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ABSTRACT

In chiplet-based heterogeneous architectures, electrical network-on-
package (NoP) designs are typically over-provisioned with routers
and channels to provide sufficient bandwidth during periods of
high network load. Observing that there are significant periods
of low/idle network utilization, prior work has proposed modi-
fied network-on-chip (NoC) architectures to enable in-network
compute, especially for compute-intensive operations (e.g. linear
algebra). However, electrical package-level interconnects impose
fundamental energy and bandwidth scaling issues for future chiplet
architectures.

This paper proposes Flumen, a dual-purpose photonic intercon-
nect that provides communication at the package-level while also
doubling as an accelerator, performing parallel linear computation
when network load is low. The proposed architecture utilizes the
inherent parallelism of light to create energy-efficient interconnects
that support en route computation with minimal changes to the net-
work. By dynamically adjusting the topology, Flumen can change
the communication and compute sections of the architecture to
adapt to workload fluctuations. Performance evaluation on linear
algebra applications shows that Flumen achieves a 2.5X reduction
in energy, a 3.6X speedup improvement, and a 9.3X reduction in
energy-delay product on average when compared to an electrical
mesh network that is used exclusively for communication.
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1 INTRODUCTION

The slowing of Moore’s law and the continuously increasing de-
mand for processing power has created scaling challenges for fu-
ture multicore processors [12]. Increasing integrated circuit sizes
are faced with decreasing die yields, and as a result higher core
counts on a single die are becoming impractical from a cost-per-
performance perspective [32]. In addition, scaling performance for
modern applications has shifted architectures towards increasingly
heterogeneous designs, and the compute demand has surpassed
what monolithic integration can provide [40]. Chiplet-based designs
arose in response to these challenges, where monolithic processors
are disintegrated into several smaller chiplets connected through
a shared fabric, such as a silicon interposer [21] or an organic
substrate [18].

Modern applications such as deep neural networks (DNNs) place
high demand on hardware, with some models requiring billions of
multiply-accumulate (MAC) operations [44], and others contain-
ing 175 billion trained parameters [4]. Additionally, multimedia
processing algorithms such as media encoding have complex data
access patterns and multidimensional loop bodies that dominate
computation time [34]. Linear algebra operations are at the core of
these applications, and although they place high demand on com-
putation resources, they often exhibit low network utilization [39].
Network resources are wasted during idle periods, which could
be exploited to relieve pressure from computation cores during
periods of high computation demand. Offloading compute tasks to
the interconnection network allows computation to occur en route
with the data, and moves computation closer to the memory.

Prior works have proposed in-network computation by schedul-
ing operations at the network routers [39] and exploiting dataflow
patterns during aggregation [17]. Prior works packetize their oper-
ations to move computation through the network, which requires
additional decode, buffering, and compute hardware to be added
at each network router. These techniques rely on energy-efficient
and low latency network-on-chip (NoC) links to move computation
between several modified routers, which does not scale well to
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Figure 1: Link utilization and bandwidth sensitivity of a photonic network during Image Blur and VGG16 FC execution.

the package-level interconnects in chiplet systems. Network-on-
package (NoP) link energy increases in chiplet-based systems [19],
and the packetization of computation breaks the locality otherwise
present in multicore cache hierarchies. Data locality is particularly
important in linear algebra operations [49, 53], and when NoP
link energy surpasses cache access energy, the benefit of electrical
in-network computation is diminished.

NoP link distances can be on the order of millimeters to cen-
timeters, and must have high bandwidth and low latency to avoid
becoming a system bottleneck [19]. This is a rising concern as de-
signs continue to be split into smaller and more numerous chiplets.
Metallic interconnect bandwidth decreases as link lengths increase
due to parasitic capacitance, and link power scales linearly with
distance [1], posing additional challenges for future large-scale
chiplet-based systems. In order to meet the demands of future
chiplet systems and efficiently combine communication and com-
putation into a single subsystem, architects must look to emerging
technology as an alternative solution.

Silicon photonics can provide the energy-efficient and low-latency
package-level interconnects necessary for scaling future chiplet-
based systems. Traditionally utilized in communication systems,
photonics has emerged as a high-bandwidth energy-efficient alter-
native for on-chip and off-chip interconnects [1, 48]. Photonic links
are favorable for NoP interconnects since they are exempt from the
capacitance that afflicts metallic link energy and bandwidth scaling,
and are built with low loss waveguides (~1dB/cm) and energy-
efficient modulators (3 fJ/bit) [50]. Light also exhibits additional
parallelism not present in electrical interconnects. Several wave-
lengths can be combined into a single waveguide (~500umx220pm
cross section) without interference using wavelength-division mul-
tiplexing (WDM), substantially increasing interconnect bandwidth
density. Optical signals can also be easily split for broadcast and
multicast communication [30], whereas electrical links require data
replication that incurs high energy costs [22].

The intrinsic properties of light also make photonics a potential
contender for parallel compute tasks. Photonic accelerators have
been proposed to scale DNN inference in terms of energy efficiency
and throughput, achieving more than an order of magnitude latency
improvement over electronic accelerators [28] and accomplishing
throughputs in the range of 11 TOPS [51]. Photonic computation

is generally performed in the analog domain using coherent and
noncoherent techniques, which occurs as the optical signal prop-
agates through various photonic devices between a transmitter
and receiver. Photonic computation can therefore be implemented
within the network link itself, rather than in a dedicated compute
unit placed in the network router. The benefit of utilizing photonics
is two-fold: Photonics provides energy-efficient high-bandwidth
NoP links that can double as a computation system, effectively
merging two independent domains into a single platform. With fast
energy-efficient devices and inherent parallelism of light, photonics
may be the scalable solution that combines data movement and
computation [29].

