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Abstract
This work reports on the hardware implementation of analog dot-product operation on arrays of
two-dimensional (2D) hexagonal boron nitride (h-BN) memristors. This extends beyond previous
work that studied isolated device characteristics towards the application of analog neural network
accelerators based on 2D memristor arrays. The wafer-level fabrication of the memristor arrays is
enabled by large-area transfer of CVD-grown few-layer (8 layers) h-BN films. Individual devices
achieve an on/off ratio of>10, low voltage operation (∼0.5 V set/V reset), good endurance (>6000
programming steps), and good retention (>104 s). The dot-product operation shows excellent
linearity and repeatability, with low read energy consumption (∼200 aJ to 20 fJ per operation),
with minimal error and deviation over various measurement cycles. Moreover, we present the
implementation of a stochastic logistic regression algorithm in 2D h-BN memristor hardware for
the classification of noisy images. The promising resistive switching characteristics, performance of
dot-product computation, and successful demonstration of logistic regression in h-BN memristors
signify an important step towards the integration of 2D materials for next-generation
neuromorphic computing systems.

1. Introduction

Since the discovery of graphene [1], two-dimensional
(2D)materials have been the focus of intense research
and have shown great potential to advance the capab-
ilities of future integrated electronic systems. Recent
studies have proposed the possibility of adding new
functionality through the hybrid integration of 2D
materials with complementary metal oxide semicon-
ductor technologies [2, 3]. Here, neuromorphic com-
puting is recognized as one of the main applica-
tions of next-generation electronic systems enabled
by 2D materials integration [2]. This unconventional
computing paradigm aims at the implementation of
artificial neural networks (ANNs) using compute-in-
memory hardware to achieve energy-efficient data
processing for machine learning and artificial intel-
ligence (AI) applications. It requires devices that
can emulate bio-inspired functions (e.g. artificial

synapses and neurons) andmemristors have emerged
as a primary choice [4]. Memristors are electronic
devices with variable resistance states that depend on
their past and recent experience with external stimuli.
Conventional memristor technologies are construc-
ted from bulk materials and their resistive switching
behavior can be achieved through various mechan-
isms (e.g. ionic transport [5], filamentary [6], phase
change [7], charge trapping [8], etc). Filamentary
metal-oxide resistive random-access memory (i.e.
RRAM) [9] is a widely studied technology due to its
non-volatility, high switching speed, low switching
energy, and small footprint. Recently, several stud-
ies have reported the non-volatile resistive switch-
ing (NVRS) behavior of 2D materials down to single
atomic layers [10, 11]. A variety of 2D materials were
shown to exhibit NVRS properties including trans-
ition metal dichalcogenides (TMDs) [12], hexagonal
boron nitride (h-BN) [13–15], black phosphorus
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[16, 17], graphene [18, 19], etc. CVD-grown h-BN
has attracted significant interest due to its compatibil-
ity with high-density wafer-scale integration [14, 15].
In CVD-grown h-BN memristors, the NVRS beha-
vior is attributed to the formation and dissolution of
conductive nanofilaments that result from the penet-
ration and removal of metal ions (from the top elec-
trode) into defects at grain boundaries in the h-BN
film [20, 21].

Two-dimensional h-BNmemristors have demon-
strated superior properties compared to their bulk
counterparts (e.g. metal-oxide memristors) [22],
making them ideal candidates for future neur-
omorphic chips for AI applications. For example,
they can extend the vertical scaling limit of oxide-
based RRAM as their NVRS behavior endures even in
atomically-thin h-BNmonolayers [10, 22].Moreover,
the layered structure of h-BN may help alleviate pro-
gramming errors and variability (e.g. stuck-at issues)
associated with non-uniformity in the thickness of
the resistive switching medium in bulk technologies
[23]. Additionally, 2D h-BN memristors were shown
to provide better analog control of conductance pro-
grammability (e.g. long-term potentiation/depres-
sion of artificial synapses) over a wide range of oper-
ating currents when compared to metal-oxide RRAM
where programmability is limited only to a smal-
ler range of high currents. This is attributed to fila-
ment formation happening in native defects surroun-
ded by stable crystalline 2D layered h-BN [22]. In
fact, the superior chemical stability of h-BN mem-
ristors is expected to also alleviate oxidation reaction
to filaments and prevent the redundant formation
of undesired paths, thus helping improve endurance
which has been a persistent issue with oxide-based
RRAM [24, 25].

Despite their great potential for neuromorphic
hardware, few reports of dot-product computation
using 2D memristors have appeared in the literature,
even though it is crucial formost analog-based imple-
mentations of neural network accelerators [26, 27].
Previous work reported on dot-product computa-
tion in h-BN memristors (two devices in parallel)
and its application towards hardware implementa-
tion of linear regression algorithms [15]. Here, we
report a more extensive dot-product computation
with larger arrays based on a wafer-scale process for
2D h-BN memristors. In addition to dot-product,
our analysis elucidates the NVRS characteristics of
wafer-scale CVD-grown h-BNmemristors, including
on/off ratio, low-voltage operation, endurance, reten-
tion, pulsed analog programmability.We examine the
dot-product computation with respect to its accur-
acy, variability, and energy efficiency. This analysis,
the first of its kind for a 2D memristor technology,
represents significant progress towards the practical
implementation of neuromorphic hardware using 2D

materials. Finally, we demonstrate the implementa-
tion of a logistic regression learning algorithm to clas-
sify noisy images using our 2D h-BNmemristor hard-
ware with near-ideal performance and accuracy (by
comparisons with simulations).

