
FSA: An Efficient Fault-tolerant Systolic
Array-based DNN Accelerator Architecture

Yingnan Zhao∗, Ke Wang†, and Ahmed Louri∗
∗Department of Electrical and Computer Engineering, George Washington University, Washington, D.C.

†Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC
Email: {yzhao96, louri}@gwu.edu, ke.wang@uncc.edu

Abstract—With the advent of Deep Neural Network (DNN) ac-
celerators, permanent faults are increasingly becoming a serious
challenge for DNN hardware accelerator, as they can severely
degrade DNN inference accuracy. The State-of-the-art works
address this issue by adding homogeneous redundant Processing
Elements (PEs) to the DNN accelerator’s central computing
array, or bypassing faulty PEs directly. However, such designs
induce inference loss, extra hardware cost, and performance
overhead. Moreover, current designs are able to only deal with a
limited number of faults due to costs. In this paper, we propose
FSA, a Fault-tolerant Systolic Array-based DNN accelerator
with the goal of maintaining DNN inference accuracy in the
presence of permanent faults. The key feature of the proposed
FSA is a unified re-computing module (RCM) that dynamically
recalculates the required DNN computations that are supposed to
be accomplished by faulty PEs with minimal latency and power
consumption. Simulation results show that the proposed FSA
reduces inference accuracy loss by 46%, improves execution time
by 23%, and reduces energy consumption by 35% on average,
as compared to existing designs.

Index Terms—Fault-tolerant, systolic array, DNN accelerator

I. INTRODUCTION

Permanent faults in the systolic array-based Deep Neural
Network (DNN) accelerators [1]–[10] have a significant nega-
tive impact on DNN inference accuracy [11]. Prior works [12]–
[28] have proposed both software and hardware solutions to
address permanent faults in the central computing array (CA)
of the DNN accelerator. Some of the existing software-based
solutions [12], [13] propose to retrain the entire DNN model
so that weight matrices will be updated for each DNN layer.
Others [11], [12], [29] have proposed to avoid using the
defective Processing Elements (PEs) for critical computations.
However, these designs cannot cover all cases as the retrained
DNN models and new mapping strategies are unlikely to
converge with added constraints (e.g., irregular dataflow to
avoid multiple faulty PEs). Hardware-based solutions imple-
ment redundant hardware components, including multiply-
accumulate (MAC) units, PEs, and links, to avoid the negative
impact of permanent faults [14]–[25], [27], [28], [30]–[33].
However, these techniques inevitably induce significant cost,
excessive power consumption and latency.

To this end, we propose FSA, a fault-tolerant systolic
array-based DNN accelerator design to address permanent
faults. The objective of the proposed FSA architecture is
to maintain the DNN inference accuracy in the presence of
permanent faults with minimal overheads. The essence of the

proposed FSA is a unified re-computing module (RCM) that
re-computes the required computations by the faulty PEs of
the CA with reduced latency and improved energy efficiency
as compared to prior work [17]. The major contributions of
this work are summarized as follows:

• Reduced DNN Inference Accuracy Loss: We propose a
unified RCM that re-computes the required computations
that are supposed to be done by faulty PEs. Unlike
previous designs [15]–[17] that only address a limited
number of faulty PEs, the proposed RCM design is able
to reduce DNN inference accuracy loss regardless of the
number or locations of the faulty PEs.

• Improved Performance: The proposed RCM works in
parallel with the CA and provides the required DNN
computations by faulty PEs with minimal latency and
power consumption.

• Performance Evaluation: We evaluate the performance
of the proposed FSA architecture with the ImageNet
dataset [34], using the configurations of AlexNet and
ResNet-50 [35], [36]. Simulation results show that the
proposed FSA reduces inference accuracy loss by 46%,
improves execution time by 23%, and reduces energy
consumption by 35% on average, compared to existing
fault-tolerant DNN accelerator designs [11], [15]–[18].

II. FSA ARCHITECTURE DESIGN

A. FSA Design Overview

Fig. 1 shows the overall architecture of the proposed FSA
design that comprises of a systolic-based CA, on-chip buffers,
and an RCM. The systolic-based CA consists of 256 × 256
PEs and deploys multiple dataflows: Output Stationary (OS),
Weight Stationary (WS), and Input Stationary (IS). As shown
in Fig. 2, the choice of dataflow reveals the reuse type of
data operands (input, weight, or output) over space and time
inside spatial accelerators. During the DNN inference phase,
the inputs (activation and weight) are pre-loaded from the off-
chip memory to the input buffers before being streamed into
the PE array of the CA. The input buffer is constructed with
a number of First-In-First-Out buffers (FIFO), each of which
is assigned to a row or column of the CA. The input data
stored in FIFO buffers are organized as the systolic array. Fig 3
shows the architecture of a conventional PE and it includes a
multiplier–accumulator (MAC) and a register for storing data

!"
#$

%&'
$(
()
*

!"#$%&'(!)*+,$-#.(
/%%&0(1234!2345

!"#$%&

'(
&#)

*&
#+
,

+$%#$%&'$(()*

-".(+/01&#,$2
3+415"26-738

!"#$%&'()*+,-.+*)-/!.0-12234

-".(+/01&#,$2-"915&9

!"

:*15&;2<=2*44>"99

6"-.7$/8$-9&$-)#

?@AB

!"!"!"!"

