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We consider general high-dimensional spiked sample covariance models
and show that their leading sample spiked eigenvalues and their linear spec-
tral statistics are asymptotically independent when the sample size and di-
mension are proportional to each other. As a byproduct, we also establish the
central limit theorem of the leading sample spiked eigenvalues by removing
the block diagonal assumption on the population covariance matrix, which is
commonly needed in the literature. Moreover, we propose consistent estima-
tors of the L4 norm of the spiked population eigenvectors. Based on these
results, we develop a new statistic to test the equality of two spiked popula-
tion covariance matrices. Numerical studies show that the new test procedure
is more powerful than some existing methods.

1. Introduction. Sample covariance matrices play a fundamental role in traditional mul-
tivariate statistics (see [1]). There has also been a significant interest in studying the asymp-
totic properties of the eigenvalues and eigenvectors of the sample covariance matrix in the
high-dimensional setting where the data dimension p grows with the sample size n. These
asymptotic properties have been used to make statistical inference, such as hypothesis testing
or parameter estimation, about the population covariance matrices of high-dimensional data.
Random matrix theory turns out to be a powerful tool for studying such asymptotic proper-
ties. One can refer to the monograph of [3] or the review paper of [27] for a comprehensive
review.

The spiked covariance model appears naturally in the areas of wireless communication,
speech recognition, genomics and genetics, finance, etc. It refers to a phenomenon that if
the largest population eigenvalue is greater than some critical value then the largest sample
eigenvalue will jump outside the bulk spectrum of the corresponding sample covariance ma-
trix. Such a phenomenon has received much attention recently. The pioneer work of [18]
considered a special spiked model with a p × p diagonal population covariance matrix

(1.1) � = diag(α1, . . . , αK ,1, . . . ,1),

where α1 ≥ · · · ≥ αK > 1 are referred to as spikes and K < ∞ is the number of spikes. [11]
investigated the almost sure limits of the largest eigenvalues which depend on the critical
value 1 + √

γ when p/n → γ > 0. [26] established the central limit theorem for the spiked
sample eigenvalues under the Gaussian assumption on the data. [4] extended Paul’s results
by removing the Gaussian assumption, but assumed a block diagonal structure on the popu-
lation covariance matrix. [5] further generalized the spiked model by considering an arbitrary
nonspiked part of the population covariance matrix instead of identity (but still a block diag-
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onal structure). They classified the spikes into distant spikes and close spikes, and discussed
the almost sure limits for two types of spikes and established a central limit theorem for dis-
tant spikes. [16] obtained the CLT for the spiked eigenvalues by relaxing the block diagonal
structure on the population covariance matrix. They assumed that either the largest entries
of the population eigenvectors corresponding to the spikes tend to zero or the fourth mo-
ment of the underlying variables must match with that of Gaussian distributions. After our
manuscript was posted on arXiv and in submission, we were informed by one of the authors
that they submitted a new manuscript [17] by further removing the fourth moment matching
condition. In addition to the above literature about the bounded spikes, we would also like to
mention that there is some literature about the unbounded spikes and one may see [14] and
the reference therein.

The study of linear spectral statistics (LSS) of sample covariance matrices is another im-
portant topic in statistics and random matrix theory. The most influential work is [9]. They
showed that the LSS of sample covariance matrices converge to normal distribution under
some moment restrictions. Further refinements were carried out under different relaxed set-
tings. [25] improved Theorem 1.1 in [9] by removing the constraint on the fourth moment of
the underlying random variables. [24] showed the CLT of LSS for noncentered sample co-
variance matrices and discussed the difference between the centered and noncentered sample
covariance matrices. [34] provided similar results for centralized and noncentralized sample
covariance matrices in a unified framework. Furthermore [23] also provided CLT in terms of
vanishing Lévy–Prohorov distance between the LSS distribution and a Gaussian probability
distribution.

However, even though a lot of effort has been devoted to these two topics separately the
relationship between the extreme eigenvalues and linear spectral statistics has not been well
understood. [10] obtained the joint normal distribution of the largest eigenvalue and LSS for a
spiked Wigner matrix. They showed that the asymptotic joint distribution of the largest eigen-
value and LSS converges to a bivariate normal distribution with the covariance dependent on
the third moment of entries of the Wigner matrix. In this case, the spiked eigenvalues and LSS
are asymptotically independent if the third moment is zero. Recently, [21] established that the
extreme eigenvalues and the trace of sample covariance matrices are jointly asymptotically
normal and independent for a block diagonal population covariance matrix.

This paper focuses on more general spiked covariance matrices instead of block diagonal
population covariance matrices. Specifically speaking, we consider a population covariance
matrix

(1.2) � = V

(
�S 0
0 �P

)
V⊺,

where V is an orthogonal matrix, �S is a diagonal matrix consisting of the bounded and
descending spiked eigenvalues, and �P is the diagonal matrix of nonspiked eigenvalues.

Our main contributions are summarized as follows. For the first time we establish CLT
for the leading spiked eigenvalues of the sample covariance matrices with the general spiked
covariance matrices � in (1.2). We need neither the block diagonal structure unlike [4, 5] nor
the maximum absolute value of the eigenvector of the corresponding spikes tending to zero
nor requiring the match of the fourth moment with the standard Gaussian distribution (i.e., the
fourth moment is 3) unlike [16]. We also show that the extreme eigenvalues and LSS of large
sample covariance matrices are asymptotically independent. Moreover consistent estimators
of the L4 norm of population eigenvectors associated with the leading sample spikes are
proposed.

The remaining sections are organized as follows. Section 2 presents the main results about
the asymptotic distribution of the largest sample spikes, the asymptotic independence be-
tween the largest sample spikes and the linear spectral statistics and the estimator of the
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population eigenvectors corresponding the largest spikes. We also explore an application of
our main results in the two sample hypothesis testing about covariances in Section 2. The
simulation is reported in Section 3.

Throughout the paper, we say that an event �n holds with high probability if P(�n) ≥
1 − O(n−l) for some large constant l > 0. We use I (A) to denote an indicator function of an
event A. The intersection of events A and B is denoted by A∩B, or abbreviated by AB. The
spectral norm of a matrix M is denoted by ‖M‖.

2. The main results. Consider the data matrix ŴX, where Ŵ is a p × p deterministic
matrix with ŴŴ⊺ = � and X = (xij ) is a p × n random matrix with entries xij = n−1/2qij

where qij are independent random variables satisfying Assumption 1 below. The sample
covariance matrix has the form

Sn = ŴXX⊺Ŵ⊺.

Order the eigenvalues of Sn as λ1 ≥ λ2 ≥ · · · ≥ λp . Denote the singular value decomposition
of Ŵ by

(2.1) Ŵ = V

(
�

1/2
S 0

0 �
1/2
P

)
U⊺

where U and V are orthogonal matrices, �S is a diagonal matrix consisting of the spiked
eigenvalues in descending order and �P is the diagonal matrix of the nonspiked eigenvalues.
To be more specific, denote the eigenvalues of the spiked part �S as α1 ≥ α2 ≥ · · · ≥ αK , and
eigenvalues of the nonspiked part as αK+1 ≥ αK+2 · · · ≥ αp . Partition U as U = (U1,U2),
where U1 is a p × K submatrix of U. Let ui = (ui1, . . . , uip)⊺ be the ith column of U1.
Define

(2.2) �1P = U2�P U
⊺
2 .

2.1. Limiting laws for spiked eigenvalues. We first specify the assumptions for establish-
ing CLTs of the leading sample spiked eigenvalues.

ASSUMPTION 1. The double array {qij : i = 1, . . . , p, j = 1, . . . , n} consists of in-
dependent and identically distributed random variables, with Eq11 = 0, E|q11|2 = 1 and
E|q11|4 = γ4.

ASSUMPTION 2. p/n = cn → c ∈ (0,∞) as n → ∞.

ASSUMPTION 3. The p×p matrix � = ŴŴ⊺ has a bounded spectral norm. Furthermore,
denote the empirical spectral distribution (ESD) of � by Hn, which tends to a nonrandom
limiting distribution H as p → ∞.

In Assumption 1, the distribution of q11 is fixed and not allowed to change with n. Ac-
tually the distribution of {qij } can be depend on n. One may impose some Lindeberg-type
conditions and some additional steps need to be taken to conclude the results in this paper.
We will not pursue this in this work.

For the next assumption, we denote by Ŵμ the support for any measure μ on R. For α /∈ ŴH

and α 	= 0, define

(2.3) ψ(α) := α + cα

∫
t

α − t
dH(t).
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TABLE 1
Parameters in (2.1) and Assumptions 1–4 classified based on whether they are

allowed to change with n

Changing with n Parameters

Yes cn, αK+1, . . . , αp , Hn, uij

No qij , c, K , α1, . . . , αK , H

Its derivative is

(2.4) ψ ′(α) = 1 − c

∫
t2

(α − t)2
dH(t).

Define ψn(α) from (2.3) with H , c replaced by Hn, cn.

ASSUMPTION 4. Let K be a fixed integer. Suppose that the population covariance matrix
� has K fixed spiked eigenvalues: α1 > · · · > αK not changing with n, lying outside the
support of H and satisfying ψ ′(αk) > 0 for 1 ≤ k ≤ K .