2. Results

Arrays of 2D memristors with a metal–insulator–
metal structure are fabricated on Si/SiO2 wafers using
CVD-grown few-layer h-BN films. A photograph of
a typical Si/SiO2 wafer with the h-BN memristor
arrays is shown in figure 1(a). This work reports on
devices with Au bottom electrodes (BEs), and Ti top
electrodes (TEs) (capped with Au). A micrograph of
Au/h-BN/Ti memristor arrays under test is provided
in figure 1(b), and details of a single device cross-
section are depicted in figure 1(c). Each array shares
a common BE while the TEs are distinct. The fabric-
ation steps are illustrated in figure 2(a) and include
the patterning and deposition/lift-off of the shared
BEs (steps i, ii, iii), followed by transfer of the few-
layer CVD-grown h-BN film (∼5 nm in thickness)
and patterning of the active regions by dry-etching
(steps iv, v, vi). Finally, the TEs are prepared by pho-
tolithography, e-beam evaporation, and lift-off (steps
vii, viii, ix). More details on the fabrication of Au/h-
BN/Ti memristor arrays are provided in the supple-
mentary information. Figure 2(b) is a micrograph of
two different fully-fabricated h-BN memristor arrays
(1 × 3 and 1 × 10). We note that each fabricated
sample contains over 200 h-BN memristor arrays
and the majority of devices demonstrate reasonable
resistive-switching behavior yielding >90% working
devices. This is consistent with previous work that
used similar methods for wafer-scale integration and
processing of 2Dmemristive crossbars (reported 98%
yield) [14]. A critical step in the fabrication of the
arrays to achieve good resistive-switching behavior
and high yield is the transfer of the CVD-grown h-
BN film. Thus, to verify the quality of the h-BN film
we conducted Raman spectroscopy at various ran-
domly selected locations immediately after the trans-
fer step. Figure 2(c) shows Raman spectra revealing
peak positions at 1370 cm−1 for all different loca-
tions, consistent with previously published results on
few-layer h-BN films [28]. Additional verification of
the h-BN memristor structure is achieved via cross-
sectional transmission electron microscopy (TEM)
imaging (figure 2(d)) revealing the layered nature of
the h-BN film. The dark and blurry regions in the
TEM image may reveal lattice disorder and native
defects along grain boundaries known to be respons-
ible for conductive nanofilament formation and res-
istive switching behavior [29]. Compositional ana-
lysis using electron energy loss spectroscopy (EELS)
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Figure 1. (a) Photograph of a typical 2D h-BN memristor array sample fabricated on a Si/SiO2 wafer. (b) Micrograph of h-BN
memristor arrays under test with shared bottom electrode and independent top electrodes. (c) Cross-sectional schematic of the
few-layer h-BN memristor arrays with Ti/Au top electrode and Au bottom electrodes.

Figure 2. (a) Fabrication steps for h-BN memristor arrays on Si/SiO2 wafers enabled by large-area transfer and processing of
CVD-grown h-BN films. Steps include patterning and deposition of shared bottom electrodes, transfer, and patterning of the
resistive switching few-layer h-BN film, and the patterning and deposition of independent top electrodes. (b) Micrograph of two
different h-BN memristor arrays size 1× 3 and 1× 10. (c) Raman spectra for few-layer h-BN at 5 different locations after
transfer onto Si/SiO2 wafer. (d) Transmission electron microscopy (TEM) cross-sectional image of Au/h-BN/Ti/Au memristors,
scale bar is 20 nm. Right panels show electron energy loss spectroscopy (EELS) elemental mapping highlighting regions of N, B,
and Ti within the stack.

confirms the regions of N, B and Ti within the stack
as highlighted in figure 2(d) (right panels).

A comprehensive analysis of the resistive switch-
ing behavior of h-BN memristors is provided in
figure 3. Dual voltage sweep measurements are used
to observe hysteresis in the current–voltage (I–V)
characteristics associated with transitions between a
high resistance state (HRS) and a low resistance state
(LRS) [30]. In these measurements, a DC voltage
across the top and BEs is swept (starting from zero)
up to a positive value (e.g. 1.5 V), then back to a
negative value (e.g., −1 V), and back to zero, all
while measuring the current through the memristor.
The results from 30 cycles of dual voltage sweeps are
plotted in figure 3(a) for an h-BN memristor with
3 µm × 3 µm active area (area of overlap between
top and BEs). The number labels indicate the sweep
direction, each light gray line is data from a single

