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In this work, we develop a novel neuro-symbolic model for automated seizure detection using multi-views
of data representation. Firstly, the spectral and line length features are extracted using a multi-view feature
extraction technique. Next, a signal temporal logic neural network (STONE) that combines the benefits of
neural networks and temporal logics is constructed to classify the seizure and nonseizure data. STONE is
designed in such a way that each neuron has a symbolic representation corresponding to a component
in a weighted signal temporal logic (WSTL) formula. Compared with traditional STL inference algorithms,
STONE is end-to-end differentiable such that the learning can be accomplished through back-propagation.
In addition, STONE improves the interpretability of seizure detection models as the outcome of STONE
is a wSTL formula that is interpretable and human-readable. Importantly, the wSTL formula reveals the
reasoning behind seizure as a description of the evolution of EEG signals. STONE is tested on two popular EEG
databases and demonstrated to achieve promising detection performance in terms of accuracy, sensitivity, and
specificity when compared with existing state-of-the-art models. Furthermore, STONE can provide a human-
readable formula as a description of the seizure characteristics, and the formula is also visualizable for easy
interpretation of the classifier, which is a missing property in existing seizure detection methods.

1. Introduction not accurate enough. To overcome the limitations of traditional seizure

diagnostic methods and improve the diagnosing efficiency, automated

Epileptic seizure, also known as seizure, refers to a period of symp-
toms that are caused by abnormally excessive or synchronized neuronal
activity in the brain [1]. Seizure is a severe neurological disorder
with the characteristics of recurrency. It is reported that nearly 10%
of the population worldwide has experienced the epileptic seizure at
least once [2]. Epileptic seizures can be classified into two categories
based on their potential causes. One type is called the provoked seizure
caused by a temporary incident such as low blood sugar, fever, alco-
hol intake, etc [1]. Another type of seizure is called the unprovoked
seizure, which has no fixable causes, and ongoing seizures follow a
similar pattern [3]. Nearly 3.5 of 10000 people have experienced
provoked seizures in a year, and nearly 4.2 of 10000 people have
experienced unprovoked seizures in a year [2]. Accurate detection and
timely treatment of seizures could reduce the risk of recurrence and
enhance human well-being. One of the most popular techniques for
seizure detection is through analyzing electroencephalogram signals.
Electroencephalogram (EEG) is a technique for recording an electro-
gram of electrical activity on the scalp, which has been proven to reflect
the macroscopic activity of the brain’s surface layer underneath [4].
Traditional seizure detection approaches rely on neurologists observing
the long-term EEG recordings and manually discovering the happening
of an epileptic seizure. These approaches are obviously inefficient and
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seizure detection from EEG data has become a research hotspot in the
field.

With the advancement of machine learning (ML) techniques, in-
corporating machine learning models into automated seizure detection
frameworks has attracted lots of interest. These frameworks mainly
apply machine learning models to features that are extracted from
the EEG signals. In particular, statistical features have been extracted
through time-domain transformations such as empirical mode decom-
position (EMD) [5] and frequency or time frequency-based transforma-
tion techniques such as fast Fourier transform (FFT), discrete wavelet
transform (DWT), discrete cosine transform (DCT), intrinsic mode func-
tion (IMF), wavelet packet decomposition (WPD), etc [6-10]. These
features have been validated to be suitable for seizure detection and
other brain-related activities [11]. It was also noted that “line length”
could be used as a powerful feature for seizure detection and generate
satisfactory outcomes [8]. Combining “line length” and other features
into machine learning models could obtain promising outcomes as
well [11]. Although machine learning techniques have proven their
contribution in seizure detection, most classification models are not
in a human-readable, interpretable format [12-16], such as hyper-
planes in a higher-dimensional parameter space [17-20], or ensemble

Received 30 March 2022; Received in revised form 8 June 2022; Accepted 11 July 2022

Available online 25 July 2022
1746-8094/© 2022 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/bspc
http://www.elsevier.com/locate/bspc
mailto:yanr5@rpi.edu
https://doi.org/10.1016/j.bspc.2022.103998
https://doi.org/10.1016/j.bspc.2022.103998
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.103998&domain=pdf

R. Yan and A.A. Julius

models that combine the outputs of multiple base classifiers [5,21].
The lack of interpretability and transparency [22] prevents users or
neurologists from understanding and trusting the outcomes of the
above models [23]. In addition to classifying data into a certain cat-
egory, enhancing the classifier to be intuitive to provide rules that
are interpretable can promote the classifier’s utilization in clinical
practice as these rules can better assist in decision making, especially
for neurologists who need to understand the reasoning behind the clas-
sifier. Recently, approaches toward improving the interpretability of
machine learning models in analyzing EEG signals have been proposed
in [24,25]. In this paper, we tackle the interpretability issue from a
novel perspective by combining the capabilities of neural networks and
symbolic logic to build a neuro-symbolic model that can learn logical
rules as interpretable descriptions of the properties of EEG signals.

Temporal logics are formal languages that can express specifications
about the temporal properties of systems. Compared with traditional
ML models, temporal logic formulas can express temporal properties
of EEG signals in a format similar to natural language, allowing for
a better understanding of EEG signals’ evolution through intuitive
visualization. Using temporal logic formulas as outcomes of the clas-
sifier offers a deeper level of interaction with the users. With these
benefits, temporal logics have been widely exploited to model temporal
data [26,27] using their expressiveness of data properties.

Signal temporal logic (STL), a branch of temporal logics for ana-
lyzing continuous-time data, has been applied to analyze signals from
cyber-physical systems [28-32]. Traditional approaches for learning
STL formulas face the limitations of low computation efficiency, and the
learned STL formula cannot mirror the importance of signals at differ-
ent time slots in describing the data characteristics. This paper utilizes
weighted STL (wSTL) [33] as the target formula that takes advantage of
weights to reflect the importance of subformulas and signals at various
time slots. Additionally, a neuro-symbolic model called Signal Tempo-
ral 10gic Neural nEtwork (STONE) is proposed to accomplish seizure
detection tasks, which can also learn a wSTL formula that describes
the characteristics of seizures. The benefits of STONE are mainly two
folds. STONE offers an end-to-end differentiable way of learning wSTL
formulas. Also, STONE improves the interpretability and transparency
of seizure detection models by associating each neuron with a symbolic
component in a wSTL formula and producing an interpretable wSTL
formula, which takes a step further toward constructing trustworthy
seizure detection models.

Many existing seizure detection models are designed as cross-patient
classifiers that assume one patient’s EEG seizure signal resembles an-
other patient’s EEG seizure signal [34,35]. In practice, the patterns of
EEG seizure signals vary across different patients. The variability may
cause cross-patient seizure detection models not accurate enough or
missing detection of seizure onsets. STONE takes the above factors into
consideration and is designed in a way that it can be used as a cross-
patient or patient-dependent detector. While STONE is exploited for
patient-dependent seizure detection, it can both declare the onset of a
seizure and provide a patient-dependent wSTL formula describing the
temporal patterns underlying a particular patient’s seizure data.

The contributions of this paper are summarized as follows: (1) we
propose a neuro-symbolic model called Signal Temporal 10gic Neural
nEtwork (STONE) by merging the benefits of neural networks with STL
to accomplish seizure detection tasks; (2) STONE is designed in such
a way that it can be utilized as a cross-patient or patient-dependent
seizure detection model, with a patient-specific wSTL formula learned
while being used for patient-dependent purposes; (3) STONE is tested
on the CHB-MIT scalp EEG database and the Bonn University database,
and the detector is shown to exhibit accurate detection of seizures
in terms of high sensitivity and specificity and acquire impressive
performance compared to state-of-the-art models; (4) STONE is capable
of learning human-readable formulas that reveal how the EEG data
from various channels evolves over time will cause seizure, allowing
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the patterns to be visualized such that the classifier can be better
understood from the perspectives of speech and vision.

