree (Equation 2). Colors represent the different transmission mode 
categories, and letters indicate significant differences within each method based on a One-Way 
ANOVA and Tukey’s HSD 
 



 
Figure 3: The typical infectious periods of 25 different human pathogens from two literature 
reviews (31,32) (pathogens with asterisks came from alternative sources (33–40)). Color denotes 
the transmission mode category of each pathogen. Shapes indicate the pathogen’s probability of 
infecting a host given contact. 
 
 
References 

1.  Garnett GP, Bowden FJ. Epidemiology and control of curable sexually transmitted 
diseases: opportunities and problems. Sex Transm Dis. 2000;27(10):588–99.  

2.  Kirchner JW, Roy BA. Evolutionary implications of host-pathogen specificity: fitness 
consequences of pathogen virulence traits. Evol Ecol Res. 2002;4(27–48).  

3.  Day T. Parasite transmission modes and the evolution of virulence. Evolution (N Y). 
2001;55(12):2389–400.  

4.  Antonovics J. Transmission dynamics: critical questions and challenges. Philos Trans R 
Soc B Biol Sci. 2017;372(1719):20160087.  

5.  Robinson K, Cohen T, Colijn C. The dynamics of sexual contact networks: Effects on 
disease spread and control. Theor Popul Biol. 2012;81(2):89–96.  

6.  Antonovics J, Wilson AJ, Forbes MR, Hauffe HC, Kallio ER, Leggett HC, et al. The 
evolution of transmission mode. Philos Trans R Soc B Biol Sci. 2017;372(1719).  

7.  Leu ST, Kappeler PM, Bull CM. Refuge sharing network predicts ectoparasite load in a 
lizard. Behav Ecol Sociobiol. 2010;64(9):1495–503.  

8.  Leu ST, Sah P, Krzyszczyk E, Jacoby A-M, Mann J, Bansal S. Sex, synchrony, and skin 
contact: integrating multiple behaviors to assess pathogen transmission risk. Behav Ecol. 
2020;31(3):651–60.  

9.  Colman E, Colizza V, Hanks EM, Hughes DP, Bansal S. Social fluidity mobilizes 



contagion in human and animal populations. Elife. 2021;10:e62177.  
10.  Romano V, Duboscq J, Sarabian C, Thomas E, Sueur C, MacIntosh AJJ. Modeling 

infection transmission in primate networks to predict centrality-based risk. Am J Primatol. 
2016;78(7):767–79.  

11.  Sah P, Otterstatter M, Leu ST, Leviyang S, Bansal S. Revealing mechanisms of infectious 
disease spread through empirical contact networks. PLoS Comput Biol. 
2021;17(12):e1009604.  

12.  So N, Franks B, Lim S, Curley JP. A social network approach reveals associations 
between mouse social dominance and brain gene expression. PLoS One. 2015;10(7).  

13.  Ames GM, George DB, Hampson CP, Kanarek AR, McBee CD, Lockwood DR, et al. 
Using network properties to predict disease dynamics on human contact networks. Proc R 
Soc B Biol Sci. 2011;278(1724):3544–50.  

14.  Bansal S, Meyers LA. The impact of past epidemics on future disease dynamics. J Theor 
Biol. 2012;309:176–84.  

15.  Bansal S, Read J, Pourbohloul B, Meyers LA. The dynamic nature of contact networks in 
infectious disease epidemiology. J Biol Dyn. 2010;4(5):478–89.  

16.  Kretzschmar M. Sexual network structure and sexually transmitted disease prevention: a 
modeling perspective. Sex Transm Dis. 2000;27(10):627–35.  

17.  Mohr S, Deason M, Churakov M, Doherty T, Kao RR. Manipulation of contact network 
structure and the impact on foot-and-mouth disease transmission. Prev Vet Med. 2018 Sep 
1;157:8–18.  

18.  Sah P, Mann J, Bansal S. Disease implications of animal social network structure: A 
synthesis across social systems. J Anim Ecol. 2018;87(3):546–58.  

19.  Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett GP, et al. 
Heterogeneities in the transmission of infectious agents: Implications for the design of 
control programs. Proc Natl Acad Sci. 1997;94:338–42.  

20.  Anderson RM, May RM. Coevolution of Hosts and Parasites. Parasitology. 
1982;85(2):411–26.  

21.  Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous 
and network models in epidemiology. J R Soc Interface. 2007;4(16):879–91.  

22.  Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC. Network 
theory and SARS: Predicting outbreak diversity. J Theor Biol. 2005;232(1):71–81.  

23.  Platt R, Rice PA, McCormack WM. Risk of acquiring gonorrhea and prevalence of 
abnormal adnexal findings among women recently exposed to gonorrhea. JAMA J Am 
Med Assoc. 1983;250(23):3205–9.  