cycle, and the blue line with circles is the average
from all 30 cycles. A compliance (limit) is applied
to the current at a value of 100 µA to control the
programming of the LRS by limiting the ‘strength’
of the conductive path being formed. The measure-
ments indicate repeatable results with little cycle-to-
cycle variation and low set and reset voltages (approx-
imately ±0.5 V for set/reset). Our results are con-
sistent with previous work on thin CVD-grown h-
BN memristors having forming-free bipolar resistive
switching characteristics, as well as smaller set/reset
voltages and on/off ratios compared to devices with
thicker h-BN films [21, 29]. Figure 3(b) are cumu-
lative distribution plots of the high and low resist-
ance states (HRS and LRS) from all I–V measurement
cycles extracted at a read voltage of V read = 0.1 V. The
cumulative distribution plots reveal an on/off ratio
exceeding an order of magnitude (i.e.>10× ratio).
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Figure 3. (a) Thirty cycles of current–voltage (I–V) characteristics measured with dual voltage sweeps on a few-layer h-BN
memristor with 3 µm× 3 µm active area. (b) Cumulative distribution plot of HRS and LRS extracted at the read voltage of 0.1 V.
(c) The resistance corresponding to HRS and LRS plotted as a function of cycle number. (d) Room temperature retention test on
an h-BN memristor (active area of 3 µm× 3 µm) at V read = 0.1 V for up to 10 000 s (LRS and HRS values shown).

Figure 3(c) shows the extracted HRS and LRS from
the same device as a function of cycle number,
showing good cycle-to-cycle repeatability. Finally,
figure 3(d) shows the results from a room temper-
ature retention test, where the current in an h-BN
memristor is sampled at V read = 0.1 V for up to
10 000 s immediately after programming to HRS and
LRS. The results from the retention test show negli-
gible drift in the programmed state of the h-BNmem-
ristors. This could suggest another potential advant-
age of 2D h-BNmemristors over conventional (bulk)
oxide-based RRAM which suffers from retention-
induced conductive drift that can lead to significant
degradation in inference accuracy in neuromorphic
computing systems [31, 32]. We note that previous
work on h-BN memristors has shown a transition
from NVRS (long-term memory) to volatile beha-
vior (short-term memory) by limiting the current
(compliance). This ‘threshold-type’ resistive switch-
ing behavior can enable neuromorphic functions like
spike-rate dependent plasticity [14, 33].

In figure 4(a), we explore the analog program-
mability of the h-BNmemristors using 100 ns pulses.
We use voltage amplitudes of 0.9 V for positive pulses
and −1.1 V for negative pulses. We apply 15 con-
secutive positive pulses followed by 15 consecutive

negative pulses and measure the current after each
pulse using V read = 0.1 V. The measured data is
plotted for 200 cycles (a total of 6000 pulses). Here,
the gray lines correspond to the individual 30-pulse
cycles, and the red line with circles is the aver-
age for all 200 cycles. The results indicate good
monotonic behavior with pulse polarity (i.e. cur-
rent increases with positive pulses and decreases
with negative pulses). Moreover, the h-BN memris-
tors show good endurance to pulse programming as
evidenced by consistent resistive switching behavior
even after 6000 pulses. We note that the dynamic
range in figure 4(a) (range of programmed cur-
rents) is small (∼2.5×) due to the small amplitudes
of the programming pulses (+0.9 V and −1.1 V).
Additional programming data with different pulse
amplitudes are provided in supplementary figures
3 and 4. We can estimate the programming energy
(energy used in changing conductance with a single
programming pulse) assuming a current of approx-
imately 45 µA (estimated current for Vpos = 0.9 V
instead of V read = 0.1 V) and using tset = 30 ns
to obtain Eset = (Vpos)(Iset)(tset) ∼ 1.2 pJ/pulse. In
this calculation we use tset = 30 ns instead of 100 ns
(test instrument limitation), as determined by extra-
polation of transient measurements indicating that
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Figure 4. (a) Pulse programming of a single h-BN memristor over 200 cycles. For each cycle we apply 15 positive pulses followed
by 15 negative pulses (amplitudes are+0.9 and−1.1 V respectively, all pulses are 100 ns in width). After each pulse the current is
measured using V read = 0.1 V. Red line with circles is the average of all 200 cycles. (b) Schematic of the h-BN memristor array
illustrating the dot-product operation. (c) Dot product computation in hardware: we sequentially program individual devices
fromHRS to LRS then sweep the voltage on the top electrodes (all at same voltage) while measuring the total current on the shared
BE. The measurement is repeated for 10 cycles (solid lines with circles are the average from all 10 cycles). Figures (d) and (e) are
mean absolute error (MAE) and standard deviation in the dot-product computation (see text for more detailed description).

approximately 20–30 ns is sufficient to switch the
h-BN memristors (see supplementary figure 5). Note
that this programming energy is higher than the
energy used in reading the device in a dot-product
operation as will be described next.