The remaining sections of this paper are organized as follows. The
description of the databases used in this paper, including the CHB-MIT
and the Bonn University databases, is presented in Section 2. Section 3
presents the proposed methodology to tackle the seizure detection
problem, which includes the multi-view feature extraction through FFT
and line length extraction, the classification model that is designed as
a signal temporal logic neural network (STONE), the learning process
of STONE, and the description of the evaluation metrics. The exper-
iment design and results are presented in Section 4, which includes
the performance of STONE and six conventional ML models on the
CHB-MIT database and the Bonn University database, the comparison
of STONE with the existing state-of-the-art models, and the ablation
study of STONE, and the interpretability analysis of STONE. Finally,
the conclusion and the contributions of this work are summarized in
Section 5.

2. EEG dataset description

This paper relies on the Children’s Hospital Boston - Massachusetts
Institute of Technology (CHB-MIT) scalp electroencephalography (EEG)
database [36,37] from the Physionet repository [38] and the Bonn
University database [39] to accomplish the seizure detection task. The
above datasets are considered as the target datasets because of their
public availability, patient richness, and widespread acceptance in prior
studies [5,12-16,20,40].

2.1. CHB-MIT database

The CHB-MIT database contains 24 cases of EEG recordings from
22 pediatric patients with stubborn seizures. The pediatric patients
include five males aged three to twenty-two and seventeen females
aged one year and a half to nineteen. The EEG signals are monitored
when the anti-seizure drug is withdrawn, with the goal of determining
their surgical intervention capabilities.

Each set of the recordings comprises between 9 and 42 continuous
files in the European data format (EDF) from the same patient. The
majority of the EDF files include digitized EEG signals that are exactly
one hour long, while some recordings are up to four hours long and
some are shorter. There are 664 EDF files in total, representing nearly
962 h of recordings in the CHB-MIT database. The recordings are ob-
tained using the International 10-20 system of EEG electrode positions
and nomenclature, where each recording is sampled at a frequency
of 256 Hz with 16-bit resolution. Within the total 664 EDF files, 192
EDF files contain one or more seizures. The 664 EDF files contain
198 seizures in total that are annotated with the beginning and end
locations of seizures.

2.2. Bonn university database

The Bonn University database contains five sets of EEG recordings,
namely “Z”, “O0”, “N”, “F”, and “S”. Sets “Z” and “O” consist of
EEG recordings from five healthy volunteers in a relaxed condition
with their eyes open and closed. Sets “N”, “F”, and “S” comprise
EEG recordings that are acquired from five epileptic patients using the
electrodes placed intracranially. The recordings in sets “N” and “F”
are collected during seizure-free intervals, while the recordings in the
set “S” are collected from intervals corresponding to seizures. Each set
is composed of 100 recordings with one channel of EEG signal. Each
recording is with duration of 23.6 s. The recordings are digitalized
using the International 10-20 system at a frequency of 173.6 Hz with
12-bit resolution. Hence the length of each recording is 173.6 X 23.6 ~
4097 sample points. All the five sets of EEG recordings are exploited
in this work, and the classification problems (CPs) considered in this
paper are shown in Table 1.
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Fig. 1. Workflow of the overall seizure detection framework: feature extraction, data segmentation, classification, and prediction.

Table 1
Classification problems for the Bonn University database.

CPs Class pair Description # EEG signal
1 Z-S Normal, eyes open vs Ictal 200
2 0-S Normal, eyes closed vs Ictal 200
3 N-S Interictal vs Ictal 200
4 F-S Interictal vs Ictal 200

3. Methodology
3.1. Multi-view feature extraction

The EEG signals are often complex, non-stationary, nonlinear, and
time-dependent. As a result, directly applying classification models
on the raw EEG data may not yield ideal results. Techniques such
as extracting meaningful and significant features from the raw data
have been proposed to improve the performance of seizure detection
models. Ubiquitous data transformation techniques such as Fourier
transform (FT), discrete wavelet transform (DWT), and singular value
decomposition [6,41,42] have been applied to EEG signals to extract
informative features. The classifier in this study uses spectral features
and the line length feature as feature inputs. As an illustration, the
workflow of the seizure detection framework is shown in Fig. 1. Firstly,
we apply feature extraction techniques to collect the spectral features
and the line length feature. The whole-series data is then segmented
into temporal data with equal time lengths using a sliding window.
Finally, the data segments are fed into the seizure detection model
(STONE) to train the classifier such that it can make a prediction on
the data and generate a wSTL formula. Here the CHB-MIT database
is chosen to explain the feature extraction process, which can be
equivalently applied to the Bonn University database.

3.1.1. Spectral feature

Using spectral characteristics to identify seizures has been demon-
strated to be effective in several studies [6,42]. Here we adopt the fast
Fourier transform (FFT) to acquire the spectral features. Let s denote
the original EEG signal, and s; denote the ith channel EEG signal.
Most of the signals in the database contain 18 or 23 channels, and a
few contain 24 to 26 channels. Similar to [37], we select 18 channels
of the EEG signal for classification, hence i € {1,2,...,18}. The fast
Fourier transform (FFT) transforms the data in the time domain to
a representation in the frequency domain by computing the discrete
Fourier transform (DFT) of 5. In the CHB-MIT database, each recording
is sampled at a frequency of 256 Hz, which means a one-second
recording comprises 256 samples. Hence the FFT of the EEG signal,

denoted by X;(t, k), is expressed as
Nl . 2zkn
Xtk =Y stme N k=0, ,N-1,
n=0 (1)
= X[, k) + 3 X[ (1. k),

where X;(t, k) denotes the spectral data for s,(r) at frequency k, s,(t,n)
denotes the nth sample at ¢, and N = 256, and j is the imaginary unit.
For simplicity, the energy information is utilized as the spectral feature,
which is expressed as

X,(0.8) = /(X0 R + (XD )P @

As most seizure and nonseizure activities fall in the frequency range
between 0.1 Hz to 30 Hz [43], we retain the frequency data within
the frequency range 0-30 Hz, and the remaining part is neglected. The
detailed description of the bandwidths of EEG data and the associated
abnormal activities are shown in Table 2. Based on the bandwidth infor-
mation, we extract seven features for each one-second signal, including
the energy within 0-30 Hz, the energy within 0-2 Hz, the energy
within 3-4 Hz, the energy within 5-8 Hz, the energy within 9-16 Hz,
the energy within 17-30 Hz, and the peak frequency within 0-30 Hz.
Specifically, the features are derived via the following calculation:

30 2

X1 (0= Y X(6,k), X, 2() = Y X, (1,k), 3)
k=0 k=0

4 8
X530 = Y X,(t,K), X, 4() = Y X,(t, k),
k=3 k=5

16 30
X5t =Y X6k, X, ()= D X,(t,k),
k=9 k=17

X, ,(t) =arg max X;(t,k),
7@ gke[o,so] i)

where X, ;(t) denotes the jth feature extracted from the ith channel at
t. With the above spectral feature selection procedure, we can extract
spectral features at time slot ¢ as

X, =X 10, X150, s X170, ooy X151 (0, X1g2(0), .., X1g7(0] € R

Due to the nonstationarity of EEG data, we extract temporal segments
of EEG data using a sliding window with size w = 10 to obtain seizure
or nonseizure segments for classification, which corresponds to the data
segmentation module in Fig. 1. Thus for each spectral classification data
Xg, it comprises ten time slots, each of which has 126 = 18 x 7 features,
ie., xg =[X;, X,_|, ..., X;_o]. For better illustration, the spectral feature
extraction process is also depicted in Fig. 2.

3.1.2. Line length feature
The “line length” feature, proposed in [8], has been used for study-
ing normalization techniques in discriminating the EEG data [42].



R. Yan and A.A. Julius

I
FFT |
EEG CH-1——{ - ||
X11(®
X1.2(t)
Spectral Temporal
feature X (t) segment [ X;
selection| <17 ation |y
: : S i P
X18,1(%) X,
t_
| X1g,2(t)
FFT |
EEG CH-18—— _ || [ X18,7(1) ] Spectral,
A spatial and
| \ temporal
! M A features
\ e =) Spectral, spatial

features
Spectral Features

Fig. 2. Illustration of the spectral feature extraction process.

Table 2
Description of EEG bandwidths and corresponding frequency range and abnormal
activities [43].

