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ARTICLE INFO ABSTRACT

Keywords: The construction of contour levees for rice irrigation represents a major landscape management activity with
Remote sensing impacts on irrigation water use efficiency, crop management decisions, and food production. However, levee
Ag'ricu_lture distribution information traditionally relies on local field surveys because remote sensing approaches are
g:si?;o" complicated by irregular spacing, shape, and landscape variability within the field. In this paper the authors

develop a deep learning approach capable of identifying rice fields with contour style levee irrigation practices
from open-source aerial imagery. To generate a levee-identification scheme, a hybrid ResNet/Unet model
is built from the commonly known Residual Network (ResNet) architecture for multi-layer deep learning
strategies. The model takes a 320 x 320 RGB aerial landscape image from the US National Agricultural
Imagery Program as input along with label data to then generate a probability map of the distribution of farm
fields that use contour levees within the image. In performing this task, the model generates a 0.991 receiver
operating characteristic curve score. The model continues to perform well under the introduction of clouds,
data augmentation, or minor reductions in spatial resolution. Throughout these tests, the model performed
within 0.2 of its original score, except for when the image quality was reduced to 60 m wherein the model
score dropped to 0.691. Via these tests the model demonstrates potential to function well given different
spatial extents or potential satellite remote sensing with moderate (10 m) resolutions. This model provides
a proof-of-concept for the use of aerial imagery and a deep learning strategy for irrigation-type mapping
practices.

1. Introduction requirements of rice production while limiting the potential for yield

loss.

Agriculture accounts for 70% of freshwater withdrawal globally;
therefore it is paramount to minimize the amount of freshwater used
while maximizing crop yield (Campbell et al., 2017). However, each
crop requires different growing conditions in terms of soil composition,
climate, and water availability. For example, as one of the major staple
foods that supply 20% of the calories consumed globally (Kubo and
Purevdorj, 2004), rice requires up to 2-3 times as much water as other
cereal crops like wheat and maize (Bouman and Tuong, 2001). This
high water use is associated with widespread anaerobic cultivation
practices as a weed control mechanism and driver of greenhouse gas
emissions. Between 24% and 30% of global freshwater resources are
used to irrigate rice (Bouman et al., 2007). Thus, many precision
irrigation and conservation efforts aim to reduce the consumptive water
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As there are only rare instances where the field topography will
allow for standing water for rice production, farmers must use other
means to prevent water from draining off the field. In the United States
with larger field sizes and a higher degree of mechanization, farmers
typically implement various forms of levee systems which essentially
act as small dams that hold water in each section of the field. The most
common levee system consists of generally curved contour levees that
follow the topographical elevation lines of the field to ensure equal
elevation within each section. This system accounts for 47.9% of rice
acreage in Arkansas—the largest rice growing state in the U.S. (Norman
and Moldenhauer, 2019). Second, precision land grading on some fields
allows the straight levee system with parallel levees perpendicular to
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the consistent slope (0.1-0.5%). The third system is known as ‘“Zero-
grade”, whereby precise leveling eliminates the need for levees entirely.
The Zero-grade system enables faster water distribution and a constant
flood depth across the field and can lead to water savings of 40%
compared to contour or straight levees (Henry et al., 2016). Fourth,
and less common in rice production, some farmers forgo levee systems
and use a pivot sprinkler to deliver the precise amount of needed
water (Vories et al., 2013). Finally, furrow irrigation uses surface irriga-
tion through small furrow ditches without levee use, and has increased
to over 15% of irrigation practices in Arkansas (Chlapecka et al., 2021;
Stevens et al., 2018). Each of these systems requires different levels
of labor, power, and water, and knowledge about shifts among them
over time can inform water resources planning and sustainability as-
sessments (Moreno-Garcia et al., 2021). However, there is not currently
a viable system for efficient, widespread categorization of these fields.

Examining the distribution and prevalence of these systems provides
a baseline dataset to guide improved efficiency in water use, e.g., by
the implementation of multiple inlet rice irrigation (Shew et al., 2021),
furrow irrigation (Chlapecka et al., 2021), alternate wetting and dry-
ing (Atwill et al., 2020; Carrijo et al., 2017), or modeling the effects
of these approaches on water use (Carroll et al., 2020). Historically,
the primary method of identification was the use of surveys by county
or extension offices relying on owner-reporting of land use, or via
ground-truthing with windshield surveys (Smith et al., 2007). For any
large spatial extent where laborious hand-labeling is inefficient, remote
sensing offers a viable solution to detect large-scale land cover and land
use, as well as their changes, in an efficient manner (Weiss et al., 2020).
However, traditional pixel-based methods have difficulty addressing
this classification, because most irrigation infrastructure or equipment
can only be holistically seen from a landscape view. Additional difficul-
ties lie in the complex visual characteristics of various irrigation types
regarding their geometry (e.g., field size, levee width and length, and
levee curvedness), photometry, and texture. A typical contour-levee
rice field usually only has 3 to 10% of the land in levees that are 36 to
40 in wide (Massey, 2023). Applying deep learning approaches to high-
resolution images has provided an opportunity to classify rice irrigation
strategies through image segmentation and feature extraction (Liang
et al., 2021; Meyarian et al., 2022). Thus, the objective of this study is
to develop a deep learning-based method to classify irrigation practices
using high-resolution aerial imagery.

We next move toward model portability, where the developed
method can be adapted to data acquired from other platforms, with
variations in greeness, spatial resolution, and image contamination.
Hence, our second objective is to test the model’s effectiveness in
different image quality scenarios and scalability to be applied at differ-
ent geographical locations. These scenarios include coarsened imagery
resolution or the introduction of various forms of noise to the image.

2. Method

The research workflow includes phases of image annotation, pre-
processing, deep learning classification, hyperparameter tuning, and
scalability testing (Fig. 1). First, our annotators labeled the imagery
according to the presence of fields using contour levee irrigation. These
images are then converted to grayscale and divided with their respec-
tive labels according to a 5 x 5 grid composed of 320x320 images. After
dividing the images into training and testing sets, we began training the
model, adjusting the hyperparameters as needed. Once the final model
was developed, we stress-tested it according to three criteria: resolution
reduction, cloud noise addition, and gaussian noise addition.