Having verified the NVRS and analog pulse pro-
grammability of individual devices, we then test an
array of h-BN memristors. Figure 4(b) is a schematic
of the array, where we illustrate the voltages applied
to each top electrode, and the total current through
the shared BE given by the dot-product of voltages
(vi) and the corresponding memristor conductances
(Gi) as I=

∑
i viGi. For the dot-product test, we

sequentially program individual devices from HRS
to LRS (7 devices in a row). We conduct a voltage
sweep on the TEs (all TEs at the same voltage) after
programming each device. During the sweep, we
measure the total current through the shared BE.
Once all devices have been programmed to LRS,
we reset all devices to HRS and begin the next
cycle (repeated 10 times). The data is shown in
figure 4(c) as current vs. the swept voltage. Here, each
color represents a different ‘state’ corresponding to

a different number of memristors in LRS. For each
state, we plot the individual cycles (lines) as well as the
average (thick lines with circles). This is a directmeas-
urement of dot-product implementation on mem-
ristor hardware scanning both relevant parameters
(i.e. voltages and conductances) [15]. We note that
the dot-product computations show good linearity
and reproducibility (quantitative analysis below). We
estimate read energy from the dot-product measure-
ments as Eread = (V read)(Iread)(tread)/N, where N is
the number of memristors in parallel. For the worst
case (all devices in LRS), the energy is between 200 aJ
and 20 fJ per operation (each MAC counted as two
operations).

3. Discussion

Non-ideal memristor behavior (e.g. nonlinear I–V
characteristics) as well as variability in conduct-
ance programming (inherent stochastic nature of fil-
amentary resistive-switching mechanisms) can lead
to inaccuracy in the computation of dot-products
[34–36]. This inaccuracy can introduce significant
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error in the implementation of ANNs using mem-
ristor hardware. To quantify accuracy in dot product
computation, we calculate the MAE as well as the
standard deviation in our implementation using h-
BN memristor arrays. To obtain MAE, we per-
form a linear fit to the average currents (symbols)
in figure 4(c) for each state (using a least-squares
method). This linear fit represents a perfectly lin-
ear or ‘exact’ dot-product implementation for each
corresponding state. We then compare the experi-
mental values (all cycles) against the exact calculation
to obtain MAE over the entire voltage range (from
−0.1 V up to +0.1 V). MAE is plotted in figure 4(d)
for each different state (average over all cycles). As
shown, the error is largest for state = ‘1’ which cor-
responds to all devices in HRS. However, this MAE
is relatively small (<1 µA) compared to the range
of current (up to ∼100 µA) and drops significantly
(down to ∼10 nA) with more devices in LRS. We
attribute the small error in the dot-product compu-
tation to good linearity in the h-BN memristor I–
V characteristics over this read voltage range (from
−0.1 V to +0.1 V). We also quantify cycle-to-cycle
variability based on extractions of standard deviation
(σ) in the effective state conductance from the dot-
product data (i.e. the slope from the I–V character-
istics in figure 4(c)). The standard deviation is plot-
ted in figure 4(e) for each different state, where the
largest deviation of ∼70 µS happens for state = ‘1’
which corresponds to all devices inHRS.We note that
this is small compared to the full range of conduct-
ance (200–1000 µS) in the dot-product implement-
ation. Memristor instability (i.e. retention-induced
conductive drift) can also lead to inaccuracy in dot-
product computations. However, our retention test
results (figure 3(d)) show negligible drift in HRS
and LRS. Moreover, previous results [15] show good
retention and stability overmultiple conductive states
in the same type of devices.

As a demonstration of dot-product computa-
tion in a machine learning algorithm, we present the
implementation of gradient-descent-based stochastic
logistic regression for image classification. Logistic
regression is widely employed for object categoriza-
tion and pattern identification. Here, we carry out the
hardware-level computation of dot-product (includ-
ing the corresponding weight updates) on an array
of h-BN memristors. Gradient descent is an iter-
ative optimization approach for minimization of a
cost function associated with classification error [37].
In stochastic gradient descent (an online version of
this technique that process data one observation at a
time [38]), the weight updates (pulse-based adjust-
ments in conductance) are exerted on the h-BNmem-
ristor array at every iteration in the training pro-
cess. Since memristive crossbar arrays are unable to
achieve the steepest gradient descent in an effective
manner due to device limitations, we use a modified

(hardware-compatible) gradient descent rule to train
the h-BN memristor array [39]. In this approach,
a single pulse or a set of consecutive programming
pulses (with fixed amplitude and width) are applied
to update the conductance of each memristor in the
array as determined by the magnitude and polar-
ity required weight updates given by the gradient
descent optimization algorithm [27, 39–41]. In this
demonstration, we use a dataset of size 500 contain-
ing 3 × 3 pixel noisy binary images of characters ‘T’,
‘L’ and ‘n’ (training images). We train a 9 × 1 h-BN
memristor array to discern images of character ‘T’
from the other characters in a separate dataset (test
images). We note that the training and test images are
independently generated with one randomly flipped
pixel. Figure 5(a) shows a subset of the images illus-
trating the ideal characters (1st image for each row)
as well as some noisy samples (1 modified pixel).

