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Abstract

In this paper, we explore automatic prediction of dialect density
of the African American English (AAE) dialect, where dialect
density is defined as the percentage of words in an utterance
that contain characteristics of the non-standard dialect. We in-
vestigate several acoustic and language modeling features, in-
cluding the commonly used X-vector representation and Com-
ParE feature set, in addition to information extracted from ASR
transcripts of the audio files and prosodic information. To ad-
dress issues of limited labeled data, we use a weakly super-
vised model to project prosodic and X-vector features into low-
dimensional task-relevant representations. An XGBoost model
is then used to predict the speaker’s dialect density from these
features and show which are most significant during inference.
We evaluate the utility of these features both alone and in com-
bination for the given task. This work, which does not rely on
hand-labeled transcripts, is performed on audio segments from
the CORAAL database. We show a significant correlation be-
tween our predicted and ground truth dialect density measures
for AAE speech in this database and propose this work as a tool
for explaining and mitigating bias in speech technology.
Index Terms: Dialect Density, Dialect Identification, African
American English, Fairness in ASR, Low-Resource Tasks

1. Introduction
This paper1 presents a novel framework for automatically as-
sessing a speaker’s dialect density. Dialect density is the degree
to which speech includes aspects of a dialect separate from the
mainstream dialect of the language [1]. A commonly used di-
alect density measure is the number of non-standard dialect to-
kens that appear in an utterance divided by the number of words
in the utterance. Previous literature [2] shows that high-dialect
speakers often face more socioeconomic discrimination and
bias in early education than their low-dialect counterparts. The
work in [3] demonstrates that the performance of ASR systems
trained to recognize General American English (GAE) degrades
when performing recognition on high dialect density African
American English (AAE). As dialectal changes are composed
of both phonological and morphosyntactic aspects [4], dialect-
heavy speech can present challenges to both the acoustic model
and the language model (LM) of an ASR system. There is cur-
rently a lack of training data needed to train ASR systems to rec-
ognize AAE speech with the same fidelity they display for GAE
speech, and no investigation on low-resource methods has been
done in this area before. As a result, bias against speakers of
AAE and other dialects can propagate through spoken language
systems, creating inequitable outcomes in the technology.

1This work is supported in part by the NSF.

To alleviate this issue, one could create an ASR system that
first predicts the dialect density of its user given a small amount
of speech and subsequently adjusts its model or model hyperpa-
rameters to best recognize speech of the target speaker’s dialect.
This strategy has been applied with wide success to accented
speech recognition [5, 6, 7]. However, several differences exist
between accent and dialect identification that make it difficult to
directly apply previous work to dialect density prediction: First,
accents are generally considered to be a binary characteristic.
That is, each speaker either does or does not have a given ac-
cent. Dialect density is considered to be a continuum in which
some speakers of a dialect possess more dialectal attributes than
others. As a result, previous work in accent-robust ASR typi-
cally only considers accent identification as a binary classifica-
tion problem and does not lend itself well to identifying the de-
gree of difference from mainstream speakers. Second, most ac-
cent identification systems do not explicitly consider grammar
and within-language diction as relevant to their task. However,
dialects can be composed of a variety of changes in pronunci-
ation, grammar, and diction which make them difficult to char-
acterize by looking at any one feature of speech individually. In
addition, speakers may also consciously change the amount of
dialect they use depending on social context (translanguaging
or code switching) [8], making it difficult to assign a consistent
dialect density measure to a long portion of a speaker’s speech
as one would with a type of accent.

For these reasons, new methods are needed in order for ma-
chines to accurately infer dialect density. Although a primary
use of this technology is in dialect-robust ASR, dialect den-
sity estimation could also be beneficial in data mining speech
of a particular dialect, ensuring fair training of speech-language
technologies, and evaluating human bias against speakers of di-
alects. In this work, we propose a new method of automatic
dialect density estimation for African American English from
short utterances in a low-resource task. We first analyze the cor-
relation of several commonly-used and novel speech features in
predicting dialect density (Sec. 2). We then utilize a combina-
tion of the most effective of those features in order to create a
model that best estimates the dialect density of a target speaker
(Sec. 3). We follow our results with a discussion (Sec. 4) and
conclusions (Sec. 5) on the usefulness of the features in predict-
ing dialect density.