2.1. Study area
We chose Lonoke County in Arkansas, where rice is the dominant

agricultural crop type and the region has diverse levee systems, to train
the model and assess its scalability by testing the model in distinct
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physio-geographical areas (Fig. 2). Lonoke County is located in central
Arkansas, on the west side of the Lower Mississippi Alluvial Plain’s
Grand Prairie, 32.5% of its harvested agricultural land is planted in
rice (USDA-NASS, 2021). The region has intense water demands for
crop production, declining groundwater table levels, and the increasing
stress of climate change which collectively has amplified needs for
irrigation strategies and conservation management approaches. With
inter-annual and inter-region variability, rice is usually planted in late
March to mid-May and harvested in mid-August to mid-October. At the
state level in 2015, only 21% of rice acreage will continue growing rice
in the following year and the majority will be rotated into soybeans
(72%). The remaining small percentage (7%) follows other crops such
as corn, grain sorghum, cotton, wheat, oats, and fallow (Norman and
Moldenhauer, 2016). The high rotation rate of rice presents a challenge
in moderate resolution remote sensing mapping as the locations of
ground truth points vary year to year.

2.2. Image selection and annotation

2.2.1. Input imagery

This study utilized the freely accessible United States Department
of Agriculture (USDA) National Agricultural Imagery Program (NAIP)
aerial photographic imagery that was acquired between 31 July and
25 August 2015 at 1-m spatial resolution (USDA, 2017). We consider
NAIP to a be very high resolution imagery dataset due to its 1-m scale as
defined in Fu et al. (2017). The NAIP program began in 2003 with a 5-
year cycle and transitioned to a three-year cycle in 2009 with one year
publication latency to acquire aerial imagery during the agricultural
growing season in a wide range of areas in the U.S. Although the
selected 2015 NAIP images come with four bands (red, green, blue, and
near-infrared (NIR)), we tested the method only with the three natural
color bands to reduce data volume. Moreover, some studies have shown
only minor performance gains when deep learning algorithms trained
on multispectral images were applied over trichromatic images. For
instance, one landscape segmentation study found less than a 1%
increase in the accuracy of grass identification from an image and
a 3.9% increase for soil identification in multispectral models versus
RGB models (Salamati et al., 2012). Conversely, a study to identify
rice lodging from UAV imagery found that an RGB model achieved
a measure of similarity that was 2% higher than its multispectral
counterpart (Zhao et al., 2019). Several other studies found comparable
results between multispectral and trichromatic imagery (Elihos et al.,
2018; Liu et al., 2020). Lastly, constraining the analysis to the RGB
domain increases the transferability of the proposed method to NAIP
images acquired in years without the NIR band and to other RGB data
sources.

2.2.2. Image annotation and sample selection

Our images were visually annotated using multiple people who
were trained to provide consistent annotation and deliver high accu-
racy of field type labeling. Here we focused on the identification of
contour-levee fields due to their strenuous water requirements (annual
irrigation for rice: 892 mm) that are 8% greater than the next highest
irrigation technique, straight levees (Reba and Massey, 2020). Contour-
levee irrigation is a conventional irrigation method where levees are
typically 30-45 cm in height to maintain flood between levees. From
an aerial view, these fields are characterized by distinguishable lines
that seem to resemble a topographical pattern used by the annotators
to classify irrigation type. We also used the CDL layer as supporting
information to provide the user with the estimated distribution of crops
such as rice and soybeans, with very high classification accuracy on
the major crops (Lark et al., 2021). This information aids the user in
the labeling process because, depending on the area, levee systems are
nearly exclusive to rice and soybean production fields. Additionally, for
field patches with vague or unidentifiable patterns, the analysts also
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Fig. 1. Workflow diagram; (a) The dataset is fed into the labeling program for image annotation. (b) In pre-processing, the images are converted to grayscale, then both the images
and the labels are split into 320 X 320 subsets. (c) Model tuning and accuracy assessment. (d) Different scalability analysis scenarios are created for testing in the classification
phase and final assessment. Field-scale image of a contour levee rice field from B. Moreno-Garcia in Lonoke County, Arkansas, 12 May 2019.
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Fig. 2. We chose 11 Arkansas counties (in orange) for testing the algorithm and Lonoke County (indicated in dark orange) for training. The zoom-in view of Lonoke County has
the 2015 Cropland Data Layer (CDL) to show the major crops, along with the location of analyzed data tiles in gray. Note: One tile in neighboring Prairie county was also used
for training and one tile was partitioned into the training and testing sets (denoted as Training/Testing).

used the CDL to assist in image interpretation - i.e., by ensuring that
those fields were planted in either rice or soybean.

To support the selection and interpretation of training and valida-
tion samples, we designed a labeling program (Fig. 3), where the user
can upload the image for display alongside the CDL (Boryan et al.,
2011) for the corresponding spatial extent. The trained analyst first
draws polygons following the edges of each field over the NAIP image.
Next, the analyst is prompted to label the field’s irrigation and/or levee
system. Fields that are difficult to identify were labeled as unknown
and discarded in the subsequent process. To ensure the integrity of the
dataset and mitigate human error during labeling, the interpretation

is repeated multiple times using a wall-to-wall method, where a new
analyst inspects each field across the image and labels any crop fields
that the previous analyst may have missed. To guarantee the best
interpretation, at least two analysts were trained together for sample
selection by the project leader. An initial training sample selection was
performed by one analyst and the interpretation results were passed
to another analyst for cross-checking. Cross-checked results were sub-
mitted to the final analyst, who is the quality controller for final
checking. To gauge the degree of agreement between our annotators,
we implemented Cohen’s Kappa Coefficient. This statistical measure
serves to measure the agreement between annotators for qualitative
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Fig. 3. A screen capture of the LabelMe program, with annotated crop polygons superimposed on a subset of 5000*5000 NAIP image (left) located in Lonoke County centered
around (34.7654, —91.6952) and Cropland Data Layer (right) with the same spatial extent as the NAIP area. Colors represent different crop types following the legend in Fig. 2.
The label corresponds as follows: ¢ for contour levees, s for straight levees, z for zero grade, and u for unknown.

items, such as the field typings. Cohen’s Kappa is expressed as

K= Pr(a) — Pr(e) eh)
1— Pr(e)

Where Pr(a) is the probability of overall agreement of the annotators

and Pr(e) is the probability of overall agreement if by chance (Vieira

et al., 2010).