The training process includes two consecutive
steps during each iteration: a feedforward integra-
tion mode and a feedback update mode. In feedfor-
ward integration mode, vector-matrix multiplication
(a collection of dot-products) is performed to achieve
a hypothesis based on the accumulated output cur-
rents. In this hardware implementation, each binary
picture pixel is translated to a crossbar input voltage
equal to+0.1 V for white pixels and−0.1 V for black
pixels, as shown in figure 5(b). Importantly, these
input voltages are within the range in the I–V charac-
teristics of h-BN memristors showing good linearity
in dot-product computation (see figure 4(c)). Then,
the image-dependent array of voltages is applied as
inputs to the memristor array to obtain an output
current given by Ij =

∑9
i=1 viGi (i.e. the dot-product

of input voltages and conductance ‘weights’).We then
apply the logistic activation function fj =

1
1+e−Ij

to the

(normalized) current to obtain an output bounded
between 0 and 1. This output represents the like-
lihood that the input image corresponds to a spe-
cific category (i.e. corresponds to a specific charac-
ter like ‘T’). Each training image contains a ‘label’
that indicates if it corresponds to a given category.
In this example we are training the memristor array
to recognize character ‘T’ from the rest, so the train-
ing images have label yj = 1 for character ‘T’ and
yj = 0 for all other characters. At each training step,
the classification error is calculated as δj = fj − yj.
In feedback update mode, the conductance update
(weight update) for each memristor is calculated as
∆Gij =−δjvi. Here we use a simplified, hardware-
compatible update rule where a single programming
pulse of polarity determined by the sign of ∆Gij is
applied to change the conductance of eachmemristor
in the array. We use programming pulses with fixed
widths and amplitudes of 30 ns, and +2.5 V/−2.6 V
respectively. Figure 5(c) provides a flow diagram
illustration of one iteration in our implementation
of stochastic logistic regression on h-BN memristor
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Figure 5. (a) Training images (1st image is the ideal case, without noise) including noisy images (one pixel flipped). (b) Graph
illustration of logistic regression on h-BN memristor arrays. (c) A flowchart representing one iteration step in the training process
for stochastic logistic regression: each pixel from the training image is translated to an input voltage and applied to the top
electrodes in the memristor array. The output current is measured at the bottom electrode shared by all memristor devices in the
array. A logistic function is applied to the normalized current, and the classification error is calculated using the training image
labels to obtain the required conductance update∆G (see text). The conductance of each h-BN memristor in the array is then
updated through the application of positive or negative programming pulses.

array hardware. Resistive-switching I–V and pulsed
characteristics of individual devices from the same
h-BN memristor array are provided in supplement-
ary figure 4. As presented below, the algorithm
implementation reveals good immunity to reason-
able levels of device-to-device experimental variab-
ility. Nonetheless, variability should be improved by
optimized h-BN transfermethods (or by transfer-free
deposition) and array design.

Figure 6 summarizes the results of the classific-
ation algorithm implemented on the arrays of h-
BN memristors. At predetermined training intervals,
the classification accuracy is assessed using the test
images. Figure 6(a) plots the output of the logistic
function (fj) as a function of training step (iteration).
This is actually the average for all test images (100
test images for each character). The different lines
with symbols correspond to the measured output for
each different character (maroon for ‘T’, blue for ‘n’,
and green for ‘L’). We see that for images of charac-
ter ‘T’ the value approaches 1, while for ‘L’ and ‘n’ it
approaches 0, meaning an accurate classification as
this array was trained to classify character ‘T’. Also
shown in figure 6(a) are simulation results for the
hardware implementation of stochastic multivariable
logistic regression. The shaded regions indicate the
range of the simulation results (minimum to max-
imum) from 10 different runs using random initial
conductance values, and the solid line is the average.
A small learning rate is factored into the conductance

updates obtained from gradient descent to ensure
a gradual change in conductance and improve con-
vergence. In our simulations, we bound conduct-
ance values to Gmin and Gmax values obtained experi-
mentally from pulse testing of the h-BN memristors.
Additional details on the simulations are provided in
the supplementary information. The simulation rep-
resents an ideal situation where conductance updates
are perfectly controlled (no variability) for all mem-
ristors in the array, and the dot product is linear
and without cycle-to-cycle variability. The compar-
ison between simulations and experiments indicates
that our hardware implementation achieves similar
performance and accuracy to the ideal case. We note
more abrupt changes in the experimental data, likely
due to abruptness in changes of memristor conduct-
ance, but this appears to have little impact on the final
accuracy. The rest of the results in figures 6(b)–(e)
are only for experimental results on the h-BN mem-
ristor arrays. Figure 6(b) shows the confusion matrix
for the fj values before and after 500 training steps.
Clearly, the classification improves significantly with
training, in accordance with figure 6(a). Figure 6(c)
shows a conductance map of the h-BN memristor
before and after the hardware-implemented training.
It is observed that after 500 training steps the pat-
tern ‘T’ becomes noticeable, while before training
the conductance pattern was random. A reasonable
explanation for the full brightness of pixel 3 is the
maximum percentage of reinforcement applied to
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Figure 6. (a) Convergence of a logistic regression algorithm implemented on h-BN memristor arrays as described by the output of
the logistic function indicating accurate classification of noisy pixel images. Lines with symbols correspond to experimental data
on h-BNmemristor array hardware, shaded regions with solid lines correspond to the range and average results from 10 MATLAB
simulations with ideal memristor response. (b) Confusion matrix for hardware classification of character ‘T’ before and after
training. (c) Conductance maps before and after training revealing the pattern ‘T’ after 500 iterations. (d) Evolution of
experimental conductance values as a function of training step (iteration). (e) Change in conductance during training shows that
memristors that correspond to pixels unique to the training pattern (character ‘T’) are strongly reinforced (large positive change
in conductance) compared to those that
are not.