24.  Nonaka E, Ebel GD, Wearing HJ. Persistence of pathogens with short infectious periods 
in seasonal tick populations: the relative importance of three transmission routes. PLoS 
One. 2010;5(7):e11745.  

25.  Sah P, Collier M, Ali S, Mendez JD, Bansal S. Animal Social Network Repository 
(Version 2.0) [Data set]. https://github.com/bansallab/asnr. 2020.  

26.  Sah P, Méndez JD, Bansal S. A multi-species repository of social networks. Sci Data. 
2019;6:44.  

27.  Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in 
large networks. J Stat Mech Theory Exp. 2008;2008(10):P10008.  

28.  Hadfield J. MCMCglmm Course Notes. 2021. p. 1–144.  
29.  Newman MEJ. Spread of epidemic disease on networks. Phys Rev E - Stat Physics, 



Plasmas, Fluids, Relat Interdiscip Top. 2002;66(1):016128.  
30.  Sah P, Nussear KE, Esque TC, Aiello CM, Hudson PJ, Bansal S. Inferring social structure 

and its drivers from refuge use in the desert tortoise, a relatively solitary species. Behav 
Ecol Sociobiol. 2016;70(8):1277–89.  

31.  ECDC. Systematic review on the incubation and infectiousness/shedding period of 
communicable diseases in children. Scientific Advice. 2016.  

32.  Richardson M, Elliman D, Maguire H, Simpson J, Nicoll A. Evidence base of incubation 
periods, periods of infectiousness and exclusion policies for the control of communicable 
diseases in schools and preschools. Pediatr Infect Dis J. 2001;20(4):380–91.  

33.  Stamm L V. Syphilis: antibiotic treatment and resistance. Epidemiol Infect. 
2015;143:1567–74.  

34.  Garnett GP, Aral SO, Hoyle DV, Cates W, Anderson RM. The natural history of syphilis: 
implications for the transmission dynamics and control of infection. Sex Transm Dis. 
1997;24(4):185–200.  

35.  Garnett GP. The geographical and temporal evolution of sexually transmitted disease 
epidemics. Sex Transm Infect. 2002;78:i14–9.  

36.  Stupiansky NW, Van Der Pol B, Williams JA, Weaver B, Taylor SE, Fortenberry JD. The 
natural history of incident gonococcal infection in adolescent women. Sex Transm Dis. 
2011;38(8):750–4.  

37.  Althaus CL, Heijne JCM, Low N. Towards more robust rstimates of the transmissibility of 
Chlamydia trachomatis. Sex Transm Dis. 2012;39(5):402–4.  

38.  Golden MR, Schillinger JA, Markowitz L, St. Louis ME. Duration of untreated genital 
infections with chlamydia trachomatis: A review of the literature. Sex Transm Dis. 
2000;27(6):329–37.  

39.  Krieger JN, Verdon M, Siegel N, Holmes KK. Natural history of urogenital 
trichomoniasis in men. J Urol. 1993;149(6):1455–8.  

40.  Van Der Pol B, Williams JA, Orr DP, Batteiger BE, Fortenberry JD. Prevalence, 
incidence, natural history, and response to treatment of Trichomonas vaginalis infection 
among adolescent women. J Infect Dis. 2005;192(12):2039–44.  

41.  Janicke T, Häderer IK, Lajeunesse MJ, Anthes N. Evolutionary Biology: Darwinian sex 
roles confirmed across the animal kingdom. Sci Adv. 2016;2(2):1–11.  

42.  Liljeros F, Edling CR, Amaral LAN, Stanley HE, Åberg Y. The web of human sexual 
contacts. Nature. 2001;411(6840):907–8.  

43.  Taylor ML, Price TAR, Wedell N. Polyandry in nature: A global analysis. Trends Ecol 
Evol. 2014;29(7):376–83.  

44.  Bles O, Deneubourg JL, Nicolis SC. Food dissemination in ants: Robustness of the 
trophallactic network against resource quality. J Exp Biol. 2018;221(24):1–4.  

45.  Rosenblatt JS. Outline of the evolution of behavioral and nonbehavioral patterns of 
parental care among the vertebrates: Critical characteristics of mammalian and avian 
parental behavior. Scand J Psychol. 2003;44(3):265–71.  

46.  Bloodgood JM, Hornsby JS, Rutherford M, McFarland RG. The role of network density 
and betweenness centrality in diffusing new venture legitimacy: an epidemiological 
approach. Int Entrep Manag J. 2017;13(2):525–52.  

47.  Doherty IA, Adimora AA, Muth SQ, Serre ML, Leone PA, Miller WC. Comparison of 
sexual mixing patterns for syphilis in endemic and outbreak settings. Sex Transm Dis. 
2011;38(5):378–84.  