2.2.3. Image pre-processing

Due to the variation in the greenness of crop fields caused by the
differences in acquisition date, cameras, flight height, and weather
conditions, we used grayscale images in classification. Grayscale im-
ages can decrease the algorithm’s sensitivity to color changes between
images, as well as any color-associated errors that occurred during
capture. Additionally, the grayscale image emphasizes the shapes and
patterns present within the fields more than colors, which is beneficial
in distinguishing the specific levee systems. One study found nearly
a 2% increase in accuracy with grayscale images over RGB images in
identifying colorectal polyps with a CNN (Hsu et al., 2021). Similarly,
a facial recognition study found that RGB and grayscale images had
equivalent rates of recognition (Torres et al., 1999). To convert images
from RGB to grayscale, we used a formula proposed in Pascale (2003),

1=0299%xR+0.587xG+0.114x B 2)

Furthermore, we subset the raw 5000 x 5000 images into a 5 x 5 grid
creating 25 1000 x 1000 subimages for computational efficiency. These
images were then downsampled to 320 x 320 using the skip count
method with a factor of 3, which extracted every 3rd pixel value and
discarded the rest.

2.2.4. Training/test sample split

The quality of training and test samples is paramount to the model’s
success. In this study, training samples were selected to comprise as
much diversity of land use types in as few images as possible to reduce
model training time and time spent on manual sample annotation. Test
samples are also diverse when in the season the images were taken,
contributing to a robust classification evaluation. The Lonoke county
images have the widest image capture interval with dates ranging from
13 July to 26 August, which in this region generally is after canopy
closure and prior to harvest. When training deep learning models,

providing the appropriate balance between the size of the training
and testing sets is crucial to avoiding over- and underfitting. Here,
overfitting with an overly complex model could occur by detecting
fields during only a particular growth phase or season and can be
detected through very high accuracy for the training and/or validation
sets with low accuracies for the testing set (Hawkins, 2004). Con-
versely, underfitting could manifest as the model predicting every field
as having contour levees simply because of the similarity in color.
Despite its importance, there is little consensus as to the proper split
for the data (Joseph, 2022). Studies have suggested that anywhere
from 30% (Nguyen et al., 2021) to nearly 100% of the data should
be for training (Dubbs, 2021). Thus, to optimize the trade off between
model performance, training time, and avoiding overfitting, we trained
the model 10 times for each 10% increment of the training fraction
ranging from 10% to 80% (Supplemental Fig. 3). Through this process,
we identified the 60/40 training/testing split as the most optimal. As
shown in Fig. 2, whole tile representations were assigned to either
training or testing, with the exception of one tile in which 15 of its
subtiles were assigned to training and 10 were assigned to testing.

2.3. Network architecture

2.3.1. Model selection

To select an appropriate deep learning architecture design, we
performed an initial comparison between the VGG and ResNet net-
work designs, both of which come with the Tensorflow-Keras instal-
lation (Abadi et al., 2016), a common deep learning framework. The
main difference between these models is the number of weighted
neural layers, which are 16 and 50 for VGG and ResNet, respectively.
The appropriate number of layers depends on the complexity of the
problem, which is not known a priori. Neither of these models classify
on a per-pixel basis, but rather assign a label to the entire input sub-
image. To effectively identify the label of each image object, we created
UNet hybrid architectures that utilize native encoders from ResNet
and VGG coupled with custom decoders similar to those in UNet.
UNet was first introduced in Ronneberger et al. (2015) and is named
for its architecture’s shape. The model down-samples the input (the
downslope of the “u”) to extract the feature maps then up-samples the
input from previous layers and applies the feature maps (the upslope of
the “u”). The upsampling phase of the architecture allows it to classify
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Fig. 4. Block Diagram of the hybrid ResNet/UNet model’s architecture; (a) the encoder segment of the architecture passes data through blocks of convolution, ReLu activation,
and pooling to extract the patterns of interest before being upsampled in (b) the decoder to generate the output, a probability map classifying different segments of the grayscale

input image, yellow for contour field and purple for background.

on a per-pixel basis. Thus, these hybrids preserve the portion of the
VGG and ResNet models responsible for their high performance while
also extending them with UNet decoders that allow for pixel-based
classification.

To compare the VGG/Unet and ResNet/Unet hybrids, we trained
them using a custom loss function which sums (1) the intersection-
over-union (IoU) loss, that essentially measures the similarity between
the labeled and predicted bounding boxes, and (2) the binary cross-
entropy functions that are described in more detail in the next section.
Preliminary results showed that the ResNet/Unet model consistently
surpassed the VGG/Unet model throughout the training epochs, or
iterations, by converging at 0.06 in 21 epochs versus 0.33 in 55 epochs
(Supplemental Fig. 2).

The ResNet architecture was first introduced in an effort to address
the accuracy degradation that many deep models face. Essentially, as
the depth (or number of layers) increases, the accuracy will become
stagnant and then quickly decrease. To combat this problem, ResNet
uses identity mapping, wherein each block or grouping of layers uses
both the raw input and output of the previous block. This redundancy
provides the retention of useful information while also preventing the
over-abstraction of the data. Overall, ResNet has outperformed many
models including Fitnet and Highway with more than a 1% reduction in
error (He et al., 2016). Our hybrid ResNet/Unet (Fig. 4) uses 7 specific
types of layers from the tensorflow library (Abadi et al., 2016): Zero-
padding, 2-dimensional convolution, batch normalization, addition,
concatenate, max pooling, and convolutional transpose. Zero padding
appends zeros to the top, bottom, left, and right of the image, effec-
tively centering it in a larger array. Next, the 2-dimensional convolution
layer provides the functionality for the model to extract feature maps.
Third, the batch normalization layer standardizes the input to maintain
a mean close to zero and a standard deviation close to one (loffe
and Szegedy, 2015). Fourth, the addition layer adds two arrays of the
same shape to return an array of the same shape as the inputs. Next,
the concatenate layer also takes two arrays as inputs and appends
one input to the other along a specified axis. Next, the max pooling
layer effectively downsamples its input by extracting the maximum
value of a moving window. Lastly, the convolutional transpose, also
known as deconvolution, works in the opposite direction as the regular
convolutional layer. Thus, the layer essentially applies the feature maps
that the convolutional layers had previously extracted.

