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The parameterized post-Einsteinian framework modifies inspiral waveform models to incorporate
effects beyond General Relativity. We extend the existing model into the merger-ringdown regime.
The modification introduced here adds a single degree of freedom that corresponds to a change
in the binary coalescence time. Other merger properties remain as predicted by GR. We discuss
parameter estimation with this model, and how it can be used to extract information from beyond-
GR waveforms.

I. INTRODUCTION

For over two hundred years Newton’s theory of gravity
stood without equal as an accurate description of grav-
ity. For the last hundred years, general relativity has
superseded Newtonian gravity in predictive power. How-
ever, there is good reason to believe that general relativ-
ity (GR) is not the ultimate theory of gravity. In par-
ticular, many theorists believe that in the classical limit
of some future quantum theory of gravity, there will be
modifications that may be detectable on classical length
scales [1–3].

GR reduces to Newtonian gravity in the slow-motion,
weak-field limit, but it is not merely a correction term
that is added on top of Newtonian predictions. Full GR
is only obtained by demanding one’s model of gravity ad-
here to new principles not present in Newtonian gravity,
often referred to as the pillars of GR [1]. As a result, GR
predicts additional phenomena that are entirely absent in
the Newtonian theory, such as black holes and gravita-
tional waves(GWs). Likewise, we expect that the theory
of gravity to replace GR will be founded on new princi-
ples and similarly reveal new phenomena not present in
GR. It is possible that evidence of beyond-GR phenom-
ena will make their first observable appearance as small
deviations from GR in these GWs [4].

The detection of GW events such as GW150914 and
many others [3, 5–8] since then have provided direct evi-
dence that gravitational waves, not present in Newtonian
gravity, are present in our universe and that GR is an
accurate description of gravity, even in the strong-field
regime. These detections are made possible by searching
for signals in the data of GW detectors such as LIGO
using our knowledge of what we already expect these
waveforms to look like in GR [5, 6, 8–10]. The accurate
construction of these model waveforms, used as matched-
filter templates, is being improved upon as the sensitivity
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of the GW detectors improves.
For the process of matched-filtering to work however,

the signals in GW data must be sufficiently similar to the
constructed templates. By limiting oneself to only using
GR to generate templates then, it can become difficult to
even detect a waveform that deviates from GR. For loud
enough signals, though, a binary coalescence with certain
parameters in a beyond-GR theory may be closely mim-
icked by a coalescence model in GR with slightly different
parameters [11]. The choice of using GR in the construc-
tion of waveform templates then, by construction, limits
our ability to detect deviations from GR. Assuming GR
for binaries where GR may be violated may cause us to
ascribe incorrect properties to these binaries, and this
will lead us to draw incorrect conclusions about the as-
trophysical population these binaries come from [1].

There exist alternative theories of gravity beyond
GR such as dynamical Chern-Simons gravity and Ein-
stein dilaton Gauss Bonnet where there has been partial
progress in producing GW waveforms [12]. Even if it
were possible to produce waveforms from these beyond-
GR theories with the full technology that we have for GR
waveforms, it would still be computationally prohibitive
to test GW data against each beyond-GR theory individ-
ually. It might also be the case that some yet-unknown
beyond-GR theory fits the signal in our data even bet-
ter than any of the ones being used in the parameter
estimation.

Yunes and Pretorius have introduced a framework they
refer to as the parameterized post-Einsteinian(ppE) for-
malism [13] for modifying waveforms such that neither
GR nor any other particular beyond-GR theory is as-
sumed, so long as the beyond-GR theory is smoothly con-
nected to GR. Although it is not yet possible to perform
full numerical simulations of mergers in all beyond-GR
theories, it is possible in many to calculate the leading-
PN order corrections to the waveform [14]. This correc-
tion is then incorporated via a modification of the corre-
sponding waveform in GR. This allows for the searching
of evidence for beyond-GR theories using GW data in a
model-independent manner.
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A limitation of Yunes and Pretorius’ model that is ad-
dressed in this paper is that their model is valid only dur-
ing the inspiral regime of the binary coalescence process.
The Yunes and Pretorius model parameterizes deviations
to the orbital phasing as leading PN-order corrections to
the GR waveform in the inspiral regime. This approxi-
mation breaks down before the merger is reached. This
is relevant to current efforts in GW detection with ter-
restrial observatories, since a significant portion of the
SNR of most commonly detected (higher mass) sources
is in the post-inspiral regime, where the in-band wave-
form is dominated by merger and ringdown. Yunes and
Pretorius’ model does not extend into this regime and
does not model beyond-GR waveforms via corrections to
GR there. In this paper, we present a new extension to
the ppE framework that allows for corrections to the GR
waveform past the inspiral regime, with a functional form
that is agnostic to the underlying GR approximant being
used. The new extension decouples the merger portion
of the waveform from the initial inspiral assuming a min-
imal number of new parameters. Through it we are able
to model changes to the rate of coalescence in GW signals
all the way to merger, independently of the changes that
occur in the inspiral regime. Our extended-PPE frame-
work is capable of measuring beyond-GR effects in signals
coming from heavy black hole binaries that LIGO-Virgo
detectors have been observing as their most common GW
events [5, 6, 9, 15].

Rest of this paper is organized as follows. In Sec. II, we
discuss the existing gravitational waveform models used,
in particular the IMRPhenomD approximant [16], which
is the GR model that is used in this paper. In Sec. III,
we discuss waveform models in the context of modelling
beyond-GR behavior, and the various ways in which in-
spiral models can be extended up to merger. In Sec. IV,
we discuss how our beyond GR model can be used in
GW parameter estimation. In Sec. V, we summarize the
results and lay out possible directions in which this work
can be extended.