Bandwidth Frequency Abnormal activities

Delta (5) 0.1-4 Hz Structural lesion, encephalopathy, seizures
Theta () 5-8 Hz Encephalopathy, seizures

Alpha (a) 9-16 Hz Coma, seizures

Beta (8) 17-30 Hz Drug overdose, seizures

Later, it was observed that combining line length and other features
into machine learning models could obtain promising seizure detection
results as well [11]. As a result, we combine the spectral features and
the line length feature as inputs to the seizure detection model. The
line length (LL) feature is calculated on the 1-second non-overlapping
segments s;(¢), which is defined as

N-1
X0)=Y Isi(t,m) = 5;(t,n = D], N = 256. 0)
n=1

In other words, the line length feature can also be considered as the
total variation within one second of EEG signal. An example of the line
length feature extracted from the EEG data of patient 1 is depicted in
Fig. 3, which shows clear discrimination between the feature within the
seizure segment and the feature within the nonseizure segment. The
line length feature extracted from one-second EEG signal is denoted as
X, = [X,(t), X,(0), ..., X;5(O)]”. Similar to the spectral feature extraction,
we concatenate the line length features within the 10-second window
as the final line length feature for classification and denote it as x; =
[X; . X,_{»..-» X;_9]. The process of extracting the line length feature
is shown in Fig. 4. The label for temporal segmented data x; (xg) is
determined as follows. If s;(z) is within the seizure segment, the label
is 1. Otherwise, the label is 0. Through the above processes, we could
obtain a dataset D = {(x;, y,-)}i’;/ Vi €101} for the classification model,
where x; represents the ith data composed of the spectral feature and
the line length feature, y; = 0 represents the nonseizure label, and y; = 1
represents the seizure label.

3.2. Classification model

3.2.1. Weighted signal temporal logic

The notion of weighted signal temporal logic (WSTL) was first
introduced by [44]. Similar to natural language, wSTL is a formal
language in which syntax and semantics define how a wSTL formula
is expressed and interpreted.

Definition 1. The syntax of wSTL is defined as follows [44].
¢ =Tzl Ay 1) v 3210 dIO 8
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where T is Boolean TRUE, = denotes an atomic predicate in the form
of f(x) >0, e.g., if f(x) = a’x —c,|la|| = 1, then r represents a half-
space in RY, and x € R¢ is the temporal signal that can be either the
spectral feature or the line length feature. In addition, - is the negation
operator, A and Vv denote logical conjunction and logical disjunction,
respectively. () and [] are temporal operators read as “Eventually” and
“Always”, respectively, and 1,1, € Zy.t; <1, and w;, w, denote the
nonnegative weights associated with the subformulas ¢, and ¢,, and
we IRZ_"+1 denotes the nonnegative weights associated with <) or (]

>0
operators.

With the syntax in Definition 1, we could derive other forms of wSTL
formulas recursively. Taking the nested “Eventually” and “Always”
operators as an example, ¢ = OF(}),IS] ﬁ’);] (x; — 1 > 0) reads as “During
0 to 5 s, there will be at least one second such that x, is larger than 1
and x remains larger than 1 for 3 s”.

The semantics of wSTL are divided into two categories, one is
called Boolean semantics, and another is called bounded quantitative
semantics. The Boolean semantics can evaluate the Boolean satisfaction
of wSTL formulas over signals, i.e. (x,7) F ¢ represents x satisfies ¢ at
t, and (x,1) ¥ ¢ represents x violates ¢ at 7. In addition to the Boolean
semantics, wSTL embodies bounded quantitative semantics, i.e., truth
degrees, to reflect the degree of satisfaction or violation quantitatively.

Definition 2. Let p(x,¢,t) denote the truth degree of ¢ over x at 1,
which can be calculated through the bounded quantitative semantics
defined as follows.

plx.7,1) = g (f(x(1)).
px.=.1) = 1= plx. . 1), ®)
PO, ¢ A Y21 = @ ([w;, p(x, by )21 2.B) »

pee MV 32 1) = @Y ([w;, p(x, ¢y, )j212.B) »

P O b0 = @0y, p(x, bt + Nlyey s B

e 10 = @[y, px bt + ey a1 B

where g is the activation function for the atomic predicates, = :=
(f(x) > 0). and ®", @", ®, and @9 are activation functions for the A,
v, [J and ¢ operators, respectively.

3.2.2. Signal Temporal Logic Neural Network (STONE)

The design of STONE aims to seamlessly associate each neuron in
a neural network with a symbolic representation in the wSTL. In such
manner, STONE can enjoy the advantages of both neural networks and
wSTL so that it can generate interpretable and human-readable wSTL
formulas through learning as a neural network. In this subsection, the
explicit activation functions for (5) are given to accomplish the above
goals.

The activation function for the predicate z, g(f(x(?))), is defined as
the sigmoid function

1

1 4+ e~ fG0) ' 6

g(fGx)) =

Note that the motivation of (6) is that g(f(x(¢))) represents the degree
of truth of = over x at ¢, thus g(f(x(?))) € [0, 1]. If p(x, z, 1) is close to 1,
then it reflects that x robustly satisfies r at ¢, and if p(x, ,) is close to
0, then it reflects that x robustly violates = at ¢. Additionally, the choice
of g(f(x(1))) reflects that the truth degree of = over x at t becomes larger
when g(f(x(1))) increases. Throughout this paper, we simplify p(x, ¢, 0)
as p(x, ¢). The relationship between the bounded quantitative semantics
and the Boolean semantics is that p(x, ¢, ) > 0.5 means (x, 1) F ¢.

From the definition of {) and [J operators, we know that if {, ¢ is
evaluated on x at ¢, then it represents “¢ is eventually satisfied between
t+1t; and 1 +1,”, which is the same as “¢ is satisfied at least one time
slot in [t + 1,7 +1,]”. With this interpretation, {y, ,, can be written in
terms of a sequence of v operators as follows

Wi +1

Opragd=a," v, 1T v..ve %)
[t1,0219 = ¥y 1+l 1
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where ¢, denotes the formula ¢ evaluated on the data instance x(¢'), 7’ €
[t;,t;]. Similarly, [y, ,,1¢ can be written in terms of a sequence of
A operators. As a consequence, the activation functions for [] and
{) operators can be derived from the activation functions for A and
v operators. Also, the activation functions for A and v operators
should satisfy the De Morgan’s law [45], which is a traditional rule in
propositional logic and Boolean algebra. The wSTL activation functions
should be defined in such a way that p(x, ¢, t) measures the degree of
satisfaction of ¢ over x at ¢, considering the importance of subformulas
and time. For simplicity, we only discuss the design principles for the
activation function for the A operator, and these principles also hold for
the other operators due to the aforementioned reasons. The activation
function for the A operator should satisfy the following properties:

» Nonimpact for zero weights: subformulas with zero weights have
no impact on the truth degree of the overall formula, i.e., if
w; =0, (j = 1,2), then p(x, ¢;, 1) has no impact on p(x, ¢, AdS?, 1),
where w ; are the weights defined in (5).

Ordering of impact: impact of truth degree of subformulas on
the truth degree of the overall formula follows the order of their
weights, i.e., if p(x, ¢, 1) = p(x, ¢,,1) and w, > w,, then
op(x, " Aby2 1) Op(x, ) AL 0)

op(x, ¢py,1) op(x, ¢y, 1)

Monotonicity: The truth degree, p(x, ¢\ A, 2, 1), increases mono-
tonically with p(x,¢;,1),j = 1,2, i.e., for 0 < 4p < 1, the following

(8

holds:
" ([wj,P(x, ;. 0lj=12 ﬂ) < ®A([stp(x’ ¢, D+ ©)
Al P

With the above consideration, we define the activation functions for
wSTL operators that exhibit the above properties as follows.
2
®" ([0, p(x, b}, )] =12, B) 2 h(B = Y i0,(1 = p(x, ¢, D),

j=1

(10)

2
@Y ([w;, p(x, b)) =120 ) 2 (1 = B+ Y 0, p(x, b, 1),

j=1
NG ([w,;,p(x, o, 1+ t,)]l’G[ngJ’ﬂ> 2
R =p+ Y @ypte,dt+ )t +1 <T)),

t'elty.1]
® (L1 px. 1 + Dl F) 2
hB- Yy (1=px.dt+1) 2t +1 <T)),

t'elty.1p]
where g > 0 is a parameter to learn, and A(z) = max{0, min{z, 1}} such
that the truth degree can be clamped into [0, 1], and w ; O Wy denote
the normalized weight, and

1 ifr+t <T,

(€N)
0 otherwise,

1+t <T)= {
which is to ignore the impact of signals beyond 7.