2. Methods
2.1. Data

We use speech samples from the Corpus of Regional African
American Language (CORAAL) [9]. This database contains
spoken interactions between an interviewer and an interviewee
who speaks a regional variant of AAE. The set of speakers
range in age from approximately 20 to 80 years old and con-
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tains roughly equal numbers of male and female identifying
participants. The original sampling frequency is 44.1kHz. We
down-sampled the audio files to 16kHz in all experiments. We
used the following numbers of speakers with regional AAE di-
alects from five US cities: 22 speakers from Washington DC
(DCB), 10 speakers from Princeville, NC (PRV), 11 speakers
from Rochester, NY (ROC), 10 speakers from Lower East Side
Manhattan, NY (LES), and 12 speakers from Valdosta, GA
(VLD). For each speaker, several utterances with good audio
quality ranging in length from 5sec to 1min were selected, and
their dialect densities were scored by hand as ground truths. The
subset of speakers from DCB, PRV, and ROC were chosen be-
cause their dialect densities were annotated by the authors of
[3]. All speakers from VLD and LES were used, and their di-
alect densities were scored by the authors of this paper. This
results in a total of approximately 3 hours of dialect density-
scored utterances from 65 speakers. This data set was split into
speaker independent sets for which 70% was used in training,
15% was used in validation, and 15% was used in testing.

2.2. Feature Extraction

From each utterance, we extracted the following six feature sets:
Wav2Vec2.0 Transcripts: For the first three feature sets,

we generated ASR transcripts using a pretrained Wav2Vec2.0
model [10] trained on the 960hr LibriSpeech database [11].
While these transcripts contained errors and misrepresented the
out-of vocabulary (OOV) words, we implicitly attempted to uti-
lize consistent errors and accurate portions of the transcripts to
identify useful phonetic and grammatical information.

1. ASR Output Character Combination Frequency: The
frequency of each sequence of two characters (bigram) in the
transcript was counted and used as a feature. The Wav2Vec2.0
model can output 31 different characters leading this feature to
be a 961 x 1 vector which can be thought of as the flattened 31 x
31 matrix in which the element in row i and column j is the num-
ber of times character i was followed directly by character j in
the generated transcript for the given utterance. We hypothesize
that this feature will capture consonant clusters that commonly
occur in a particular dialect.

2. ASR Output Character Duration: From the output
logits of the Wav2Vec2.0 model, the average duration of each
output character was computed. We hypothesize that this fea-
ture will be useful in determining which sounds are more or less
frequently spoken or stressed by speakers of a particular dialect.

3. ASR Output Language Modeling: In addition to the
previously mentioned features, we were interested in how neu-
ral language modeling techniques could be applied to automat-
ically generated transcripts of speech in order to predict dialect
density. We noticed that, of the most commonly noted features
of AAE [1, 3], language differences relating to the tense, col-
location, and negation of verbs (eg. absence of copula, nega-
tive concord, generalization of “is” and “was” to use with plu-
ral and second person subjects, etc.) were especially prevalent.
This led us to pay particular attention to verbs. First, the verbs
in each utterance were found using a pre-trained FLAIR part-
of-speech tagging model [12, 13]. We then used the Fisher
corpus [14], consisting largely of GAE conversations, to train
word- and character-based LSTM language models, which pro-
vide probability distributions over the next word or character in
an utterance given the history. To measure mismatch of verbs in
the GAE training data and AAE testing data, we then extracted
the verb OOV rate (using the word-based model vocabulary)
and the average verb surprisal [15] (using the character-based

model) for each utterance, where the surprisal of the i-th word
(S(wi)) is calculated from the letter LM as:

S(wi) = − log(p(wi|wi−1, . . . , w1))

= −
li∑

j=1

log(p(ci,j |ci,j−1, . . . , c1,1))

where li is the length of the word wi with characters ci,j .
We also calculate the overall utterance perplexity from the
character-based model (char ppl), the average surprisal for all
words, and the ratio of average verb surprisal to average overall
surprisal. Since the LM is trained on GAE, word choices more
characteristic of AAE will have high surprisal.

4. CompareE16 Features: The widely used ComParE16
features [16] were extracted from the audio segments using the
OpenSmile toolkit [17]. This set includes pitch, energy, spec-
tral, cepstral coefficients (MFCCs) and voicing related frame-
level features which are referred to as low-level descriptors
(LLDs). It also includes the zero crossing rate, jitter, shim-
mer, the harmonic-to-noise ratio (HNR), spectral harmonicity
and psychoacoustic spectral sharpness. In total, this feature set
contains 6373 features resulting from the computation of vari-
ous statistics, polynomial regression coefficients, and transfor-
mations calculated over the low-level descriptor contours.