II. GR APPROXIMANTS

Deducing source properties from a detected GW signal
from a compact binary coalescence requires the produc-
tion of a candidate waveform, called a template, against
which the strain data can be compared. In practice, pa-
rameter estimation requires the generation of millions of
templates of differing parameters [17]. Analytically, we
have the post-Newtonian (PN) theory [18] which gives
an accurate approximation to the inspiral GW for large
separations and slow velocities. For close separations and
high velocities before merger, we need full Numerical Rel-
ativity (NR) calculations. However, it is prohibitively
expensive to have NR simulations for each choice of can-
didate parameters. Depending on the degree of accu-
racy required, there are various alternatives. GR-based
phenomenological waveform models are a computation-

ally cheaper method used to more rapidly produce many
candidate waveforms. The trade-off is that these GR
approximants are calibrated such that they are only con-
sistent with NR simulations in a limited region of pa-
rameter space. Moreover, NR itself encounters limits
to its accuracy that are comparable to LIGO’s accuracy
needs [12, 19, 20]. To that extent, such waveforms can
only be said to be GR waveforms up to a certain degree
of accuracy; they are only GR approximants.

While there are approximants available, and in the
process of being developed, that include higher-order
modes [21–23], in this paper we will restrict ourselves
to the dominant l = |m| = 2 modes only [24].

A. TaylorF2

For completeness, we reproduce here the TaylorF2 ap-
proximant [18] that models the ` = |m| = 2 modes of
GWs from binaries inspiraling on quasi-circular orbits.
The TaylorF2 approximant is obtained by applying the
stationary phase approximation to a PN treatment of the
two-body problem that assumes large separations and
non-relativistic speeds. It is analytic with no free model
parameters, meaning it exists independent of calibration
to any NR waveforms. The leading order amplitude and
phase of h̃TF2(f), in geometrized units where G = c = 1,
can be written as:

h̃TF2(f) =

√
2η

3π1/3
f−7/6eiφTF2 , (1)

φTF2 = 2πftc − φc − π/4

+
3

128η
(πMf)−5/3

7∑
i=0

φi(πMf)i/3, (2)

where overhead tilde denotes that the quantity has been
Fourier transformed into the frequency domain. The
above equations give the frequency-domain waveform for
a binary with component masses m1 and m2, with to-
tal mass M = m1 + m2 and symmetric mass ratio
η = m1m2/M

2, that coalesces at a time tc with a co-
alescence phase of φc. Here φi are the coefficients corre-
sponding to the PN expansion, where each coefficient de-
pends on intrinsic binary parameters. We refer the reader
to Eq.(318) in [18] for the spin-independent φi. The
TaylorF2 portion of IMRPhenomD is supplemented with
additional spin-dependent corrections, which are given
in [16].

B. IMRPhenomD

The waveform approximant to which we apply the ppE
correction is the IMRPhenomD approximant described
in [16]. This is a frequency-domain approximant to the
h̃22(f) GW mode. The approximant is split into three
frequency regimes, denoted as the inspiral, intermediate,
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and merger-ringdown regimes. The inspiral regime ex-
tends from the low-frequency limit of the waveform up to
a frequency of Mf = 0.018 in geometrized units, while
the intermediate region extends from this point up to
f = 0.5fRD, where fRD is the ringdown frequency of the
final Kerr black hole resulting from the coalescence.

In frequency-domain approximants, it is common to
factor the strain h̃GR(f) into separate amplitude and
phase components:

h̃(f) = A(f)eiφ(f). (3)

In the IMRPhenomD approximant, both A(f) and φ(f)
are given as piecewise functions, with each piece corre-
sponding to a different frequency regime.

In the inspiral regime, the IMRPhenomD waveform is
the same as that of the TaylorF2 approximant, includ-
ing the terms corresponding to higher-order PN correc-
tions in both the phase and amplitude. The full TaylorF2
phase used by IMRPhenomD is given by (2).

In the intermediate regime, the IMRPhenomD phase
is given by

ηφInt = β0 + β1f + β2 log(f)− β3

3
f−3, (4)

where β0 and β1 serve to ensure continuity and differ-
entiability, and β2 serves as a fitting coefficient used to
reproduce NR waveforms to a desired tolerance.

In the merger-ringdown regime, the IMRPhenomD
phase is given by

ηφMR = α0 + α1f − α2f
−1 +

4

3
α3f

3/4

+ α4 tan−1

(
f − α5fRD

fdamp

)
, (5)

where α0, and α1 ensure continuity and differentiability
of the phase across the two regimes. The remaining pa-
rameters α2, α3, α4, α5, fRD, and fdamp are determined
via fits to NR simulations of GR mergers.

III. PPE APPROXIMANTS

Introduced by Yunes and Pretorius, the parameter-
ized post-Einsteinian (ppE) formalism provides a way
to modify frequency-domain GR waveforms according to
the leading PN order deviation predicted by a beyond-
GR theory [13]. The ppE framework consists of four
parameters, α, β, a, and b. The modification to the GR
waveform is given by:

h̃ppE(f) = h̃GR(f)(1 + αua)eiβu
b

. (6)

The parameters α and β quantify the amplitude and
phase deviation from h̃GR, while the parameters a and b
are selected by the beyond-GR theory that is being con-
sidered. The quantity u(f) = (πMf)1/3 is the Keplerian
velocity of the orbit.