2.3.2. Model tuning

The ResNet/Unet model hyperparameters were set as follows. First,
the learning rate that controls how much the weights of the network
are updated within each training iteration is set to 0.0005. Second,
the number of these training iterations, known as epochs, acts as the
maximum number of times that the weights can be updated, and is

set to 100. Third, the batch size, referring to how many samples of
the training set will be used within that epoch, was set to 5 images.
Fourth, we established gradient accumulation into an exponentially
weighted average to guide model learning using RMSProp (Tieleman
et al., 2012; Zaheer and Shaziya, 2019), which is an optimizer protocol
that was found to achieve the highest validation accuracy with the
VGG-16 model on a common image classification dataset (Li et al.,
2021).

Additionally, several self-tuning callbacks were used to dynamically
augment the training process. First, we implemented early stopping,
which cuts the training process short if the model stops improving
for more than two epochs. Second, through the “reduce” callback we
were able to lower the learning rate during a learning plateau, which
prevents the model from overshooting the minimum loss.

2.3.3. Determining the optimal threshold for binary mapping

To determine whether a field contains a contour levee patch from
the probability map, we establish a threshold value to convert the
output into a binary map. The probability value of each pixel will be
adjusted to either 1, should its probability be higher than the threshold,
or 0 in the case that its probability is lower. For example, with a
threshold value of 0.6, all pixels with values above 0.6 were adjusted
to 1 and all others were adjusted to 0. By iterating over the “binary
metrics” (Accuracy, F1, IoU, and BER, discussed in a later section) for
varying thresholds, we were able to identify the value that yields the
greatest performance.

2.4. Model evaluation and accuracy assessment

2.4.1. Probabilistic evaluation

We evaluated the ResNet/Unet model’s performance based on our
loss function consisting of the IoU, also known as the Jaccard in-
dex (van Beers and Marco A. Wiering, 2019) and the Binary Cross
Entropy function. The IoU is a widely used metric that shows the
model’s object detection by returning the similarities between the
ground truth bounding box and the bounding box of the prediction.
Binary Cross Entropy, also known as the Log loss, takes the negative
log of the prediction probabilities. If the probability is 100%, the loss
will be zero. As the probability decreases, the loss will increase thus
penalizing uncertainty.

Furthermore, we examined the model’s raw output, which is the
probability map that predicts the likelihood of each pixel belonging to
a field that contains contour levees, against the corresponding ground
truth labels. The metric employed is the set of Receiver Operating
Characteristic (ROC) curves (Bradley, 1997; Flach, 2016) that compare
the true positive rate (the proportion of pixels predicted and labeled
as contour fields) and the false positive rate (the proportion of pixels
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predicted as fields but labeled as a non-contour field). By thresholding
the model’s output as described in Section 2.3.3, we are able to convert
the probability map into a binary map. Next, we can compare the
binary predictions to their respective labels to calculate the true and
false positive rates. This process is repeated for each possible value
for the decision threshold (within the range of (0,1)) leaving a set of
true/false positive rate pairings that we can plot.

Smaller false positive rates indicate more true negatives while
higher true positive rates indicate more true positives. Thus, as the
area under the receiver operating characteristic (AUC-ROC) curve
approaches 100%, the ResNet/Unet model’s effectiveness increases as
shown in supplemental fig. 3. A 1:1 line is also drawn to signify a
random predictor (Mas et al., 2013). By visualizing and quantifying
these metrics, a holistic assessment of model skill can be estimated.

2.4.2. Binary accuracy assessment on the classified map

The binary map after thresholding was assessed using four metrics,
separately overall accuracy, F1, loU, and balanced error rate.

Overall accuracy (OA) is a relatively standard accuracy metric for
binary classification that is calculated by dividing the number of true
classifications by the total number of classifications. The F1 score is the
harmonic mean of Precision and Recall, which are defined as:

Precision = _Trr__ 3)
TP+ FP
Recall = _TIP__ @
TP+ FN

Where TP indicates true positive, FP indicates false positive, and FN
indicates false negatives (Sasaki, 2007). Precision shows the ratio of
samples that are correctly classified as positive out of all of the sam-
ples labeled as positive. Recall shows the number of actual positives
compared to the total number of labeled positives in the set. The
values are further used to calculate the F1 score which allows us to
examine the combined effects of misclassification. However, this metric
is independent of the value of true negatives, so in our case, the pixels
that are correctly classified as within non-contour fields will not be
reflected in this metric. This metric is less prone to issues related
to class imbalances than the standard overall accuracy metric, but it
does not distinguish between false positive or false negative model
errors (Japkowicz, 2006). Thus, in cases where the drawbacks of false
positive and false negative classifications are not equal, this metric can
be misleading. In our project, however, a false positive and a false
negative are comparable.

Fl=2x Precz:sz:on X Recall (5)
Precision + Recall

Additionally, we calculated the Balanced Error Rate (BER) metric.
This metric shows the average proportion of error between the classes,
which is given by:

1, TP Z TN

BER = (1= 3 (575 X 1300 X 100 (6)
Where Np and Nn are the number of Field pixels and the number of
non-field pixels. Because of the disproportionate number of field pixels
per non-field pixels, the BER metric gives a less biased result than the
standard mean accuracy. Since this metric displays the proportion of
error, lower values indicate better model performance.