With the activation functions defined in (10), we could construct
a Signal Temporal 10gic Neural nEtwork (STONE) to perform wSTL
formula learning tasks, where each neuron has an associated symbolic
expression that represents a component of a wSTL formula. For ex-
ample, the STONE for the wSTL formula ¢ = ()E‘éiz]lj;‘é’zz](aTx > ¢) is
composed of neurons representing atomic predicates = := (a’'x > ¢),
and neurons representing the {) and [] operators. Specifically, the
architecture of STONE for ¢ is depicted in Fig. 5, where the param-
eters to learn are a,c, wf,wg,wg,ﬂz,wf,wg, wg,ﬂ3. Note that the three
neurons in the third layer essentially represent the same component
o) and share the same parameters (wf, wg, wg, $2), but the neurons
are plotted separately so that the propagation process is clear. The first
layer represents the input data x that can be either spectral features x
or the line length feature x; , and the second layer represents the atomic
predicates, and the third layer represents the [] operator, and the fourth
layer represents the {) operator, and the output layer represents the
truth degree of ¢ over x at t = 0. The above example indicates that for
any ¢, we could construct a corresponding STONE whose structure is
determined by ¢.

3.2.3. Learning of STONE

Unweighted Objective Function. The classification problem tackled in
this paper is a binary classification problem. Note that the output of
STONE is the truth degree of ¢ over x, which is a value between 0
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Fig. 5. Model structure of STONE for ¢ = ()l"(’;z]\j"’2 (@'x > o).

and 1. Alternatively, we can consider it as the probability of a data
instance belonging to the seizure class. Hence the following standard
cross-entropy loss function can be considered as a candidate objective
function:

N
Ly(D,¢) = Y’ —y;log p(x;s ¢) — (1 = y)log(l = p(x;, b)).

i=1

(12)

Weighted Objective Function. Due to the fact that epileptic seizure
only happens in certain recordings, and in most cases, the duration of
epileptic seizure is less than two minutes [2], the number of seizure
data is much less than the number of nonseizure data. This would
cause a data imbalance issue in the dataset, which means the class
distribution is biased or skewed instead of balanced or close to bal-
anced. Data imbalance is a long-existing challenge for machine learning
models as many machine learning models are designed based on the
assumption that the size of data in each class are more or less equal. For
example, the objective function in (12) assigns the same weights to the
two classes of data. If we adopt this objective function in the learning
process, then the model will have poor prediction performance, espe-
cially for the seizure class, which is the minority class. Several popular
techniques for tackling data imbalance issues have been proposed,
such as oversampling for the minority class and undersampling for the
majority class. One of the most effective oversampling techniques is the
synthetic minority over-sampling technique (SMOTE) [46]. Although
these approaches could balance out the dataset, they would introduce
new issues. Oversampling generates more samples in the minority class,
which will slow down the learning process and may cause overlapping
of classes resulting in noises in the data. Undersampling removes a
certain number of observations, which may raise the issues of miss-
ing valuable information, underfitting, and poor generalization on the
validation data.

In contrast, a more reasonable approach is to modify the objective
function. By introducing class weights into the objective function, the
model could realize penalizing more on the minority class. Accordingly,
manipulating the objective function could achieve better results with-
out adjusting the dataset. To quantify the penalization, we introduce
the notion of imbalance ratio as

N,
Ip=—2 1
R=N 13
4
where N, = |{ily;=1}| is the number of seizure data, and N, =

[{ily; = 0}] is the number of nonseizure data. Consequently, the objec-
tive function becomes the following weighted cross-entropy function

10.2]

N
L(D, ) = Z —Ig - yilog p(x;, @) — (1 = yp) log(1 = p(x;, $)).

i=1

14

Forward Propagation. Note that STONE is a typical neural network
where each neuron is endowed a symbolic representation within a
wSTL formula. The forward propagation of STONE is similar to a
classical NN, where every neuron in the hidden layers takes the outputs
from the preceding layer as inputs and computes the outputs using
the activation function of the component that the neuron represents.
Suppose x = {x(0), x(1), ..., x(T — 1)} is the input layer with T nodes,
represents the output layer, L denotes the number of hidden layers, H'
represents the /th hidden layer with N, nodes, h/ represents the mth
node in the /th layer, and H° = x and H.*! = §, and H L,_l represents
the outputs from the (/ — 1)-th hidden layer that are used as inputs of
the n;-th node in the /th hidden layer, and w’ , represents the weights
for the n;-th node in the /th hidden layer, ﬂ,l,/ is the bias of the n;-th
node in the /th layer. Specifically, Fig. 5 gives a detailed explanation
on the above notations. The output of the n;-th node in the /th layer is
computed by

(15)

1 ! -1 ! !
B, =@ (HI~ w8,

where d)ﬁl , can be any activation function in (10) depending on the
component that the »;-th node in the /th layer represents. The output
of STONE is the same as the output of the Lth hidden layer, which is

computed by
y=hl=ot@H" wh gl (16)

Backward Propagation. For a data instance x with label y, the loss
function is defined as

L(y,9) = —Igylog() — (1 — y)log(l - 9). a7
The derivative of L(y, §) with respect to j is
- 1
vy= G201 18)
1-p y

For the output layer, j is obtained via (16), hence the gradients of
L(y, ) with respect to H~!, wk, I are computed by the chain rule as
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follows:
o1 0ol _ . gl _ .
VH] _0HL—1V ,V 1—0—LVy,
1 1
19
. ool 19
vpk = & vy

Similarly, from the L— 1-th hidden layer to the 1st hidden layer, the
gradients for H!~!, w! ﬂ’ are computed using the same procedures as
19). Spec1f1cally, the gradlents of the activation functions with respect
to the parameters are given as follows (assuming the truth degree
before clamping falls in the range of (0, 1)).

» For the activation function of the A or the [] operator, the
gradients are

0P, oD, o
=1, =—(1-H)),
0ﬁ,l,[ awﬁw .
0:15’ [
SH- 1 =Wy
np.j

where H! [-11 is the jth element in the Hrln’l, and w! ; is the weight

associated with H! ,_]1 .

For the activation function of the v or the {) operator, the
gradients are

oD, D! 1_]
o, ow ™
oD, [

aH}W‘ O

With the above gradient derivation, the gradients of all the pa-
rameters in STONE can be computed through the chain rule. Hence
the parameters can be learned through backward propagation. In this
paper, we employ the AdamW optimizer [47] in the Pytorch library to
optimize the parameters in STONE.

3.2.4. Evaluation Metrics

We adopt a stratified k-fold cross-validation strategy to carry out
the experiment. Stratified k-fold cross-validation refers to the original
dataset is randomly partitioned into k folds of data with equal size and
each fold contains approximately the same proportions of two classes
of data (seizure and nonseizure data). The cross-validation process is
conducted with k experiments, where in the k;-th experiment, the k;-th
fold is retained as the validation set to evaluate the model, and the
remaining k — 1 folds are utilized as training data. In this manner, each
fold will be utilized as a validation set exactly once, and the results
from the k experiments are averaged as the final estimation. Here k
is set as five, and the average result of the five experiments on each
patient is reported.

For evaluation of the proposed STONE, six commonly used evalu-
ation measures are adopted here [16,48], including Accuracy (Acc),
Sensitivity (Sen), Specificity (Spe), F-Score (FS), AUC score (AUC), and
Kappa score (Kap). Suppose the seizure class is the positive class, and
the nonseizure class is the negative class. The evaluation metrics are
computed by the following four outcomes from STONE: True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN).
The explanation of these four outcomes is presented in Table 3.