This paper proposes Flumen, a dual-function photonic package-
level network architecture for combining communication and com-
putation in chiplet-based designs. Flumen’s photonic fabric is built
using several Mach-Zehnder interferometers (MZIs) connected as
one large multiport interferometer called a Mach-Zehnder inter-
ferometer mesh (MZIM). Flumen prioritizes communication, and
supports point-to-point, physical multicast, and physical broadcast
communication patterns. Flumen dynamically accelerates highly-
parallel matrix operations using WDM when network resources
are available, and supports unitary transformations, general matrix
multiplication, and convolution operations. The proposed photonic
NoP architecture supports 8-bit equivalent analog computation
with minimal changes to the network, allowing seamless transi-
tions between compute acceleration and communication at runtime.
When benchmarked on linear algebra applications using contempo-
rary photonic devices, Flumen achieves a 2.5x reduction in energy,
a 3.6X speedup improvement, and a 9.3X reduction in energy-delay
product on average when compared to a system with an electrical
mesh network. The major contributions of the work are as follows:

e Dual-function photonic interconnect/accelerator: We
propose a Mach-Zehnder interferometer mesh (MZIM) based
photonic interconnect with dual functionality that can be
reconfigured for data movement during periods of high net-
work load, and acceleration during periods of low network
load, both within the same interconnect architecture.

e Dynamic adaptability: Flumen can be reconfigured at run-
time to adapt the topology to facilitate both communication
and computation simultaneously, where separate sections
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of the topology implement different functionalities. The net-
work can be partitioned in response to application demands
and requirements, thereby improving energy-efficiency and
performance.

e Detailed performance model: We develop a detailed per-
formance model combining the full-system multicore sim-
ulator Sniper [6] and photonic circuit simulator Lumerical
INTERCONNECT [27]. Flumen’s performance is compared
with other network topologies, including electrical ring, elec-
trical mesh, and optical bus, on a variety of benchmarks.

2 MOTIVATION AND BACKGROUND
2.1 Motivation

As mentioned in Section 1, link utilization for linear algebra applica-
tions is low, motivating this work. To further illustrate this, the link
utilization of several applications using linear algebra operations
was recorded during execution. The sensitivity of link utilization for
these applications was also considered by underprovisioning link
bandwidth for a photonic interconnection network with 16 nodes.
Figure 1 shows the link utilization for an image blur application and
the fully-connected (FC) layer of the VGG16 convolutional neural
network (CNN)[44]. Links use 10 Gbps modulation speed with vary-
ing number of wavelengths, so the corresponding link bandwidths
are: 16 As & 160 Gbps; 32 As & 320 Gbps; and 64 As & 640 Gbps. In
the 64-wavelength high-bandwidth case, average link utilization
is only 5.5% and 1.9% for Image Blur and VGG16 FC, respectively.
When moving to the 16-wavelength low-bandwidth case, aver-
age link utilization is 19.7% and 7.5% for Image Blur and VGG16
FC, respectively. Even with underprovisioned link resources, link
utilization is still low on average, leaving ample opportunity for
in-network computation.

2.2 Photonic Interconnects

Light is confined and routed on chip using waveguides. Multiple
wavelengths of light can propagate in a single waveguide since
they do not interfere with one another, and the technique that
utilizes this property is wavelength-division multiplexing (WDM).
Photonic communication links use WDM to yield high bandwidth
interconnects, where each wavelength is modulated independently
to carry separate data.

In order to modulate selective wavelengths, resonant devices
such as the microring resonator (MRR) are used. MRRs act as
(de)multiplexers by resonating at specific wavelengths of light,
and the resonant wavelength must be an integer multiple of the
effective path length of the MRR: Aes = negL/m, where m € Z*
is the integer multiple, n.s is the effective refractive index of the
waveguide, and L is the path length of the ring [3]. The resonant
wavelength can be modulated using a phase shifter, which alters
the effective index of the ring waveguide, and consequently the
accumulated phase of a signal propagating through the device.

A photonic communication link utilizing WDM contains sev-
eral MRRs. At the transmitter there is a modulating MRR for each
wavelength to send data down the waveguide, and at the receiver
there is an MRR to demultiplex each wavelength for photodetection.
The photodiode (PD) outputs a current that is proportional to the
incident optical power, which must be amplified up to a usable
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Figure 2: Basic WDM photonic link connecting two chiplets.
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Figure 3: Mach-Zehnder interferometer with phase shifts ¢
and 6, showing the computation b = T(0, ¢)a, and the cross
and bar states.

voltage using a transimpedance amplifier (TIA). Also, MRRs are
sensitive to fabrication nonuniformities and temperature, so they
require resistive thermal pads to tune the devices to the correct
wavelengths. Figure 2 depicts a basic photonic link, where optical
power is provided through a fiber from off-chip lasers.
Non-resonant switching devices, such as the Mach-Zehnder in-
terferometer (MZI) are also useful for modulating optical signals. As
opposed to MRRs which selectively modulate certain wavelengths,
MZIs perform the same transformation to each wavelength — assum-
ing a broadband response over the range of wavelengths. The MZI
is a four-port device that applies an amplitude modulating phase
shift 6 € [0, ], and optionally a tuning phase shift ¢ € [0, 27). The
MZI is shown in Figure 3, and its transfer matrix is:
e/? sin g cos g

) (1)

T(0.9) = je /% |, A
e/? cos g —sin 5
The MZI implements an arbitrary 2 X 2 unitary transformation on
the E-fields of an input vector of optical signals [33]. Two common
states of the MZI are the cross state (8 = 0), and the bar state (6 = ).
In the cross state the top input is switched to the bottom output,
and the bottom input is switched to the top output. In the bar state,
the top input is switched to the top output, and the bottom input
is switched to the bottom output. Any number of intermediate
splitting states exist between the cross state and the bar state.

3 FLUMEN ARCHITECTURE

3.1 Photonic Fabric

3.1.1 Mach-Zehnder Interferometer Meshes. The fundamental struc-
ture of the Flumen architecture is the Mach-Zehnder interferome-
ter mesh (MZIM), also called a universal multiport interferometer
(UMI). The MZIM is a reconfigurable photonic architecture com-
prised of several layers of MZIs, and is capable of implementing
any discrete unitary transformation in the analog domain [33]. An
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Figure 4: Singular value decomposition MZIM architecture
showing the computation b = UXV*a.