2.4.3. Comparison to other products

We also evaluated performance by comparing our algorithm’s ac-
curacy with previous studies. We first conducted a literature review
in the field of agricultural landscape identification and summarized
the accuracy values for the highest performed models. We then com-
pared the mapping outcomes with two relevant studies. The first
study took a deep network-based method IrrNet-Bi-Seg that used a
bi-stream encoder—decoder architecture to quantify the contour-levee
fields. By applying the IrrNet_Bi_Seg method on the same NAIP dataset,
it achieved an average accuracy of 86.23% and 15%-17% improvement
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over benchmark methods (Liang et al., 2021). The second study is
Landsat-based Irrigation Dataset (LANID-US) - 30 m resolution annual
maps of irrigation distribution for the US centered around detecting
irrigated fields (Xie and Lark, 2021). It used a semi-automatic training
approach for training sample generation and ecoregion-stratified ran-
dom forest classification using Google Earth Engine. The annual maps
there achieved a mean Kappa value of 0.88, overall accuracy of 94%,
and producer’s and user’s accuracy of the irrigation class of 97.3% and
90.5%, respectively, at the sub-national (large aquifer) level.

2.5. Scalability test

The quality of remotely sensed images could be affected by various
atmospheric conditions or the mechanical-optical systems, resulting in
different levels of noise and obstructions being added to the image. Us-
ing the clear, undistorted image as our “normal” benchmark scenario,
we conducted tests on a series of image artifacts, including:

(1) Sensitivity to various spatial resolutions

Our first sensitivity experiments consisted of reducing the image
resolution to account for changes in sensing equipment. To simulate a
reduction in quality of sensing equipment, we tested the ResNet/Unet
model on reductions of resolution from 1-m to 10-m, 20-m, 30-m, and
60-m. To achieve this reduction, we created a duplicate image where
the pixel values were averaged across varying window sizes following
the step in Rosa et al. (2021). For example, to reduce the image to 10-
m, we averaged consecutive windows of size 10px by 10px. This same
method was applied for tests on 20-m, 30-m, and 60-m resolutions.

(2) Sensitivity to various image contamination scenarios

To test different degrees of noise via random noise augmentation to
the images, we created a separate array which contains random samples
from a normal gaussian distribution with a standard deviation (which
can also be interpreted as the spread) of 0.3. Then, once combined with
the image it creates a static effect. This occurs when the signal to noise
ratio is low, which may not be common in modern equipment, but is
still possible in older instruments (Curran and Hay, 1986).

We test cloudiness simulations given that approximately 45% of the
Earth’s land surface is covered by clouds at any moment (Stubenrauch
et al., 2013). This effect may also be more relevant to continuous
satellite observations (e.g., the Planet constellation, Houborg and Mc-
Cabe, 2016) than to aerial imagery taken deliberately on clear days. To
simulate this contamination, a python library imgaug was used (Jung
et al., 2020). We set the opacity of the layer to only 40% to achieve
more representative conditions that can be encountered by a low flying
plane, based on our visual assessment of likely opacity conditions in the
resultant images.

(3) Geographic scalability

Lastly, we tested the ResNet/Unet model in samples from a different
location, expanding from the singular location used in the training and
testing sets. We seek to develop a model that applies globally, requiring
that the model’s spatial transferability be scrutinized. Thus, we selected
five images with a high degree of rice production from 11 different
counties across Arkansas: Arkansas, Clay, Craighead, Crittenden, Desha,
Greene, Jackson, Jefferson, Lawrence, Mississippi, and Woodruff. These
images, referred to as the 55 testing tiles, were annotated and evaluated
using the same annotation scheme and metrics described previously.
In an effort to explain any variation in performance when applying
the ResNet/Unet model to imagery outside of Lonoke we implemented
three greeness metrics: excess greenness (EG), green chromatic coordi-
nate (GCC) (Reid et al., 2016), and the Greenness Index (GI) (Louhaichi
et al., 2001). These metrics are defined as:

EG=2x%xG)-(R+B) @]

G
GCC = ——F 8
R+G+B ®)



D.S. Dale et al.

Computers and Electronics in Agriculture 211 (2023) 107954

0.970 )
a
S
pld 0.960
S
<
0.950 .
— . 0.;
b == 0=0.
§ ) -=0=09
S - SimaEs iimimeeem
8 * _—__,_.---"-u- - ::.:.: : .
< _-_-—-:-:-:':-:-:-:-:-:-:-:-_ - -
0.920
0.94
c)
& 093
0.92
0.890
d) -
% 0-880 —____.:-:':t:::-:::,:._._r.i'-‘—’._._._.
) it R i
0.870 Slem
40/60 e ul

Training/Testing Split (%)

Fig. 5. The ResNet/Unet model performance for each training split and confidence threshold (when applicable, denoted by o). (a) Area Under the Receiver Operating characteristic
curve (AUC-ROC) is used to compare performance across Training/Testing splits. The binary performance metrics are: (b) Accuracy, (c) F1, and (d) Intersection over Union (IoU).

_2XG-R-B
T 2xR+G+B
where R, G, and B represent the red, green, and blue bands of the input
imagery respectively.

GI (©)]

3. Results
3.1. Dataset and model optimization

Our final training and test dataset contains 723 annotated polygons
with 461 labeled as contour fields and the remaining 262 as other
irrigation methods (228 as zero grade, 25 as straight levee, O as center
pivot, and 9 as unknown) that will be grouped with background. Each
polygon encompasses a crop field and the polygons averaged 20.35
ha in size with a standard deviation of 14.28 ha; their sizes ranged
from 0.36 ha to 126.75 ha. These annotations were inspected by two
trained annotators and received an average 0.841 Cohen Kappa inter-
rater agreement score, which falls in the 0.81-0.99 interval of almost
perfect agreement (Landis and Koch, 1977). After the images were
subsetted, there were a total of four hundred 320 x 320 px images.

To balance the training and testing sets, we calculated the averaged
AUC score over 10 training sessions for varying training/testing splits.
Because model performance reached a plateau (AUC score: 0.957) after
40% of the data was designated for training (supplemental Fig. 1), we

elected to use this ratio for later tests. Due to the probabilistic nature
of the raw model output, we also defined the confidence threshold (o)
to convert the model’s predictions from probabilities to binary outputs.
Fig. 5 shows the effects of three different ¢ values across three different
metrics where a binary map is required. The difference in performance
between these thresholds was within 0.01 for all cases. Considering
the 0.7 threshold yielded the highest accuracy and F1 regardless of
training/testing split, we used this threshold for our remaining tests.
With the 40/60 training/testing split on the Lonoke County tiles and a
threshold value of 0.7, the ResNet/Unet model produced a 0.991 AUC,
0.548 BER, 0.970 Accuracy, 0.924 F1 (composed of Precision of 0.945
and Recall of 0.903), and 0.858 IoU.