The additional terms that appear in h̃ppE(f) corre-
sponding to a and b can be seen as corrections of a PN
order relative to those that appear in h̃GR(f). The rela-
tive PN orders of the correction terms that appear for a
choice of a and b are a/2 and (b + 5)/2, respectively. If
we look at Eq. (6), we can see that the exponent a ap-
pears in the term with coefficient α, which controls the
deviation in the amplitude, while the exponent b appears
in the term with coefficient β, which controls the devi-
ation in the phase. As the matched filtering process is
much more sensitive to changes in the phase than in the
amplitude, in this paper we will ignore the effects of the
amplitude term, setting α to zero.

In Table I, we list a few examples of beyond-GR theo-
ries with their corresponding values of a and b.

A. Inspiral Correction

The ppE parameters α and β correspond to the
leading-order PN corrections to GR predicted by the
beyond-GR theory under consideration. The ppE correc-
tions to higher order are unknown, so the ppE-corrected
waveform can be expected to deviate from the true
beyond-GR waveform at higher frequencies. Recently,
numerical simulations have been successful in evolving bi-
naries in some beyond-GR theories through merger [12].
These numerical waveforms can be used to extend the
ppE model to higher frequencies. The β-ppE correction
is applied in the inspiral regime, which extends up to
Mf = 0.018 in the IMRPhenomD model.

B. Post-inspiral-β Corrections

Besides changes to the phasing that might occur in
the inspiral because of beyond-GR effects, an additional
modification that might occur is a change in the merger
time caused by a change in the inspiral rate. This raises
the question of how we might extend the simple ppE
model beyond the inspiral regime while still preserving
the physical plausibility of the model. We examine a pro-
gression of increasingly sophisticated models to see how
this merger-time modification naturally arises out of ex-
tending the inspiral correction in a manner that preserves
continuity and differentiability. The difference between
each of these models is determined by the choice of the
ppE phase correction, denoted as ∆φppE. The amplitude

TABLE I. The values of a and b corresponding to each beyond-
GR theory, along with the PN order of the phase correction.

a b PN
dCS 4 −1 2

Einstein-Æther 0 −5 0
EdGB −2 −7 −1
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h̃GR(f) is left unchanged in each case. The generic form
of the ppE correction where the phase is modified is then
given by:

h̃ppE(f) = h̃GR(f)ei∆φppE(f). (7)

We now consider various methods for handling the ppE
phase correction beyond the inspiral regime.

1. Zero Correction

For completeness, we include the case here where we do
not include a post-inspiral correction at all, and instead
truncate the ppE waveform at a particular frequency fIM.

h̃Trunc
ppE (f) =

{
h̃GR(f)eiβu

b

, f < fIM,

0, fIM ≤ f.
(8)

2. C0 Correction

Although the IMRPhenomD model is constructed to
be C1 in its phase, we include the C0 correction here to
be able to make comparisons against a naive post-inspiral
correction that is not physically motivated.

∆φC0
ppE(f) =

{
βub, f < fIM,

βubIM, fIM ≤ f,
(9)

where uIM is defined to be u(fIM). As seen in Fig. 1, such
a correction may not necessarily result in an obviously
pathological waveform.

0.20 0.15 0.10 0.05 0.00
t(s)

1.0

0.5

0.0

0.5

1.0

h

1e 18GW Strain, GR vs C0 ppE- (aligned), b = 1
GR

= 1 (aligned)

FIG. 1. A GR waveform with its ppE-C0 counterpart. De-
spite being less physically motivated than other ppE schemes,
the correction still results in a waveform that is not obviously
unphysical. The mergers have been aligned in time and in
phase. The amplitudes of the two waveforms are also plotted.

3. C1 Correction

The C1 correction is the first post-inspiral correction
that is physically motivated.

∆φC1
ppE(f) ={

βub, f < fIM,

βubIM(1 + b
3 ((u/uIM)3 − 1)), fIM ≤ f.

(10)

As seen in Fig. 2, the additional post-inspiral term in-
duces a shift in the merger time and phase that leaves
the two waveforms identical in the merger after this shift,
which is linear in frequency, has been subtracted off.
As the ppE-β correction is only applied in the inspiral
regime, this scheme is a good candidate for extending the
correction into the merger/ringdown regime with mini-
mal assumptions.

0.20 0.15 0.10 0.05 0.00
t(s)

1.0

0.5

0.0

0.5

1.0

h

1e 18GW Strain, GR vs C1 ppE- (aligned), b = 1
GR

= 1 (aligned)

FIG. 2. A GW in GR plotted against its ppE-β counterpart
in the time domain. The ppE waveform has been shifted in
phase and time such that both waveforms have the same tc
and φc. In the frequency domain, aligning the waveforms in
time renders them identical after MfIM = 0.018, which is
reached 0.05s before merger for this M = 80M� binary. In
the time domain, dephasing becomes apparent a few cycles
before merger, but there is minimal amplitude disagreement
between the two GWs.

4. C∞ Correction

We also include the C∞ correction for the sake of com-
pleteness:

h̃C∞ppE(f) = h̃GR(f)eiβu
b

. (11)

For some values of b and β the extension of the inspiral
correction into the merger regime leads to significant dis-
tortion of the waveform. We compute an upper bound
on the value of β that is compatible with this type of
correction. This motivates the need for a novel extension
of the ppE correction into the intermediate and merger
regimes.
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C. Post-inspiral-βε Correction

The ppE-β correction is extended into the intermedi-
ate and merger-ringdown regimes by demanding conti-
nuity and differentiability of the phase across frequency
regimes. This is equivalent to changing the parameters
β0, β1, α0, and α1 in the IMRPhenomD approximant
(see equations (4) and (5)). Consequently, the intermedi-
ate and merger-ringdown portion of the ppE-β corrected
waveform is unchanged with respect to that of the orig-
inal GR wavefrom from which it was constructed, albeit
with a phase and time shift.