[5] provided a complete characterization of sample spikes according to the sign of ψ ′(α). If
ψ ′(α) > 0 then the corresponding sample spiked eigenvalues have limits outside the support
of F c,H , the limit of the empirical spectral distribution of Sn. They called them distant spikes
in this case. Here we need to clarify that although [5] assumed that the population covariance
matrices are block diagonal, this assumption is not essential and can be removed. This is
because their method of deriving almost sure convergence relies on their Propositions 3.1
and 3.2 and these two results regarding the exact separation first appeared in [7, 8] without
a block diagonal structure of the population covariance matrices. We highlight here that the
number of nonspiked eigenvalues is p − K thus these nonspiked eigenvalues may change
with n. We only need to require that the ESD of the nonspiked eigenvalues tends to H which
is implied by Hn → H . For clarification purposes, we add Table 1 to summarize whether
the parameters introduced above in (2.1) and Assumptions 1–4 are allowed to change with
n. In practice, the number of spiked eigenvalues K is typically unknown and needed to be
estimated from data. When � has a block diagonal structure, [21] developed test statistics
that can be used to determine the number of spiked eigenvalues. [14] developed tests to
determine K for divergent spiked eigenvalue models. For a general spiked covariance model,
determining K is still a challenging and interesting problem, which will be pursued in a future
paper.

We will show that the sample spiked eigenvalues λi (i = 1, . . . ,K) of Sn are associated
with a random quadratic form given by the following equation (see the details given in the
proof of Theorem 2.2):

(2.5) det
{
�−1

S − U1X
(
λiI − X⊺�1P X

)−1
X⊺U

⊺
1

}
= 0.

Thus, our results rely on a new technique tool, a CLT for a type of random quadratic forms.
The result in Theorem 2.1 is crucial to removing the block diagonal structure of the pop-
ulation covariance matrices (hence the proof of Theorems 2.2 and 2.3 below). It can be of
independent interest.

THEOREM 2.1. Suppose that Assumptions 1–3 hold. Moreover, suppose that the non-

random orthogonal unit vectors w1 and w2 satisfy w
⊺
1U2 = w

⊺
2U2 = 0 and w

⊺
1w2 = 0, and α

satisfies ψ ′(α) > 0. Then

(2.6)

√
n

σ̃1

(
w
⊺
1X

(
I − 1

ψn(α)
X⊺�1P X

)−1

X⊺w1 − ψn(α)

α

)
D→ N(0,1)
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and

(2.7)

√
n

σ̃12
w
⊺
1X

(
I − 1

ψn(α)
X⊺�1P X

)−1

X⊺w2
D→ N(0,1),

where σ̃ 2
1 :=ψ2(α){(γ4 − 3)

∑p
i=1 w4

1i + 2/ψ ′(α)}/α2, σ̃ 2
12:={(γ4 − 3)ψ2(α)}∑p

i=1 w2
1iw

2
2i

/α2 + ψ2(α)/[α2ψ ′(α)] and wij is the j th element of wi, i = 1,2.

We are ready to provide the central limit theorem for the sample spiked eigenvalues. We
consider the case when the eigenvalues of �S are all simple first. The following assumption
provides the asymptotic variances and covariances for the spiked eigenvalues.

ASSUMPTION 5. Assume that for i = 1, . . . ,K the following limits exist:

σ 2
i := lim

p→∞(γ4 − 3)
α2

i {ψ ′(αi)}2

ψ2(αi)

p∑

j=1

u4
ij + 2

α2
i ψ

′(αi)

ψ2(αi)
and

σij := lim
p→∞(γ4 − 3)

αiαjψ
′(αi)ψ

′(αj )

ψ(αi)ψ(αj )

p∑

k=1

u2
iku

2
jk.

From Hölder’s inequality, we have γ4 ≥ 1. This together with two simple facts
∑

u4
ij ≤ 1 and

ψ ′(αi) < 1 implies that σ 2
i ∈ (0,∞).

THEOREM 2.2. Let θi = ψn(αi), i = 1, . . . ,K , and denote

(2.8) 
K =
(√

n
λ1 − θ1

θ1
, . . . ,

√
n
λK − θK

θK

)
.

Suppose that Assumptions 1–5 hold. Then

(2.9) 
K
D→ N

(
0,�(K)),

where �(K) = (�
(K)
ij ) with

�
(K)
ij =

{
σ 2

i i = j,

σij i 	= j.

REMARK 1. Since the convergence rate of cn → c and Hn → H can be arbitrarily slow,
θi = ψn(αi) is used in the CLT, rather than ψ(αi), which is the almost sure limit of λi .

REMARK 2. If one cares about the asymptotic distribution for an individual sample
spiked eigenvalue, Assumption 5 is not needed since

√
n(λi − θi)/θi can be normalized by

[(γ4 − 3)α2
i {ψ ′(αi)}2 ∑p

j=1 u4
ij + 2α2

i ψ
′(αi)]/ψ2(αi). Moreover, Assumption 5 is not nec-

essary if we restate the asymptotic convergence results using the Lévy–Prokhorov metric, as
in (2.10) stated below. To be more concrete, recall Lévy–Prokhorov metric π which char-
acterize the distance of two probability measure μ and ν in a metric space (M,d) defined
by

π(μ, ν) := inf
{
ε > 0 | μ(A) ≤ ν

(
Aε) + ε and ν(A) ≤ μ

(
Aε) + ε for all A ∈ B(M)

}
,

where Aǫ = {x ∈ M | ∃y ∈ A,d(x, y) < ǫ}. Let �(K)
p = ((�(K)

p )ij ) be K × K matrices with

(
�(K)

p

)
ij :=

{
σ 2

p,i i = j,

σp,ij i 	= j,



2210 ZHANG, ZHENG, PAN AND ZHONG

where

σ 2
p,i := (γ4 − 3)

α2
i {ψ ′(αi)}2

ψ2(αi)

p∑

j=1

u4
ij + 2

α2
i ψ

′(αi)

ψ2(αi)
,

σp,ij := (γ4 − 3)
αiαjψ

′(αi)ψ
′(αj )

ψ(αi)ψ(αj )

p∑

k=1

u2
iku

2
jk.

Then

(2.10) lim
n→∞π

(

K ,N

(
0,�(K)

p

))
→ 0.

The proof of (2.10) is at the end of the proof of Theorem 2.2.

REMARK 3. Compared with earlier asymptotic results on spiked eigenvalues of sample
covariance matrices obtained by [4, 5] and [21], we do not assume a block diagonal struc-
ture on population covariance matrices. Moreover, [4, 5] and [16] did not consider the joint
distribution of the different leading sample spiked eigenvalues corresponding to the different
population eigenvalues. Instead they considered the joint distribution of the different leading
sample spiked eigenvalues corresponding to the same population eigenvalues.

REMARK 4. The bounded spiked eigenvalues setting in this paper is different from the
divergent spiked eigenvalues setting considered in [19, 29, 32] and [14]. If we let the spiked
eigenvalues αi → ∞, the asymptotic variances σ 2

i and covariance σij in Theorem 2.2 con-
verge, respectively, to the same asymptotic variances and covariance defined in Assumption 4
of [14]. This suggests that the asymptotic normality in Theorem 2.2 implies the asymptotic
normality established in [14] intuitively.

We next consider the case when the multiplicity of the spiked eigenvalues of �S are more
than one.

ASSUMPTION 6. Suppose that the population covariance matrix � has K spiked eigen-
values: α1 > · · · > αL with respective multiplicities m1, . . . ,mL, laying outside the support
of H , and satisfying ψ ′(αk) > 0 for 1 ≤ k ≤ L. Furthermore, we assume that the following
limits exist for i = 1, . . . ,L:

(2.11)

g(ri, k1, l1, k2, l2) = lim
p→∞(γ4 − 3)

α2
i {ψ ′(αi)}2

ψ2(αi)

p∑

j=1

uri+k1,juri+l1,juri+k2,juri+l2,j

+ α2
i ψ

′(αi)

ψ2(αi)

{(
u
⊺
ri+k1

uri+k2

)(
u
⊺
ri+l1

uri+l2

)

+
(
u
⊺
ri+k1

uri+l2

)(
u
⊺
ri+k2

uri+l1

)}
,

where ri := ∑i−1
j=0 mj , m0 = 0 and 1 ≤ k1, l1, k2, l2 ≤ mi .

THEOREM 2.3. Suppose that Assumptions 1, 2, 3 and 6 hold. Then

(2.12)
(√

n
λri+1 − θi

θi

, . . . ,
√

n
λri+mi

− θi

θi

)

converges weakly to the joint distribution of the eigenvalues of mi × mi Gaussian random

matrix Gi with EGi = 0 and covariance of (Gi)k1,l1 and (Gi)k2,l2 being g(ri, k1, l1, k2, l2)

defined in (2.11).
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REMARK 5. This result is similar to those in [4, 5], Theorem 3.1, and Corollary 3.1
in [16]. However, we neither need a block diagonal population covariance structure as in
[4, 5] nor the maximum absolute value of the eigenvector of the corresponding spikes tend-
ing to zero (i.e., max1≤i≤K,1≤j≤K |uij | → 0) nor requiring the match of the fourth moment
with Gaussian distribution (i.e., γ4 = 3) as in [16]. The assumption [D] about the popu-
lation eigenvectors in [16] excludes all the diagonal population covariance matrices when
max1≤i≤K,1≤j≤K |uij | → 0. Under their assumption [D], we have

g(ri, k1, l1, k2, l2)

=

⎧
⎪⎪⎨
⎪⎪⎩

2α2
i ψ

′(αi)/ψ
2(αi) k1 = k2 = l1 = l2,

α2
i ψ

′(αi)/ψ
2(αi) k1 = k2 and l1 = l2 or k1 = l2 and l1 = k2,

0 otherwise,

(2.13)

which is consistent with theirs.

At the end of this section, we consider the limiting laws for the sample spiked eigenvalues
of the centralized sample covariance matrices

(2.14) Sn = Ŵ

n∑

i=1

(xi − x̄)(xi − x̄)⊺Ŵ⊺,

where x̄ is the sample mean of x1, . . . ,xn. Let 1 be a column vector with all the entries being
1, and define � = I − 1

n
11. We can also write

Sn = ŴX�X⊺Ŵ⊺.

We have the following corollary.