N X N unitary matrix U is implemented as an N-input MZIM con-
sisting of N(N —1) /2 connected MZIs, and the phases 6;, ¢; of each
MZI are programmed to implement U [10]. Forward computation
occurs as a vector of amplitude-modulated optical inputs propa-
gates through the structure from the N input waveguides to the N
output waveguides.

The MZIM architecture can be extended to support non-unitary
transformations M through singular value decomposition (SVD):
M = UXV*, where U and V are unitary matrices, ¥ is a diago-
nal matrix of non-negative real numbers called singular values o;,
and * is the adjoint operator. Figure 4 shows the photonic SVD
implementation of a 4 X 4 matrix. The matrix-vector multiplication
b = Ma = UXV*a occurs as the optical input vector a propagates
from left to right and is transformed into the output vector b. V*
and U are unitary MZIMs connected through a columnn of attenu-
ators . The MZIs used in U and V* are the same as described in
Section 2, but the MZIs used for ¥ are only connected at their top
two ports, and serve as amplitude modulators rather than tunable
beamsplitters. These attenuating MZIs are denoted by open circles
in Figure 4. The total number of MZIs in an N-input MZIM SVD
architecture is N2.

The transformation implemented by the MZIM occurs in the
analog domain, and the input/output optical signals carry data in
their optical power amplitudes and phases. Optical input vectors
are modulated using MZIs for computation instead of the MRRs
used to modulate data for communication because higher accuracy
modulation is needed for computation, and MRR stability is more
sensitive to crosstalk and thermal effects. Since the MZIM operates
on optical inputs in the analog domain, it must be supported by
additional analog electronics to convert between the digital and
analog domains. Digital-to-analog converters (DACs) modulate the
input signals and implement the MZIM phase shifts. Photodetectors
convert the optical signal to an electrical current, TIAs boost this
signal up to a usable voltage, and the output voltage is converted
using an analog-to-digital converter (ADC).

3.1.2  Flumen Photonic Fabric. MZIMs have not been previously
proposed as a network architecture, and Flumen’s photonic fabric is
a novel variant of the unitary MZIM designed specifically to handle
communication and computation simultaneously. Flumen augments
an N-input unitary MZIM with a vertical column of N attenuating
MZIs, which is shown in Figure 5. By including this additional
column of MZIs, the Flumen photonic fabric merges the favorable
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Figure 5: Flumen MZIM architecture, showing dynamic com-
munication/computation partition barrier. Note that the sep-
arate colors shown here represent different link paths and
are all the same wavelength.

functionality of the unitary MZIM for communication, and the SVD
MZIM for computation.

For communication, point-to-point and broadcast/multicast pat-
terns are represented as a unitary matrix, which minimally requires
an N-input unitary MZIM. An issue with the basic unitary MZIM
for communication is that receivers at a destination node will ob-
serve different optical power levels corresponding to the same
modulated value, i.e. source-destination paths traverse a differing
number of MZIs, therefore experience differing levels of optical
loss. Flumen’s photonic fabric solves this loss variation issue with
its added column of MZIs, which serves to equalize loss differences
by attenuating specific source-destination pairs. Take the layout
in Figure 5 for example: The longest path to node 15 is 7 MZIs not
including the attenuating MZI column, while the shortest path is 4
MZIs.

The dynamic computation functionality of the Flumen MZIM
architecture is shown in Figure 5. By placing a row of MZIs into
the bar state, they act as reflectors that partition the MZIM into
two separate halves. In the top half, point-to-point communication
is occurring, and in the bottom half computation is occurring con-
currently. Depending on computation or communication demands,
this partitioning barrier can be moved to increase computation or
communication. By augmenting the 8-input unitary MZIM with
attenuating MZIs, when the architecture is partitioned evenly as
shown in Figure 5, the resulting partitions are two 4-input SVD
MZIMs. The Flumen MZIM architecture supports one large unitary
matrix, or several smaller SVD matrices depending on the partition
barrier(s). In general, for an N-input Flumen MZIM architecture
to be partitioned into two N/2-input SVD MZIMs as shown in
Figure 5, N must be divisible by 4.

3.2 Communication Mapping

One-to-one and one-to-many communication patterns are easily
mapped to Flumen’s photonic fabric. For one-to-one communica-
tion, links are constructed using MZI cross states (6 = 0) and bar
states (0 = m). An MZI in the bar state is akin to a reflector, while
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Figure 6: Four-input Flumen MZIM communication showing
the 6 phase settings and corresponding transfer matrix for:
(a) point-to-point communication, and (b) broadcast commu-
nication.

an MZI in the cross state is viewed as transmissive. The sequence of
many reflections and transmissions constructs a non-blocking com-
munication pattern. The MZIM physically resembles a multi-stage
interconnection network, however with one-to-one communication
it behaves like a crossbar switch. This is because once an optical
signal enters the network, it will continue to propagate unimpeded
through each MZI until photodetection. One-to-one communica-
tion patterns are represented with a unitary adjacency matrix. An
example one-to-one mapping with its corresponding adjacency ma-
trix is shown in Figure 6(a). Note that each wavelength is subject
to the same MZI transformation as described in 2.2.

One-to-many communication patterns are achieved using in-
termediate MZI splitting states between the cross and bar states.
For example, a 50:50 splitting ratio is achievable when 6 = /2
for a single input, which can be used to construct a broadcast tree
as shown in Figure 6(b). The unitary matrix corresponding to the
broadcast tree in Figure 6(b) is not immediately obvious since these
matrices operate on E-fields, but it is more intuitive to think in
terms of the optical power amplitudes at the output: P « |E|2. If the
matrix transformation is performed on the input vector [1 0 0 0]7,
then the magnitude of the output vector E-fields are squared, the
result is [0.25 0.25 0.25 0.25]7.