3.2. Results of scalability tests

In our scalability experiments, we assessed the ResNet/Unet model’s
feasibility given different environmental and technological scenarios.
Overall, the model presented high sensitivity to resolution reduction
(Fig. 6 a), but continued to perform well given some degree of cloud
cover or a small spread of gaussian noise (Fig. 6 b). Spatial scalability
could present a challenge for the model considering that the worst
performing of the 55 tiles tested has received a 83.1% AUC-ROC (Min
Diff Site in Fig. 6 c), but on average the model continues to perform
well with approximately an 8% reduction in the average case (Avg Diff
Site in Fig. 6 c).
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Fig. 7. Demonstration of the resolution reduction tests. (a)-(d) The augmented input image coarsened to the specified resolution, with associated visual annotation (green outline),
compared to (e)-(h) the ResNet/Unet model’s prediction at the respective level of coarsening. The color bar shows the probability the pixel represents a field with contour levees.

3.2.1. Sensitivity to different spatial resolution

In testing the impact of image spatial resolution, we observed a
quick degradation in performance after resampling to less than a tenth
of the ResNet/Unet model’s native resolution (i.e., from 1 m to 10 m
or coarser). Specifically, AUC changes from 99.1% in the original 1-m
resolution to 93.8%, 80.0%, 78.5%, 69.1% in the 10-m, 20-m, 30-m,
and 60-m resolutions, respectively (Fig. 6). Fig. 7 provides a qualitative
demonstration of the resampled images and the corresponding model
predictions.

3.2.2. Sensitivity to different atmospheric conditions

Next, we tested the ResNet/Unet model’s sensitivity to different
simulated atmospheric conditions. For both cloud contamination and
gaussian static noise, we tested across a range of parameter values to
find the threshold at which model performance decays. In the case
of cloud cover, the maximum opacity of the cloud layer (denoted by
a) was between 60% and 70%, receiving a 94.3% and 95.8% AUC-
ROC respectively (Fig. 6a, 8a,b,e,f). For gaussian noise, spread values
(o) between 0.3 and 0.4 degraded model performance to below 80%
AUC-ROC (Fig. 6b, 8c-d,8g-h).

3.2.3. Sensitivity to geographic scalability

When testing the model outside of the training region, the per-
formance slightly decreased from Lonoke County (AUC of 99.1%) to
the 55-tile set (AUC of 91.2%). The values for OA, F1, IoU and BER
are given in Table 1 and represented in the brown sets in Fig. 9.
We investigated performance within the 55 tiles in terms of imagery

Table 1

Performance metric values, ranges, and standard deviations for the 55 testing tiles.
Metric Average +-Std Min Max
OA 90.4% +-13.1% 22.6% 100%
F1 30.0% +-38.3% 0.0% 99.2%
IoU 25.3% +-34.5% 0.0% 98.3%
BER 70.2% +-16.8% 50.0% 100.0%

capture date, excess greenness (EG) and green chromatic coordinate
(GCQ), the Greenness Index, as well as the presence of straight levees,
but none provided explanatory power over the model residuals beyond
0.9-7.7%. Examples of these images are provided in (Supplemental Fig.
4).

3.3. Comparison with other irrigation products

From our literature search, we selected eight papers that are most
relevant to irrigation or agricultural landscape classification, and we
summarize their subject area and reported accuracies in Table 2. By
comparing our Lonoke County mapping results against IrrNet_Bi_Seg
results using the same testing data. IrrNet Bi Seg yielded an AUC,
overall accuracy, F1, IoU, and BER of 93.5%, 94.4%, 88.7% (a precision
of 85.7% and recall of 91.9%), 79.7%, and 54.1% respectively. The
ResNet/UNet and IrrNet Bi Seg models performed comparably with
ResNet/UNet having a slight increase in four of the five metrics. The
comparison with 30 m resolution LANID data demonstrates that LANID
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Fig. 8. Demonstration of the atmospheric noise addition tests, given cloud contamination parameter « values of (a, e) 0.6 and (b, f) 0.7 and gaussian noise parameter o, values
of (¢, g) 0.3 and (d, h) 0.4. (a)—(d) The augmented input image with associated labels and (e)—(h) the model’s prediction across noise addition scenarios. The color bar shows the

probability the pixel represents a field with contour levees.

Table 2
Reported accuracy of different model architecture types in land cover, plant morphology, and image analysis.

Model Subject area Accuracy
CNN - 5 Layers Setup 2 Plant Morphology 96.9
(Grinblat et al., 2016)

2-D CNNs (Kussul et al., 2017) Agricultural Landscape Identification 94.6
CNN256 (Martins et al., 2020) General Land Cover Mapping 93.2
CNN - 5 Layers Setup 1 Plant Morphology 93.0
(Grinblat et al., 2016)

CNN- University of Pavia (Li Agricultural Landscape Identification 92.27
et al., 2017)

CNN-Salinas (Li et al., 2017) Agricultural Landscape Identification 89.28
CNN-Indian Pines (Li et al., Agricultural Landscape Identification 86.44
2017)

SegNet-Basic-Encoder Addition General Image Segmentation 84.2

(Badrinarayanan et al., 2017)

detected 85.2% of the fields our ResNet/UNet model detected (Xie and
Lark, 2021). In other words, 14.8% of contour field pixels detected by
our model did not show up on the LANID map.

4. Discussion
4.1. How does our model compare with other studies?

This work is part of a package of approaches to understand rice
production systems in the US mid-south, from rice field mapping in
google earth engine with multi-year training datasets (Liang et al.,
2019) to using machine learning techniques to identify contour levee
fields (Liang et al., 2021), and now testing different levee-identification
approaches. Overall our system shows preliminary success in segment-
ing contour levee irrigation fields, as evidenced through the ROC curve,
overall accuracy, F1, IoU and BER scores, receiving 99.1%, 97.0%,
92.4%, 85.8%, and 54.8% respectively. The model performed on par
with many of the aforementioned models in the field of agriculture
landscape segmentation and surpassed the highest model we found with
a similar goal of striation detection within a segmented image (Table 2).