-732?1CC">27+,&>+55">

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

!#
$%
&'
#(

!#
$%
&'
#(

!#
$%
&'
#(

!#
$%
&'
#(

!#
$%
&'
#(

Fig. 1. The architecture of Fault-tolerant Systolic Array-based DNN Accel-
erators (FSA). PE: Processing Element, RU: Re-computing Unit

(activation, weight, and partial sum) locally. Based on the
applied dataflow to the CA, PEs have to store different types
of data in the local register. For the OS dataflow, PEs in the
systolic array-based architecture receive data (activation and
weight) from previous PEs, store them in the register file in the
current cycle, and transmit them to the local MAC units and
downstream PEs in the next cycle, simultaneously. The partial
sum is stored and accumulated inside each PE and streamed to
the output buffer until the calculation of the entire computing
array is completed. For the IS and WS dataflows, input and
weight matrices are pre-loaded to each PE’s register for storing
locally before performing required computations, respectively.
Partial sums are streamed through PEs in the same column to
obtain the desired accumulations. The proposed FSA design
utilizes a unified RCM module to maintain the DNN inference
accuracy in the presence of permanent faults. After the system
detects faulty PEs, the partial sum of those faulty PEs are
set to zero directly for the rest of the computation, while the
working status of the remaining PEs are set to normal to ensure
data synchronization and uninterrupted dataflow inside the CA.
Faulty PEs whose outputs were set to zeros will be replaced
by the correct results calculated by the RCM (Sec. II-B) so
that the final DNN inference results is guaranteed. Note that
the key feature of the proposed FSA design is to maintain
DNN inference accuracy after permanent faults are detected.

B. Proposed Re-computing Module (RCM) Design

The proposed RCM module recomputes the product of
activation and weight matrices originally mapped to the faulty
PEs. The proposed RCM consists of an RCM Buffer Controller
and Re-computing Units (RUs) as described next.

1) RCM Buffer Controller: We assume the Built-In-Self-
Test (BIST) [37]–[39] is used to detect the faulty PEs inside
the CA and store the location in the fault detection table
located in the BIST module. The RCM buffer controller
receives the address of faulty PEs from the BIST module

including X and Y coordinates. As discussed in Sec.II-A, the
input buffer consists of a number of FIFOs, each of which
is mapped to a row or column of the CA. Therefore, using
the coordinates of the faulty PE, the RCM buffer controller
can easily locate the corresponding FIFOs and directly read
the required activations and weights. Unlike previous designs
[15]–[17] in which the required activation and weight data
have to traverse the entire CA before being used by the
redundant PEs, the proposed design eliminates excessive data
transmission, thus reducing recalculation latency.

2) Re-computing Unit (RU): The objective of the proposed
Re-computing Unit (RU) is to recalculate the partial sum
required by a given faulty PE. The architecture of the proposed
RU is shown in Fig. 4. Each RU integrates one MAC unit
(an adder and a multiplier), one local register, and a set of
MUX/DEMUX. The multiplier of the MAC unit calculates
the product of weight and activation and forwards the result
to the adder, and the adder then calculates the partial sum.
The register is used to store the partial sum for accumulation
locally and transmit the partial sum to the registers of CA
to replace the supposed result of a faulty PE. To handle
more than one faulty PE in FSA, the RU can be extended
to an RU array. The set of MUX and DEMUX are used to
connect the current RU to adjacent RUs and select links to
output the local partial sum. In this case, the local register
receives the partial sum from upstream RUs, and transmits it to
downstream RUs and then to the SA’s registers. The proposed
design can also tolerate faulty RUs in the RCM by simply
deactivating and bypassing the faulty RUs in the RU-array.
The related deactivating and bypassing logic is not shown for
clarity purposes.

III. FSA OPERATION

As mentioned above, we assume that the detection of faulty
PE is done through a Built-In-Self-Test (BIST) strategy and
is beyond the scope of this paper. During the DNN inference,
the activation and weight are pre-loaded to the input buffer
as mentioned in Sec. II-A. Based on the locations of faulty
PEs and the dataflow deployed inside the SA, the RCM re-
calculates the computation that is supposed to be done in
the faulty PEs. For this, the RCM buffer controller fetches
the corresponding activation and weight values from the input
buffer (FIFO) and passes them onto the RU. The RU, in turn,
performs the needed computation (the partial sum) and stores
it in the local register. When the recalculation is complete,
the RU configures the MUX-DEMUX circuitry so that the
calculated correct partial sum is sent to the registers of CA
for further overwrite the incorrect results. The RU continues
to receive activation and weight values for recalculating the
required computation of the next faulty PE. To address the
situation when they are several faulty PEs, the RU can be
extended to an RU array and RUs of the RU array can
perform the required recalculations and transmit correct results
concurrently.

2

!" #" $" %"

&" '" (")"

*" +" ," -"

." /" 0" 1"

!2 #2 $2 %2

&2 '2 (2)2

*2 +2 ,2 -2

.2 /2 02 12

!" !" #"

$" %" &"

'" (")"

!* !* #*

$* %* &*

'* (*)*

!3 #3 $3 %3

&3 '3 (3)3

*3 +3 ,3 -3

.3 /3 03 13

!+ ,+ #+

$+ %+ &+

'+ (+)+

!"#$%&'()%$*(&+)#

!"#$"%&'

!" !" #"

$" %" &"

'" (")"

!* !* #*

$* %* &*

'* (*)*

!+ ,+ #+

$+ %+ &+

'+ (+)+

!"#$"%&(

!" !" #"

$" %" &"

'" (")"

!* !* #*

$* %* &*

'* (*)*

!+ ,+ #+

$+ %+ &+

'+ (+)+

!"#$"%&)

!" !" #"

$" %" &"

'" (")"

!* !* #*

$* %* &*

'* (*)*

!+ ,+ #+

$+ %+ &+

'+ (+)+

!"#$"%&*

,&,&,&,&,&,

-(./0%&+)%*.1

)"

-

$+

#+

,+

!+

)"

-

$+

#+

,+

!+

)"

-

$+

#+

,+

!+

)"

-

$+

#+

,+

!+

+* , "(-(.(/(

0* , 1(2(-(.(

3* , 4(5(1("(

6* , 7(8(5(1(

)"