48.  Kao RR. Evolution of pathogens towards low R0 in heterogeneous populations. J Theor 
Biol. 2006;242(3):634–42.  

49.  Davis S, Abbasi B, Shah S, Telfer S, Begon M. Spatial analyses of wildlife contact 
networks. J R Soc Interface. 2015;12(102):20141004.  

50.  Wey T, Blumstein DT, Shen W, Jordán F. Social network analysis of animal behaviour: a 
promising tool for the study of sociality. Vol. 75, Animal Behaviour. Academic Press; 
2008. p. 333–44.  

51.  Santos JWA, Lacey EA. Burrow sharing in the desert-adapted torch-tail spiny rat, 
Trinomys yonenagae. J Mammal. 2011;92(1):3–11.  

52.  Thornley CN, Emslie NA, Sprott TW, Greening GE, Rapana JP. Recurring norovirus 
transmission on an airplane. Clin Infect Dis. 2011;53(6):515–20.  

53.  Isakbaeva ET, Widdowson MA, Beard RS, Bulens SN, Mullins J, Monroe SS, et al. 
Norovirus transmission on cruise ship. Emerg Infect Dis. 2005;11(1):154–7.  

54.  Cheesbrough JS, Green J, Gallimore CI, Wright PA, Brown DWG. Widespread 
environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged 
hotel outbreak of gastroenteritis. Epidemiol Infect. 2000;125(1):93–8.  

55.  Rushton SP, Sanderson RA, Reid WDK, Shirley MDF, Harris JP, Hunter PR, et al. 
Transmission routes of rare seasonal diseases: the case of norovirus infections. Philos 
Trans R Soc B Biol Sci. 2019;374(1776):20180267.  

56.  Stamps JA. The effect of contender pressure on territory size and overlap in seasonally 
territorial species. Am Nat. 1990;135(5):614–32.  

57.  Eikenaar C, Richardson DS, Brouwer L, Bristol R, Komdeur J. Experimental evaluation 
of sex differences in territory acquisition in a cooperatively breeding bird. Behav Ecol. 
2009;20(1):207–14.  

58.  Roth T, Sprau P, Schmidt R, Naguib M, Amrhein V. Sex-specific timing of mate 
searching and territory prospecting in the nightingale: Nocturnal life of females. Proc R 
Soc B Biol Sci. 2009;276(1664):2045–50.  

59.  Szendrói B, Csányi G. Polynomial epidemics and clustering in contact networks. Proc R 
Soc London Ser B Biol Sci. 2004;271(suppl_5).  

60.  Monk JD, Giglio E, Kamath A, Lambert MR, McDonough CE. An alternative hypothesis 
for the evolution of same-sex sexual behaviour in animals. Nat Ecol Evol. 
2019;3(12):1622–31. 

61.  Jackson AC. Diabolical effects of rabies encephalitis. J Neurovirol. 2016;22:8–13.  
62.  Hetem RS, Mitchell D, Maloney SK, Meyer LCR, Fick LG, Kerley GIH, et al. Fever and 

sickness behavior during an opportunistic infection in a free-living antelope, the greater 
kudu (Tragelaphus strepsiceros). Am J Physiol - Regul Integr Comp Physiol. 
2008;294(1):246–54.  

63.  Antonovics J, Boots M, Abbate J, Baker C, Mcfrederick Q, Panjeti V. Biology and 
evolution of sexual transmission. Ann NY Acad Sci. 2011;1230:12–24.  

64. Ferrari M, Perkins SE,  Pomeroy LW, Bjørnstad ON. Pathogens, social networks, and the 
paradox of transmission scaling. Interdiscip Perspect Infect Dis. 2011;2011:267049. 

65.   Sih A, Montiglio P, Wey T, Fogarty S. Altered physical and social conditions produce 
rapidly reversible mating systems in water striders. Behav Ecol. 2017;28(3):632-639. 

66.   Kappeler PM, Benhaiem S, Fichtel C, Fromhage L, Höner OP, Jennions MD, Kaiser S, 
Krüger O, Schneider JM, Tuni C, van Schaik J, Goymann W. Sex roles and sex ratios in 
animals. Biol Rev. 2022; 000–000. 



67.  Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI. Network metrics reveal 
differences in social organization between two fission-fusion species, Grevy’s zebra and 
onager. Oecologia. 2007;151(1):140–9.  

68.  Albery GF, Morris A, Morris S, Pemberton JM, Clutton-Brock TH, Nussey DH, et al. 
Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol Lett. 
2021;24(4):676–86.  

69.  Albery GF, Kirkpatrick L, Firth JA, Bansal S. Unifying spatial and social network 
analysis in disease ecology. J Anim Ecol. 2021;90(1):45–61.  

 