The comparison with LANID data helps illustrate the role of spatial
resolution in classification. Theoretically, all of the contour-levee fields
our model detects should be a subset of the fields LANID detected.
Further investigation revealed that a large number of the pixels belong
to a single field with very apparent contour levees (Supplemental Fig.

5b.) that were thus likely misclassified by LANID. Any remaining pixels
fall on the edges of other fields and are likely mismatched due to
the difference in resolution. Coarser resolution imagery (e.g., 30 m
for LANID) will have blurrier edges between fields, and the field
boundaries are likely to blend with the crop fields, which causes
overestimation in the size of the actual field (Supplemental Fig. 5a).
Thus, a field boundary detection step using higher resolution imagery
is likely important, and could follow recent model development in this
area (e.g., Jong et al., 2022).

Several challenges remain for model validation (Supplemental
Figs. 4-6). Upon calculating the true positive and true negative scores
of the Lonoke testing set, we can see that the model accurately dis-
cerns what is labeled as background, correctly classifying background
98.6% of the time, but it is slightly weaker in classifying contour
fields (90.3%). There are a few scenarios that could cause this weaker
detection rate, some of which are demonstrated in Supplemental Fig.
6. First, structures such as tractor paths or roads that may cut through
the field could present as levees. Additionally, the model easily discerns
formations such as buildings or streams as not being a field at all, let
alone one irrigated with contour levees. However, fields using one of
the other irrigation systems or even a field that was recently harvested
and still has tractor tracks present would be more difficult to classify.
Though our imagery was largely captured during times with a fully
closed canopy, these field management effects are sometimes still visi-
ble, as discovered in the tests detailed in Section 3.2.3. Additionally, the
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Fig. 9. Shows the accuracy, F1, IoU, and BER performance metrics for (a) the 240 sub-tile model development testing set from Lonoke County and (b) the 1375 sub-tile scalability
test set drawn from the 55 testing tiles across the state. Performance metrics are shown to compare a case with a subset of contour-dense tiles (i.e., at least 30% of the image label
contains a contour field) vs. the full set of testing tiles. The contour-dense set (i.e., “>30%”") contains 33 images in plot a and 258 in plot b, and its metrics typically have a smaller
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median of the samples, the thick portion of the line represents the interquartile range, and the thin portion represents the 1.5x interquartile range. The kernel density in blue or

orange is represented by the shape around the box plot.

use of the higher resolution commercial satellites such as Planet could
give us year-round imagery which may alleviate these issues, when they
are available. It is also important to note that the model’s confusion
may be a byproduct of filtering out non-contour levee fields in the
training process (Supplemental Fig. 6). Had we preserved the other
irrigation types, the more ambiguous areas of the image would likely
have had labels, thus providing additional classes, such as straight
levees, for the model to learn rather than relying solely on contour
levees.

Another potential cause of the weaker true positive rate of some of
these images is the lack of positive pixels within a sub-tile. The labeling
in 1b-5b of Supplemental Fig. 6 shows that these images contain only
a small portion of a much larger contour field. Thus, due to the label
corresponding to such a small area of the field, it is possible that no
levees were even present in the image, but rather only part of the
contour-leveed field. This issue can be attributed to the way the images
were broken into a grid, and could be improved in future studies with
a different type of labeling and image segmentation process (e.g., with
fraction thresholds).

Upon further inspection, we noticed that the worst-performing im-
ages from the 55 testing tiles had less than 30% of the label occupied
by contour labels (some example images demonstrating this impact are
in Supplemental Fig. 6). It is likely that the image subsetting function
used to subset the large 5000 x 5000 tiles into smaller sub-images
skews the metric values, as the only positive case present in the label
is a small portion of a field on the edge of the image in these cases
(e.g., row b in Supplemental Fig. 6). We now compare the accuracy,
F1, IoU, and BER for sets including and excluding samples with less
than 30% of the label containing contour fields for both the Lonoke
testing tiles and the 55 tiles from across eastern Arkansas (Fig. 9). The
exclusive set, meaning tiles with greater than 30% contour levee pixels,
received 77.2%, 68.2%, 51.7%, and 72.6% for Overall Accuracy, F1,
IoU, and BER respectively (blue sets in Fig. 9b). Contrary to its inclusive
counterpart discussed in Section 4.1, the Lonoke testing set with at least
30% of the label containing a contour field received an Accuracy, F1,
IoU, and BER of 93.2%, 93.0%, 86.8%, and 54.8% respectively. Thus,
while not uniformly better (i.e., across all four metrics), we recommend
setting a threshold value of 30% labeled for each tile to minimize edge
effects in future studies. Alternatively, instead of breaking images into
a grid, a form of sliding window could be implemented. This approach
could alleviate edge cases by ensuring that a more complete image of
the field will also be seen by the model. Additionally, this approach
would eliminate the risk that a small but complete contour levee field
that occupies less than 30% of the pixels in a subtile could be discarded.

A potential candidate for comparison with our study is the shifted
windows Transformer (Swin) that brings a hierarchical to image pro-
cessing (Liu et al., 2021). This architecture’s hierarchical approach
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builds on existing transformer models, which rely on fixed-sized patches
of a given image, by dividing the image into non-overlapping patches
of varying sizes. The model then refines its understanding of the input
image at varying scales: smaller patches at the lower hierarchical levels
and larger ones at the higher levels. This process is quite different than
how the ResNet portion of our model convolves overlapping patches
of an image. Although it is not clear whether CNN or transformer-
based neural networks are more suited for a given task, there have
been several studies leveraging Swin/UNet architectures for remote
sensing applications in recent years. Similar to our use of ResNet for the
extraction of feature maps, these studies use the Swin transformer for
the same purpose. For instance, two recent studies proposed Swin/Unet
hybrid architectures (He et al., 2022; Gao et al., 2021) to evaluate
different datasets: the Vaihingen dataset and the Potsdam dataset (Chen
et al., 2014b). The first contains 33 aerial images of varying sizes with
near-infrared, red, and green bands. The images are labeled according
to many different object classes such as buildings, roads, and trees.
The second dataset contains 38 images of uniform size with red, green,
and blue color bands. This dataset was also labeled according to many
urban development-related classes such as buildings and roads. For the
Vaihingen dataset, He et al. (2022) found mean IoU and mean F1 scores
of 67.32% and 79.94% while Gao et al. (2021) achieved 66.66% and
78.67% for the same metrics. With respect to the Potsdam dataset, He
et al. (2022) achieved 75.97% mean IoU and 86.13% mean F1 scores
whereas Gao et al. (2021) yielded 71.46% and 82.08%. Although these
values are slightly lower than what we found in this study, given the
change in subject area from urban development to crop field mapping,
the Swin transformer could provide valuable insight into the most
applicable architectures for mapping irrigation patterns.