COROLLARY 2.4. Let λc
i (i = 1, . . . ,K) be the spiked eigenvalues of Sn. Theorems 2.2

and 2.3 still hold by replacing λi with λc
i .

2.2. Asymptotic joint distribution of sample spiked eigenvalues and linear spectral statis-

tics. We now turn to the asymptotic joint distribution of sample spiked eigenvalues and
linear spectral statistics of sample covariance matrices. Some notations are introduced first.
Let F Sn be the ESD of the sample covariance matrix Sn. It is well known that F Sn under
some mild assumptions converges weakly to a nonrandom distribution F c,H with probability
one, whose Stieltjes transform is the unique solution in C

+ to the equation

(2.15) m =
∫

1

t (1 − c − czm) − z
dH(t)

for z ∈ C
+ (see [3]). We also need the nonasymptotic version of F c,H whose Stieltjes trans-

form solves the above equation by replacing c and H with cn and Hn respectively, and we
denote it by F cn,Hn . Define the conjugate matrix of Sn by Sn := X⊺Ŵ⊺ŴX that shares the
same nonzero eigenvalues of Sn. The ESD of Sn has an almost sure limit whose Stieltjes
transform m ≡ m(z) ∈ C

+ is the unique solution for any z ∈ C
+ to the equation

(2.16) z = − 1

m
+ c

∫
t

1 + tm
dH(t).

Now we introduce the linear spectral statistics of sample covariance matrices defined by

(2.17) Lp(f ) :=
p∑

i=1

f (λi) − p

∫
f (x) dF cn,Hn(x),
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where f (x) is an analytic function on an open interval containing

(2.18)
[
lim inf

n
αpI(0,1)(c)(1 −

√
c)2, lim sup

n
α1(1 +

√
c)2

]
.

ASSUMPTION 7. Let ei be the p × 1 column vector with the ith element being 1 and
others being 0. Suppose that

(2.19)
1

p

p∑

i=1

e
⊺
i Ŵ

⊺(m(z1)ŴŴ⊺ + I
)−1

Ŵeie
⊺
i Ŵ

⊺(m(z2)ŴŴ⊺ + I
)−1

Ŵei → h1(z1, z2)

and

(2.20)
1

p

p∑

i=1

e
⊺
i Ŵ

⊺(m(z)ŴŴ⊺ + I
)−2

Ŵeie
⊺
i Ŵ

⊺(m(z)ŴŴ⊺ + I
)−1

Ŵei → h2(z).

REMARK 6. Assumption 7 has been used to establish the CLT for LSS, see Theorem 1.4
in [25] for Sn and Theorem 1 in [24] for Sn. Remark 1.4 in [25] also tells that such an
assumption can be removed under our Assumptions 1–3 together with either γ4 = 3 or Ŵ⊺Ŵ

is diagonal. Actually, if γ4 = 3, the term in Assumption 7 will not appear in the variance
(covariance) and one may see [9]. And if Ŵ⊺Ŵ is diagonal,

h2(z) =
∫

t2 dH(t)

(m(z)t + 1)3
,

h1(z1, z2) =
∫

t2 dH(t)

(m(z1)t + 1)(m(z2)t + 1)
.

THEOREM 2.5. Suppose that Assumptions 1–5 and 7 hold, then the K-dimensional ran-

dom vector 
K and Lp(f ) are jointly asymptotically normal and asymptotically indepen-

dent. The same conclusion also holds for the centralized sample covariance matrices Sn.

REMARK 7. Let f1, . . . , fk be k (k < ∞) different functions analytic on an open interval
containing the interval defined in (2.18). The above result can be generalized to the joint
normal distribution of 
K , Lp(f1), . . . ,Lp(fk) with the spiked eigenvalues part and the LSS
part still being asymptotically independent. For the results regarding to marginal distribution
of LSS, one can refer to [25] and [24]. Notice that the LSS for Sn and Sn have the same
asymptotic covariance but different asymptotic mean.

REMARK 8. Compared with Theorem 3.1 in [21], we have two advantages. Firstly, we
don’t need the block diagonal assumption on the population covariance matrices. Secondly,
our LSS is not restricted to the trace of sample covariance matrices.

2.3. Estimating the population eigenvectors associated with the spiked eigenvalues. This
section is to explore the estimation of the population spiked eigenvectors associated with the
simple spiked eigenvalues α1, . . . αK involved in (2.9). Although many studies of the spiked
eigenvectors have been carried out, most of them have not provided consistent estimators
for the population eigenvectors in terms of certain norm. For example, [26] established the
almost sure limit of u

⊺
i ûi and a CLT for ûi for any 1 ≤ i ≤ K under the assumption that

X is Gaussian and Ŵ is diagonal with the nonspiked covariance being identity. [15] further
characterized the limit of u

⊺
i ûi for a general spiked model. However, these results are not

helpful for estimating the population eigenvectors in terms of certain norm. Our following
theorem provides a consistent estimator of

∑p
k=1 u4

ik inspired by the results in [22], which
considered an estimator of s⊺ui where s is any fixed vector with a bounded norm in Rp when
the underlying random variables are continuous with finite eighth order moments.
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THEOREM 2.6. Suppose that the assumptions of Theorem 2.2 hold and Ŵ is symmetric,
that is, the left orthogonal matrix V in (2.1) equals U. Let ûi be eigenvectors of Sn associated

with eigenvalue λi and ûik be the kth coordinate of ûi . For 1 ≤ i ≤ K ,
∑p

k=1 u4
ik is consis-

tently estimated by
∑p

j=1{
∑p

k=1 θi(k)û2
kj }2, where

(2.21)

θi(k) =
{
−φi(k) k 	= i,

1 + ̺i(k) k = i,

φi(k) = λi

λk − λi

− νi

λk − νi

,

̺i(k) =
p∑

j 	=i

(
λj

λk − λj

− νj

λk − νj

)
,

and where ν1 ≥ ν2 ≥ · · · ≥ νp are the real valued solutions to the equation in x:

(2.22)
1

p

p∑

i=1

λi

λi − x
= 1

c
.

When c > 1, take νn = · · · = νp = 0. In the expressions of φi(k) and ̺i(k), we use the con-

vention that any term of form 0
0 is 0. The conclusion also holds if the sample eigenvalues and

eigenvectors of Sn are replaced by those of Sn defined in (2.14) correspondingly.

REMARK 9. Table 4 below shows that such an estimator of
∑p

k=1 u4
ik is quite accurate.

2.4. Testing the equality of two spiked covariance matrices. This subsection is to ex-
plore an application of our results. Consider the problem of testing the equality of two

spiked covariance matrices �1 and �2. Let {y1i = �
1/2
1 q1i, i = 1, . . . , n1} be i.i.d. p vari-

ate random samples from the population F1 with mean zero and covariance matrix �1, and

{y2i = �
1/2
2 q2i, i = 1, . . . , n2} be i.i.d. p variate random samples from the population F2 with

mean zero and covariance matrix �2. Suppose F1 and F2 are independent. Several tests on
the hypothesis:

(2.23) H0 : �1 = �2 versus H1 : �1 	= �2

have been proposed under high-dimensional settings. To name a few, [20] suggested a test
based on an unbiased estimator for tr[(�1 − �2)

2]. The test in [13] is motivated by studying
the maximum of standardized differences between entries of two sample covariance matrices
to deal with sparse alternatives. [30] proposed a weighted statistic that is powerful for dense
or sparse alternatives.

Let Y1 = (y11, . . . ,y1n1) and Y2 = (y21, . . . ,y2n2). Denote x1i = n
−1/2
1 y1i , i = 1, . . . , n1

and x2i = n2
−1/2y2i , i = 1, . . . , n2. Let X1 = (x11, . . . ,x1n1) and X2 = (x21, . . . ,x2n2). De-

note two sample covariance matrices by

(2.24) S1 = 1

n1
Y1Y

⊺
1 = �

1
2
1 X1X

⊺
1�

1
2
1 and S2 = 1

n2
Y2Y

⊺
2 = �

1
2
2 X2X

⊺
2�

1
2
2 .

We also assume that the respective largest spike eigenvalues of �1 and �2 are simple for
simplicity. Denote the largest eigenvalues of S1 and S2 as λ1(S1) and λ1(S2), respectively.
Denote the largest spiked eigenvalues of �k by αk1, k = 1,2, and the corresponding eigen-
vector by u1,k = (u11,k, . . . , u1p,k)

⊺, k = 1,2. To ensure that αk1 are spiked eigenvalues, we
assume that

(2.25) ψ ′
k(αk1) > 0,
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where ψk is obtained from ψ in (2.3) with H replaced by the limit of ESD of �k . Let γ4k, k =
1,2 be the fourth moment of {q1ij , j = 1, . . . , p, i = 1, . . . , n1} and {q2ij , j = 1, . . . , p, i =
1, . . . , n2}, respectively. To speed up our exploration, we assume n1 = n2 = n in the rest
of this Section. The general case is discussed in Section S.7 in the supplementary material
[33]. A natural test statistic for (2.23) by using the largest eigenvalues and the linear spectral
statistics is

(2.26)
{√

n
λ1(S1) − λ1(S2)

σspi

}2

+
{

tr(S1) + tr(S2
1) − tr(S2) − tr(S2

2)

σlin

}2

,

where

σ 2
spi = σ 2

spi1 + σ 2
spi2, σ 2

lin = σ 2
lin1 + σ 2

lin2,

σ 2
spik = (γ4k − 3)α2

k1

(
ψ ′(αk1)

)2
p∑

j=1

u4
1j,k + 2α2

k1ψ
′(αk1), k = 1,2

and

(2.27)

σ 2
link = 8cnrk4 + 16c2

nrk3rk1 + 8cnrk3 + 8c3
nrk2(rk1)

2

+ 8c2
nrk2rk1 + 4c2

n(rk2)
2 + 2cnrk2

+ (γ4k − 3)
{
4cnrk4 + 8c2

nrk3rk1 + 4cnrk3 + 4c3
nrk2(rk1)

2

+ 4c2
nrk2rk1 + cnrk2

}
, k = 1,2

with rkm = tr(�m
k )/p and cn = p/n. The expression (2.27) is obtained by calculating the

contour integral in (1.20) in [25]. This statistic is modified further below.
The statistic in (2.26) is asymptotic χ2

2 under the null hypothesis by Theorem 2.5. We
next develop the estimators of unknown parameters α1k , ψ ′(α1k),

∑p
j=1 u4

1j,k , γ4k and rkm

for practical implementation. For notational simplicity, the population index k is omitted and
we aim to find estimators of α1,ψ

′(α1),
∑p

j=1 u4
1j , rm = tr�m

1 /p and γ4 associated with the
population F1. The similar estimators are applicable to F2 as well.