this pixel during training since it is only present in
pattern ‘T’ (not in ‘L’ or ‘n’). In fact, this is evident
in the evolution of conductance for the full array over
the course of 250 training steps plotted in figure 6(b).
Another visualization of the learning process is the
change in conductance during training for each h-BN
memristor as plotted in figure 6(e). As shown, devices
that correspond to pixels that are in the ideal ‘T’ pat-
tern are more strongly reinforced (positive change in
conductance) compared to the pixels that are not.

4. Conclusion

We report on the wafer-scale fabrication of h-
BN memristor arrays to enable dot-product com-
putations and the hardware implementation of
machine learning algorithms. We show the resist-
ive switching behavior of few-layer h-BN mem-
ristors having low set/reset voltages, >10× on/off
ratio, good endurance, retention, and nonvolatile
analog pulse programmability. We present the hard-
ware computation of dot-products on an arrays of

h-BN memristors. This work provides a quantitat-
ive analysis of dot-product revealing good linear-
ity, reproducibility, and energy efficiency as determ-
ined by MAE, standard deviation, and program/read
energy (e.g. attojoule range per read operation).
Finally, we demonstrate a hardware-compatible
implementation of stochastic logistic regression on
h-BN memristor arrays for image classification. The
experimental results show classification accuracy
and algorithm performance comparable to arrays
with ideal memristive behavior (from simulations).
Exceptional resistive switching characteristics, dot-
product performance, and implementation of logistic
regression in h-BN memristor arrays indicate a sig-
nificant step towards the integration of 2D mater-
ials for next-generation neuromorphic computing
systems.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).

8



2D Mater. 10 (2023) 035031 S Afshari et al

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. CCF-
2001107. We acknowledge the use of facilities within
the Eyring Materials Center and Shize Yang from
Arizona State University, supported in part by NNCI-
ECCS-1542160, for contributions to TEM and EELS
characterization.

ORCID iDs

Sahra AfshariB https://orcid.org/0000-0002-2718-
1812
Mirembe Musisi-NkambweB
https://orcid.org/0000-0002-1129-3924
Ivan Sanchez EsquedaB https://orcid.org/0000-
0001-6530-8602

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,
Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric
field in atomically thin carbon films Science 306 666–9

[2] Lemme M C, Akinwande D, Huyghebaert C and Stampfer C
2021 2D materials for future heterogeneous electronics Nat.
Commun. 13 1392

[3] Kaichen Z, Chao W, Aljarb A A, Fei X, Xiangming X,
Vincent T, Xixiang Z, Alshareef H N and Lanza M 2021 The
development of integrated circuits based on
two-dimensional materials Nat. Electron. 4 775–85

[4] Yibo L, Zhongrui W, Rivu M, Xia Q and Joshua Yang J 2018
Review of memristor devices in neuromorphic computing:
materials sciences and device challenges J. Phys. D: Appl.
Phys. 51 503002

[5] Kozicki M N and Barnaby H J 2016 Conductive bridging
random access memory—materials, devices and applications
Semicond. Sci. Technol. 31 113001

[6] Zahoor F, Zulkifli A, Zainal T and Khanday F A 2020
Resistive random access memory (RRAM): an overview of
materials, switching mechanism, performance, multilevel
cell (mlc) storage, modeling, and applications Nanoscale Res.
Lett. 15 90

[7] Francesco M, Jacopo S, Benedikt K, Manuel L G,
Fernando C, Sebastian A and Chua L O 2022 Experimental
validation of state equations and dynamic route maps for
phase change memristive devices Sci. Rep. 12 1–10

[8] Sanchez Esqueda I, Yan X, Rutherglen C, Kane A, Cain T,
Marsh P, Liu Q, Galatsis K, Wang H and Zhou C 2018
Aligned carbon nanotube synaptic transistors for large-scale
neuromorphic computing ACS Nano 12 7352–61

[9] Wong B H P et al 2012 Metal—oxide RRAM Proc. IEEE
100 1951–70

[10] Xiaohan W 2019 Thinnest nonvolatile memory based on
monolayer h-BN Adv. Mater. 31 1–7

[11] Jun G, Huang H, Zelin M, Chen W, Cao X, Fang H, Yan J,
Liu Z, Wang W and Pan S 2021 A sub-500 mV monolayer
hexagonal boron nitride based memory deviceMater. Des.
198 109366

[12] Ruijing G, Xiaohan W, Myungsoo K, Jianping S, Sushant S,
Tao L, Yanfeng Z, Lee J C and Deji A 2018 Atomristor:
nonvolatile resistance switching in atomic sheets of
transition metal dichalcogenides Nano Lett. 18 434–41