3.3 Computation Mapping

3.3.1  Matrix Multiplication Organization. In order for the matrix M
to be implemented using an SVD MZIM circuit, it must have singular
values 0 < g; < 1 because the optical inputs cannot be amplified
at the X layer by an arbitrary amount without prior knowledge of
these inputs. For energy conservation of the input vector of fields
a to be realized, the following condition must be met: b = Ma,
a*a > b*b = 0 < 0; < 1. As a consequence, arbitrary matrices
M are not directly implementable in an SVD MZIM, and require
a pre-transformation to be performed to guarantee 0 < o; < 1:
Mg = M/||M|lz = omax(Ms) = 1, where || - ||2 denotes the
spectral norm. The spectral norm of M is equal to its largest singular
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Output Matrix

value. The scaled matrix M is then guaranteed to be implementable
in a SVD MZIM circuit. To obtain the final transformation output
b, the result bs = Mga must be scaled back by || M]|2.

In order to implement a matrix M € R™™ in an N-input Flu-
men MZIM, M must be zero padded along both dimensions to the
nearest multiple of N, giving M € R?¥™;

M ... 0 a b
b=Ma M=|: - (l.a=|:|.b=|: )
0 0 0

Since the N-input Flumen MZIM implements an N X N matrix,
M must be divided into (i X j) N X N sub-blocks, where i = /N
and j = m/N. Computation is then carried out as a block matrix
multiplication:

M()O Mo(j—l) d()

(S
Il

: : ®)
M) (-1l 1¢-1)
Each N X N block matrix multiplication will generate a set of

partial sums. The partial sums from several sub-block multiplica-
tions will be accumulated to obtain the final output elements. For

M(i—l)O

example, by = Z{c;é My.dy. requires the accumulation of j partial
N-element vectors. Computation with an MZIM in this manner
means that all multiplications occur in the photonic domain, and
each multicore chiplet is responsible only for the accumulation of
partials.

The MZIM is an efficient way to rapidly compute matrix products.
An N x N matrix-vector multiplication (MVM) occurs as a single
operation in the MZIM, which would otherwise require N? multi-
plication operations and N (N — 1) addition operations in the digital
domain. The parallelism of photonics can be further exploited to
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increase computation density and throughput. By utilizing multiple
wavelengths of light similar to a WDM communication link, mul-
tiple parallel MVMs can be computed simultaneously. Each input
vector a; to be multiplied by the matrix M is carried on a separate
wavelength A;. If there are p wavelengths used for computation,
the MZIM computes p parallel MVMs, or equivalently computes
the matrix-matrix product MA, A € RN*? in a single cycle, where
A= [ag alT aIT)_l].

3.3.2  Convolution Organization. The MZIM can also support the
convolution operation, which is common in image processing and
is the fundamental operation in CNNs. In CNNs, a convolutional
layer implements the convolution operation on a set of activations
called the input volume, and generates a set of activations called the
output volume. The convolution operation, shown in Figure 7(a), is
a sliding-window dot product taken between kernels, which hold
network weights, and a receptive field in the input volume. Each dot
product between a kernel and receptive field produces an element
in the output volume, and receptive fields are moved across the
entire input volume with stride S.

A convolutional layer is organized as a matrix multiplication
using the im2col method [7] for computation in an SVD MZIM
circuit, as shown in Figure 7(b). The kernel matrix is comprised of
all kernels, where each row of the matrix is a raveled kernel. The
kernel matrix has shape Wy, X (Wy X Wy X W), and left multiplies
the input matrix. The input matrix contains all receptive fields,
where each column of the matrix is a raveled receptive field. The
input matrix has shape (Wyx X Wy, X W,) X Q, where Q = By X By.In
the SVD MZIM circuit, receptive fields are transmitted on separate
wavelengths if multiple wavelengths are used. The output matrix
contains the output volume, and has shape Q X B. Each column of
the output matrix is a 1 X 1 X B; slice of the output volume.

3.3.3  MZI Phase Programming. Each N X N sub-block of M must
be mapped to the MZIM phases. In general, MZIM phases are pro-
grammed using diagonalization methods that nullify elements in a
target matrix. These phase programming algorithms are explored
in depth in [10, 15]. In this work, the M matrix phases are assumed
to be precomputed using one of the aforementioned programming
algorithms. Although matrix phase mapping could be performed
at runtime, it is preferred to have these phases precomputed and
stored to prevent excessive overhead, especially for repeatedly used
matrices. Conversely, communication phases are programmed at
runtime since they are easily realized with predefined MZI states.

3.4 Arbitration, Scheduling, and Operation

Flumen’s photonic fabric is managed by the MZIM control unit,
which is depicted in Figure 8. The MZIM control unit contains
several request buffers for communication and computation access
to the photonic fabric. Each endpoint is assigned a dedicated buffer
for communication, and compute requests are held in a single buffer
for each network edge. The MZIM control unit is connected to each
network edge through a shared arbitration waveguide. Chiplets
communicate with the MZIM control unit on separate wavelengths
through the arbitration waveguide. The MZIM control unit also
communicates network utilization information back to the chiplets,
so cores can make informed decisions regarding whether to send
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Algorithm 1 Flumen scheduling process

1: function SCHEDULERMAIN
2 loop > Comm. partition set I
3 I, A < PARTITIONER(I, A) > Comp. partition set A
4: te—0
5: while ¢t < 7 do > Partition period 7
6 for each a € A do > Comp. partition a
7 if done(a) then
8: A—A\a > Remove a from A
9: I—1IUa > Include a in I
10: end if
11: end for
12: for each i € I do > Comm. partition i
13: WAVEFRONTARB(i) > Wavefront arbitration on i
14: end for
15: te—t+1
16: end while

17: end loop
18: end function

19: function PARTITIONER(I, A)

20: for each ayeq € buffeomp do > Comp. partition request @req

21: B — ReQBUFFUTIL(nodes(dreq), ¢) > Buffer scan depth ¢
22: if f < n then > Buffer utilization threshold n
23: A AU areq > Include @req in A
24: I 1\ areq > Remove Greq from I
25: end if

26: end for
27: return I, A
28: end function

Nodes 4 4 4 4 4 4 4 4 4 4 Nods
0to N-1 N to 2N-1
N DACs -
t
Compute Matrix Memory
[
.»] Dest 2N-1 Paﬁitio; Sched. | L Destn-1 ...
. Request Buffers WavefrontAm, | %  issethea
Optical :g:D
Link % : .
J 1---| ResEonse ] L :
. A K]

Buffer Scan Depth

Figure 8: Flumen MZIM control unit.

a compute kernel to the MZIM control unit, or to compute locally.
The MZIM control unit contains local matrix memory to hold the
precomputed phase mappings for in-network processing. DACs
located in the MZIM control unit drive the phase shifters of the
MZIs.