1. Merger Time Correction

These shifts are given by:

φβ =

(
1− b

3

)
βubIM (12)

tβ =
−b
3

βubIM
2πfIM

. (13)

This corresponds to the displacement of the peak GW
amplitude in time and can be arranged such that at
t = tc, the GW reaches its peak amplitude in both the
GR case as well as the ppE corrected case. The ppE-β
correction used is the C1 correction ∆φC1

ppE (see Eq. 10).
In Fig. 3, we show the effects of promoting the second

of the βs, which affects the u3 term, into an additional
free parameter ε that controls the merger time.

0.20 0.15 0.10 0.05 0.00
t(s)

1.0

0.5

0.0

0.5

1.0

h

1e 18 GW Strain, GR vs ppE- (aligned), b = 1
GR

= 1 (aligned)
= 1, = 2 (aligned)

FIG. 3. A GW in GR plotted against its ppE-β and ppE-βε
counterpart in the time domain. The ppE waveforms have
been shifted in phase and time such that all waveforms have
the same tc and φc. In the frequency domain, all waveforms
are identical after f = 0.5fRD. In the time domain, dephasing
becomes apparent a few cycles before merger, and the dephas-
ing is more significant for the the ppE-βε waveform. There is
minimal amplitude disagreement between the three GWs.

2. IMRPhenomD Compatibility

The IMRPhenomD model uses a GR phase approxi-
mant that is C1 in frequency, so both the ∆φC0

ppE and
∆φC1

ppE post-inspiral phase corrections can be absorbed
into a redefinition of the IMRPhenomD coefficients. This
leaves the phase evolution ∆φ′ppE(f) entirely expressible
in terms of the IMRPhenomD parameters. This means
that an IMRPhenomD waveform corresponding to a GR
signal can be found such that the two frequency wave-
forms match exactly in the inspiral. In the C0 case, this
corresponds to a change in the coalescence phase of the
original GR waveform. In the C1 case, this corresponds
to a change in both the coalescence phase and coales-
cence time of the original GR waveform. In Fig. 4 we
show how this C1 agreement between the IMRPhenomD
model and the ppE correction scheme is reflected in the
fact that the derivatives of the Fourier phases are iden-
tical in the merger/ringdown regime, barring a constant
offset corresponding to the time shift incurred by the ppE
modification.

0.8

0.7

0.6
d

/d
f

d /df, b = 1 (aligned)

fIM 0.5fRD 0.75fRD fRD
f(Hz)

0.8

0.7

0.6

d
/d

f

d /df, b = 1 (not aligned)
GR

= 1
= 1, = 2

FIG. 4. The derivative of the Fourier phase for both a GR
waveform (blue), its ppE-β counterpart (orange), and its ppE-
βε counterpart (green). The ppE-corrected waveforms are
identical in the inspiral regime, as can be seen on the bottom
panel. The ppE ε parameter controls the further deformation
of the waveform beyond MfIM = 0.018. The top panel illus-
trates how the three waveforms can have their mergers aligned
in phase and time after applying the different corrections.

3. Time-Shifting Property

Note that the time shift in the coalescence time in-
curred by extending the ppE-β correction into the merger
regime in a C1 fashion is not a prediction of the original
beyond-GR theory in the ppE-β framework. The ppE-β
correction is calculated using an assumption of a quasicir-
cular inspiral. One should not expect that the dynamics
of a merger in which this assumption breaks down can be
approximated in this way. This motivates us to extend
the ppE-β correction by generalizing the time shift such
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that it is controlled by a new parameter ε (cf. Eq.(13)):

tε =
−b
3

εubIM
2πfIM

. (14)

0.20 0.15 0.10 0.05 0.00
t(s)

1.0

0.5

0.0

0.5

1.0

h

1e 18 GW Strain, C1 ppE-  vs ppE- , b = 1
= 1
= 1, = 2

FIG. 5. A ppE-β corrected waveform plotted against its
ppE-βε corrected counterpart in the time domain. The ppE
waveforms have not been shifted in phase and time such that
all waveforms have the same tc and φc. The localized shift-
ing of the merger portion of the ppE-βε corrected waveform
relative to the ppE-β corrected waveform can be clearly seen.

0.0

0.5

1.0

|h
|

1e 18 GW Amplitude (aligned)
GR

= 1
= 1, = 2

0.20 0.15 0.10 0.05 0.00
t(s)

0.0

0.5

1.0

|h
|

1e 18 GW Amplitude (not aligned)

FIG. 6. The GW strain amplitudes after applying various
ppE corrections, with the mergers aligned in time in the top
panel. While the ppE-βε correction is a pure phase correc-
tion in the frequency domain, this is not the case after trans-
forming to the time domain. While the ppE-β corrected GW
suffers from less distortion, neither produce a GW amplitude
that is non-monotonic before tc.