The estimator of
∑p

j=1 u4
1j is given in Theorem 2.6. For the estimation of α1, we use the

result in [2]. Note that

m∗
n(z) := −1 − cn

z
+ 1

n

∑

j≥2

1

λj − z

a.s.→ m(z), − 1

m∗
n(λ1)

a.s.→ α1.

Therefore, as proposed by [2], α1 is estimated by

(2.28)
(

1 − cn

λ1
+ 1

n

∑

j≥2

1

λ1 − λj

)−1

.

Consider an estimator of ψ ′(α1) now. Since ψ(·) is the inverse of the function α : x �→
−1/m(x), we obtain

(2.29) ψ ′(α1) = 1

α2
1m′{ψ(α1)}

.

Thus, we can estimate m′{ψ(α1)} by taking z = λ1 in the expression of dm∗
n(z)/dz, which is

(2.30)
1 − cn

λ2
1

+ 1

n

∑

j≥2

1

(λj − λ1)2
.
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An estimator of ψ ′(α1) follows by replacing α1 with (2.28) and m′{ψ(α)} with (2.30) in
(2.29).

Let sm = tr(Sm
1 )/p. According to Lemma 2.16 in [31] and Theorem 1.4 in [25], we have

the following consistent estimators Am for rm,m = 1,2,3,4:

(2.31)
A1 = s1, A2 = s2 − cn(A1)

2, A3 = s3 − 3cnA1A2 − c2
n(A1)

3,

A4 = s4 − 2cn(A2)
2 − 4cnA1A3 − 6c2

n(A1)
2A2 − c3

n(A1)
4.

To estimate γ4, notice that

(2.32) M := 1

p
E

(
y
⊺
11y11 − tr�1

)2 = γ4 − 3

p

p∑

i=1

(�1ii)
2 + 2r2,

where �1ii and S1ii are, respectively, the ith diagonal entry of �1 and S1. Since r2 can
be estimated by A2 above, we just need to find estimators of M and

∑p
i=1(�1ii)

2/p. The
following lemma specifies their consistent estimators.

LEMMA 2.7. Under Assumptions 1 and 2, and assuming that �1 has bounded spectral

norm, we have

(2.33)
1

p

p∑

i=1

S2
1ii − 1

p

p∑

i=1

(�1ii)
2 p→ 0,

and

(2.34)
1

pn

n∑

i=1

(
y
⊺
1iy1i − tr S1

)2 −M
p→ 0,

where y1i denotes the ith observation from the first population.

We assume that
∑p

i=1(�1ii)
2/p does not converge to 0, which is a mild assumption for a

population covariance matrix (otherwise the variances of the majority of the underlying ran-
dom variables tend to zero). From (2.32) and Lemma 2.7, we propose a consistent estimator
for γ4 as follows

(2.35) γ̂4 = n−1 ∑n
i=1(y

⊺
1iy1i)

2 − (1 − 2/n)(tr S1)
2 − 2 tr S2

1∑p
i=1 S2

1ii

+ 3.

Through our simulations, we find that the largest sample spiked eigenvalue and the full
linear spectral statistics have large correlations although they are asymptotic uncorrelated in
theory. This is due to the fact that cov(

√
nλ1/ψ(α1), λ1) = O{ψ(α)/

√
n} by Theorem 2.2,

which is theoretically negligible. However, in practice, it may happen that ψ(α1) is com-
parable to

√
n (e.g., ψ(8) = 8 + 7c/8 for model 1 in the simulation part) which results in

significant covariance. Therefore, we correct the statistic in (2.26) by removing the largest
sample eigenvalue from the linear spectral statistics part. Actually, by using Slutsky’s theo-
rem and the fact that the single sample spiked eigenvalues converge to a constant, our proof of
Theorem 2.5 also applies to the case when linear spectral statistics do not include the sample
spiked eigenvalues.

It then suffices to recalculate the variance of LSS part without the largest sample spiked
eigenvalue and estimate it. By taking contour z enclosing all the sample eigenvalues except
the largest spiked one, and after analyzing the contour integral, we find that the more ac-
curate variance is just to replace rm = tr�m/p with rm − αm

1 /p, m = 1,2,3,4 in (2.27),
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and denote it by (σ
(1)
lin )2 (for population associated with �k denote it by (σ

(1)
link)

2). The cor-
responding estimator for rm − αm

1 /p is obtained by replacing sm = tr Sm
1 /n with sm − λm

1 /n

in (2.31). Thus, we find an estimator for (σ
(1)
lin )2 = (σ

(1)
lin1)

2 + (σ
(1)
lin2)

2, and denote it by

(σ̂
(1)
lin )2 = (σ̂

(1)
lin1)

2 + (σ̂
(1)
lin2)

2. Let

(2.36)

Mn =
√

n
λ1(S1) − λ1(S2)

σ̂spi
;

Ln =
∑p

i=1 f {λi(S1)} − f {λi(S2)}
σ̂lin

, where f (x) = x + x2;

L(1)
n =

∑p
i=2 f {λi(S1)} − f {λi(S2)}

σ̂
(1)
lin

, where f (x) = x + x2;

Tn = M2
n +

(
L(1)

n

)2
.

We then propose the above statistic Tn for the hypothesis testing (2.23). As discussed be-

fore, under H0 in (2.23), Mn, Ln, L
(1)
n are all asymptotically N(0,1). We summarize the

asymptotic distribution of Tn under H0 by the following theorem.

THEOREM 2.8. Suppose that S1 and S2 defined in (2.24) satisfy Assumptions 1, 2 and

(2.25). Moreover we assume that
∑p

i=1(�kii)
2/p, k = 1,2 are bounded from below for suffi-

ciently large p. Under the null hypothesis: �1 = �2, we have

Tn
D→ χ2

2 .

REMARK 10. The assumption that
∑p

i=1(�kii)
2/p, k = 1,2 are bounded from below

assures that the estimators of γ4k, k = 1,2 are consistent, see the discussion above (2.35). We
address that Assumption 5 is not necessary here since the normalization of the variance has
been made in Mn, see Remark 2. Similarly Assumption 7 is not required.

REMARK 11. One referee suggested a promising idea to improve the power of our test

statistics by using tr(S1 −S2)
2 to replace L

(1)
n since L

(1)
n might not be always nonzero if S1 	=

S2. Although Theorem 2.5 does not directly imply that tr(S1 −S2)
2 is asymptotic independent

with the spiked sample eigenvalues, we conjecture that the asymptotic independence holds
for tr(S1 − S2)

2 and the spiked eigenvalues.

Next, we analysis the power of our test. For k = 1,2, denote

(2.37) μk = 1

n
tr2(�k) + tr(�k) + tr

(
�2

k

)
.

THEOREM 2.9. In addition to the assumptions in Theorem 2.8, if we let either |μ1 −
μ2| → ∞ or

√
n|ψ1(α11) − ψ2(α21)| → ∞ hold under H1, then

(2.38) P(Tn > qα|H1) → 1 as n → ∞,

where qα denotes the α-upper quantile of a χ2
2 distribution, that is, if X ∼ χ2

2 , then P(X >

qα) = α.

In the above discussion, we assume the data matrix has zero mean. Corollary 2.4 and
Theorem 2.5 allows us to construct a similar statistic to Tn for centralized sample covariance
matrices, which meets well for real applications. We can also obtain consistent estimators for
those parameters involved in the asymptotic variances for the normalized spiked eigenvalue
and LSS, by replacing quantities associated to Sn with quantities associated to the centralized
matrix Sn correspondingly.
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3. Simulations and an empirical study. This section includes simulations to verify the
performance of the earlier proposed statistics and the accuracy of the estimator of the popu-
lation eigenvectors corresponding to the spikes. An empirical study further demonstrates the
performance of our proposed statistic Tn.

3.1. Simulations. We introduce five covariance models to be used in simulations.

• Model 1: �(1) = diag(8,1, . . . ,1)p×p .
• Model 2: �(2) = diag(6,2, . . . ,2,1, . . . ,1)p×p where the number of 2 is 10.
• Model 3: �(3) = Op diag(12, d2, . . . , dp)p×pO

⊺
p where di = 3 − 1.5(i − 1)/p, and

Op =
[
O1 0
0 Ip−3

]
,

where O1 is a 3 × 3 orthogonal matrix.
• Model 4: �(4) = Op diag(15, d2, . . . , dp)p×pO

⊺
p where di = 3 − 2(i − 1)/p and Op is the

same as Model 3.
• Model 5: �(5) = diag(12,2, . . . ,2,1, . . . ,1)p×p where the number of 2 is 10.