-

!+

+* , /(

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%.% .% .%

.%

.%

.%

.%

.%

!"#$%&'%&#(%))*+

%* , 5(1(.(/(

$* , 8(5(-(.(

3* , 5(4(2(-(

6* , +(5(7("(

+* , /(

!+

,+

#+

$+

!+

,+

#+

$+

!+

,+

#+

$+

.%

.%

.%

.%

.%!+ !+ !+

!+

,+

#+

$+

!+

!"#$%&'%&#(%))*+

)"

-

$+

#+

,+

!+

)"

-

$+

#+

,+

!+

)"

-

$+

#+

,+

!+

)"

-
$+

#+

,+

!+

)"
-

!+

/"

/*

/+

0"

1"

1*

1+

/"

2"

2*

2+

1"

3"

3*

3+

4"

5+6+ 7+ 8+

9"

9*

9+

:"

0+

!"#$%&'%&#(%))*+

2$%#$%&3%)%.4")*5&62378
94&:)%)&#*(;<4):(:
=)*%.)<&3$>&?%4*(:

-(./0%&3%)%.4")*5&6-378
-(./0%&>)%*.1&#*(;<4):(:

!"#$%&3%)%.4")*5&6!378
@A%.B)%.4"&#*(;<4):(:

,*-./&+-2#-3#'+*45"16*6

78&-91&-":#01&+-2

78&-91&-":#01&+-2#
-3#'+*45"16*6

;
*-./�

1&+-2

;
*-./�

1&+-2

78&-91&-":#01&+-2

Fig. 2. Multiple dataflows applied to the systolic-based central computing array: (a) Output Stationary (OS): partial sums are accumulated and stored in each
PE locally, (b) Weight Stationary (WS): weights are pre-loaded to each PE and stored locally, (c) Input Stationary (IS): inputs are pre-loaded to each PE and
stored locally.

!"#$%&#$'(

!"#$%&"'
($)"

!"#$%"&'()*'
($+#",- !"#$%"&'()*'

+)$,)$

)*$+,#
'- .&-#$&/0123

.-%,/$

01$%2"$%+3

.$401$4

-.$%/"$%01'$0'
234$'!5

63%78$'$0'
234$'!5

!"#$%&'(
!"#$%"&'
()*

Fig. 3. The architecture of conventional Processing Element (PE) located in
the central computing array. For a faulty PE, the MAC unit (shown in the red
box) is eliminated from the rest of the computation.

!"" #$%

!"#$%"&'
()*'

!"#$%&'($)&*

+,%-.$ /0$%1"$%23

+,-.)/01&('2)3"4)(56)(7,8/9.::&*

!"#$%"&'()*'+#,*'
!#-.%,)/'!0!"#$%&"'

Fig. 4. The architecture of Re-computing Unit (RU) located in the RCM.
The register is used to receive the data from previous RUs. The set of MUX-
DEMUXes is used to select the output direction (register or downstream RU)
of the partial sum

A. Output Stationary (OS) Workflow

Fig. 5 shows an example using an RU array with n RUs to
address K faulty PEs in the N ×N central computing array
(in this example, n = 2, K = 4, N = 4, and the dataflow is
OS). As shown in Fig. 5, the faulty PEs 0˜3 are responsible for
calculating {a5−a8}×{W5−W8}, {a9−a12}×{W5−W8},
{a1− a4}×{W9−W12}, and {a1− a4}×{W13−W16},
respectively. Upon detection of the four faulty PEs, the partial
sums of these PEs are set to zeros directly, and the rest of the

central computing array calculates the matrix multiplication as
usual. Meanwhile, two RUs, RU0 and RU1, are activated to
calculate {a5−a8}×{W5−W8} and {a9−a12}×{W5−
W8}, respectively. From cycle 1 to N, the weights {W5-W8}
are loaded from the on-chip buffer and sent to RU0 and RU1,
as they use the same weights to calculate the partial sums.
At the same time, {a5 − a8} and {a9 − a12} are streamed
through the input port of RCM to RU0 and RU1, respectively.
As mentioned in Sec. II-A, the on-chip buffers are constructed
with FIFOs and each FIFO is assigned to each row and column
of SA, respectively. Therefore, RCM buffer controller can read
the required data directly from on-chip buffers based on the
coordinate of faulty PEs. For the RU array, RU0 and RU1
calculate the partial sums simultaneously and store the partial
sum in their local registers. The MUX-DEMUX inside each
RU is inactive, and no data transmission between RUs, as
shown in Fig. 5(b). At cycle N, after the RU0 and RU1 finish
the calculations of {a5−a8}×{W5−W8} and {a9−a12}×
{W5−W8}, RUs change the configuration of MUX-DEMUX
so that the calculated partial sums inside the local register is
sent to the register of the CA through the RU array. At the
same time, RU0 and RU1 continue to receive the data from the
input port of RCM for recalculating the required computation
for faulty PE2 and faulty PE3, as shown in Fig. 5(c). At cycle
2N, after the RU array finishes the recalculation of faulty PE2
and PE3, only register and MUX are active so that the RU
array can stream the partial sum from each RU’s register to
the register of the CA as shown in Fig. 5(d).

The RCM activates n RUs in FSA if K faulty PEs are
detected. If K is smaller than n, K RUs will be activated to
recalculate the required computation. In this case, the RCM
calculation latency is overlapped with the execution time of
the CA as the RUs can calculate all required partial sums
concurrently. However, if K is larger than n, some RUs will
have to calculate the results of multiple faulty PEs sequentially,
which can lead to potential timing overheads. An N ×N 2D
systolic-based computing array consumes 3×N − 1 cycles to
calculate an N×N matrix multiplication. Since the computing
array also needs N additional cycles to stream the partial

3

!"#$%&"'

!"!#!$

!%!&!'!(

!)!*+!**!*"

!*#!*$!*%!*&

!"