This new parameter ε then parameterizes the change
in the merger time with respect to a GR merger with
the same intrinsic parameters. Note that the time shift
tβ in the ppE-β framework is determined by the C1 re-
quirement imposed on the waveform across the frequency
regimes. In the ppE-βε framework, the C1 requirement
is still imposed; the requirement is satisfied by modi-
fying the waveform in the intermediate regime through
changes in the parameters β0, β1, β2, and β3, which are

now functions of ε. The phase change in the inspiral-
merger regime is then given by:

∆φεppE(f) =
βub, f < fIM,

∆φInt(f, β, ε), fIM ≤ f < fMR,

βubIM + b
3εu

b
IM((u/uIM)3 − 1), fMR ≤ f,

(15)

where fMR is the frequency at which the merger-
ringdown regime begins. While IMRPhenomD uses
fMR = 0.5fRD, the authors note that the intermediate
regime ansatz performs best when fMR is taken to be
0.75fRD [16]. We take fMR to be 0.75fRD in this analy-
sis.

The form of ∆φInt(f, β, ε) is determined by the coeffi-
cients β0, β1, β2, and β3 that solve the following matrix
equation:


∆φεppE(fIM)
∆φε′ppE(fIM)
∆φεppE(fMR)
∆φε′ppE(fMR)

 =


1 fIM log(fIM) − 1

3f
−3
IM

0 1 1/fIM f−4
IM

1 fMR log(fMR) − 1
3f
−3
MR

0 1 1/fMR f−4
MR


β0

β1

β2

β3

 ,
(16)

which is straightforward to solve analytically. While
Eq. (15) gives the modification of the waveform, this is
not the modification that is applied when performing pa-
rameter estimation. The presence of the factor that is
linear in frequency in the ringdown regime causes the co-
alescence time to incur a shift after Fourier transforming
to the time domain; this linear factor is subtracted off
in order for the coalescence time tc to remain unchanged
for different choices of β and ε. Note that when a cor-
rection of non-zero β is applied to the inspiral regime
in the βε correction scheme, a corresponding correction
of ε = β must also be applied to the rest of the wave-
form such that the resultant waveform is equivalent to
a ppE-β corrected waveform satisfying the C1 continuity
condition. For example, in Fig. 5, a choice of ε = β = −2
would lead to the dotted orange curve lying on top of of
the blue curve. A choice of ε < β leads to the merger por-
tion of the ppE-βε corrected waveform having a shorter
duration than the merger portion of the ppE-β corrected
waveform. As this leaves the rest of the waveform intact,
it demonstrates how ε is a nearly independent parame-
ter from β, which only affects the inspiral portion of the
waveform, and thus can be measured separately. This
motivates the definition of a new parameter

δε = ε− β, (17)

representing the excess phase shift incurred on top of
what would be incurred by merely extending the ppE-β
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correction in a C1 fashion. Our parameter estimation is
thus done in β and δε. In Fig. 6 the GW strain ampli-
tudes are plotted demonstrating that the monotonicity
of the amplitude is preserved after the ε modification of
the merger-ringdown portion of the waveform, indicating
that the time-shifting property of the ε modification is a
physically plausible one.

IV. PARAMETER ESTIMATION

In order to determine the characteristics of the two
compact objects that generate a detected GW, one finds
the model parameters for a template waveform that best
corresponds to the data. For GR approximants there may
be up to fifteen such parameters, which includes extrin-
sic parameters determining the sky location of the binary
as well as intrinsic parameters corresponding to binaries
that are physically distinct in their source frame. The
ppE-βε corrected waveforms have two additional param-
eters, corresponding to beyond GR modifications in the
inspiral and intermediate regimes. Constraints on these
parameters can also be obtained using matched-filter pa-
rameter estimation, which allows us to begin examining
the degree to which the current GW data deviates from
GR, if at all.

A. Match

It may be the case that the GWs that observatories are
detecting are beyond-GR in nature. That these observa-
tories are still able to identify GW events in the data
using GR templates tells us that the theory of gravity
describing these GWs must not be too dissimilar from
GR at these scales. To quantify the amount of mismatch
between a GR waveform and a ppE-corrected waveform
with non-zero β, we use the match, defined as follows:

match(h, hppE) =

max
tc,φc

<
∫
dfĥ∗(f)ĥppE(f)e−2πiftc+iφc√∫

dfĥ∗(f)ĥ(f)
√∫

dfĥ∗ppE(f)ĥppE(f)
. (18)

where ĥ(f) is the noise-weighted Fourier-domain wave-
form h̃(f)/Sn(f), and Sn(f) is the corresponding noise
curve.

Using the ppE framework, we can produce waveforms
that are distinguishable from GR. We then compare the
similarity between the ppE modified waveform and the
unmodified GR waveform using the match statistic be-
tween the two waveforms. This gives us a quantitative
handle on how large a ppE correction we can make to the
GR waveform.

B. Injection Recovery

In order to quantify the degree to which the beyond-
GR parameters can be recovered from GW data, we carry
out parameter estimation (PE) on simulated data. In
general, this is done by choosing a waveform model to
generate the signal to be injected in data that would be
analyzed by a Bayesian parameter estimation pipeline.
We then choose a second waveform model (which can
be the same as the first) to generate the templates with
which the matched-filtering is performed. We do not add
a noise realization (i.e. we use zero-noise) which is equiv-
alent to averaging over an ensemble of different noise
realizations [25]. We use the zero-detuning high-power
Advanced LIGO noise curve for computing the Bayesian
likelihood.