Assumption 4 holds for the largest eigenvalue of these models under our setting of p, n

in simulations. For the models 1 and 2, H = δ1 where δa is the Dirac measure at the point
a. According to Assumption 4, for those population eigenvalues satisfying αi > 1 + √

c, the
associated sample eigenvalues are spiked eigenvalues. We will set p/n ≤ 3. Thus, in model 1,
the largest eigenvalue (α1 = 8) satisfies Assumption 4. In the model 2, the largest population
eigenvalue (α1 = 6) satisfies Assumption 4, while those eigenvalues that equal 2 are spiked
eigenvalue when c ≤ 1. Since we only include the largest one in the spiked part of our statistic
Tn, it doesn’t matter whether these eigenvalues are spikes or not. For model 3, we may regard
H as a uniform distribution from 3/2 to 3, then

ψ(α) = α + 2cα

3

∫ 3

3/2

t

α − t
dt = (1 − c)α − 2cα2

3
ln

α − 3

α − 3/2
.

Thus,

ψ ′(α) = 1 − c − 4cα

3
ln

α − 3

α − 3/2
− cα2

(α − 3)(α − 3/2)
.

The largest population eigenvalue α1 = 12 satisfies Assumption 4 when 1 − 0.057c > 0.
Similarly α1 = 15 satisfies Assumption 4 for the model 4. The model 5 is similar to model 2
and the largest eigenvalue satisfies Assumption 4.

We consider two types of distribution for entries of X1 and X2: standard normal distribu-
tion, and t10/

√
(5/4). We investigate the performance of Tn, and compare it with the tests in

[20] and [13], respectively, denoted as Chen’s test and Cai’s test. The performance of Mn and
Ln are also reported.

3.2. Approximation accuracy. In Tables 2 and 3, we report the empirical sizes of testing
H0 : �1 = �2 = �(i) for �(i) given by the above Models 1–5. The results listed in Table 2
are for standard normal distributed entries while Table 3 is for normalized t10 distributed
entries. We run 500 simulation replications for each test of population covariance matrices.
The nominal test size is 0.05. From the tables, we can see that the empirical sizes are around
0.05, which indicates that the χ2

2 approximation is accurate. We would like to point out that

although λ1
a.s.→ ψ(α1) as n goes to infinity, the approximation is not accurate enough when

n = 100. The estimating errors in (2.30) and (2.31) are slightly amplified if λ2
1 is involved.

This accounts for the slightly smaller size for statistics Tn, Mn and Ln in Tables 2 and 3.
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TABLE 2
Empirical sizes for testing H0 : �1 = �2 = �(i) for data generated from Model i (i = 1,2,3,4,5) with N(0,1)

entries. The sample size is 100 for both samples

Model p 40 60 80 100 120 150 240 300

�(1) Tn 0.042 0.048 0.038 0.050 0.042 0.042 0.052 0.038
Mn 0.044 0.044 0.054 0.042 0.042 0.042 0.042 0.038
Ln 0.026 0.030 0.046 0.042 0.038 0.030 0.066 0.044
Cai 0.036 0.048 0.030 0.058 0.044 0.040 0.044 0.046

Chen 0.084 0.078 0.072 0.068 0.070 0.060 0.048 0.032

�(2) Tn 0.036 0.030 0.040 0.052 0.026 0.063 0.042 0.048
Mn 0.028 0.032 0.052 0.042 0.040 0.042 0.044 0.046
Ln 0.030 0.030 0.042 0.042 0.036 0.054 0.044 0.044
Cai 0.044 0.038 0.048 0.058 0.044 0.048 0.044 0.038

Chen 0.056 0.050 0.066 0.056 0.046 0.053 0.054 0.056

�(3) Tn 0.024 0.030 0.046 0.034 0.040 0.044 0.042 0.068
Mn 0.038 0.036 0.044 0.072 0.034 0.034 0.038 0.066
Ln 0.040 0.032 0.036 0.046 0.050 0.038 0.050 0.070
Cai 0.040 0.046 0.048 0.036 0.032 0.054 0.048 0.028

Chen 0.062 0.060 0.050 0.056 0.058 0.050 0.044 0.038

�(4) Tn 0.056 0.044 0.048 0.034 0.048 0.044 0.030 0.030
Mn 0.046 0.040 0.043 0.040 0.044 0.044 0.032 0.030
Ln 0.034 0.040 0.038 0.032 0.038 0.052 0.048 0.036
Cai 0.046 0.056 0.050 0.040 0.054 0.054 0.026 0.040

Chen 0.072 0.064 0.086 0.066 0.058 0.058 0.030 0.042

�(5) Tn 0.028 0.052 0.040 0.046 0.060 0.056 0.046 0.058
Mn 0.042 0.028 0.046 0.036 0.038 0.042 0.030 0.052
Ln 0.026 0.024 0.042 0.032 0.042 0.034 0.038 0.040
Cai 0.046 0.054 0.054 0.044 0.046 0.038 0.028 0.042

Chen 0.074 0.062 0.090 0.054 0.064 0.052 0.078 0.056

In Table 4, we record the performance of our estimator of
∑p

i=1 u4
1i for Model 4. The

sample size is fixed to be 100, and for each dimension case, we run 500 replications and list
the mean and variance. It can be seen that the estimator performs well.

3.3. Power discussion. We consider the power of tests for comparing three pairs of co-
variances �(1) vs �(2), �(3) vs �(4) and �(2) vs �(5). The empirical powers of the above
three comparisons are, respectively, summarized in Tables 5, 6 and 7. In Tables 5–7, we find
that Tn always outperforms Cai’s test and Chen’s test. In Table 5, all the three tests that is, Tn,
Chen and Cai’s tests have competitive powers. However, in Table 6, both Cai and Chen’s tests
lose powers while Tn has significant better powers and the powers increase as p increases.
For the test comparing �(2) and �(5) in Table 7, Cai’s test loses powers, while Tn and Chen’s
tests have satisfactory powers. The performance of Tn is more stable than Chen’s test as p

increases, and Tn outperforms Chen’s test for large enough p. In fact, we can infer from (2.3)
that the limit of difference of two sample spiked eigenvalues increases as p increases, so it is
understandable that Mn has good powers for large p cases.

We observe Tn has good powers whenever the differences between the two covariances
are introduced by either the nonspike eigenvalues (Tables 5 and 6) or the spike eigenvalues
(Table 7). Specifically, for the tests comparing �(1) and �(2) (Table 5), the main differences
between �(1) and �(2) are from nonspike eigenvalues. Thus, Mn has relatively low powers
in this scenario, and the powers of Tn in Table 5 are inherited from the difference of LSS

excluding the largest population eigenvalue, that is, the statistic L
(1)
n . This phenomenon can
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TABLE 3
Empirical sizes for testing H0 : �1 = �2 = �(i) for data generated from Model i (i = 1,2,3,4,5) with

t10/
√

5/4 entries. The sample size is 100 for both samples

Model p 40 60 80 100 120 150 240 300

�(1) Tn 0.052 0.034 0.054 0.038 0.034 0.042 0.030 0.040
Mn 0.048 0.028 0.042 0.036 0.042 0.038 0.036 0.040
Ln 0.034 0.026 0.042 0.036 0.042 0.046 0.06 0.056
Cai 0.036 0.040 0.040 0.022 0.022 0.032 0.034 0.020

Chen 0.098 0.102 0.112 0.094 0.092 0.054 0.048 0.050

�(2) Tn 0.050 0.026 0.020 0.042 0.058 0.046 0.048 0.038
Mn 0.048 0.028 0.026 0.034 0.042 0.030 0.034 0.038
Ln 0.054 0.026 0.042 0.048 0.046 0.052 0.052 0.052
Cai 0.036 0.036 0.034 0.032 0.046 0.020 0.034 0.026

Chen 0.086 0.058 0.082 0.080 0.072 0.052 0.056 0.050

�(3) Tn 0.038 0.030 0.034 0.046 0.042 0.030 0.038 0.048
Mn 0.044 0.036 0.044 0.042 0.034 0.026 0.040 0.018
Ln 0.028 0.038 0.036 0.040 0.050 0.042 0.044 0.046
Cai 0.028 0.032 0.032 0.020 0.030 0.032 0.038 0.028

Chen 0.084 0.066 0.072 0.054 0.066 0.050 0.038 0.040

�(4) Tn 0.040 0.038 0.046 0.034 0.046 0.046 0.038 0.040
Mn 0.042 0.034 0.034 0.054 0.030 0.036 0.038 0.040
Ln 0.018 0.018 0.032 0.026 0.032 0.020 0.046 0.044
Cai 0.038 0.042 0.040 0.028 0.022 0.024 0.032 0.018

Chen 0.108 0.078 0.066 0.090 0.056 0.094 0.058 0.064

�(5) Tn 0.044 0.042 0.052 0.060 0.030 0.060 0.034 0.042
Mn 0.022 0.042 0.056 0.032 0.024 0.038 0.036 0.026
Ln 0.022 0.034 0.028 0.030 0.018 0.038 0.034 0.038
Cai 0.026 0.038 0.030 0.038 0.034 0.046 0.028 0.032

Chen 0.100 0.118 0.104 0.086 0.084 0.104 0.070 0.048

be also seen by comparing the powers of Ln and L
(1)
n . Note that Ln does not have good

powers because the largest eigenvalue in �(2) is smaller than that of �(1), which offsets

the effect of L
(1)
n . In Table 6, the powers of Tn are also mainly contributed by L

(1)
n , but

different from the results in Table 5, Ln and L
(1)
n both have powers close to 1 for large

p. However, in Table 7, Mn has significant powers but L
(1)
n loses power because �(2) and

�(5) shares the same eigenvalues except the large difference between their largest spiked
population eigenvalues. In this scenario, the powers of Tn are mainly due to the contribution
of Mn.