The evaluation metrics of Acc, Sen, Spe, FS, AUC, and Kap have
been exploited in many state-of-the-art (SOTA) methods [13,15,16].
Using these evaluation metrics provides a fair comparison with SOTA
methods as well. Specifically, the evaluation metrics are defined as
follows:

TP+TN
TP+TN+FP+FN’
Acc measures the fraction of predictions that a model got correct. For
an imbalanced dataset such as the CHB-MIT database, the nonseizure

Acc =
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Table 3

Explanation of four classification outcomes from STONE.
Terminology Explanation
TP The number of seizure data that is classified correctly
FN The number of seizure data that is classified as nonseizure
FP The number of nonseizure data that is classified as seizure
TN The number of nonseizure data that is classified correctly

group size is much larger than the seizure group size, which may lead
to a high Acc if all the data is predicted to be nonseizure. Therefore,
the evaluation measures of Sen and Spe are introduced to reflect the
categorical prediction accuracy. Sen is defined as

TP
TP+ FN’
Sen reflects the fraction of data that are correctly predicted in the
positive class. In other words, Sen measures the fraction of seizure
data that are correctly detected, which mirrors a model’s capability of
detecting seizures. Spe is defined as

TN
TN+ FP’

Sen =

Spe =

Spe reflects the fraction of data that are correctly predicted in the
negative class. Equivalently, Spe measures how much nonseizure data
is correctly identified, which mirrors a model’s false alarm rate.

From the above definition, it is evident that the two key factors for
evaluating a seizure detection model are Sen and Spe. Here we define
a FS different from the conventional notion, which is based on the Sen
and Spe such that FS considers the sensitivity and specificity of a model
simultaneously. FS is defined as

2 X Sen X Spe

FS =
Sen + Spe

(20)

AUC is another evaluation metric exploited in this work, which reflects
the area under the Receiver Operating Characteristics (ROC) curve.
ROC curve is a performance measurement for the seizure detection
problem at various threshold settings.

Kap is a statistic measurement for inter-rater reliability, which
is considered to be a more robust measurement than Acc, as Kap
takes the possibility of the correct prediction occurring by chance into
consideration. Kap is defined as

Kap: ;’ (21)

where p, = Acc, and

_(TP+FN)X(TP+ FP)+(TN+ FP)x(TN + FN)

22
(TP+TN +FP+ FN)? 22)

e

4. Experimental Results

This section tests STONE on the CHB-MIT and the Bonn University
databases to demonstrate its performance for seizure detection tasks.
Meanwhile, the interpretability analysis of the rules learned by STONE
is carried out through visualization. Aside from STONE, conventional
machine learning (ML) models, including an artificial neural network
(ANN) that is implemented as a multi-layer perceptron (MLP), a K-
nearest neighbors (KNN) classifier, a supported vector machine (SVM)
classifier, a decision tree (DT) classifier, a bagging classifier (BA) with
SVMs as base classifiers, and an AdaBoost (AB) classifier with decision
trees as base estimators, are also tested on the two databases. The
comparison of STONE with existing works is presented, which manifests
the advantage of STONE over the existing seizure detection models.
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4.1. Formula Structures

As seen in Fig. 5, STONE’s structure is determined by the structure of
the formula it represents. In this paper, we consider using the following
formula structures that have been widely used in prior STL inference
works [27]:

1 1
(1) Conjunctive patterns: ¢ = d:;}l A ¢f2, where

Wil w2 W=l w12

bs=m, Amy A /\”z7 AEL AT, A A
117 —9,1 !92 '179.7
Tl A /\”z91 Axloy A ATl

and 7, ; is an atomic predicate describing the jth spectral feature
at time #'. Similarly, ¢, is defined as
f—1 -9

_ w .
dr=a" Aml A ATy (23)

This formula structure provides information about what conjunc-
tive patterns of the spectral features and the line length hold will
cause seizures.

1 1
(2) Disjunctive patterns: ¢ = q&?‘ \Y, qﬁia, where
_ wz.l wz.z wr‘7 w'= 1.1 w'— 12
bs =7, VI, V.Vvr5 Vr ol L VAL, VeV
w— 1,7 wt—‘),l wt—9,2 w— 9,7
Tigg VoV gy VA gy VeV g7 -
The subformula ¢; is defined as
1— =9
¢ =n V][rl \/...\/71'[”_9. (24)
This formula structure provides information about what disjunc-
tive patterns of the spectral features and the line length hold will
cause seizures. . .
w w,
(3) Consistent patterns: ¢ = ¢ ;' A, *, where
2 3.1 32 3,7
¢g = DE‘I’JO](n’i" ATy T A AT, (25)
and z; is an atomic predicate defined on the jth spectral feature
from 18 channels. Also, ¢; is defined as ¢; = 141 01(”) where
& is an atomic predicate defined on the line length feature from
18 channels. This formula structure describes what patterns of
the spectral features and the line length hold consistently will
cause seizures. . .
w w,
(4) Alternative patterns: ¢ = ¢ S‘ vV L2, where
2 3,1 32 3,7
s = Qg AT A A 71:;” ). (26)
Also, ¢, is defined as ¢; = 110 (7). This formula structure
describes what patterns of the spectral features and the line
length hold alternatively will cause seizures.
1 1
(5) Persistent patterns: ¢ = q.':zl A qblzz, where
w 4,1 w4,2 2
= Ol Ot A" A AR, @7
and ¢; = [05; ) [0 " ](77:) This formula structure describes what
patterns of the' spectral features and the line length feature hold
persistently will cause seizures.
1 1
(6) Eventually consistent patterns: ¢ = d);‘ v qﬁfz, where
_ w2 4,1 w4,2 w4,7
bs = 10,1140, 121(7[ ATy AN Awg ), (28)
and ¢; = [05”] 0 ](n) This formula structure describes what

patterns of the spectral features and the line length feature hold
eventually consistently will cause seizures.

4.2. Classification Results
In this section, the classification results for STONE and the six

conventional ML classifiers are presented, and a comparison between
STONE and the existing classifiers’ performance is carried out.
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4.2.1. Classification Results on the CHB-MIT Database

Classification Results of STONE. In the experiment, the parameters
defining the predicates and the weight parameters are initialized as
samples from the normal distribution with mean 0 and variance 1, and
p’s are initialized as 1. Before the data is given to the classifier, it is
normalized by removing the mean and scaling to unit variance. The
Kappa score is not an appropriate criterion for the CHB-MIT database as
the CHB-MIT database is an imbalanced dataset. The Kappa score may
exhibit undesired behavior in imbalanced datasets [49]. The average
Acc, Sen, Spe, FS, and AUC of the cross-validation experiments are
reported in Table 4, where the evaluation measures for each patient
are reported as the best classification result from the four formula
structures defined in Section 4.1. It can be observed from Table 4 that
the classification accuracy, sensitivity, and specificity of higher than
99.00% are achieved for patients 2, 10, 11, 21, 22, 23. Sensitivities for
patients 7, 17, and 23 all achieve 100%, which means that STONE can
detect seizures perfectly for these three patients. The best classification
result is observed on patient 23, for whom the Acc, Sen, Spe, and FS
are 99.97%, 100%, 99.97%, and 0.9999, respectively. It can also be
observed that STONE does not have an ideal result on patient 6 because
of misclassification of nonseizures, and patient 14 and patient 16 due
to missing detection of seizures.

Classification Results of ML Models. To demonstrate the advantage
of STONE over the conventional ML models, the classifiers of BA, AB,
DT, KNN, ANN, and SVM are also implemented on the two databases.
The average performance of the above ML models over the 24 patients
in the CHB-MIT database is presented in Table 5.

Table 5 shows that the Bagging classifier can achieve an accuracy
of 99.34%, the AdaBoost classifier can achieve an accuracy of 99.40%,
the DT classifier can achieve an accuracy of 98.90%, and the KNN
classifier can achieve an accuracy of 99.60%, and the ANN classifier can
achieve an accuracy of 99.85%, and the SVM classifier can achieve an
accuracy of 99.44%. The classifiers of BA, AB, DT, KNN, ANN, and SVM
all achieve a classification accuracy higher than STONE. Nevertheless,
the BA, AB, DT, KNN, ANN, and SVM classifiers attain a sensitivity of
66.83%, 80.24%, 75.67%, 80.21%, 92.51%, and 73.09%, respectively,
which means they cannot attain a fairly comparable sensitivity result
with STONE. Equivalently, the conventional ML models did not perform
well in detecting seizures. As shown in Table 5, the high classification
accuracy of the conventional ML models is caused by the high sensitiv-
ity. Due to the fact that the dataset is imbalanced, where the number
of non-seizure data is much larger than the number of seizure data,
the classifiers are trained to recognize the nonseizures more accurately
and recognize the seizures less accurately. By introducing the weighted
cross-entropy loss into STONE, we observe that STONE can address
this limitation and achieve both high sensitivity and specificity. More
importantly, STONE can both provide decent seizure detection results
and generate signal temporal logic (STL) formulas that are interpretable
and human-readable.