!#

!$

!%

!&

!'

!(

!)

!*+

!**

!*"

!*#

!*$

!*%

!*&

!"

!"#
!"#!"$

$% &'$()*+,-./012'%10/'3$%4

!"" #$%

!"#$%&'()*+,%-./%*01%*2"3&4$55)6

5(026/ 7*/089/0+1

!"" #$%

!"" #$%

%&'()!*+,(-*.(

!"#$%&'()*+,%-./%*01%*2"3&4$55)6

!"" #$%

!

!"#
$%&'()*

!&#
$%&'()+

!"#$%&'()*+,%-./%*01%*2"3&4$55)6

%&'()!*+,(-*.(
%&'()!*+,(-*.(

!*

!*

5(026/ 7*/089/0+1

!

5(026/ 7*/089/0+15(026/ 7*/089/0+1

!9:/09;
<., !,#

$%&'()-+

!%/)0122*.)%34-.355*.

$()*+,-./012'
=+>.;('3$?=4

!"#$%&"'

!"#$%&"' !"#$%&"'

!"#$%&"' !"#$%&"'!9:/09;
<.,

!9:/09;
<.,

!9:/09;
<.,

!"

!"

!"

!"

!" !"

!"

!"!"

!"

!"

!"@

!"A !"B

!"#$%&"'

Fig. 5. An example of the working of FSA architecture for the OS dataflow: (a) An N ×N systolic-based CA has K faulty PEs with n RUs (N=4, K=4,
and n=2 in the example). (b) RU0 and RU1 receive data from the input port. (c) RU0 and RU1 finish the recalculation of PE0 and PE1, stream the results
out, and receive input data of PE2 and PE3. (d) RU0 and RU1 finish the recalculation for all faulty PEs and stream results to registers of CA

sums to the register of the SA, the total execution time is
4×N − 1. For RCM with n RUs, each RU requires N cycles
for calculating a partial sum, and some RUs need to recalculate
multiple partial sums sequentially when K is greater than
n. Under this condition, the value of K/n will result in the
different maximum number that FSA can tolerate without
inducing extra timing overhead. If K can be divisible by n,
all RUs in the RU array need to address the same number
of faulty PEs, and the total execution time for recalculation is
N ∗(K/n)+n. If K cannot be divisible by n, some RUs of the
RU array need to address one more faulty PEs than others, and
the total execution time is N ∗(K/n)+K mod n. In this case,
under-utilized RUs will be powered-off. Using these equations,
the maximum number of faulty PEs K that FSA with n RUs
can tolerate without inducing additional timing overhead can
be calculated.

B. Weight Stationary (WS) Workflow and Input Stationary (IS)
Workflow

FSA implements a similar mitigation workflow for both
IS and WS dataflows to mitigate faulty PEs compared with
the OS dataflow. Therefore, due to page limitations, we use
the WS dataflow as an example to show how FSA reduces
the inference loss with the presence of permanent faults. For
simplicity, we use the same faulty condition in the previous
Sec III-A, which includes a 4 × 4 CA with 2 RUs and
4 faulty PEs. For the WS dataflow, weights are pre-loaded
from the on-chip buffer to the register of each PE and stored
locally before performing the required computations. Partial
sums are streamed and accumulated through PEs in the same
column of the CA. As shown in Fig. 6, those PEs in red
are faulty PEs and they store W6, W7, W12, and W16,

!"!#!$

!%!&!'!(

!)!*+!**!*"

!*#!*$!*%!*&

!"

!#

!$

!%

!&

!'

!(

!)

!*+

!**

!*"

!*#

!*$

!*%

!*&

!"

!"
!"#!"$

#$ %&#'()*+,-./01&$0/.&2#$3

!*

!*!%&'()**+,'%-./,-00+,

#'()*+,-./01&
4*5-6'&2#743

!"

!"

!"

!"

!" !"

!"

!"!"

!"

!"

!8

1#2 1#3

!!"

!!!

!!#

!!$

!""

!"!

!"#

!"$

!#"

!#!

!##

!#$

!$"

!$!

!$#

!$$

Fig. 6. An example of the working of FSA architecture for the WS dataflow:
An N × N systolic-based CA has K faulty PEs with n RUs (N=4, K=4,
and n=2 in the example). RU0 and RU1 receive data from the input port
and perform the recalculation of PE0 and PE1, respectively. The recalculated
partial sums are streamed from RUs to CA’s registers for further accumulation.
After RU0 and RU1 finishing all the recalculation of PE0 and PE1, they will
move forward for PE2 and PE3, respectively.

respectively. In the WS dataflow, one faulty PE in a column
of CA only impacts the value of local partial sum. Therefore,
values of all outputs streamed through that faulty PE are
incorrect. This is because when the output is streamed into
the faulty PE, the added partial sum to the output is incorrect,
which induces an incorrect output. For example, O21 equals
a1×w8 + a5×w7 + a9×w6 + a13×w5, as shown in Fig. 6.
Because of two faulty PEs in the middle of column, the value
of a5×w7 and a9×w6 are incorrect and the other two partial

4

sums are correct. Therefore, RUs only need to recalculate the
incorrect partial sums instead of all partial sums compared
with the OS dataflow. Similar to the OS dataflow, partial sums
of four faulty PEs are set to 0 directly after the detection and
other PEs of CA calculate the matrix multiplication as usual
to keep the data synchronization.