The MZIM control unit prioritizes communication over compu-
tation, and communication maps are constructed using a wavefront
arbiter with additional multicast/broadcast logic. Compute requests
are serviced based on the Flumen scheduling algorithm, listed in
Algorithm 1. The scheduling algorithm attempts to grant network
access to execute compute requests at each network evaluation pe-
riod 7. If network buffer utilization f is low enough, a computation
partition will be created, the controller will notify the requesting
node through the arbitration waveguide, and computation will
commence. If network buffer utilization f is too high, no compute
partition will be created, and the wavefront arbiter will configure
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the communication partitions. To prevent excessive compute ker-
nel stalling, nodes will not request compute access if the network
utilization conveyed to them by the MZIM control unit is too high,
and instead will compute locally.

Network utilization decisions are determined by 2 parameters:
the buffer utilization threshold 7 at a given buffer scan depth {.
A buffer scan depth { was needed because it was observed that a
small number of buffers in the MZIM control unit had significantly
higher utilization than others for the applications benchmarked (see
Section 4.2). This caused high traffic activity among a few nodes to
become overlooked by a global buffer utilization parameter, which
led to compute partitions excessively blocking communication.

A sensitivity analysis was performed for the algorithm parame-
ters 7, 17, and {. The partition evaluation period was chosen to be
7 = 100 cycles, because this was observed to be the highest average
packet latency before network saturation (see Section 5.2). Also,
when 7 > 170 cycles, a rapid decrease in serviced computation
requests was observed, as too many requests were left outstanding.
A buffer scan depth of { = 50% was found to be sufficient for the
benchmarked applications, and the buffer utilization threshold was
chosen to be 1 = 40%. A value of < 30% was too strict, leading to
low compute request service, and gave an overall runtime similar
to Flumen without in-network processing. It was also observed
that > 55% was too aggressive, leading to computation blocking
communication, and causing slowdown in some cases.

When a computation kernel completes forward execution, the
MZIM control unit configures the computation partition to many-
to-one communication pattern, and the MVM results are returned
to the requesting node. Once this is complete, the compute partition
is deconstructed and made available for communication until the
next 7 evaluation.

An example Flumen system layout is shown in Figure 9. The
photonic MZIM NoP is implemented in the interposer and con-
nects several chiplets. At each chiplet is transceiver hardware that
includes the modulators, drivers, DACs, PDs, TIAs, ADCs, serializ-
ers, and deserializers for the photonic link. Off-chip lasers provide
optical power to the system.

4 EVALUATION METHODOLOGY
4.1 System Setup

The performance of Flumen was evaluated using a 64-core multi-
core architecture, where each chiplet contains 4 cores with a shared
L3 cache. Cores use out-of-order execution with a clock frequency
of 2.5 GHz. A list of system parameters is provided in Table 1. The
16-chiplet system is compared using electrical ring (Ring), electrical
mesh (Mesh), optical bus (OptBus), and Flumen MZIM interconnec-
tion topologies. In an OptBus topology, the network routers are
connected by one or more shared circular waveguides, and its vari-
ants are commonly explored as photonic interconnection topologies
[8, 48]. MZIM architectures similar to Flumen have not been pre-
viously proposed as a network architecture, and there is novelty
in understanding their benefits for communication alone. There
is no compute acceleration equivalent implemented in the Ring,
Mesh and OptBus topologies because these computation methods
are unique to the structure of the Flumen interconnect, which are
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Figure 9: Example 8-chiplet Flumen architecture layout.

Table 1: System-level parameters for performance evaluation.

Component Parameter Value
Core frequency 2.5GHz
type out-of-order
number 64
L1i cache 32kB
L1d cache 32kB
L2 (private) size 512kB
L3 (shared) size 16 MB
concentration 4 cores
Elec. NoP link [37] energy 1.17 pJ/bit
bandwidth 800 Gbps
Photonic NoP link energy (64 As) 0.703 pJ/bit
modulation 10 GHz
frequency
bandwidth (64 As) 640 Gbps
Flumen Compute computation As 8

input modulation freq  5GHz
MZIM switch delay 6ns
equivalent precision 8 bits

\[]_D_D_[D
(@ (b) © (d)

Figure 10: Evaluated NoP topologies: (a) electrical ring, (b)
electrical mesh, (c) optical bus, and (d) Flumen MZIM.

based on interferometry of electromagnetic waves — a technique
not achievable using metallic interconnects.

Figure 10 shows the layouts of the evaluated topologies. For a fair
comparison across network topologies, each NoP was designed to
have a similar bisection bandwidth. The bisection bandwidths are:
5.6 Tbps for Ring and Mesh, and 5.1 Tbps for OptBus and Flumen.
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Table 2: Photonic and electronic device parameters.

Component Parameter Value
Waveguide straight loss 1.5dB/cm [9]
bent loss 3.8dB/cm [9]
Y-branch loss 0.3dB [52]
MRR radius 5pum
thru loss 0.1dB
drop loss 1dB
modulation power 0.5mW [54]
driver power 1mW [38]
thermal tuning 1mW [24]
MZI phase shifter power 1nW [46]
phase shifter loss 0.23 dB [46]
coupler loss 0.02 dB [26]
Photodiode sensitivity 20 dBm
dark current 25 pA [42]
extinction ratio 7dB
Laser (off chip) OWPE 0.2
RIN -140 dBc/Hz
ADC power 29mW [14]
DAC power 50 mW [5]
TIA power 295 uW [36]
Ser. & Deser. power 1.3 mW [36]

Time taken for network configuration induces a small overhead
to Flumen’s photonic fabric. Programming MZI phases for com-
munication takes 1 ns [46], which is about 3 processor cycles. Pro-
gramming an MZIM partition for computation takes longer at 6 ns
(15 processor cycles) because the phases for computation need to
be more accurate than for communication. These overheads are
further quantified in Section 5.