4.2. What drives model sensitivity in high-resolution mapping?

The model’s capability is retained even with variations and noise in
the data. Reductions in resolution and other visual disturbances created
minor changes in the performance metrics; the greatest change was
0.203 in the AUC when the gaussian noise with a 0.4 spread was added
to the input imagery. The model seems to maintain its ability up to
a resolution reduction to 10 m at which the performance begins to
degrade. This larger resolution threshold (i.e., much greater than levee
thickness) calls into question what characteristic of the labeled fields
the model uses to make its prediction. Perhaps it weighs the curvature
and overall pattern of the field more heavily than the thickness of the
individual levees. In practice, this finding implies that the ResNet/Unet
model is suitable for use with Sentinel-like images or finer (de Moura
et al., 2022), but not Landsat Pouliot et al. (2019) or MODIS (Zhang
et al., 2021). These outcomes are consistent with a recent machine
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learning approach to rice field identification and mapping in Pakistan
that demonstrates at least an 8% F1-score improvement when using
Sentinel-2 compared to Landsat and MODIS (Waleed et al., 2022). The
model is robust against different levels of simulated clouds but handles
differences in imaging systems better than environmental differences.
The introduction of cloud cover, a likely scenario in practice, yielded
results comparable to that of a 25% reduction in image resolution.
Static noise, however, proved to minimally affect the results, likely
because the static is spread over the entire image rather than in one
concentrated area. Thus, the model seems to mostly disregard the
affected pixel in favor of the classification of the neighboring pixels.
Insensitivity to cloud cover further bolsters the model’s suitability for
high-resolution satellite imagery, as cloud cover typically presents a
challenge with this data source (Zhang et al., 2020). However, the
stronger sensitivity to gaussian static could present a challenge due
to random noise being an often overlooked limitation of aerial and
satellite imagery (Anikeeva and Chibunichev, 2021).

4.3. Theoretical implications and practical applications

Precision farming requires a mix of historical and contemporary
information, including harvest estimates, land use history, farmland
sales, and landscape modification (Finger et al., 2019). Thus, our
model could provide value to non-profit, public sector, or commercial
actors who aid farmers in making informed decisions when dealing
with critical natural resources. This identification could help map out
and prioritize water and carbon conservation programs, due to the
tight interplay between irrigation and the water and carbon cycles
in these landscapes (Runkle et al., 2019; Moreno-Garcia et al., 2021;
Henry et al., 2016). Ongoing identification work can help monitor the
success of programs that seek to induce practice changes or to aid in
new program development by identifying regions slower to implement
conservation land grading methods. Indeed, changing contour levee
irrigation to other, more efficient delivery approaches such as multiple-
inlet rice irrigation can improve irrigation efficiency and reduce water
use by up to 24% (Massey et al., 2018). Improved levee detection could
also improve hydrological models that require a clear understanding of
water flow pathways through these agricultural environments, includ-
ing estimates of seepage and percolation (LaHue and Linquist, 2021),
flood mitigation potential (Chen et al., 2014a), and nitrogen runoff
associated with irrigation (Ouyang et al., 2020; Kim et al., 2021). Better
landform classification can also be useful in a geomorphological con-
text, improving digital elevation models with implications in hydrology
and erosion studies (Li et al., 2020).

4.4. Future research directions

Since this research has primarily focused on methods development,
there is still work to be done to further assess the scalability of the
model. First, we need to examine the temporal scalability. All of the
data we used in this study was acquired in a 26 day span in 2015,
thus, the model should be tested on data from years other than 2015.
This inter-annual test would provide necessary insight into how the
model will perform in practice. Second, though we tested the model
with images outside of the training county within Arkansas with the 55
testing tiles, a complete assessment of the model’s performance outside
of Arkansas would demonstrate the extent of the geographic scalability.
A state such as California, which ranks second in terms of rice produc-
tion behind Arkansas (Illsley, 2020), would provide ample data for us
to test while also being geographically distinct from Araknsas. Third,
the model’s transferability into non-native resolutions should also be
validated. We speculate that the model would perform well on Sentinel-
like imagery, but further testing could prove this hypothesis. Lastly,
this product has the potential to enable whole-region classification
of irrigation systems. Thus, we have made the project open-source
to make it both accessible to the people who need it and to allow
people to make the necessary changes to suit their specific means.
The code is open source and available at https://github.com/dsdale/
CropContourLeveeMapping on publication.
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5. Conclusion

In this study we investigated the use of a neural network to identify
rice contour levee systems from aerial imagery. The results of our
approach are promising, as they show that our model maintains a
high level of performance despite added noise and reductions in image
resolution. This open-source model lays the groundwork for a future
region-wide landscape classification system. Our results demonstrate
that we are on track to support irrigation and water resource manage-
ment in the Midsouth USA region. Additionally, the model architecture
is robust enough that it is moderately scalable to different environments
provided the resolution of the imagery used is greater than 10 m. The
noise addition analyses show that the model is moderately accepting of
environmental variance such as cloud cover. The work enables analysis
of landscape use patterns to drive models of agricultural productivity
and sustainability in rice growing regions by providing a county-wide
proof of concept and improving approximately 5.6% over existing
methods. It also offers a guide for approaching any type of deep
learning pattern identification problem, no matter the discipline.
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