Weak Supervision: To create the following two feature
sets, we employed a weakly-supervised learning technique. We
noticed that the five cities used from the CORAAL database
have widely varying average dialect densities, with the aver-
ages from PRV and VLD being much higher than those from
ROC and LES, and with the DCB average in between. There-
fore, we believed that an utterance’s city of origin could serve
as a weak label in a preliminary step before dialect density es-
timation. We gathered the set of utterances from the entirety of
the 200hr CORAAL database from the five cities of interest that
matched the following criteria: 1) Contained at least 10 words
to have enough speech to estimate dialect density, 2) Contained
no interruptions from the interviewer 3) Were not contained in
the set of dialect density-scored utterances. We then used shal-
low neural networks to map larger input feature vectors into
5-dimensional vectors for which the ith element represents the
probability that the utterance was spoken by a speaker from the
ith city in the database. This step is intended to project larger
sources of information into smaller features vectors which con-
tain only relevant dialect information. The idea is that training a
model to classify diverse utterances by region would prompt it
to learn region-specific information such as dialectal traits with-
out the need to label the dialect density of all of the utterances
in the training set. The output 5-dimensional vector is then used
as the representative feature.

5. X-Vector: The popular X-vector was incorporated
to capture speaker-specific information [18]. These 512-
dimensional neural network-generated embeddings contain
speaker-specific information that may relate to dialect. As de-
scribed earlier, the 512-dimensional vectors were projected into
5-dimensional feature vectors using the fully connected net-
work shown in Figure 1. This network achieved a validation
accuracy of 72.6%.

6. Prosodic Embedding: Inspired by [19], four pitch and
energy features were extracted across time from the utterances:
F0 (extracted with Praat [20]), the total energy in the frame,
the energy in the spectrum below 1kHz, and the energy in the
spectrum above 1kHz. These features were then normalized
and used as the input to a CNN (as shown in Figure 1) that was



trained to predict the region of origin of the speaker. This forces
the CNN to classify region specific information from only the
prosodic information contained in the speaker’s changes in pitch
and energy. This CNN achieved a validation accuracy of 70.7%.
The output probability vector was then used as the final prosodic
embedding.

Figure 1: The architecture for the fully connected (FC) network
used to project the X-vectors (left) and the CNN used to project
the prosodic information (right). The inputs to the CNN are
the pitch (F0) and three energy contours of the utterance. The
output of both networks is a vector whose elements represent the
probability of the speaker belonging to each of the cities used
from the CORAAL database.

Figure 2: Overview of the features used in the proposed work.

2.3. Model Training

First, one distinct XGBoost model [21] was trained for each of
the six feature sets. This boosted decision tree model has the ad-
vantage of allowing us to easily measure the impact of the input
features on the output value for explainability. Each of the six
models was trained to predict dialect density scores from one of
the given input feature sets. Then the correlation between the
predicted dialect density labels and actual dialect density labels
was calculated. We chose correlation as the performance metric
because human-performed dialect density assessments are sub-
ject to possibly high inter-rater variability within the ranges of
their scores [22], and so evaluation methods that rely heavily
on the absolute value of the dialect density may be subject to
measurement noise. However, raters do tend to assign higher or
lower scores to the same speakers, and so we expect correlation

between predicted and ground truth scores to be meaningful. As
some features may only correlate with phonological aspects or
only correlate with morphosyntactic aspects of dialect density,
we train each model to predict each of the three types of dialect
density scores:

DDMphon =
Nph

N
DDMgram =

Nms

N

DDM =
Nph +Nms

N

where Nph is the number of phonological AAE tokens in the
utterance, Nms is the number of morphosyntactic AAE tokens
in the utterance, and N is the total number of words in the utter-
ance. The average dialect density for each city used is shown in
Table 1.

DDMphon DDMgram DDM
DCB 0.083 0.004 0.088
ROC 0.041 0.006 0.047
PRV 0.166 0.028 0.194
LES 0.018 0.025 0.042
VLD 0.122 0.029 0.141

Table 1: Average dialect density by city for each of the dialect
density measures shown.

Finally, we used the set of all features as the input to the
XGBoost model, as shown in Figure 2. As the ComParE feature
set was large, only the most impactful 10 ComParE features
were used in the combined feature set.

3. Results
Table 2 gives the Pearson Correlation of the predicted dialect
density measure with the ground truth labels for the test set for
an XGBoost model trained on the listed feature sets. We also
include the SHAP value plots [23] which give the relative im-
portance of each feature to the model during prediction. Figures
2 and 3 give the SHAP value plots for the models trained on all
features for predicting DDMphon and DDMgram, respectively.
As the DDMphon term dominiates the total dialect density mea-
sure, the SHAP value plot for DDM is nearly identical to that
of DDMphon. In these plots, the Wav2Vec2.0 Char Comb fea-
tures are listed as char1 char2 (e.g. N space is the frequency
of the “N” character being followed by a space character), and
the Wav2Vec2.0 Char Dur features are listed as the character
whose duration was used as the input feature from the letters
A-Z, period, apostrophe, space, or silence (sil) characters.