A combination of several modelling tools were used to evaluate
system performance. The Sniper multicore full-system simulator [6]
was used as the foundation of the simulations, which was extended
to include a cycle-accurate network model using Booksim [20]. The
photonic circuits were modelled using the Lumerical INTERCON-
NECT photonic circuit simulator [27]. The photonic device and
supporting electronic device parameters used are listed in Table 2,
and areas of electronic devices are scaled to 7 nm technology using
the scaling equations provided in [45].

The performance of each NoP topology was evaluated on various
synthetic traffic patterns using Booksim to characterize how the
networks saturate under high network load. Lumerical INTERCON-
NECT was used to characterize the scaling of photonic circuit losses
and latency, which together with the photonic device parameters in
Table 2, describes the scaling of communication and computation
energy. The Sniper simulator was used to benchmark each archi-
tecture, and McPAT [25] was used to obtain energy, runtime, and
area results. The results produced by McPAT were scaled to 7 nm
technology using equations in [45].
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4.2 Benchmarks

The benchmark applications used for architecture evaluation all
involve sizable linear algebra operations. Flumen was compared
with and without compute acceleration enabled on each of these
benchmarks. The benchmarks are detailed below:

o Image Blur: The Image Blur application applies a (3 X 3)

Gaussian blur kernel to a (256 X 256) pixel 24-bit color image.
The blurring operation requires approximately 1.7 million

multiply-accumulate operations. The Gaussian blur kernel

weights are implemented in the MZIM, and receptive field

patches are streamed as the optical inputs. The Image Blur

application follows the convolution organization shown in

Figure 7, which is then decomposed into the sub-block ma-
trices for block matrix multiplication in the MZIM.

VGG16 FC: The VGG16 FC benchmark is the FC-1000 layer

in an 8-bit quantized VGG16 CNN. This layer takes as input

a 4096-element vector and outputs a 1000-element vector,

which is produced through multiplication by a (1000 x 4096)

weight matrix plus a 1000-element bias vector. This neural

network layer requires approximately 4.1 million multiply-
accumulate operations to compute. The weight matrix is

implemented in the MZIM, and the input activations to the

layer are sent as the optical inputs.

ResNet50 Conv3: The ResNet50 Conv3 benchmark is one

convolutional layer from the conv3_x layer group of an 8-bit

quantized ResNet50 model. This layer takes a (56 X 56 X 128)

volume of activations as input, which is convolved with 128

(3 x 3) weight kernels. This neural network layer requires

approximately 8 million multiply accumulate operations to

compute. The convolution layer is organized as shown in

Figure 7.

JPEG: This application performs JPEG compression on a

(256 x 384) pixel 24-bit color image, which involves several

(8 x 8) discrete cosine transforms (DCTs). This application

requires 1536 2-dimensional DCTs, which involves approxi-
mately 1.6 million multiply-accumulate operations.

3D Rotation: This application performs a 3-dimensional graph-
ics rotation on a 306-vertex wire-frame object. Each vertex is

represented using a 4-element vector, and the transformation

matrix has a shape of (4 x 4).

5 RESULTS
5.1 Area

The area of each Flumen endpoint is 9.46 mm?, and 4.2% of this
area is for the photonic transceiver. The Flumen 8 X 8 MZIM plus
the MZIM controller occupy 11.2 mm?, which is 6.9% of the total
162.6 mm? occupied by the 64-core architecture. When compared to
an electrical mesh architecture that occupies 114.9 mm?, Flumen’s
footprint is 17.7mm? larger, which is a 12.2% relative increase.
MZIM interconnect area is confined to the interposer, and the area
scales well in comparison to the chiplets. An 8 X 8 MZIM occupies
5.04 mm? (~0.5 chiplets in size), and connects 16 chiplets, which
have a combined area of 151.36 mm?. Scaling up to 128 chiplets,
a 64 X 64 Flumen MZIM would occupy 291.20 mm? (~16 chiplets
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Figure 11: Synthetic traffic evaluation of electrical ring, electrical mesh, optical bus, and Flumen MZIM interconnection
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Figure 12: (a) Laser power scaling sensitivity to MRR loss for optical bus and Flumen MZIM topologies. (b) Computation energy
scaling isolation study between Flumen MZIM and an energy-efficient approximate MAC unit. (c) MAC energy scaling for
Flumen photonic computation.

in size), while the 128 chiplets would have a combined area of
1210.88 mm?.

5.2 Communication System

When benchmarked on synthetic traffic patterns, the Flumen in-
terconnect had the lowest average latency for all offered network
loads. Figure 11 shows the latency versus load for uniform random,
bit reversal, and shuffle traffic patterns. This shows the benefit of
the low-latency photonic links utilized in Flumen interconnect, but
also shows the improvement made over the OptBus topology. The
OptBus topology performs worse than Flumen because the routers
are connected via a shared waveguide and experience higher con-
tention, whereas in Flumen the routers are connected through a
non-blocking switching fabric of MZIs. Network energy reduction
across the synthetic benchmarks (compared to Ring energy) was
77%, 35%, and 39% for Mesh, OptBus, and Flumen MZIM, respec-
tively. Note that Flumen’s average energy was greater than OptBus
because Flumen’s energy includes the DACs and ADCs required
for computation, even though no compute acceleration is occur-
ring. When compared with an MZIM network topology purely for
communication, this energy reduces to 28%.