Comparison With Existing Methods. To better demonstrate the perfor-
mance of STONE on seizure detection tasks, some existing works that
use the CHB-MIT database with different feature extraction techniques
and various machine learning models are considered. The comparison
of Acc, Sen, Spe of STONE and some recent works is presented in
Table 6. It is evident from Table 6 that STONE could achieve bet-
ter or comparable performance in terms of Acc, Sen, Spe with the
existing models. Even though some related works achieve slightly
better results, STONE enjoys the advantages of interpretability and
transparency, which is a missing attribute of the existing classifiers.
Chen et al. [13] exploited DWT to extract features from the EEG data,
based on which statistical features are acquired as inputs to the SVM
classifier. As shown by Table 6, STONE exhibits better performance
than the existing works [12-14,19] in terms of higher values of Acc,
Sen, and Spe. Although STONE attains a sensitivity score slightly lower
than the 98.28% sensitivity score reported in [18], STONE achieves
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Table 4
Performance of STONE on the CHB-MIT database in terms of Acc, Sen, Spe, FS, AUC.
Subject Acc (%) Sen (%) Spe (%) FS AUC
1 98.94 + 0.49 97.96 + 1.50 98.96 + 0.48 0.9845 + 0.0090 0.9962 + 0.0040
2 99.22 + 0.35 99.43 + 1.14 99.22 + 0.35 0.9932 + 0.0071 0.9982 + 0.0015
3 98.92 + 0.14 98.75 + 0.79 98.92 + 0.13 0.9884 + 0.0043 0.9934 + 0.0058
4 98.36 + 0.26 98.47 + 1.43 98.36 + 0.25 0.9841 + 0.0081 0.9960 + 0.0035
5 99.23 + 0.28 97.85 + 0.99 99.26 + 0.28 0.9854 + 0.0055 0.9961 + 0.0033
6 94.18 + 1.26 97.10 + 2.39 94.13 + 1.26 0.9589 + 0.0163 0.9787 + 0.0158
7 98.75 + 0.67 100.0 + 0.00 98.73 + 0.68 0.9931 + 0.0035 0.9986 + 0.0019
8 98.51 + 0.22 98.15 + 0.65 98.55 + 0.18 0.9835 + 0.0040 0.9923 + 0.0059
9 99.57 + 0.39 98.54 + 1.95 99.59 + 0.39 0.9905 + 0.0105 0.9931 + 0.0071
10 99.75 + 0.22 99.11 + 0.83 99.77 + 0.25 0.9944 + 0.0035 0.9981 + 0.0021
11 99.65 + 0.19 99.38 + 0.55 99.66 + 0.18 0.9952 + 0.0034 0.9994 + 0.0003
12 97.83 + 0.53 98.16 + 1.05 97.81 + 0.59 0.9798 + 0.0051 0.9911 + 0.0049
13 98.93 + 0.33 95.46 + 2.55 99.01 + 0.33 0.9719 + 0.0135 0.9821 + 0.0075
14 96.46 + 1.41 93.22 + 4.02 96.50 + 1.42 0.9501 + 0.0181 0.9691 + 0.0199
15 98.66 + 0.42 97.46 + 0.82 98.77 + 0.45 0.9811 + 0.0047 0.9957 + 0.0010
16 96.62 + 2.40 94.55 + 6.80 96.64 + 2.38 0.9548 + 0.0445 0.9776 + 0.0190
17 98.45 + 0.15 100.0 + 0.00 98.41 + 0.16 0.9920 + 0.0008 0.9986 + 0.0005
18 97.25 + 1.48 97.78 + 2.37 97.24 + 1.50 0.9750 + 0.0144 0.9911 + 0.0061
19 98.88 + 0.26 99.15 + 1.04 98.87 + 0.25 0.9900 + 0.0060 0.9954 + 0.0041
20 97.89 + 0.88 97.07 + 0.46 97.90 + 0.90 0.9745 + 0.0237 0.9968 + 0.0007
21 99.34 + 0.44 99.50 + 0.00 99.35 + 0.44 0.9946 + 0.0022 0.9974 + 0.0033
22 99.51 + 0.47 99.51 + 0.97 99.51 + 0.46 0.9951 + 0.0069 0.9994 + 0.0006
23 99.97 + 0.05 100.0 + 0.00 99.97 + 0.05 0.9999 + 0.0002 0.9989 + 0.0017
24 98.90 + 0.50 99.50 + 1.06 98.90 + 0.53 0.9920 + 0.0040 0.9963 + 0.0024
Average 98.49 + 0.57 98.17 + 1.56 98.50 + 0.58 0.9834 + 0.0091 0.9929 + 0.0051
Table 5
ML models’ performance on the CHB-MIT database in terms of Acc, Sen, Spe, FS, AUC.
Classifier ~ Acc (%) Sen (%) Spe (%) FS AUC
BA 99.34 + 0.09 66.83 + 4.38 99.97 + 0.01 0.8010 + 0.0386 0.8710 + 0.0278
AB 99.40 + 0.12 80.24 + 4.64 99.84 + 0.06 0.8897 + 0.0346 0.9847 + 0.0079
DT 98.90 + 0.16 75.67 + 5.25 99.42 + 0.13 0.8593 + 0.0391 0.8755 + 0.0262
KNN 99.60 + 0.07 80.21 + 3.58 99.98 + 0.01 0.8901 + 0.0274 0.9619 + 0.0135
ANN 99.85 + 0.06 92.51 + 3.24 99.98 + 0.01 0.9610 + 0.0202 0.9959 + 0.0037
SVM 99.44 + 0.09 73.09 + 4.88 99.95 + 0.01 0.8443 + 0.0391 0.9947 + 0.0044

the same specificity score and higher accuracy. Furthermore, STONE
is much easier to interpret compared with SVM. Despite of the fact

Table 6
Comparison of performance of STONE and recent works on the CHB-MIT database.

that the specificity score of 98.57% reported in [15] is slightly higher Authors  Features & classifiers Acc  Sen  Spe
than STONE’s 98.50%, STONE acquires an accuracy of 98.49% and a [13] DWT, statistical features + SVM 923 917  92.89
sensitivity of 98.17%, which are higher than the accuracy of 98.21% (4] Local Mean Decomposition + LSTM 92.66  93.61  91.85
e . . . [18] FFT, deep features through PCANet + SVM  98.47 98.28 98.50
and sensitivity of 97.85% in [15]. In other words, STONE is better [15] Stein-kernel based sparse representation 08.21 97.85 98.57
at diagnosing seizures than the model in [15]. In addition, STONE [19] DWT, statistical features + SVM 97.09 96.81 97.26
can provide human-readable formulas as outputs. Even though [16] [16] Multiscale spectral features + RF 98.97 98.12 99.17
develops a seizure detection model that can achieve better accuracy and (2] Entropy, variance, energy + SVM, NB 95.63  96.55 95.70
sensitivity than STONE, the random forest (RF) classifier is an ensemble This paper  FFT, LL + STONE 98.49 98.17 9850

learning model whose classification result depends on the predictions
from multiple decision trees, resulting in the model to be complicated
and hard to understand. By contrast, STONE is simpler than RF in that
an STL formula akin to natural language can be obtained from STONE.
In summary, the major advantage of STONE over existing works is that
STONE can provide wSTL formulas as interpretable and transparent
rules for determining the seizure class and for a better understanding of
the classifier through visualization, as shown later, which is a property
that the existing seizure detection models do not possess.