At the beginning of computations, two RUs, RU0 and RU1,
are activated to calculate the required partial sums, which are
induced by faulty PEs. As mentioned before, the outputs are
streamed in the vertical direction for related accumulation in
the WS dataflow. As a result, RUs recompute the required
computations induced by faulty PEs from the left column to
the right of the CA. As shown in Fig. 6, RU0 recomputes
the required computations induced by faulty PE0, and RU1
is responsible for the recalculations of PE1. For the input of
RUs, the RCM buffer controller can fetch the required FIFOs
directly based on the coordinate of faulty PEs, because each
FIFO is assigned to each row of the CA. However, FSA
works in a different way compared with the OS dataflow.
For the WS dataflow, RCM only needs to read some specific
weights from the FIFO instead of the entire one like the OS
dataflow. Therefore, when the RCM buffer controller locates
the specific FIFO based on the X-coordinate of faulty PEs, it
needs to go through the related FIFO to search for the required
weights based on the Y-coordinate of faulty PEs. As a result,
the RCM buffer controller needs more cycles to locate the
required weights compared with the OS dataflow. Assume that
the size of each FIFO is N, the penalty for searching time
is N×(1+N)/2 cycles on average. After locating the specific
weights (W6 and W7), they are streamed to RUs, respectively.
At the same time, {a5 − a8} and {a9 − a12} are streamed
through the input port of RCM to RU0 and RU1, respectively.

Obviously, RCM needs more time to locate the required
weights for the WS compared with OS dataflow, which induces
additional timing overhead. Therefore, the maximum number
of faulty PEs that FSA can tolerate without inducing extra
timing overhead is decreased compared with the OS dataflow.
For the recalculation, RUs only calculate partial sums induced
by faulty PEs in the WS dataflow. As shown in Fig. 6, RU0
calculates the value of a9×W6 and RU1 calculates a5×W7.
After RUs finish the required computations, correct partial
sums will be streamed to the downstream RUs instead of stored
locally and they will be added to the final output through
the CA’s adders. When the recalculation of faulty PE0 and
PE1 are completed, RU0 and RU1 will calculate the required
computations induced by faulty PE2 and PE3, respectively.

IV. EVALUATION AND ANALYSIS

A. Simulation Methodology

We evaluate the proposed FSA design using the SCALE-sim
[40] simulator. We integrate CACTI [41] with SCALE-sim to
evaluate power consumption. We compare the proposed FSA
accelerator design to two previous techniques, namely Column
Redundant (CR) [15]–[17], and Row Redundant (RR) [15]–
[17]. For each technique, AlexNet and ResNet-50 [35], [36]
are used as DNN models, and ImageNet is used as dataset [34].

For the proposed FSA, we implement 64 RUs (FSA-64) and
256 RUs (FSA-256), respectively.

1) Hardware Configuration of DNN Accelerators: We im-
plement each technique (CR, RR, FSA-64, and FSA-256) in
the SCALE-sim simulator. The CAs are of size 256× 256 for
all techniques. Each PE in the CA consists of a MAC unit and
a local register. The PEs are connected with unidirection links.
The horizontal links are 8-bit and used to transfer activation.
The vertical links are 24-bit and used to transfer weight and
partial sum. The on-chip input buffer size for each technique
is 128 KB, which includes a 64 KB input feature buffer and
a 64 KB weight buffer. The on-chip output buffer size is
192 KB for all designs. As mentioned before, we assume PE
fault detection is done through a BIST strategy for all fault-
tolerant techniques and is beyond the scope of this paper. For
CR/RR, one column/row of homogeneous redundant PEs is
added to the CA. Moreover, one 8-bit horizontal bypass link,
one 24-bit vertical bypass link and switches are added to each
PE, ensuring data synchronization and uninterrupted dataflow
between the CA and redundant PEs. For the proposed FSA
design, the RCM uses a data bus to multi-cast or unicast the
activation and weight values from the input buffer to the RU
array. We only evaluate the proposed FSA design with the OS
dataflow because of the page limitations.

2) Fault Model: We use the Stuck-at fault [28] model to
generate permanent faults. The value of the bit is either 0 or 1
if it has Stuck-at-0 or Stuck-at-1, respectively. Therefore, the
result of faulty PEs will be randomly distributed. We execute
the AlexNet and ResNet-50 DNN models 1,000 times for each
experiment. For each execution, we randomly inject permanent
faults in the CA and record the average inference accuracy,
execution time, and energy consumption. Note that permanent
faults may also exist in the proposed RU design, the RCM
simply deactivates and bypasses the faulty RUs in the RU
array. However, in this paper, we assume the RCM is fault-
free in the simulation.

B. Inference Accuracy Analysis

We evaluate the reliability of the proposed FSA by mea-
suring the DNN inference accuracy with the presence of
permanent faults. The results of DNN inference accuracy
are shown in Fig. 7. We varied the ratio of faulty PEs
from 5% to 30%. We use the ImgaeNet [34], [42] as the
dataset with the AlexNet [35] and ResNet-50 [36] as the
DNN models to evaluate the proposed design, respectively.
There are 1000 classes in the ImageNet dataset. For better
comparison, we use the top-5 inference accuracy to evaluate
both AlexNet and ResNet-50. The top-5 inference accuracy
means that the DNN model selects five labels as the final
outputs after computations. If the real label of the input image
exists in the set of outputs from DNN models, the system will
define the DNN model detects the input image successfully.
If there is no faulty PEs, the top-5 DNN inference accuracy
of AlexNet and ResNet-50 are 74% and 88% after a limited
number of epochs, respectively. Without any protection, the
inference accuracy of the baseline is around 0%. This is

5

(a) (b) (c) (d)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

DNN Inference Accuracy (ResNet-50)

Baseline CR/RR
Proposed FSA (64RUs) Proposed FSA (256RUs)

0%
10%
20%
30%
40%
50%
60%
70%
80%

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

DNN Inference Accuracy (AlexNet)

Baseline CR/RR
Proposed FSA (64RUs) Proposed FSA (256RUs)

0%
10%
20%
30%
40%
50%
60%
70%
80%

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

DNN Inference Accuracy (AlexNet)

Baseline CR/RR
Proposed FSA (64RUs) Proposed FSA (256RUs)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

DNN Inference Accuracy (ResNet-50)

Baseline CR/RR
Proposed FSA (64RUs) Proposed FSA (256RUs)

Fig. 7. DNN inference accuracy comparison. Inference Accuracy of the architecture without any fault-tolerant technique works as the baseline (0%). (a)
AlexNet and (b) ResNet-50 without system run time constraint. (c) AlexNet and (d) ResNet-50 with system run time constraint.