The Flumen interconnect has better energy scaling than an Opt-
Bus with an equivalent number of wavelengths. The OptBus is
highly sensitive to MRR losses because the worst-case path loss
scales proportionally with kp, where k is the number of routers

(b)

(©

and p is the number of wavelengths. Losses rapidly accumulate as
an optical signal propagates past the numerous MRRs attached to
the OptBus. The Flumen interconnect loss scales proportional to
k/2 + 2p. Note that these scaling behaviors are for loss in decibels.
Laser power directly depends on the worst-case loss of a photonic
interconnect, and can become a significant source of energy con-
sumption in the system. This is illustrated in Figure 12(a), where
laser power scaling is evaluated for increasing MRR thru port loss,
and increasing wavelengths. Figure 12(a) only shows scaling up
to 0.05 dB loss, however the assumed loss used in the architecture
evaluation is 0.1 dB. At 32 wavelengths and 0.1 dB MRR thru port
loss, laser power is 32.3 mW for OptBus and only 429.6 pW for the
Flumen interconnect. This is a 75X laser power reduction compared
when compared to OptBus.

5.3 Computation System

The benefits of parallel photonic computation is apparent when
comparing the scaling behavior to digital electronics. Flumen en-
ergy efficiency was compared to an electrical MAC unit based on a
low-power 8-bit approximate multiplier that consumes 0.75 mW at
2.5 GHz [13]. When computing 8 X 8 matrix multiplication with 4
input vectors, the electrical MAC unit consumed 69.2 pJ and Flu-
men consumed 33.8 pJ, a 2X improvement. This scales to a 7x reduc-
tion in energy for a 8 X 8 matrix multiplication with 8 input vectors.
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Similar scaling behavior is observed for a 16 X 16 matrix multiplica-
tion with 8 input vectors, where the electrical MAC unit consumed
554 pJ and Flumen consumed 82 pJ, which is about a 7x reduction
in energy. The compute energy scaling comparison between the
electrical MAC unit and Flumen is shown in Figure 12(b). Scaling
beyond the 16 X 16 right limit in Figure 12(b), a large 64 x 64 Flumen
MZIM consumed 0.62n]J, 1.32nJ, 2.24nJ for 1 MVM, 4 MVMs, 8
MVMs, respectively. Compared to the energy-efficient approximate
digital circuit, Flumen improved computation energy by 1.8X, 3.4X,
and 4.0x for 1 MVM, 4 MVMs, 8 MVMs, respectively.

Flumen computation energy efficiency depends on the MZIM size
and number of wavelengths used. During a matrix multiplication
computation, there are several sources of static power consump-
tion in the MZIM. This static power includes MRR thermal tuning
and MZIM DACs, but the DACs used for the MZI phase shifters
constitute the majority of this power. This could be addressed by
using multiple phase shifters per DAC with sample and hold cir-
cuitry, depending on the sampling rate of the DAC, however this
evaluation has assumed one DAC per MZI to give a conservative
energy estimate. By increasing the MZIM size and the number of
wavelengths, the portion of overall energy consumed by the MZIM
control DACs is decreased, and helps to scale energy efficiency per
MAC operation for the architecture. The trade-off between MZIM
dimension and number of wavelengths for MAC energy is shown
in Figure 12(c).

5.4 Benchmark Results

5.4.1 Application Energy. The energy consumption for each net-
work topology was compared to the Flumen interconnect with-
out compute acceleration enabled (Flumen-I), and then with Flu-
men compute acceleration enabled (Flumen-A). A breakdown of
energy consumption is given in Figure 13. Flumen-A improved
energy-efficiency by 1.5%, 1.9%, 2.9%, 2.6X, and 4.8x when com-
pared to Mesh topology for Image Blur, VGG16 FC, ResNet50 Conv3,
JPEG, and 3D Rotation, respectively, with a geometric mean of 2.5x
across all benchmarks. Flumen-A improved energy-efficiency by
1.4%, 1.7X, 2.4%, 2.5%, and 4.2X when compared to Flumen-I topol-
ogy for Image Blur, VGG16 FC, ResNet50 Conv3, JPEG, and 3D
Rotation, respectively, with a geometric mean of 2.3X across all
benchmarks.

Flumen-I consumed similar energy as the OptBus system since
NoP energy was a small portion of the overall energy, which was ob-
served on all benchmarks. For the Image Blur benchmark, Flumen-I
reduced NoP energy consumption by 10.3X and 15.7X compared
to Ring and Mesh, respectively. By moving computation into the
interconnects, Flumen-A reduced core energy by 2x compared to
Ring, and about 1.8X for Mesh, OptBus, and Flumen-I. This led to
an increase in NoP energy, however NoP energy is only 3.3% of the
overall Flumen-A energy. Flumen-A reduced L1i, L1d, and L2 cache
energies, while L3 and DRAM energies did not change significantly.
This is because the same data must be fetched from DRAM in all
topologies, and the L3 cache is still heavily utilized during compute
acceleration for operand and result storage.

Similar behavior was observed in the other benchmark appli-
cations. Flumen-A running the 3D Rotation benchmark had the
greatest reduction in overall energy, with a 4.7x and 4.8x reduction
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Figure 13: Energy consumption breakdown by component on
benchmarks for Ring (R), Mesh (M), OptBus (OB), Flumen-I
(F-I), and Flumen-A (F-A).

compared to Ring and Mesh topologies, respectively. 3D Rotation
energy reduction was significant because the 4 X 4 rotation matrix
was implemented in two 4-input SVD sub-MZIMs, and the rotation
operation did not require the computation cores to accumulate par-
tial sums. The JPEG compression application also had a significant
energy reduction when computed using Flumen-A, with an energy
reduction of 2.6x over both Ring and Mesh topologies. The 8 x 8
DCT matrices used in JPEG compression were mapped to the full
8-input unitary MZIM, and also did not require partial sums to be
accumulated at the cores. Energy reduction for JPEG compression
was not as large as 3D Rotation, but the JPEG algorithm also per-
formed the encoding in the computation cores. Image Blur, VGG16
FC, and ResNet50 Conv3 all had sizable amounts of MZIM partial
sums to be accumulated in the cores. ResNet50 Conv3 had the great-
est energy reduction of the three benchmarks that involved partial
sums because the convolution operation performs more compu-
tations per MZIM matrix, reducing the number of MZIM matrix
switches due to the shared nature of kernel weights.