TABLE 4
Empirical mean and variance of the proposed estimators for

∑p
i=1 u4

1i , with true value 0.5317 in Model 4. The

sample size is 100 and the simulation replication is 500

Data entries p 40 60 80 100 120 150 240 300

N(0,1) mean 0.5387 0.5417 0.5390 0.5404 0.5443 0.5430 0.5532 0.5489
var 0.0029 0.0035 0.0044 0.0041 0.0044 0.0057 0.0073 0.0092

t10/
√

5/4 mean 0.5378 0.5414 0.5394 0.5368 0.5425 0.5442 0.5441 0.5567
var 0.0039 0.0042 0.0044 0.0048 0.0053 0.0055 0.0074 0.0110
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TABLE 5
Empirical powers for testing H0 : �1 = �2 where �1 = �(1) and �2 = �(2) with two types of data entries:

N(0,1) and t10/
√

5/4. The sample size is 100 for both samples

Data entries p 40 60 80 100 120 150 240 300

N(0,1) Tn 1.000 1.000 1.000 0.994 0.992 0.978 0.894 0.822
Mn 0.248 0.266 0.224 0.218 0.218 0.246 0.264 0.220
Ln 0.194 0.188 0.232 0.256 0.286 0.230 0.274 0.270

L
(1)
n 1.000 1.000 1.000 1.000 0.996 0.978 0.884 0.844

Cai 0.796 0.668 0.584 0.530 0.434 0.372 0.260 0.194
Chen 0.852 0.786 0.722 0.606 0.548 0.448 0.332 0.240

t10/
√

5/4 Tn 1.000 0.998 0.996 0.980 0.942 0.898 0.728 0.600
Mn 0.148 0.164 0.150 0.160 0.198 0.136 0.194 0.136
Ln 0.142 0.176 0.182 0.204 0.200 0.204 0.200 0.216

L
(1)
n 1.000 0.996 0.994 0.984 0.966 0.924 0.748 0.632

Cai 0.448 0.326 0.236 0.190 0.162 0.132 0.066 0.062
Chen 0.814 0.774 0.710 0.586 0.522 0.458 0.346 0.258

3.4. An empirical study. We use the gene expression data set from breast cancer study
by [28] to illustrate our test. The data, available from “Bioconductor”, consists of gene ex-
pression patterns of 200 tumors of patients who were not treated by systemic therapy after
surgery. Patients were classified into three groups based on the tumor grade. In group 1, there
are 29 patients with a well-differentiated tumor. In group 2, there are 136 patients with a
moderately differentiated tumor. In group 3, there are 35 patients with a poor differentiated
tumor. To understand the differences in gene interactions among these three patient groups, it
is of interest to test the large dimensional covariance matrices come from these three groups.

The breast cancer data contains 22,283 features. We select those features that have coef-
ficients of variation in the range (0.28, 1) and at least 30% of the patients have intensities
above five. After this screening procedure, there are 723 features selected for analysis. To
make the sample sizes comparable among three groups and check the empirical sizes using
real data sets, we selected subsamples from groups 2 and 3. Specifically, we consider three
data matrices: the group 1 denoted by Y1, the first 29 patients in group 2, denoted by Y2, and

TABLE 6
Empirical powers for testing H0 : �1 = �2 where �1 = �(3) and �2 = �(4) with two types of data entries:

N(0,1) and t10/
√

5/4. The sample size is 100 for both samples

Data entries p 40 60 80 100 120 150 240 300

N(0,1) Tn 0.792 0.938 0.976 0.994 1.000 1.000 1.000 1.000
Mn 0.176 0.176 0.156 0.150 0.142 0.132 0.098 0.084
Ln 0.040 0.062 0.178 0.318 0.506 0.762 0.994 1.000

L
(1)
n 0.818 0.964 0.986 0.998 1.000 1.000 1.000 1.000

Cai 0.062 0.050 0.092 0.074 0.068 0.076 0.070 0.052
Chen 0.250 0.236 0.206 0.172 0.174 0.150 0.130 0.160

t10/
√

5/4 Tn 0.636 0.818 0.930 0.954 0.982 0.998 1.000 1.000
Mn 0.158 0.146 0.104 0.114 0.136 0.116 0.072 0.074
Ln 0.024 0.054 0.144 0.266 0.374 0.632 0.986 0.996

L
(1)
n 0.686 0.862 0.952 0.960 0.992 1.000 1.000 1.000

Cai 0.032 0.058 0.026 0.052 0.040 0.030 0.032 0.036
Chen 0.248 0.236 0.212 0.178 0.216 0.184 0.168 0.122
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TABLE 7
Empirical powers for testing H0 : �1 = �2 where �1 = �(2) and �2 = �(5) with two types of data entries:

N(0,1) and t10/
√

5/4. The sample size is 100 for both samples

Data entries p 40 60 80 100 120 150 240 300

N(0,1) Tn 0.870 0.858 0.864 0.842 0.842 0.820 0.830 0.844
Mn 0.910 0.940 0.946 0.926 0.908 0.888 0.900 0.906
Ln 0.882 0.892 0.878 0.856 0.818 0.772 0.722 0.704

L
(1)
n 0.046 0.048 0.046 0.046 0.058 0.056 0.036 0.062

Cai 0.236 0.140 0.130 0.110 0.098 0.096 0.076 0.058
Chen 0.908 0.872 0.878 0.854 0.778 0.730 0.630 0.596

t10/
√

5/4 Tn 0.706 0.644 0.670 0.702 0.694 0.672 0.670 0.634
Mn 0.822 0.748 0.790 0.786 0.804 0.786 0.782 0.770
Ln 0.756 0.696 0.688 0.682 0.668 0.600 0.546 0.490

L
(1)
n 0.054 0.046 0.050 0.040 0.050 0.054 0.044 0.042

Cai 0.096 0.062 0.058 0.058 0.060 0.050 0.034 0.034
Chen 0.838 0.784 0.790 0.768 0.778 0.704 0.634 0.588

the first 29 patients in group 3, denoted by Y3. These three data matrices are of the same size
723 × 29 which facilitate the analysis by our method. We plot the histogram of eigenvalues
in Figure 1. We observe an obvious spiked eigenvalue for sample covariance matrices of Y1

and Y3. For the sample covariance matrix of Y2 the largest eigenvalue may also be a spiked
eigenvalue. Thus, it is reasonable to apply our method on these data.

To detect the differences in gene interactions among three groups, we applied our proposed
test to compare any two covariances among �1, �2 and �3 using data matrices Y1, Y2

and Y3, where �i is the covariance among the 723 genes in the ith (i = 1,2,3) patient
group. At 5% nominal level, our proposed tests reject all the three null hypotheses H01 : �1 =
�2, H02 : �1 = �3 and H03 : �2 = �3. This indicates the significant differences among
three covariance matrices. However, both Chen’s and Cai’s test fail to detect the difference in
groups 1 and 2, and Cai’s test cannot detect the difference between groups 2 and 3.

We split the data in group 2 to check the empirical size. Specifically, we use Y4, Y5 and
Y6 to denote, respectively, the data matrices formed by the 30th–58th patients, the 59th–87th
patients, and the 88th–116th patients in group 2. Then, we applied our proposed test statistics
Tn to any pairs among Y2, Y4, Y5 and Y6, the p-values of these tests are all larger than 5%

FIG. 1. Histogram of nonzero eigenvalues of the covariance matrices of Y1, Y2 and Y3.
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and we cannot detect any difference among the covariance matrices. This is predictable since
they all come from the second group. This also confirms that our test is able to control the
type I error in this real data set.

4. Proof of Theorem 2.1. This section is to give the proof of Theorem 2.1. We begin
with a list of results.

1. For general matrices A, B and column vectors α, β that are conformable, we have the
following matrix formulas:

A−1 − B−1 = B−1(B − A)A−1,(4.1)

A(I + BA)−1 = (I + AB)−1A,(4.2)

(
A + αβ⊺)−1

α = A−1α

1 + β⊺A−1α
.(4.3)

2. Let X = (X1, . . . ,Xn), where Xi’s are i.i.d. real random variables with mean zero and
variance one. Let A = (aij )n×n and B = (bij )n×n be two real or complex matrices. Then we
have an identity

(4.4)

E
(
X⊺AX − tr A

)(
X⊺BX − tr B

)

=
(
E|X1|4 − 3

) n∑

i=1

aiibii + tr AB⊺ + tr AB.

LEMMA 4.1 (Theorem 35.12 of [12]). Suppose that for each n, Yn1, Yn2, . . . , Ynrn is a

real martingale difference sequence with respect to an increasing σ -field {Fnj } having second

moments. If as n → ∞, (i)
∑rn

j=1 E(Y 2
nj |Fn,j−1)

p→ σ 2 where σ 2 is a positive constant, and

for each ǫ > 0, (ii)
∑rn

j=1 E{Y 2
nj I (|Ynj | > ǫ)} → 0, then

rn∑

j=1

Ynj
D→ N

(
0, σ 2)

.