4.2.2. Classification Results on the Bonn University Database

Classification Results of STONE. The parameter initialization of
STONE on the Bonn University database is the same as the setting for
the CHB-MIT database. As the Bonn University database is a balanced
dataset, the Kappa score (Kap) is a proper evaluation metric for this
dataset. Hence Kap is introduced into the evaluation process of the
Bonn University database. The Acc, Spe, Sen, FS, AUC, and Kap for
different classification problems is shown in Table 7. It can be observed
that classification accuracy of 99.00%, 99.50%, 99.50%, and 100.0%
are achieved for Cases of F-S, N-S, O-S, and Z-S, respectively, using the
five fold cross validation approach. STONE also achieves a sensitivity

score of 100% for cases O-S and Z-S, and a sensitivity score of 99.00%
for cases F-S and N-S. In terms of specificity, all the nonseizures are
correctly identified for the cases of N-S and Z-S. The cases of F-S and
O-S achieve a sensitivity of 99.00%. The results in Table 7 demonstrate
that the proposed STONE can handle all four cases of classification
problems satisfactorily.

Classification Results of ML Models. The average results of the four
classification problems (F-S, N-S, O-S, Z-S) for the ML models on the
Bonn University database is summarized in Table 8. Table 8 demon-
strates that the classifiers of BA, AB, DT, KNN, ANN, and SVM can
achieve decent results on the Bonn University database. Specifically, BA
and AB can achieve higher than 98% accuracy, and DT, KNN, and SVM
can achieve higher than 97% accuracy. In terms of sensitivity, ANN
achieves the highest score compared with the other ML models, and BA,
KNN, and SVM can achieve higher than 98% sensitivity. With regard
to specificity, AB can achieve 98.75% sensitivity score, and BA, DT,
and SVM classifiers achieve a specificity of higher than 97%. Though
ANN acquires a sensitivity higher than the other ML models, it exhibits
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Table 7
Performance of STONE on the Bonn University database for four classification problems.
Cases Acc (%) Sen (%) Spe (%) FS AUC Kap
F-S 99.00 + 1.22 99.00 + 2.00 99.00 + 2.00 0.9897 + 0.0125 0.9923 + 0.0131 0.9800 + 0.0244
N-S 99.50 + 1.00 99.00 + 2.00 100.0 + 0.00 0.9950 + 0.0102 0.9995 =+ 0.0010 0.9900 + 0.0200
0-S 99.50 + 1.00 100.0 + 0.00 99.00 + 2.00 0.9950 + 0.0102 0.9945 + 0.0010 0.9900 + 0.0200
7-S 100.0 + 0.00 100.0 + 0.00 100.0 + 0.00 1.0000 + 0.0000 1.0000 + 0.0000 1.0000 + 0.0000
Average 99.50 + 0.80 99.50 + 1.00 99.50 + 1.00 0.9949 + 0.0083 0.9966 + 0.0037 0.9900 + 0.0161
Table 8
Average performance of the conventional ML models on the Bonn University database.
Classifier Acc (%) Sen (%) Spe (%) FS AUC Kap
BA 98.00 + 0.93 98.50 + 1.50 97.50 + 0.86 0.9799 + 0.0094 0.9905 + 0.0057 0.9600 + 0.0272
AB 98.00 + 0.93 97.25 + 1.09 98.75 + 1.09 0.9799 + 0.0097 0.9833 + 0.0110 0.9600 + 0.0550
DT 97.12 + 0.54 97.25 + 1.64 97.00 + 0.70 0.9712 + 0.0060 0.9712 + 0.0054 0.9425 + 0.0675
KNN 97.12 + 1.34 98.00 + 2.45 96.25 + 0.43 0.9711 + 0.0138 0.9974 + 0.0023 0.9425 + 0.0355
ANN 90.62 + 2.46 99.50 + 0.86 81.75 + 4.09 0.8975 + 0.0209 0.9957 + 0.0049 0.8125 + 0.0684
SVM 97.87 + 0.89 98.50 + 1.50 97.25 + 1.09 0.9787 + 0.0090 0.9991 + 0.0012 0.9575 + 0.0261
a lower specificity, which means it is inferior to the other models in Table 9
detecting the nonseizures. It can also be observed that STONE’s perfor- Comparison of the classifiers’ performance on the Bonn University database.
mance on the Bonn University database is superior to the conventional Authors  Features & classifiers CPs  Acc (%) Sen (%) Spe (%)
ML models. Though ANN can achieve the same sensitivity as STONE, Z-S  99.68 - -
its specificity is the lowest among all the classifiers. [40] Local graph structure + ANN é—_FS 22.2§ - -
Comparison with Existing Methods. The comparison of Acc, Sen, and F5 9885 - -
Spe of STONE and the existing works on the four classification problems Z-S  100.0 100.0 100.0
in the Bonn University database is presented in Table 9. It is clearly (5] CEEMDAN -+ LPBoost ;‘SS %608 ?g;‘g ?3622
shown that STONE could achieve comparable performance with the - ’ ’ .
existing methods in the four classification problems. Tuncer et al. [40] Z-8 100.0 100.0 100.0
dalocal h hni P P h [21] CEEMDAN + AdaBoost F-S  100.0 100.0 100.0
proposed a local grap s.tructure technique Fo extract features from the NS 99.0 100.0 98.0
raw EEG signals, which is then used as the input to the ANN model for 75 1000 1000 1000
seizure classification. The Sen and Spe score of [40] are not available 0-5 10000 1000 100.0
in the original paper. Considering the Acc, STONE can achieve a higher [16] MSSFs + RF N-S 99.75 99.55 100.0
Acc for the classification problems of Z-S, O-S, and F-S. While [5,21] F-S  100.0 100.0 100.0
utilized the same complete ensemble empirical mode decomposition Z-S  100.0 100.0 100.0
with adaptive noise (CEEMDAN) technique to extract features from the This work ~ Spectral, LL + STONE g_: Zg:g ég%g ?zbog
raw EEG signals, and they all achieved a precise classification result - : : :
. ; F-S  99.00 99.00 99.00
for the case of Z-S, distinct results were acquired for the cases of F-S
and N-S because the seizure detection models are designed in different
manners. Compared with these two models, STONE achieves the same Table 10

result on the case of Z-S, and STONE achieves a higher Acc, Sen, and Spe
for the case of F-S in comparison with [5]. Although [16] obtains the
same or higher Acc, Sen, and Spe than STONE for the four classification
problems, STONE carries the advantage of learning interpretable STL
formulas as outputs. With this benefit, STONE can better assist the
neurologists in decision making, which also promotes its acceptance
in practical operations. However, the random forest (RF) model cannot
provide such an asset. A more detailed analysis of the interpretability
of STONE will be exposed in Section 4.4.

4.3. Ablation Study

In this subsection, we perform an ablation study on the CHB-MIT
database to investigate the necessity of each module in the seizure
detection framework, including the spectral feature extraction module
and the line length feature extraction module. To study the effective-
ness of a module, we exclude that particular module from the seizure
detection framework and retrain the classifier to recalculate the Acc,
Sen, Spe, FS, AUC, respectively.

4.3.1. Spectral component

To study the effect of the spectral feature, we exclude the fast
Fourier transform module of the Feature Extraction stage in Fig. 1. This
means we only keep the line length feature and classify the seizure and
nonseizure data using the line length feature. The evaluation results for
excluding the spectral feature are presented in Table 10. As described

10

Performance of STONE on the CHB-MIT database without the spectral or the LL
component.

Exp setting Acc (%) Sen (%) Spe (%) FS AUC

Full model 98.49 98.17 98.50 0.9834 0.9929
No spectral 94.33 95.93 94.32 0.9505 0.9827
No LL 97.58 96.64 97.61 0.9716 0.9905

in Table 10, the average Acc, Sen, Spe, and FS drop to 94.33%, 95.93%,
94.32%, and 0.9505, respectively. This demonstrates that incorporating
the spectral features into the seizure detection framework is necessary
as the performance will degrade without it.

4.3.2. Line Length component

To study the effect of the line length feature, we exclude the line
length extraction module from the feature extraction stage in Fig. 1.
The evaluation results for each patient under this experimental setting
are presented in Table 10. From Table 10 we can observe that the Acc,
Sen, Spe, FS drop to 97.58%, 96.64%, 97.61%, and 0.9716, respectively.
The above results demonstrate that incorporating the line length feature
into the seizure detection framework is significant in improving the
detection performance.