5.4.2 Application Speedup. Application speedup of Flumen-A over
Ring, Mesh, OptBus, and Flumen-I architectures is shown in Fig-
ure 14. The maximum speedup achieved by Flumen-A was 3.3X,
2.0%, 4.5%, 4.0%, and 5.2x for Image Blur, VGG16 FC, ResNet50
Conv3, JPEG, and 3D Rotation, respectively. The average speedup
achieved by Flumen-A was 3.1X, 1.9%, 4.1X, 4.0%, and 4.9x for
Image Blur, VGG16 FC, ResNet50 Conv3, JPEG, and 3D Rotation,
respectively. Flumen-A achieved a speedup of 3.3%, 2.0%, 4.5%, 4.0X,
and 5.2X when compared to Mesh topology for Image Blur, VGG16
FC, ResNet50 Conv3, JPEG, and 3D Rotation, respectively, with a
geometric mean of 3.6X across all benchmarks. On average across
all benchmarks, the phase programming delay plus communication
blocking caused about a 9% increase in average packet latency, how-
ever the overall application speedup due to compute acceleration
justifies this communication overhead.

In general, applications that required fewer partial sum accumu-
lations had higher speedup compared to those with greater partial
sum accumulations. Also, applications with higher operand reuse
exhibited higher speedup, such as the filters in ResNet50 Convs3,
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Figure 14: Speedup of Flumen-A over Ring (R), Mesh (M), Opt-
Bus (OB), and Flumen-I (F-I) on benchmarked applications.
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Figure 15: Energy-delay product comparison for Ring (R),
Mesh (M), OptBus (OB), Flumen-I (F-I), and Flumen-A (F-A)
on evaluated benchmarks.

the blurring kernel in Image Blur, the DCT matrix in JPEG, and the
rotation matrix in 3D Rotation. Higher speedup was observed for
applications with smaller computation kernels, such as the JPEG
and 3D Rotation benchmarks. These factors combined also help
identify why the VGG16 FC benchmark had the lowest speedup —
it was a large compute kernel with low operand reuse.

5.4.3 Energy-Delay Product. Figure 15 shows the energy-delay
product (EDP) of each architecture on the evaluated benchmarks.
Flumen-A improved EDP by 5.1X, 3.9%, 13.0%, 10.5%, and 25.2X
when compared to Mesh topology for Image Blur, VGG16 FC,
ResNet50 Conv3, JPEG, and 3D Rotation, respectively, with a geo-
metric mean of 9.3X across all benchmarks. Flumen-A improved
EDP by 4.2X%, 3.0%, 8.9%, 9.9, and 19.5X when compared to Flumen-
I topology for Image Blur, VGG16 FC, ResNet50 Conv3, JPEG, and
3D Rotation, respectively, with a geometric mean of 7.4X across all
benchmarks.

6 RELATED WORK

The goal of this work was to (a) create a high-bandwidth and energy-
efficient photonic network architecture for chiplet-based systems
that is competitive with existing interconnects, and (b) identify and
repurpose the underutilized network resources to accelerate com-
putation using the parallelism of optics with minimal changes to
the network. Prior works have proposed in-network computation
by scheduling operations at the network routers [39] and exploit-
ing dataflow patterns during aggregation [17]. These works rely
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on the energy-efficiency of on-chip interconnects to move com-
putation between network routers, which have been significantly
modified to include additional decode logic, operand buffering, and
arithmetic cores. Flumen utilizes the same hardware for both com-
munication and computation, and computation occurs within the
interconnection links, not in the routers. Prior works also packetize
their operands to move between computation routers, which breaks
data locality.

Prior works have proposed standalone photonic accelerator chips
for DNN inference [2, 28, 35, 43], however, these architectures rely
heavily on MRRs to perform their analog computation. MRRs bene-
fit from a small footprint, but crosstalk between MRRs and thermal
stability limit the scalability of these designs. MRRs require thermal
tuning to stabilize their resonant wavelength, and designs that uti-
lize large numbers of MRRs (135,680 [35], 35,000 [28]) will consume
significant energy just for thermal tuning. MZIs do not require ther-
mal tuning like MRRs, and although MZIs occupy a larger footprint,
this area overhead is confined to the interposer in Flumen, rather
than on chip. Other works have explored the feasibility of MZIMs
for neural networks and quantum information processing [16, 41].
ADEPT [11] is a large SVD MZIM (N = 128) specifically designed
for DNN acceleration. ADEPT provided an 11X inference-per-Joule
improvement when compared to an electronic systolic array accel-
erator. Flumen is an enhanced interconnection network and is not
designed to be a standalone accelerator, however [11] demonstrates
the potential improvement that MZIMs can provide.

A large group of prior work has explored photonics for on-chip
interconnects [8, 23, 31, 47, 48]. These works have explored vari-
ous topologies, including rings, meshes, crossbars, and multi-buses.
These architectures utilize a large number of MRRs, and are suscep-
tible to thermal variations, limiting their scalability. Moreover, prior
designs exhibit laser power scalability issues due to the cascaded
MRR losses. Flumen improves laser power scalability by using a
non-blocking MZI-based interconnect.

7 CONCLUSIONS

This paper proposed Flumen, a dual-purpose photonic interconnect
at the package-level that provides communication, while addition-
ally serving as an accelerator during periods of low network load.
The proposed architecture utilizes the inherent parallelism of light
to construct energy-efficient and scalable interconnects for chiplet-
based designs, which support en route computation with minimal
changes to the network. By dynamically changing between commu-
nication and computation network modes, Flumen is able to adapt
to workload fluctuations and provide improved energy-efficiency,
speedup, and network resource utilization. When benchmarked
on linear algebra applications, the Flumen architecture improved
energy-efficiency by 2.5x, achieved a speedup of 3.6%, and reduced
EDP by 9.3X on average when compared to an electrical mesh
network that is used exclusively for communication.
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