86%
89%
92%
95%
98%

101%

CR RR

FS
A6

4

FS
A2

56 CR RR

FS
A6

4

FS
A2

56 CR RR

FS
A6

4

FS
A2

56

Static Power Dynamic Power with 5%
faulty PE ratio

Dynamic Power with
25% faulty PE ratio

Normalized Power Consumption

2D Spatial Computing array Links Redundant Unit Others
(a) (b) (c)

Fig. 8. Normalized power consumption breakdown. (a) Static power con-
sumption, (b) Dynamic power consumption with 5% faulty PE Ratio, and (c)
Dynamic power consumption with 15% faulty PE Ratio.

because the DNN model cannot figure out the input image
with the presence of permanent faults and select one of the
classes as the final output randomly. Therefore, the inference
accuracy is around 0% (1/1000) without any protection. For
the accelerators with protection, it should be noted that if
there is no timing requirement (limitation of run time), all CR,
RR, and the proposed FSA (with 64 RUs and 256 RUs) can
achieve minimized inference accuracy loss, as all recalculation
of faulty PEs can be completed, as shown in Fig. 7(a) and
Fig 7(b). However, to show the benefit of using the proposed
FSA design on both accuracy and system performance, we
terminate the execution in this experiment as soon as the CA
finishes its workload. It can be seen in Fig. 7(c) and Fig. 7(d)
that the proposed FSA design (FSA with 64RUs and 256RUs)
can achieve lower inference accuracy loss as compared to
others. When the faulty PE rate increases to 15%, the DNN
inference accuracy of the proposed FSA with 256 RUs is
doubled, as compared to CR/RR for both the AlexNet and
ResNet-50 DNN models. Among all ratios of faulty PEs for
both AlexNet and ResNet-50, the proposed FSA with 256 RUs
achieves lower accuracy loss than the one with 64 RUs. This
is because FSA-256 has more RUs than FSA-64 so that it can
address more faulty PEs with time constraints.

C. Performance Analysis

We evaluate the power consumption, execution time, and
energy consumption for CR, RR, the proposed FSA-64 and the

proposed FSA-256 with the OS dataflow. Different from the
experiments in Sec. IV-B, all results are shown with the entire
system (including the CA, redundant PEs, and the proposed
RCM) completing their workloads.

Overall Static Power Consumption: Fig. 8(a) shows the
breakdown of the overall static power consumption for each
DNN accelerator design, and all values are normalized to the
power consumption of the CA. The CR and RR integrate
extra links between the redundant PEs and the CA which
consume an additional 1.8% power overhead. CR and RR
also use complex switches between adjacent PEs to ensure
data synchronization, thus inducing 10.4% power overhead.
Moreover, CR and RR add 256 redundant PEs to each column
or row, which incurs 0.4% additional power consumption. The
proposed FSA eliminates the additional links and switches
added to the CA and only uses 8-bit links inside the RU array
for data transmission. Moreover, with the same length, the
power consumption of the 24-bit link is 2.9 times greater than
that of the 8-bit link, and the 24-bit switch is 1.34 times than
that of the 8-bit switch. Although the RCM uses an additional
bus to transfer the data from the input buffer to the RU array,
FSA still achieves the lowest power consumption compared to
other techniques thanks to the reduced number of additional
links and switches. As shown in Fig. 8, the power overhead
of the proposed FSA with 256 RUs is 1.2% in total, which is
11% smaller than other techniques. It should be noted that if
the BIST indicates there are no faulty PES, the entire RCM
can be power-gated to save power. Such circuitry is not shown
in Fig.2 for clarity.

Overall Dynamic Power Consumption: Fig. 8(b) and
Fig. 8(c) show the breakdown of the overall dynamic power
consumption for all techniques with 5% and 25% faulty PE
ratios, respectively. The CR and RR do not have dynamic
power management techniques (e.g., power-gating) for the
redundant units, therefore, the redundant PEs are always
activated regardless of the presence of faulty PEs. As a result,
both CR and RR keep the same value of dynamic power
consumption across all faulty PE ratios. Different from CR
and RR techniques, redundant units (RUs) in the proposed
FSA will be power-gated if no faulty PE is detected. As
mentioned in Sec. III, FSA only enables a sufficient number
of RUs depending on the number of faulty PEs. As a result,

6

0.4
0.6
0.8
1

1.2
1.4
1.6

5% 10% 15% 20% 25% 30%

No
rm

al
ize

d
Ex
ec
ut
io
n
Ti
m
e

Ratio of Faulty PEs

AlexNet

CR RR Proposed FSA (64RUs) Proposed FSA (256RUs)

0.4
0.6
0.8
1
1.2
1.4
1.6

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

ResNet-50

CR RR Proposed FSA (64RUs) Proposed FSA (256RUs)

Fig. 9. Normalized execution time for two DNN models (AlexNet and ResNet-50) of four techniques (CR, RR, Proposed FSA-64 and Proposed FSA-256),
with different ratios of faulty PEs ranging from 5% to 30%.