4.4. Interpretability Analysis

Previous experimental results tell that STONE can achieve a good
performance on seizure detection. In addition, a seizure detection



R. Yan and A.A. Julius

----@----  Seizure
Channel 6 Channel 5 ----@---- Nonseizure
™ Channel 4 . .
Channel 7 : > Violation
Channel 8 Channel 3 Channel
Channel 9 Channel 2
Channel 10 > Channel 1
Channel 11 Channel 18
Channel 12 Channel 17
-t
Channel 13 Channel 16

Channel 14 Channel 15

Biomedical Signal Processing and Control 78 (2022) 103998

----®----  Seizure
Channel 6 Channel 5 Nonseizure
Channel 7 Channets <D Violation
Channel
Channel 8 Channel 3
Channel 9 Channel 2
Channel 10 4 Channel 1
Channel 11 Channel 18
Channel 12 Channel 17
~
Channel 13 Channel 16

Channel 14 Channel 15
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(c) Spider plot of total spectral energy within 0-30 Hz at r — 2. (d) Spider plot of total spectral energy within 0-30 Hz at 7 — 1.

Fig. 6. Interpretable visualization of wSTL formula learned from seizure and nonseizure data of patient 23.
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Fig. 7. The evolution of the decision boundary learned by STONE and the nonseizure data of patient 23 in the CHB-MIT database.

model is more trustworthy and applicable to clinical practice if it could
provide interpretable rules to neurologists for a better understanding of
the decisions made by the model [23]. STONE is such an interpretable
model in that it can learn a human-readable and interpretable wSTL
formula that is homogeneous to natural-language. In this section, we
will analyze the interpretability of STONE by visualizing the formulas
discovered by STONE that describe how the EEG features evolve over
time will cause seizure. Here we select four snapshots of the energy

11

within 0-30 Hz from patient 23 in the CHB-MIT database to demon-
strate the interpretability. For better interpretation and visualization,
we select the formula structure as the conjunctive patterns in (1), and
the predicates describe single-channel features, i.e., 7, ; = (7, ; | A7, ;5 A
AT ag)s and Ty = (aX;;(t)>c), a,c €R.

As a showcase, the evolution of the spectral features described by
the formula is interpreted. At 7 —9, the formula learned on the spectral
feature of the total energy within 0-30 Hz from all the 18 channels
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Fig. 8. The evolution of the decision boundary learned by STONE and the seizure data of patient 23 in the CHB-MIT database.

is expressed as ¢,_g = (X;; > —222) A (Xp; > —1.26) A (X3,
—125) A (X4; > 057 A (Xs; > —124) A (Xg; > —0.99) A (X7,
LI A (Xg; > 036) A (Xg; > —4.97) A (X9 > =5.54) A (Xyq
—133) A (X1 > —1.52)A (X3, > 455 A (X4, > —1.29) A (X5,
~LODAX 61 > —135)A(X 71 > —L50)A(X g, > —2.75). ¢,_o describes
what properties that the total energy within 0-30 Hz from 18 channels
should satisfy at r — 9 will contribute to classifying the data as seizure.
In the meantime, the corresponding decision boundary is plotted as
the red line in the spider plot of Fig. 6(a), in which the green dotted
lines represent the seizure data, and the blue dashed lines represent
the nonseizure data, and the black circle highlights the channel for
which the formula is violated by the nonseizure data. The intuitive
interpretation is that if data from all the 18 channels lie outside of the
boundary, then the data is classified as seizure. If at least one channel of
the signal lies in the red region, then the data is classified as nonseizure.
Similarly, we could interpret the wSTL formula learned on the spectral
feature of the total energy within 0-30 Hz from all the 18 channels
att—3,t—2, and t — 1 through visualization, as shown in Fig. 6(b),
Fig. 6(c), and Fig. 6(d), respectively. Specifically, the wSTL formula for
1=3is ¢y = (X1, > —LTD A (Xp, > 2.26) A (X3, > —1.53) A (X, >
051 A (Xs; > —2.80) A (Xg; > —1.62) A (X7, > —0.86) A (Xg, >
=0.98) A (X9 > 4T A (Xyoy > =S AH A X1y > —0TH A (Xpp; >
1.98) A (X153, > =3.59) A (X141 > —2.05) A (X15; > —1.33) A (X1, >
—1.94) A (X17; > =2.06) A (X;5; > —1.51), and the wSTL formula for
1=21s ¢y = (X1 > =094 A (Xp, > 0.34) A (X3, > —1.38) A (X, >
=099 A (Xs5; > —122) A (Xg; > =13 A (X7, > —143) A (X, >
0.16) A (Xg; > =3.02) A (Xyg; > —1.6H) A (X 1y > —12T) A (Xp; >
~0.88) A (X131 > =37 A (Xpgy > —1.66) A (X151 > —1.52) A (X16; >
-1.55)A (X7, > =3.0)A(X g, > —1.77), and the wSTL formula for ¢ -1
is ¢y = (X;; > —140) A (Xp; > =039 A (X3, > —0.97) A (X4, >
=0.58) A (X5; > —1.07) A (Xg; > —133) A(X7; > 0.38) A (Xg; >
—1.35) A (Xg; > —2.80) A (Xyo; > 1A A Xy > —136) A (X p; >
—1L40) A (X35 > =3.10) A (X4 > —1.60) A (X5, > =2.01) A (X6, >
—14T)A(X 7, > =2.45)A(X ;g > —2.01). In principle, we could consider
the red region as a safe region. If there is at least one channel of which
the data lies in the safe region during ¢ — 9 to ¢, then the data will be
nonseizure data. Otherwise, if the data of all the channels lies outside
of the safe region during 7 — 9 to 7, then the data will be seizure data.
The nonseizure and the seizure data shown in Fig. 6(a) to Fig. 6(d)
precisely match the properties described above. On the other hand, we
could interpret the wSTL formula through picking a particular spectral
feature and visualizing the evolution of that feature and the decision
boundary from 7 —9 to 7. Here we select the feature of the total energy
within 0-30 Hz (X, ,i = 1,2,...,18), and interpret the wSTL formula
discovered by STONE by visualizing the evolution of X;, from ¢’ =1
to ¢ = 10 (corresponding to t — 9 to 1) as Fig. 7 to Fig. 8. In Fig. 7,

V V V V
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we plot the evolution of the decision boundary and the nonseizure
data, where the subplot at each time slot represents a spider plot, as
shown in Fig. 6(a)-6(d). We could see at any ¢’ € [, 10], there exists
at least one channel of which the data is inside of the safe region at
the corresponding time slot. Likewise, by connecting the seizure data
and the decision boundary at different ¢ € [1,10], we could interpret
the wSTL formula through visualizing the evolution of the decision
boundary and the seizure data, as shown in Fig. 8. At each time slot,
the seizure data always lies outside of the safe region. From the above
analysis, we observe that STONE could learn human-readable formulas
that are also easily interpretable through visualizing the evolution of
the EEG signal characteristics as described by the formulas.

5. Conclusion

In this paper, we developed a signal temporal logic neural network
(STONE) as an interpretable seizure detector to accomplish seizure
detection tasks. Multi-view features, including the spectral features
and the line length feature, are extracted from the raw EEG signals
such that the patterns underneath the seizure data can be discov-
ered from different perspectives. STONE is a neuro-symbolic model
that combines the characteristics of neural networks and weighted
signal temporal logic (wSTL), where each neuron has a corresponding
symbolic expression in a wSTL formula, and the model’s outcome is
a human-readable formula that expresses the rules of seizures in an
interpretable format. STONE is implemented on the CHB-MIT database
and the Bonn University database and is demonstrated to achieve
competitive performance with state-of-the-art models. Simultaneously,
we utilize the weighted cross-entropy loss to tackle the data imbalance
issue such that both good sensitivity and specificity can be acquired.
The STL formulas provided by STONE could also be visualized for a
better understanding and interpretation of the model. The experimental
results demonstrate that STONE is effective in detecting seizures and
providing better interaction with users.
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