In order to demonstrate the reliability of our results, we
also perform random hold out on the highest performing fea-
tures. Here, we randomly select speaker-independent train and
test split (80% train, 20% test) from the data 200 times and re-
port the average scores over all runs in Table 3.

4. Discussion
Looking at the individual features, we note that the Wav2Vec2.0
Character Combinations and Wav2Vec2.0 LM features were es-
pecially effective in estimating dialect density. Many of the
character combinations appear to relate to word initial and word
final sounds (eg. N space (frequency of an “N” followed by a
space character in the ASR transcripts), F space (frequency of
an “F” followed by a space), and space U (frequency of a space



Correlation DDMphon DDMgram DDM
Wav2Vec2.0

Char Dur. 0.382 -0.013 0.359

Wav2Vec2.0
Char Comb 0.303 0.124 0.503

Wav2Vec2.0 LM 0.520 0.108 0.637
X-vector 0.404 0.392 0.369
ComParE 0.102 0.189 0.443
Prosody 0.029 0.376 0.008

All features 0.552 0.430 0.718

Table 2: Pearson Correlation between actual and predicted
dialect density measures for each of the three metrics: Only
the phonological component of the dialect density (DDMphon),
only the morphosyntactic component of the dialect density
measure (DDMgram), and the entire dialect density measure
(DDM). The results for the model trained on six feature sets in-
dividually as well as the model trained on the combination of
all of the features are shown.

Correlation DDMphon DDMgram DDM
Wav2Vec2.0
Char Comb 0.339 0.126 0.495

Wav2Vec2.0 LM 0.502 0.173 0.629
All features 0.569 0.385 0.678

Table 3: Average Pearson Correlation between actual and pre-
dicted dialect density measures for each of the three DDMs over
200 iterations of Random Hold Out validation.

followed by a “U”)). This is in line with observations that AAE
includes dropping of word final nasals and glides and simplifi-
cation of word initial and word final consonant clusters. Char-
acter perplexity (char ppl) from the language modeling features
was the most impactful feature in estimating all three DDM
scores. This feature is particularly useful in providing an ob-
jective distance metric between the GAE of the Fisher Corpus
and the ASR transcripts of the target dialect speech which, un-
like WER, does not require ground truth transcripts or suffer as
heavily in the presence of OOV words. The features derived
through weakly supervised embedding (projected X-vector and
Prosody embedding) have the most significant correlation with
DDMgram. This may indicate that learning grammar from au-
dio files or imperfect transcripts requires larger amounts of data
which our method of weak supervision allows us to utilize. In
general, the ComParE features using Auditory Rasta filtering
proved to be most useful. The RASTA-style filtered auditory
spectrum is inspired by psychoacoustics and has been shown to
capture context-dependent information useful in speech recog-
nition [24].

As Figure 3 shows, the combination of the five most impact-
ful features in predicting DDMphon was: character perplexity
(char ppl), mean rising slope of the Rasta-filtered auditory spec-
trum, the frequency of an “N” character followed by a space
character in the ASR transcripts (N space), the standard devi-
ation of distances between peaks in the Rasta-filtered auditory
spectrum, and the PRV component of the projected X-vector.
As Figure 4 shows, the five most impactful features in estimat-
ing DDMgram are character perplexity, duration of sounds pre-
dicted to be silence or unintelligible by Wav2Vec2.0 (sil), the

Figure 3: SHAP value plot for the XGBoost model trained to
predict DDMphon from the set of all features. The features are
listed from top to bottom in order of significance.

Figure 4: SHAP value plot for the XGBoost model trained to
predict DDMgram from the set of all features. The features are
listed from top to bottom in order of significance.

PRV component of the prosody embedding, the ROC compo-
nent of the projected X-vector, and the frequency of an “F” fol-
lowed by an “A” in the ASR transcripts (F A). The frequency
of F A as a feature may due to a raising of the vowel following
“F” in several words such as “fell” or “fire” as is seen in some
dialects of the US South.

5. Conclusions
In this work, we are able to predict dialect density with a high
correlation ( 68%) between the predicted and groundtruth labels
as well as explain a possible combination of factors that make
up dialectal differences in ASR. The results may improve when
other factors are considered such as finer aspects of prosody
or within-speaker variability. The system may also improve
with more accurate ASR transcripts. Overall, we have created
a novel framework from which to later explore these factors.
Future work includes further exploring the role of prosody in
dialect, applying this framework to other dialects, and applying
this work in dialect-robust ASR systems.
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