3. Suppose that entries of x is truncated at ηnn
1/4 and centralized, that is, xij = 1√

n
qij ,

where qij satisfying Assumption 1, are truncated at ηnn
1/4 and centralized. M, M1 and M2

are p × p nonrandom matrices (or independent of x). w is a p × 1 nonrandom vector with a
bounded spectral norm. We conclude the following simple results from Lemma 2.2 in [9]:

E

∣∣∣∣x
⊺Mx − 1

n
tr M

∣∣∣∣
d

≤ C‖M‖dn−d/2,(4.5)

E

∣∣∣∣x
⊺M1ww⊺M2x − 1

n
w⊺M2M1w

∣∣∣∣
d

≤ C‖M1‖d‖M2‖dη2d−4
n n−d/2−1,(4.6)

E
∣∣x⊺M1ww⊺M2x

∣∣d ≤ C‖M1‖d‖M2‖dη2d−4
n n−d/2−1.(4.7)

PROOF OF THEOREM 2.1. We below only prove (2.6) and the proof of (2.7) is similar.
The overall strategy of the proof is to decompose w

⊺
1X(I − X⊺ �1P

ψn(α)
X)−1X⊺w1 into summa-

tion of martingale differences and then apply Lemma 4.1. We assume that X has already been
truncated at ηnn

1/4 and centralized according to the argument in S.7 in the Supplementary
file.
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CLT of the random part. Throughout the rest of the paper, let xk be the kth (k = 1, . . . , n)
column of X, and ek = (0, . . . ,0,1,0, . . . ,0) be an n-dimensional vector with the kth element
being 1. We use C to denote constants which may change from line to line. Introduce nota-
tions

(4.8)

θ = limψn(α) = ψ(α), Xk = X − xke
⊺
k ,

Xjk = X − xke
⊺
k − xj e

⊺
j , �̃1 = �1P

ψn(α)
,

A = In − X⊺�̃1X, Ak = In − X
⊺
k �̃1Xk,

Dk = Ip − �̃1XkX
⊺
k , D = Ip − �̃1XX⊺,

Djk = Ip − �̃1XjkX
⊺
jk, Bk = D−1

k w1w
⊺
1

(
D
⊺
k

)−1
,

δk = x
⊺
kBkxk − 1

n
tr Bk,

αk = 1

1 − x
⊺
k �̃1(D

⊺
k )

−1xk

, αjk = 1

1 − x
⊺
k �̃1(D

⊺
jk)

−1xk

,

ᾱk = 1

1 − 1
n

tr �̃1(D
⊺
k )

−1
,

ᾱjk = 1

1 − 1
n

tr �̃1(D
⊺
jk)

−1
, an = 1

1 − 1
n
E tr �̃1(D

⊺
1)−1

,

a1n = 1

1 − E 1
n

tr �̃1(D
⊺
12)

−1
,

γk = x
⊺
k �̃1

(
D
⊺
k

)−1
xk − 1

n
tr �̃1

(
D
⊺
k

)−1
,

γ1k = x
⊺
k �̃1

(
D
⊺
1k

)−1
xk − 1

n
tr �̃1

(
D
⊺
1k

)−1
.

With the help of (4.2) and (4.3), it is not difficult to conclude the following two facts:

e
⊺
kX

⊺
k = e

⊺
kA−1

k X
⊺
k = 0,(4.9)

e
⊺
kA−1X⊺ = e

⊺
kX⊺D−1 = x

⊺
kD−1

k αk.(4.10)

Note that the quantities defined in (4.8) such as αk , ᾱk and an are not always bounded and
the matrices such as A, Dk are not always invertible. So we introduce events

(4.11)

B1 =
{∥∥�̃1XX⊺

∥∥ ≤ 1 − ǫ
}
, B1k =

{∥∥�̃1XkX
⊺
k

∥∥ ≤ 1 − ǫ
}
,

B1jk =
{∥∥�̃1XjkX

⊺
jk

∥∥ ≤ 1 − ǫ
}
,

B2k =
{∣∣∣∣x

⊺
k �̃1

(
D
⊺
k

)−1
xk −

(
1 + 1

θm(θ)

)∣∣∣∣ < ǫ

}
,

B2jk =
{∣∣∣∣x

⊺
k �̃1

(
D
⊺
jk

)−1
xk −

(
1 + 1

θm(θ)

)∣∣∣∣ < ǫ

}
,

B3k =
{∣∣∣∣

1

n
tr �̃1

(
D
⊺
k

)−1 −
(

1 + 1

θm(θ)

)∣∣∣∣ < ǫ

}
,

B3jk =
{∣∣∣∣

1

n
tr �̃1

(
D
⊺
jk

)−1 −
(

1 + 1

θm(θ)

)∣∣∣∣ < ǫ

}
,
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where ǫ is a small positive constant. Note that B1 ⊆ B1k ⊆ B1jk . Denote

(4.12) B = B1 ∩
( ⋂

i=2,3

n⋂

k=1

Bik

)
∩

( ⋂

i=2,3

⋂

1≤j 	=k≤n

Bijk

)
.

Then we have following lemma and the proof is postponed to the Supplementary file.

LEMMA 4.2. The event B holds with high probability (i.e., P(B) = 1−n−l for any large

constant l).

This lemma ensures that it suffices to establish CLT of w
⊺
1XA−1X⊺w1I (B). When the

event B holds the terms αk , αjk , ᾱk and ᾱjk defined in (4.8) are bounded. We remark here
that the more accurate definition of an should be

an = 1

1 − 1
n
E tr �̃1(D

⊺
1)−1I (B1)

,

which is bounded for sufficient large n, see (S.7.37) in the proof of Lemma 4.2. The definition
of an in (4.8) is just for notational simplicity. Another important fact of an is

(4.13) lim
n→∞an → ψ(α)

α
.

This is because we have an → −θm(θ) as n → ∞, see (S.7.37). Recall that θ = ψ(α). By the
fact that ψ is the inverse function of α : x �→ −1/m(x), we have m(θ) = −1/α. The above
comment for an also applies to a1n, and the limit of a1n is also θm(θ). Let E0(·) denote
expectation, and Ek(·) denote the conditional expectation with respect to σ -field generated
by x1, . . . ,xk . We have

(4.14)

√
n
{
w
⊺
1XA−1X⊺w1I (B) − Ew

⊺
1XA−1X⊺w1I (B)

}

=
√

n

n∑

k=1

(Ek − Ek−1)
{
w
⊺
1XA−1X⊺w1I (B)

}

=
√

n

n∑

k=1

(Ek − Ek−1)
{
w
⊺
1XA−1X⊺w1I (B) − w

⊺
1XkA−1

k X
⊺
kw1I (B1k)

}

=
√

n

n∑

k=1

(Ek − Ek−1)
{
w
⊺
1XA−1X⊺w1I (B) − w

⊺
1XkA−1

k X
⊺
kw1I (B)

}
+ op(1)

=
√

n

n∑

k=1

(Ek − Ek−1)
{
αkx

⊺
kBkxkI (B)

}
+ op(1),

where the last step uses the fact that by (4.9) and (4.10)

(4.15)

w
⊺
1XA−1X⊺w1 − w

⊺
1XkA−1

k X
⊺
kw1

= w
⊺
1(X − Xk)A

−1X⊺w1 + w
⊺
1Xk

(
A−1 − A−1

k

)
X⊺w1 + w

⊺
1XkA−1

k

(
X⊺ − X

⊺
k

)
w1

= w
⊺
1xke

⊺
kA−1X⊺w1 + w

⊺
1XkA−1

k

(
X⊺�̃1X − X

⊺
k �̃1Xk

)
A−1X⊺w1

= w
⊺
1xkx

⊺
kD−1

k w1αk + w
⊺
1XkA−1

k

(
ekx

⊺
k �̃1X + X

⊺
k �̃1xke

⊺
k

)
A−1X⊺w1

= w
⊺
1xkx

⊺
kD−1

k w1αk + w
⊺
1XkX

⊺
k �̃1

(
D
⊺
k

)−1
xke

⊺
kA−1X⊺w1

= w
⊺
1

(
D
⊺
k

)−1
xkx

⊺
kD−1

k w1αk = αkx
⊺
kBkxk.
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Note that αk = ᾱk + ᾱ2
kγk + ᾱ2

kγ
2
k αk . It follows that

(4.16)

(4.14) =
√

n

n∑

k=1

(Ek − Ek−1)

[(
ᾱk + ᾱ2

kγk + ᾱ2
kγ

2
k αk

)(
δk + 1

n
trBk

)
I (B)

]

=
√

n

n∑

k=1

Ek

[(
ᾱkδk + 1

n
ᾱ2

kγk trBk

)
I (B1kB3k)

]

+
√

n

n∑

k=1

(Ek − Ek−1)
[(

ᾱ2
kγkδk + ᾱ2

kγ
2
k αkx

⊺
k Bkxk

)
I (B)

]
+ op(1),

where in the second equality, we use Ek−1{ᾱkδkI (B)} = Ek−1{ᾱkδkI (B1kB3k)}+op(n−2) =
op(n−2), and similarly, Ek−1

1
n
ᾱ2

kγk trBkI (B) = Ek−1
1
n
ᾱ2

kγk trBkI (B1kB3k) + op(n−2) =
op(n−2). We below omit the indicator functions such as I (B), I (B1k) for simplicity, but one
should bear in mind that a suitable indicate function of events is needed whenever handling
the inverses of random matrices.

Using the Burkholder inequality, (4.5) and (4.6), we have

(4.17) E

∣∣∣∣∣
√

n

n∑

k=1

(Ek − Ek−1)γkδk

∣∣∣∣∣

2

≤ Cn2(
E|γk|4

) 1
2
(
E|δk|4

) 1
2 = o(1).

By similar arguments, together with the fact that ᾱk and αk are bounded, we have

√
n

n∑

k=1

(Ek − Ek−1)
(
ᾱ2

kγ
2
k αkx

⊺
kBkxk

)
= op(1),

√
n

n∑

k=1

Ek

(
1

n
ᾱ2

kγk tr Bk

)
= op(1).

Therefore, we only need to consider
√

n
∑n

k=1 Ekᾱkδk = √
n

∑n
k=1(Ek − Ek−1)(ᾱkδk) =√

n
∑n

k=1(Ek − Ek−1)[(ᾱk − an)δk] + √
nan

∑n
k=1 Ekδk . Similar to (4.17), it is easy to get

E

∣∣∣∣∣
√

n

n∑

k=1

(Ek − Ek−1)
[
(ᾱk − an)δk

]
∣∣∣∣∣

2

= o(1).

Summarizing the above, we conclude that

(4.18)
√

n
(
w
⊺
1XA−1X⊺w1 − Ew

⊺
1XA−1X⊺w1

)
=

√
n

n∑

k=1

anEk(δk) + op(1).