To establish a baseline for how well parameters can
currently be determined from GW data, we show the re-
sults of a parameter estimation run using IMRPhenomD
templates on IMRPhenomD injections. This stands in for
the case where we assume GR is a sufficiently accurate
model of gravity for the purposes of our current GW data.
Next, we want to explore what happens if we use GR-
approximants for templates when the underlying signal
is beyond-GR in nature. We represent this possibility by
showing the results of a PE run using IMRPhenomD tem-
plates on ppE-corrected IMRPhenomD injections. The
posteriors can then be compared against the GR-to-GR
case where the templates match the underlying theory.
We expect a slight broadening and biasing of the poste-
riors as the GR model becomes a poorer approximation
to the beyond-GR injections. We then show the case of a
PE run where a ppE-corrected template is used against
a ppE-corrected injection. In this case we expect to re-
cover the underlying parameters of the binary to a sim-
ilar accuracy as in the GR-to-GR case. Finally we show
the case of PE with a ppE template against a GR injec-
tion, to represent the case where the new ppE model is
used before GW detectors have the sensitivity to capture
beyond-GR effects in GW data.

To simulate the effects of accumulating a large amount
of GW signals that are beyond-GR in origin, we conduct
the PE runs in the zero-noise limit. While an individual
event may have a small SNR, having multiple detectors
in place allows us to combine the detector data to allow
the signals to add constructively, increasing the overall
SNR. The zero-noise limit occurs in the limit of having
infinitely many detectors for a single event [26]. Although
one may also consider combining signals from multiple
events, this must be done carefully as beyond-GR effects
may manifest differently in binaries that have different
parameters from each other.

1. Parameter Estimation Algorithm

The parameter estimation is done via a Markov Chain
Monte Carlo (MCMC) algorithm within PyCBC Infer-
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ence [27], in which trial waveforms are sampled from a
parameter space and then compared against the simu-
lated data. Using the likelihood, subsequent waveforms
are sampled in a probabilistic fashion, resulting in a chain
of samples. If done correctly, the resulting distribution
of samples approximates the posterior distribution. One
detail of MCMC is that the sampling process resembles
a random walk, and the samples that make up the ini-
tial steps of the random walk may not be representative
of the posterior distribution, because of being initialized
in, or stepping into, a region that should be exponen-
tially less populated. These samples are identified and
eliminated in a procedure known as burn-in. There are
multiple procedures for estimating when the chain has
burned in; we use the nacl and max_posterior methods
defined in PyCBC.

In our parameter estimation runs we use an extension
of MCMC that makes use of what is known as parallel
tempering. Parallel tempering initializes multiple chains
that explore the parameter space according to the “tem-
perature,” which modifies the effect the likelihood has on
the next iteration of the chain. This allows the chains to
more efficiently explore the parameter space than could
be done using only a single temperature.

The particular MCMC settings that have been used
are given in table II.

2. Choice of Prior Parameters

In this section we discuss the effect the choice of prior
has on the recovery of the parameters of a GR injec-
tion. At present, no measurable non-zero β-deviation
from GR has been detected in GW data [28]. However,
we can do better than to start with an arbitrarily wide
uniform prior on β. From our match approximant, we
can identify values of β for which the match would drop
as low as 95%; we do not need to consider values of β that
would cause a higher mismatch as such deviations from
GR would have been identified already [4]. For a fixed
mismatch, we can also examine what effect the mass has
on the value of β needed to produce such a mismatch.
At higher total masses, the lower frequency portions of
the waveform, which are identically GR in the ppE-β
framework, dominate the SNR and a higher value for β
is needed for mismatches arising from the modified inspi-
ral to be significant. This effect become more pronounced
as one changes the value of the ppE parameter b in the
exponent of the phase change term. In this paper we
are examining posteriors in β and δε (see (17)) for only
a single value of b, so even though the masses are not

TABLE II. The MCMC parameters used to perform the pa-
rameter estimation examined in this paper.

Nwalkers Ntemps N
Eff.
samples N

Max
perChain Burn-in Test

3000 4 3000 3000 nacl | max_posterior

held fixed, a fixed prior over β and δε is sufficient for our
purposes.

The particular prior choices that have been used are
given in table III.

3. Choice of Injection Parameters

In Table IV, we list the different injections over which
we have done parameter estimation runs. These values
are the same as those used in the parameter estima-
tion example in the PyCBC documentation. The masses
probed are those most most likely to be found by detec-
tors with noise curves similar to LIGO [6]. In this paper
we only consider equal-mass injections, but the parame-
ter estimation does not assume this.

4. GR Injection, GR Approximant

In order to have a baseline for how well we can expect
the beyond-GR parameters to be recovered, we must first
examine the degree to which the ordinary GR parameters
can be recovered using the unmodified IMRPhenomD ap-
proximant. In Fig. 7 we show the posterior recovered for
two chosen parameters, the coalescence time tc and the
chirp massM = (m1m2)3/5/(m1 +m2)1/5. In Fig. 8, we
show the posterior distribution recovered for the chirp
mass for each GR injection. Using the widths of the
initial posteriors as a baseline, we repeat the parameter
estimation on the GR injection using the ppE-β approx-
imant. If using the β-modified ppE approximant causes
the spreads to widen too broadly, then parameter esti-
mation may not be too useful anymore.