0.5
0.7
0.9
1.1
1.3
1.5
1.7

5% 10% 15% 20% 25% 30%

No
rm

al
ize

d
En

er
gy

Co
ns
um

pt
io
n

Ratio of Faulty PEs

AlexNet

CR RR Proposed FSA (64RUs) Proposed FSA (256RUs)

0.5
0.7
0.9
1.1
1.3
1.5
1.7

5% 10% 15% 20% 25% 30%
Ratio of Faulty PEs

ResNet-50

CR RR Proposed FSA (64RUs) Proposed FSA (256RUs)

Fig. 10. Normalized energy consumption for two DNN models (AlexNet and ResNet-50) of four techniques (CR, RR, Proposed FSA-64 and Proposed
FSA-256), with different ratios of faulty PEs ranging from 5% to 30%.

the dynamic power consumption of FSA will change based on
the ratio of faulty PEs. Fig. 8(b) and Fig. 8(c) are examples of
the dynamic power consumption of FSA in different ratios of
faulty PEs. When the ratio of faulty PEs equals 5%, some of
the under-utilized RUs inside FSA-256 will be power-gated to
save power consumption as shown in Fig. 8(b). However, all
RUs in the FSA-256 will be activated when the ratio of faulty
PEs reaches 25%.

Execution Time: Fig. 9 shows the execution time for each
DNN accelerator design. All values are normalized to the
execution time of the CA without faults. It can be seen in
Fig. 9, as the ratio of faulty PEs increases, the full execution
time of the conventional CR and RR increase dramatically.
The reason is the single-column/row redundant PEs can only
handle a limited number of faulty PEs per row/column, and
the row/column with the most faulty PEs will be the perfor-
mance bottleneck. As we randomly select the faulty PEs, the
locations of the faulty PEs are not evenly distributed for each
row/column. Therefore the average execution time for CR and
RR are significantly higher than the proposed FSA. As shown
in Fig. 9, RR has a lower execution time than CR. For RR, the
additional row of PEs is able to execute more input features
at the same time. However, since the DNN models we use
have limited kernels in each layer, DNN models may not
benefit from the additional column of PEs in the CR design.
Compared to prior works, the proposed FSA (FSA with 256
RUs) can tolerate more faulty PEs with a more significant

number of RUs in RCM, achieving the lowest timing overhead.
Energy Consumption: We define the energy consumption

as the product of the overall power consumption and the
execution time. Fig. 10 shows the energy consumption for
each fault-tolerant technique. All values are normalized to
the power consumption of the CA without faulty PEs. As
shown in Fig. 10, both FSA-64 and FSA-256 outperform
CR and RR across all faulty PE ratios. The highest energy
consumption reductions (93% and 76% using AlexNet and
ResNet-50, respectively) are achieved when the faulty PE ratio
equals 30%. The reasons are three-fold. First, the latency of the
RCM of the proposed FSA is overlapped with the execution
time of the CA, thus reducing execution time. Second, FSA
integrates low-cost hardware components with reduced static
power. Third, FSA deploys a dynamic power-gating strategy
for under-utilized RUs and faulty PEs to achieve reduced
dynamic power consumption.

Area Overhead: CR and RR add one column/row of 256
redundant PEs to the CA, which induce 0.9% additional area
overhead. Moreover, CR and RR integrate additional links
and switches for bypassing faulty PEs, transmitting data to
the redundant PEs, and data synchronization. These additional
links and switches consume 11.6% additional area overhead.
Compared to CR and RR, the proposed FSA does not alter
the CA with excessive links and switches, instead it adds
an RCM unit for re-computation. The proposed RCM and
the hardware components connecting RCM and CA consumes

7

3.1% additional area (FSA-256), which implies 75% smaller
area overhead compared to CR and RR.

V. CONCLUSIONS

Permanent fault is a critical problem for Deep Neural Net-
work (DNN) accelerators, as they usually lead to undesirable
ramifications that severely impact DNN inference accuracy.
Prior works address this issue by adding redundant PEs or
bypassing faulty PE directly. However, such designs induce
inference loss, extra hardware cost, and performance overhead.
In this paper, we propose a fault-tolerant DNN accelerator
design, named FSA, which integrates a systolic-based comput-
ing array and a re-computing module (RCM) for maintaining
DNN inference accuracy with minimal latency and power
consumption. The unified RCM consists of a number of re-
computing units (RUs) that recalculate the required DNN
computations mapped to faulty PEs found in the computing
array regardless of the locations. Simulations using the config-
urations of AlexNet and ResNet-50 with the ImageNet dataset
show that the proposed FSA reduces inference accuracy loss
by 46%, improves execution time by 23%, and reduces energy
consumption by 35% on average, as compared to existing
designs.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. This work is partially supported
by the National Science Foundation grants CCF-1702980,
CCF-1901165, and CCF-1812495.

REFERENCES

[1] Hsiang-Tsung Kung. Why systolic architectures? Computer, 1982.
[2] Norman P Jouppi et al. In-datacenter performance analysis of a tensor

processing unit. In Proc. of ISCA’17, pages 1–12, 2017.
[3] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable accel-

erator for deep convolutional neural networks. IEEE JSSC, 2016.
[4] Hasan Genc et al. Gemmini: An agile systolic array generator enabling

systematic evaluations of deep-learning architectures. arXiv preprint
arXiv:1911.09925, 3:25, 2019.

[5] Ke Wang et al. Securenoc: A learning-enabled, high-performance,
energy-efficient, and secure on-chip communication framework design.
IEEE TSUSC, 7(3):709–723, 2021.

[6] Yuan Li et al. Ascend: A scalable and energy-efficient deep neu-
ral network accelerator with photonic interconnects. IEEE TCAS-I,
69(7):2730–2741, 2022.

[7] Jiajun Li et al. SGCNAX: A scalable graph convolutional neural network
accelerator with workload balancing. IEEE TPDS, 33(11):2834–2845,
2022.

[8] Jiajun Li et al. Gcnax: A flexible and energy-efficient accelerator for
graph convolutional neural networks. In Proc. of HPCA’21, pages 775–
788. IEEE, 2021.