[13] Nikam R D, Rajput K G and Hwang H 2021 Single-atom
quantum-point contact switch using atomically thin
hexagonal boron nitride Small 17 1–8

[14] Chen S et al 2020Wafer-scale integration of two-dimensional
materials in high-density memristive crossbar arrays for
artificial neural networks Nat. Electron. 3 638–45

[15] Xie J, Afshari S and Sanchez Esqueda I 2022 Hexagonal
boron nitride (h-BN) memristor arrays for analog-based
machine learning hardware npj 2D Mater. Appl. 6 50

[16] Rehman S, Khan M F, Aftab S, Kim H, Eom J and Kim D-K
2019 Thickness-dependent resistive switching in black
phosphorus CBRAM J. Mater. Chem. C 7 725–32

[17] Taimur A et al 2022 Mixed ionic-electronic charge transport
in layered black-phosphorus for low-power memory Adv.
Funct. Mater. 32 1–11

[18] Pradhan S K, Xiao B, Mishra S, Killam A and Pradhan A K
2016 Resistive switching behavior of reduced graphene oxide
memory cells for low power nonvolatile device application
Sci. Rep. 6 1–9

[19] Romero F J, Toral A, Medina-Rull A, Moraila-Martinez C L,
Morales D P, Ohata A, Godoy A, Ruiz F G and Rodriguez N
2020 Resistive switching in graphene oxide Front. Mater.
7 1–5

[20] Villena M A, Hui F, Liang X, Shi Y, Yuan B, Jing X, Zhu K,
Chen S and Lanza M 2019 Variability of metal/h-BN/metal
memristors grown via chemical vapor deposition on
different materialsMicroelectron. Reliab. 102 113410

[21] Shi Y et al 2018 Electronic synapses made of layered
two-dimensional materials Nat. Electron. 1 458–65

[22] Kumar P, Zhu K, Gao X, Wang S-D, Lanza M and
Thakur C S 2022 Hybrid architecture based on
two-dimensional memristor crossbar array and CMOS
integrated circuit for edge computing npj 2D Mater.
Appl. 6 8

[23] Chaudhuri A and Chakrabarty K 2019 Analysis of process
variations, defects, and design-induced coupling in
memristors Proc.—Int. Test Conf. 2018 pp 1–10

[24] Chen B et al 2011 Physical mechanisms of endurance
degradation in TMO-RRAM Technical Digest—Int. Electron
Devices Meeting, IEDM pp 283–6

[25] Zhang D, Yeh C-H, Cao W and Banerjee K 2021 0.5T0.5R-an
ultracompact RRAM cell uniquely enabled by van der Waals
heterostructures IEEE Trans. Electron Devices
68 2033–40

[26] Miao H et al 2016 Dot-product engine as computing
memory to accelerate machine learning algorithms
Proc.—Int. Symp. on Quality Electronic Design, ISQED 2016
pp 374–9

[27] Peng C and Yu S 2018 Benchmark of RRAM based
architectures for dot-product computation IEEE Asia Pacific
Conf. on Circuits and Systems

[28] Basu N, Bharathi M S S, Sharma M, Yadav K, Parmar A S,
Soma V R and Lahiri J 2021 Large area few-layer hexagonal
boron nitride as a Raman enhancement material
Nanomaterials 11 1–13

[29] Chengbin P et al 2017 Coexistence of
grain-boundaries-assisted bipolar and threshold resistive
switching in multilayer hexagonal boron nitride Adv. Funct.
Mater. 27 1604811

[30] Shimeng Y, Wu Y and Wong H S P 2011 Investigating the
switching dynamics and multilevel capability of bipolar
metal oxide resistive switching memory Appl. Phys. Lett.
98 98–101

[31] Baroni A, Glukhov A, Perez E, Wenger C, Ielmini D, Olivo P
and Zambelli C 2022 Low conductance state drift
characterization and mitigation in resistive switching
memories (RRAM) for artificial neural networks IEEE Trans.
Device Mater. Reliab. 22 340–7

[32] Lin Y H, Wang C H, Lee M H, Lee D Y, Lin Y Y, Lee F M,
Lung H L, Wang K C, Tseng T Y and Chih Yuan L 2019
Performance impacts of analog ReRAM non-ideality on
neuromorphic computing IEEE Trans. Electron Devices
66 1289–95

[33] Dastgeer G, Abbas H, Kim D Y, Eom J and Choi C 2021
Synaptic characteristics of an ultrathin hexagonal boron