5. GR Injection, ppE Approximant

We now examine the results of parameter estimation
runs where the injection is a GR waveform, but the tem-
plate used to recover parameters is of a ppE nature. In
this case, the parameter estimation will attempt to re-
cover values of β and ε (via δε) in addition to the stan-
dard GR parameters. Since the underlying signal is GR
in nature, we expect the recovered values of β and ε to
be consistent with zero. As we only vary the injections
over the mass of the system, there are only five injections
created. In Fig. 9, we show the posteriors recovered for
four chosen parameters, the coalescence time tc and the

TABLE III. The parameters of the priors used to perform the
parameter estimation examined in this paper.

param. tc m1 m2 φc β δε
Dist. Unif. Unif. Unif. Unif. Angle Unif. Unif.
Min 1126259462.32 10 10 n/a -20 -20
Max 1126259462.52 80 80 n/a 20 20
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FIG. 7. A corner plot showing the result of using a GR
approximant as the underlying template when the underlying
signal is GR in nature. The red lines mark the values of the
parameters of the injection that are to be recovered. In this
case the the injection is an equal-mass binary with a total
mass of 80 solar masses.

chirp mass M as before, and now the ppE parameters
β and ε. We note that the peaks of the posteriors for tc
andM are offset slightly from the posteriors recovered in
Fig. 7. This offset reflects the change in the parameters
recovered by the introduction of the additional parame-
ters β and ε. Despite this offset, the injected value still
lies within the 90% contour lines. In Fig. 8 we also see
how the posteriors for the chirp mass change after the in-
troduction of β and ε to the approximant. The injected
value is still contained within each posterior across the
masses probed, but the posteriors have also widened by
a factor of roughly four compared to the GR approxi-
mant case. The biases in the beyond-GR approximant
case are also larger than they are in the GR case. The
biases in the GR case are a result of the injections’ loud
SNR (∼ 300) uncovering the bias present in the choice of
prior for chirp mass resulting from assuming a uniform
prior in (m1,m2). The biases in the beyond-GR case are
due to intrinsic degeneracies between the chirp mass and

TABLE IV. The parameters used to generate the injections
examined in this paper. Each of these entries corresponds to a
set of 25 injections with (β, δε) in the range of [−3, 3]×[−3, 3].

param. ra dec ι φc ψ dL(Mpc) m1 m2

set 1 2.2 -1.25 2.5 1.5 1.75 100 30 30
set 2 2.2 -1.25 2.5 1.5 1.75 100 35 35
set 3 2.2 -1.25 2.5 1.5 1.75 100 40 40
set 4 2.2 -1.25 2.5 1.5 1.75 100 45 45
set 5 2.2 -1.25 2.5 1.5 1.75 100 50 50

FIG. 8. Posterior distribution results of the chirp mass M
from ten separate parameter estimation runs, each of a sys-
tem with a different total mass. The five runs shown in dot-
ted lines correspond to an unmodified IMRPhenomD approxi-
mant. The black vertical line indicates the point around which
the posterior would be centered in the case whereM is recov-
ered perfectly. Also shown in solid lines are five runs with the
same injections as the first five, where the approximant used is
the ppE-βε modified IMRPhenomD approximant, where the
ppE exponent b has been set to −1. The biases in the GR
case are a result of the injections’ loud SNR (∼ 300) uncover-
ing the bias present in a uniform prior in (m1,m2), while the
biases in the beyond-GR case are due to intrinsic degeneracies
betweenM and the newly introduced β and ε.

the newly introduced β and ε. These biases are relatively
smaller compared to statistical errors, which will be much
larger for signals with realistic SNRs (compared to our
injection SNR). They are therefore unlikely to affect the
rest of the analysis.

6. ppE Injection, GR Approximant

In this section, we examine the results of parameter
estimation where the injection is a ppE waveform, while
the template is of a GR nature. In this case, there are no
β or ε parameters in the template, and therefore there
are no β nor ε posteriors recovered. However, because
the injections are of a ppE nature, they are created with
varying β and ε values. In this way, we can simulate
how the presence of beyond-GR effects might instead be
determined to be a GR signal, albeit one with slightly
different parameters. In Fig. 10 we can see an example
of this; the posteriors recovered correspond to that of a
more massive system.

7. ppE Injection, ppE Approximant

Finally, we examine the results of parameter estima-
tion where both the injections as well as the templates
are of a ppE nature. In this case, each injection is cre-
ated with differing values of β and ε, and the templates
will attempt to recover the standard GR parameters as
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FIG. 9. A corner plot showing the result of using a ppE-βε
approximant as the underlying template when the underlying
signal is GR in nature. The red lines mark the values of the
parameters of the injection that are to be recovered. Note
that even in the case of a GR signal, which has β = 0 and
ε = 0, non-zero values are recovered. The injection is an
equal-mass binary with a total mass of 80 solar masses.

well as β and ε for each of these cases. In Fig. 11 we see
how both the β and δε posteriors contain the injected
value, indicating that both are simultaneously recover-
able. The joint posterior distribution indicates that the
correlation between β and δε is less than or comparable
to the correlation between either of these to the remain-
ing parameters. We also examine the posteriors where
each injection is created with a different value of total
mass. In Fig. 12 and Fig. 13 we see that while the pos-
teriors drift as the total mass changes, the injected value
still lies inside the posterior. We note that the posteriors
for δε are narrower than those for β, and that this width
is largely independent of the mass. This is possibly due
to ε controlling deviations in the waveform that occur
at a higher frequency and amplitude than the deviations
introduced in the inspiral regime by β.

8. ppE-βε correction

In the previous sections, we have examined whether
the introduction of the β and ε parameters spoils the
recovery of GR parameters. To do this, we compared
the posteriors for coalescence time tc and chirp massM
before and after this introduction, and found that the
recovery is not spoiled.