Let Yk = Ekδk = (Ek − Ek−1)δk . By the fact that an is bounded, we obtain

(4.19)
n∑

k=1

a2
nE

(
nY 2

k I
(
|
√

nYk| ≥ ǫ
))

≤ C

ǫ2

n∑

k=1

E|
√

nYk|4 ≤ Cn2

ǫ2

n∑

k=1

E|δk|4 = o(1),

where in the last step we use (4.6) and ηn → 0. By Lemma 4.1 it suffices to verify

(4.20)
n∑

k=1

a2
nEk−1

(
nY 2

k

) p−→ σ 2.

It follows from (4.4) that

(4.21) n

n∑

k=1

Ek−1
(
Y 2

k

)
= 1

n
(γ4 − 3)

n∑

k=1

p∑

i=1

(
Ek(Bk)ii

)2 + 2

n

n∑

k=1

tr(EkBk)
2.
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It suffices to find the limits of the following two expressions:

1

n

n∑

k=1

p∑

i=1

(
e
⊺
i EkD−1

k w1w
⊺
1

(
D
⊺
k

)−1
ei

)2
,(4.22)

2

n

n∑

k=1

tr
(
EkD−1

k w1w
⊺
1

(
D
⊺
k

)−1)2
.(4.23)

To find the limit of (4.22), it is equivalent to considering the limit of

(4.24)
1

n

n∑

k=1

p∑

i=1

(
e
⊺
i ED−1

k w1w
⊺
1ED

⊺−1
k ei

)2
,

whose proof is given in the supplementary file. Let

(4.25) T = I − E
1

n

n∑

k=2

α1k�̃1.

Using (S.7.42) and the dominated convergence theorem, it is easy to verify that

lim
n→∞E

1

n

n∑

k=2

α1k → −θm(θ) = ψ(α)

α
.

Since α has a positive distance to the support of �1P , T is invertible for large n. Write

(4.26)

E
(
e
⊺
i D−1

1 w1
)
− e

⊺
i T−1w1

= E

[
e
⊺
i T−1

(∑

j≥2

�̃1xj x
⊺
j − E

1

n

∑

j≥2

α1j �̃1

)
D−1

1 w1

]

=
∑

j≥2

E

[
α1j x

⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − Eα1j

n
e
⊺
i T−1�̃1D−1

1 w1

]

= A1 + A2 + A3,

where

(4.27)

A1 =
∑

j≥2

E

(
(α1j − ᾱ1j )

(
x
⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − 1

n
e
⊺
i T−1�̃1D−1

1j w1

))
,

A2 =
∑

j≥2

E

(
1

n
α1j e

⊺
i T−1�̃1

(
D−1

1j − D−1
1

)
w1

)
,

A3 =
∑

j≥2

E

(
1

n
α1j e

⊺
i T−1�̃1

(
D−1

1 − ED−1
1

)
w1

)
.

We prove A1 = O(n−1) first. Using α1j − ᾱ1j = ᾱ2
1jγ1j + ᾱ2

1jγ
2
1jα1j , we can write A1 =

A11 + A12, where

(4.28)

A11 =
∑

j≥2

Eᾱ2
1jγ1j

(
x
⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − 1

n
e
⊺
i T−1�̃1D−1

1j w1

)
,

A12 =
∑

j≥2

Eα1j ᾱ
2
1jγ

2
1j

(
x
⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − 1

n
e
⊺
i T−1�̃1D−1

1j w1

)
.
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Using (4.4), we obtain

(4.29)

E

[
ᾱ2

1jγ1j

(
x
⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − 1

n
e
⊺
i T−1�̃1D−1

1j w1

)∣∣Xj

]

≤ C

n2

p∑

k=1

(
�̃1D−1

1j

)
kk

(
D−1

1j w1e
⊺
i T−1�̃1

)
kk + C

tr(�̃1D−2
1j w1e

⊺
i T−1�̃1)

n2

+
tr(�̃1D−1

1j �̃
⊺

1T−1eiw
⊺
1D

⊺−1
1j )

n2
.

The first summation is bounded by

(4.30)

( p∑

k=1

∣∣e⊺kD−1
1j w1

∣∣2
)1/2( p∑

k=1

∣∣e⊺i T−1�̃1eke
⊺
k �̃1D−1

1j ek

∣∣2
)1/2

≤
∥∥D−1

1j

∥∥2∥∥�̃1
∥∥2∥∥T−1∥∥< C.

Thus the first term in (4.29) is O(n−2). By similar but easier arguments, the second and
third term also have bounds of the same order, so that we can conclude that

(4.31) |A11| = O
(
n−1)

.

For A12, using (4.5) and (4.6), we have

(4.32)

|A12| ≤
∑

j≥2

(
E

∣∣α1j ᾱ
2
1jγ

2
1j

∣∣2)1/2

×
(
E

∣∣∣∣x
⊺
j D−1

1j w1e
⊺
i T−1�̃1xj − 1

n
e
⊺
i T−1�̃1D−1

1j w1

∣∣∣∣
2)1/2

= O
(
n−1)

.

Thus,

(4.33) |A1| = O
(
n−1)

.

Consider the terms A2 and A3 now in (4.27). It follows from (4.1), (4.6), (4.7) and the
Burkholder inequality that

|A2| =
∣∣∣∣
∑

j≥2

E

(
1

n
α2

1j e
⊺
i T−1�̃1D−1

1j �̃1xj x
⊺
j D−1

1j w1

)∣∣∣∣ = O
(
n−1)

,

|A3| =
∣∣∣∣
∑

j≥2

E

[
1

n
(α1j − an)e

⊺
i T−1�̃1

(
D−1

1 − ED−1
1

)
w1

]∣∣∣∣

=
∣∣∣∣∣
∑

j≥2

E

[
1

n
(α1j − an)e

⊺
i T−1�̃1

(
n∑

k=2

(Ek − Ek−1)
(
D−1

1 − D−1
1k

)
)

w1

]∣∣∣∣∣
(4.34)

≤ 1

n

∑

j≥2

(
E|α1j − an|2

) 1
2

×
(
E

∣∣∣∣∣

n∑

k=1

(Ek − Ek−1)e
⊺
i T−1�̃1D−1

1k �̃1xkx
⊺
kD−1

1k w1

∣∣∣∣∣

2) 1
2

= O
(
n−1)

.
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From (4.26), (4.33), (4.34) and w
⊺
1U2 = 0, we have

E
(
e
⊺
i D−1

1 w1
)
= e

⊺
i T−1w1 + O

(
n−1)

= e
⊺
i

(
I + T−1E

1

n

n∑

k=2

α1k�̃1

)
w1 + O

(
n−1)

(4.35)

= w1i + O
(
n−1)

.

Substituting these back into (4.24), we conclude that (4.22) asymptotically equals (1 +
o(1))

∑p
i=1 w4

1i . For (4.23), it has the similar form to equation (4.7) in [6]. Hence, rewrite
(4.23) as

(4.36)

2

n

n∑

k=1

Ek−1 trEk

(
D−1

k w1w
⊺
1D

⊺−1
k

)
Ek

(
D−1

k w1w
⊺
1D

⊺−1
k

)

= 2

n

n∑

k=1

Ek−1
(
w
⊺
1D

⊺−1
k D̆−1

k w1w
⊺
1D̆

⊺−1
k D−1

k w1
)
,

where D̆−1
k is defined similarly as D−1

k by (x1, . . . ,xk−1, x̆k+1, . . . , x̆n) and where x̆k+1, . . . ,

x̆n are i.i.d. copies of xk+1, . . . ,xn. Following the argument similar to (4.7)–(4.22) of their
work, we can obtain

Ek−1
(
w
⊺
1D

⊺−1
k D̆−1

k w1w
⊺
1D̆

⊺−1
k D−1

k w1
)
×

[
1 − k − 1

n
a2

1n

1

n
tr �̃1T−1�̃1T−1

]

=
(
w
⊺
1T−2w1

)2
[
1 + k − 1

n
a2

1n

1

n
Ek−1 tr D−1

k �̃1D̆−1
k �̃1

]
+ op(1).

(4.37)

Note that w
⊺
1T−2w1 = 1 as in (4.35). Combining (4.2) with (2.18) of [9] we have

(4.38) Ek−1 tr D−1
k �̃1D̆−1

k �̃1 = tr �̃1T−1�̃1T−1 + op(1)

1 − k−1
n2 θ2(m(θ))2 tr �̃1T−1�̃1T−1

.

Recall that a1n → −θm(θ), m(θ) → m(ψ(α)) = −α−1, and F�1P → H . Hence

(4.39)

d : = lim
a2

1n

n
tr �̃1T−1�̃1T−1

= m2(θ)

∫
ct2

(1 + tm(θ))2
dH(t)

=
∫

ct2

(α − t)2
dH(t) = 1 − ψ ′(α).

By (4.37) and (4.39), and similar argument to (4.35), we obtain

(4.40) (4.36) → 2
(
w
⊺
1T−2w1

)2
(∫ 1

0

1

1 − td
dt +

∫ 1

0

td

(1 − td)2
dt

)
= 2

1 − d
= 2

ψ ′(α)
.

Consequently, from (4.21)–(4.40), and an → ψ(α)/α, we conclude that

(4.41)
n∑

k=1

a2
nEk−1

(
nY 2

k

)
→ ψ2(α)

α2

[
(γ4 − 3)

p∑

i=1

w4
1i + 2

ψ ′(α)

]
.
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Calculation of the mean. We can show that

(4.42)
√

n

(
Ew

⊺
1XA−1X⊺w1 − ψn(α)

α

)
→ 0.

Its proof is deferred to the Supplementary file. Consequently Theorem 2.1 is concluded. �
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