9

https://orcid.org/0000-0002-2718-1812
https://orcid.org/0000-0002-2718-1812
https://orcid.org/0000-0002-2718-1812
https://orcid.org/0000-0002-1129-3924
https://orcid.org/0000-0002-1129-3924
https://orcid.org/0000-0001-6530-8602
https://orcid.org/0000-0001-6530-8602
https://orcid.org/0000-0001-6530-8602
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/s41467-022-29001-4
https://doi.org/10.1038/s41467-022-29001-4
https://doi.org/10.1038/s41928-021-00672-z
https://doi.org/10.1038/s41928-021-00672-z
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1088/0268-1242/31/11/113001
https://doi.org/10.1088/0268-1242/31/11/113001
https://doi.org/10.1186/s11671-020-03299-9
https://doi.org/10.1186/s11671-020-03299-9
https://doi.org/10.1038/s41598-021-99269-x
https://doi.org/10.1038/s41598-021-99269-x
https://doi.org/10.1021/acsnano.8b03831
https://doi.org/10.1021/acsnano.8b03831
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1016/j.matdes.2020.109366
https://doi.org/10.1016/j.matdes.2020.109366
https://doi.org/10.1021/acs.nanolett.7b04342
https://doi.org/10.1021/acs.nanolett.7b04342
https://doi.org/10.1002/smll.202006760
https://doi.org/10.1002/smll.202006760
https://doi.org/10.1038/s41928-020-00473-w
https://doi.org/10.1038/s41928-020-00473-w
https://doi.org/10.1038/s41699-022-00328-2
https://doi.org/10.1038/s41699-022-00328-2
https://doi.org/10.1039/C8TC04538K
https://doi.org/10.1039/C8TC04538K
https://doi.org/10.1002/adfm.202107068
https://doi.org/10.1002/adfm.202107068
https://doi.org/10.1038/srep26763
https://doi.org/10.1038/srep26763
https://doi.org/10.3389/fmats.2020.00017
https://doi.org/10.3389/fmats.2020.00017
https://doi.org/10.1016/j.microrel.2019.113410
https://doi.org/10.1016/j.microrel.2019.113410
https://doi.org/10.1038/s41928-018-0118-9
https://doi.org/10.1038/s41928-018-0118-9
https://doi.org/10.1038/s41699-021-00284-3
https://doi.org/10.1038/s41699-021-00284-3
https://doi.org/10.1007/978-1-4939-9581-3_1
https://doi.org/10.1109/IEDM.2011.6131539
https://doi.org/10.1109/TED.2021.3057598
https://doi.org/10.1109/TED.2021.3057598
https://doi.org/10.3390/nano11030622
https://doi.org/10.3390/nano11030622
https://doi.org/10.1002/adfm.201604811
https://doi.org/10.1002/adfm.201604811
https://doi.org/10.1063/1.3564883
https://doi.org/10.1063/1.3564883
https://doi.org/10.1109/TDMR.2022.3182133
https://doi.org/10.1109/TDMR.2022.3182133
https://doi.org/10.1109/TED.2019.2894273
https://doi.org/10.1109/TED.2019.2894273


2D Mater. 10 (2023) 035031 S Afshari et al

nitride (h-BN) diffusive memristor Phys. Status Solidi
15 2000473

[34] Shen Y, Zheng W, Zhu K, Xiao Y, Wen C, Liu Y, Jing X and
Lanza M 2021 Variability and yield in h-BN-based
memristive circuits: the role of each type of defect Adv.
Mater. 33 2103656

[35] Peng G, Boxun L, Tang T, Shimeng Y, Cao Y, Wang Y and
Yang H 2015 Technological exploration of RRAM crossbar
array for matrix-vector multiplication 20th Asia and South
Pacific Design Automation Conf., ASP-DAC 2015 pp 106–11

[36] Xia L, Peng G, Boxun L, Tang T, Yin X, Huangfu W,
Shimeng Y, Cao Y, Wang Y and Yang H 2016 Technological
exploration of RRAM crossbar array for matrix-vector
multiplication J. Comput. Sci. Technol. 31 3–19

[37] Ruder S 2016 An overview of gradient descent optimization
algorithms pp 1–14

[38] Bottou L 2012 Stochastic gradient descent tricks Lecture
Notes in Computer Science (Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics vol 7700)
(Berlin: Springer) pp 421–36

[39] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C,
Likharev K K and Strukov D B 2015 Training and operation
of an integrated neuromorphic network based on
metal-oxide memristors Nature 521 61–64

[40] Nair M V and Dudek P 2015 Gradient-descent-based
learning in memristive crossbar arrays Proc. Int. Joint Conf.
on Neural Networks 2015

[41] Afshari S, Musisi-Nkambwe M and Sanchez Esqueda I 2022
Analyzing the impact of memristor variability on crossbar
implementation of regression algorithms with smart weight
update pulsing techniques IEEE Trans. Circuits Syst. I
69 2025–34

10

https://doi.org/10.1002/pssr.202000473
https://doi.org/10.1002/pssr.202000473
https://doi.org/10.1002/adma.202103656
https://doi.org/10.1002/adma.202103656
https://doi.org/10.1109/ASPDAC.2015.7058989
https://doi.org/10.1007/s11390-016-1608-8
https://doi.org/10.1007/s11390-016-1608-8
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TCSI.2022.3144240
https://doi.org/10.1109/TCSI.2022.3144240

	Dot-product computation and logistic regression with 2D hexagonal-boron nitride (h-BN) memristor arrays
	1. Introduction
	2. Results
	3. Discussion
	4. Conclusion
	References