In Fig. 8 we show this result is robust for the mass
range probed by LIGO. where the injection is generated
using IMRPhenomD and the template is the βε-corrected

FIG. 10. A corner plot showing the result of using a GR
approximant to model parameter estimation templates when
the underlying signal is ppE-βε in nature. The red lines mark
the values of the parameters of the injection that are to be
recovered. In this case the the injection is an equal-mass
binary with a total mass of 80 solar masses, with β = −3
and δε = -1. The injected values for the chirp mass and the
coalescence time are outside the domains of the plot, so their
corresponding red lines are not visible.

IMRPhenomD, in the limit of zero noise.
Assuming the SNR is high enough to recover an accu-

rate estimate of β, we can ask whether it is possible to
recover the value of ε as well. One advantage of the ε ex-
tension to the ppE framework is that it is not necessary
for β to be recoverable for ε to be recovered as well. De-
pending on the total mass of the binary, a different part
of the GW is in the LIGO band. Smaller mass binaries
inspiral at higher frequencies, leaving more cycles in GW
data. These longer inspirals aid in the recovery of β. On
the other hand, if the GW is from a larger mass system,
the power that is in the LIGO band is concentrated in the
intermediate/merger-ringdown regime. As the ε parame-
ter controls the deviation from GR in this region, it may
still be recoverable in cases where β is not. With multi-
ple runs one can quantify how the width of the posterior
behaves in the βε parameter space. When we plot the
posterior distributions from different injections on top of
one another, we see how sensitive the shape and loca-
tion of the posteriors are on the beyond-GR parameters.
To make clear how the parameters β and ε control the
waveform in different frequency regimes, we repeat the
parameter estimation runs on injections of different total
masses. As expected, when the total mass is smaller, is
it the higher-frequency inspiral portion that lies within
the LIGO band, and so the distinguishability of different
values of β is higher for lower system masses. Likewise,
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FIG. 11. A corner plot showing the result of using a ppE-βε
approximant as the underlying template when the underlying
signal is also of a ppE-βε nature. The red lines mark the val-
ues of the parameters of the injection that are to be recovered.
We note that the posteriors recovered are not significanly dif-
ferent from the posteriors recovered in the GR injection, GR
approximant case, and in the GR injection, ppE approximant
case. As in the previous cases, the injection is an equal mass
binary with a total mass of 80 solar masses, with β = −3 and
δε = -1.

for higher mass systems, the lower-frequency merger falls
within the LIGO band, and so the distinguishability of
the different values of ε are higher here.

That β and ε are independently recoverable is demon-
strated best by posterior distributions like those shown in
Fig. 11. Even as the late-inspiral parameter ε is changed,
the resulting posterior distribution for β appears to still
contain the injected value. Demonstrating that this is
the case is left to future work. While this relationship
changes as the total mass of the system changes, depend-
ing on which parts of the inspiral fall into LIGO’s sen-
sitivity curve, it can be seen that both parameters are
sufficiently distinguishable when both the inspiral and
merger fall within LIGO’s sensitivity curve.

V. CONCLUSION

With tens of gravitational-wave detections in every
observing run, LIGO and Virgo observatories provide
an intimate window into highly dynamical gravity [8].
This provides for a valuable opportunity for us to probe
for any possible deviations from General Relativity that
may manifest in GW signals. While a theory-specific
approach remains both analytically and computation-
ally prohibitive, Yunes & Pretorius (YP) proposed a
phenomenological approach to measure beyond-GR ef-

FIG. 12. Posterior distribution results of the ppE parameter
β from five separate parameter estimation runs, each of a sys-
tem with a different total mass, plotted on top of one another.
Each run uses a ppE-βε modified IMRPhenomD approximant
waveform, where the ppE exponent b is set to -1. The black
vertical line indicates the point around which the posterior
should ideally be centered, in the case where β is recovered
perfectly.

FIG. 13. Posterior distribution results of the ppE parameter
ε from five separate parameter estimation runs, each of a sys-
tem with a different total mass, plotted on top of one another.
Each run uses a ppE-βε modified IMRPhenomD approximant
waveform, where the ppE exponent b is set to -1. The black
vertical line indicates the point around which the posterior
should ideally be centered, in the case where ε is recovered
perfectly.

fects in GW signals [13], called the parameterized post-
Einsteinian framework.

In this paper we have presented a crucial extension
that takes the ppE framework beyond the inspiral regime
into the intermediate and merger-ringdown regimes. Our
extended-PPE framework is implemented as a generaliza-
tion of the IMRPhenomD approximant [16] and invokes
one additional parameter that corresponds to a change
of coalescence rate during post-inspiral and up to the fi-
nal merger time. It can be easily generalized to use any
GR-based waveform model as a base though.

We demonstrate that the recovery of the additional pa-
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rameters in the extended-ppE framework does not signif-
icantly alter the precision with which we can recover the
posteriors for other parameters of the model, including
the masses of individual components as well as inspiral
ppE parameters. This allows us to perform parameter es-
timation using ppE-corrected waveforms where only the
inspiral correction is known. The additional parameter in
the extended ppE model, ε, controls the degree to which
the inspiral correction (compared to GR based phasing)
is extended into the intermediate and merger regimes.

For high values of the signal-to-noise ratio, deviations
from GR, controlled by the ppE parameters β and ε, be-
come significant enough to be measurable. Above a cer-
tain SNR, a value of zero for β or ε falls outside the 95%
credible intervals for their posterior probability distribu-
tions if GR is not valid. The value of the ppE parameter
b for which this occurs will determine the class of beyond-
GR theories that are most supported by GW data. We
defer a systematic study of this to future work. In future
work we propose to contrain both β and ε using the latest
catalog of LIGO-Virgo events.
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