[9] Ke Wang et al. AGAPE: anomaly detection with generative adversarial
network for improved performance, energy, and security in manycore
systems. In Proc. of DATE’22. IEEE, 2022.

[10] Ke Wang and Ahmed Louri. Cure: A high-performance, low-power,
and reliable network-on-chip design using reinforcement learning. IEEE
TPDS, 31(9):2125–2138, 2020.

[11] Jeff Jun Zhang et al. Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator. In Proc. of
VTS’18, pages 1–6. IEEE, 2018.

[12] Jeff Jun Zhang et al. Fault-tolerant systolic array based accelerators for
deep neural network execution. IEEE Design & Test, 2019.

[13] Jiacnao Deng et al. Retraining-based timing error mitigation for
hardware neural networks. In Proc. of DATE’15. IEEE, 2015.

[14] André Flores dos Santos et al. Applying tmr in hardware accelerators
generated by high-level synthesis design flow for mitigating multiple bit
upsets in sram-based fpgas. In Proc. of ARC’17. Springer, 2017.

[15] Itsuo Takanami and Tadayoshi Horita. A built-in circuit for self-repairing
mesh-connected processor arrays by direct spare replacement. In Proc.
of PRDC’12, pages 96–104. IEEE, 2012.

[16] Itsuo Takanami and Masaru Fukushi. A built-in circuit for self-repairing
mesh-connected processor arrays with spares on diagonal. In Proc. of
PRDC’17, pages 110–117. IEEE, 2017.

[17] Itsuo Takanami et al. A neural algorithm for reconstructing mesh-
connected processor arrays using single-track switches. In Proc. of
ICWSI’95, pages 101–110. IEEE, 1995.

[18] Nahmsuk Oh et al. Error detection by duplicated instructions in super-
scalar processors. IEEE Trans. Reliab., 2002.

[19] Dawen Xu et al. Resilient neural network training for accelerators with
computing errors. In Proc. of ASAP. IEEE, 2019.

[20] Ruochen Wang and Zhe Xu. A pedestrian and vehicle rapid identification
model based on convolutional neural network. In Proc. of ICIMCS’15,
pages 1–4, 2015.

[21] Ying Wang, Huawei Li, and Xiaowei Li. Frequency scheduling for
resilient chip multi-processors operating at near threshold voltage. In
Proc. of DATE’16, pages 1164–1167. IEEE, 2016.

[22] Li Li et al. Squeezing the last mhz for cnn acceleration on fpgas. In
Proc. of ITC-Asia’19, pages 151–156. IEEE, 2019.

[23] Len Levine and Ware Meyers. Special feature: Semiconductor mem-
ory reliability with error detecting and correcting codes. Computer,
9(10):43–50, 1976.

[24] Yung-Chang Chang et al. On the design and analysis of fault tolerant
noc architecture using spare routers. In Proc. of ASP-DAC’11, 2011.

[25] Wen-Chung Tsai et al. A fault-tolerant noc scheme using bidirectional
channel. In Proc. of DAC’11, pages 918–923, 2011.

[26] Ke Wang et al. TSA-NoC: Learning-based threat detection and mitiga-
tion for secure network-on-chip architecture. IEEE Micro, 40(5):56–63,
2020.

[27] Brandon Reagen et al. Minerva: Enabling low-power, highly-accurate
deep neural network accelerators. In Proc. of ISCA’16, 2016.

[28] Behzad Salami et al. On the resilience of rtl nn accelerators: Fault
characterization and mitigation. In Proc. of SBAC-PAD’18. IEEE, 2018.

[29] Muhammad Abdullah Hanif and Muhammad Shafique. Salvagednn: sal-
vaging deep neural network accelerators with permanent faults through
saliency-driven fault-aware mapping. Philosophical Transactions of the
Royal Society A, 378(2164):20190164, 2020.

[30] Ke Wang et al. High-performance, energy-efficient, fault-tolerant
network-on-chip design using reinforcement learning. In Proc. of
DATE’19, pages 1166–1171, 2019.

[31] Ke Wang et al. Intellinoc: A holistic design framework for energy-
efficient and reliable on-chip communication for manycores. In Proc.
of ISCA’19, 2019.

[32] Hao Zheng et al. Adapt-noc: A flexible network-on-chip design for
heterogeneous manycore architectures. In Proc. of HPCA’21, 2021.

[33] Hao Zheng et al. A versatile and flexible chiplet-based system design
for heterogeneous manycore architectures. In Proc. of DAC’20, 2020.

[34] Alex Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. NeurIPS, 25, 2012.

[35] Md Zahangir Alom et al. The history began from alexnet: A
comprehensive survey on deep learning approaches. arXiv preprint
arXiv:1803.01164, 2018.

[36] Kaiming He et al. Deep residual learning for image recognition. In
Proc. of CVPR’16, pages 770–778, 2016.

[37] Andreas Steininger and Christoph Scherrer. On the necessity of on-
line-bist in safety-critical applications-a case-study. In Digest of Papers.
FTCS (Cat. No. 99CB36352), pages 208–215. IEEE, 1999.

[38] J.P. Hofmeister et al. Real-time bist detector for bga faults in field
programmable gate arrays (fpgas). Ridgetop Group, Inc. white paper,
2006.

[39] Praveen Parvathala et al. Frits-a microprocessor functional bist method.
In Proc. of ITC’02, pages 590–598. IEEE, 2002.

[40] Ananda Samajdar et al. Scale-sim: Systolic cnn accelerator simulator.
arXiv preprint arXiv:1811.02883, 2018.

[41] Naveen Muralimanohar et al. Cacti 6.0: A tool to model large caches.
HP laboratories, 27:28, 2009.

[42] Jia Deng et al. Imagenet: A large-scale hierarchical image database. In
Proc. of CVPR’09. Ieee, 2009.

8

