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AbstractÐFederated learning is a new learning paradigm for
extracting knowledge from distributed data. Due to its favorable
properties in preserving privacy and saving communication costs,
it has been extensively studied and widely applied to numerous
data analysis applications. However, most existing federated
learning approaches concentrate on the centralized setting, which
is vulnerable to a single-point failure. An alternative strategy for
addressing this issue is the decentralized communication topology.
In this article, we systematically investigate the challenges and
opportunities when renovating decentralized optimization for fed-
erated learning. In particular, we discussed them from the model,
data, and communication sides, respectively, which can deepen
our understanding about decentralized federated learning.

Index TermsÐcommunication, computation, data distribution,
decentralization, federated learning, optimization.

INTRODUCTION

With the development of Internet-of-Things (IoT) devices

and intelligent hardware, various data are generated on these

devices every day. Extracting useful knowledge from these

distributed data with machine learning (ML) models to benefit

data owners becomes necessary and important. Federated

learning (FL) [10] provides a feasible way for this distributed

ML task with a promise of protecting private information

without consuming large communication costs. Due to this

favorable property, FL has been extensively studied and widely

applied to many applications, such as virtual keyboard input

suggestion [15] and smart healthcare [14], to name a few.

In FL, a commonly used approach to coordinate the col-

laboration between all participants is federated averaging

(FedAvg). In detail, the central server broadcasts the model

parameter to all participants, i.e., data owners. Each participant

updates the received model parameter for multiple iterations

by the stochastic gradient computed with its local data, and

then uploads the updated model parameter to the central

server. After receiving the updated model parameters from all

participants, the central server broadcasts the averaged model

parameters to start the next round. With this learning paradigm,

all participants can collaboratively learn an ML model without

communicating their raw data. As such, the private information

in raw data can be preserved to some extent. Meanwhile, since

the model is shared and its size is much smaller than the raw

data, the communication cost in FL is reduced significantly.

Along with such an extensive study of FL, federated op-

timization was born to further address the computation and

communication challenges in FedAvg. Similar to the early

phase of FL where focus is on the centralized setting, most
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of the work in this area concentrates on the parameter-server

communication topology, where all participants communicate

with the central server. For instance, [13] studied the re-

source and performance optimization in centralized federated

learning. This kind of centralized communication topology,

unfortunately, may lead to a single-point failure. In particular,

when the number of participants is large, communicating with

the central server will cause the communication bottleneck

on the central server. With the advance of communication

technology, such as 5G/6G, providing fast communication [7]

and cloud/edge computation through decentralized computa-

tion over IoT and edge devices [9], an alternative strategy is

to employ the decentralized communication strategy where all

participants perform the peer-to-peer (P2P) communication.

As such, the communication bottleneck will be alleviated.

Thus, the decentralized learning paradigm brings new oppor-

tunities to the FL development.

In fact, decentralized optimization has been extensively

studied in both ML and optimization communities for many

years. Numerous decentralized optimization approaches have

been developed for the conventional distributed ML model.

However, FL brings new challenges to the conventional decen-

tralized optimization. Just as shown in Figure 1, decentralized

optimization serves as the bridge between distributed data and

FL models. It should address the unique challenges in the

model and data, as well as the issues in itself. Even though

some efforts [4] have been devoted to facilitating decentralized

optimization for FL in the past few years, numerous challenges

are still untouched.

To advance the decentralized FL, in this article, we will

review the current development of decentralized federated op-

timization approaches and then discuss the new opportunities

in decentralized FL. Specifically, this article will focus on the

following aspects.

• On the model side, how to improve the FL model’s gen-

eralization performance with decentralized optimization

approaches was discussed, pointing out the directions for

new algorithmic designs.

• On the communication side, various communication

issues when applying decentralized optimization ap-

proaches to FL and potential techniques for addressing

them were systematically discussed.

• On the data side, we discussed the current challenges

and future directions when designing new decentralized

optimization approaches for FL.

Following this, we introduce the background of federated

learning and decentralized optimization. Then, we discuss the
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fundamental challenges and potential techniques in optimiza-

tion algorithms for decentralized FL. In addition, we introduce

challenging issues in communication of decentralized FL.

Finally, we discuss how to handle different kinds of data in

decentralized FL.

BACKGROUND

Federated Optimization

Different from conventional distributed learning approaches

under the data-centre setting, FL faces more computation and

communication problems, such as unstable communication

conditions, and highly heterogeneous data distributions, to

name a few. A wide variety of federated optimization ap-

proaches have been proposed to address these challenging

issues in FL. For instance, to improve the computation com-

plexity, a line of research is to employ advanced gradient

estimators, such as the momentum, the variance-reduced gra-

dient [2], to update the model parameter in each participant.

As such, the convergence rate of the improved FedAvg is

even able to close to the full gradient descent approach. For

instance, [6] can achieve the same-order sublinear convergence

rate with the full-gradient descent approach for nonconvex

problems. As for the communication complexity, a lot of

efforts have been devoted to reducing the communication

cost in each communication round and the total number of

communication rounds. Moreover, other unique challenges in

FL, such as model personalization, communication security,

have also been extensively studied in the past few years.

However, all these approaches just focus on the centralized

setting, sharing the single-point failure issue.

Decentralized Optimization

Before the era of FL, decentralized optimization has already

been studied for several decades and has been applied to dif-

ferent domains, such as machine learning, automatic control,

etc. Different from the aforementioned federated optimization

approach where a central server coordinates all participants,

the decentralized optimization approach does not have such a

central server, where each participant directly communicates

with its neighboring participants. Based on this communication

paradigm, numerous decentralized optimization approaches

have been proposed.

Typically, according to the specific communication strategy,

decentralized optimization approaches can be categorized into

two classes. The first category employs the gossip communi-

cation strategy [8]. Specifically, each participant computes the

gradient based on its local dataset, which is used to update

its model parameter. Then, each participant communicates the

updated model parameter with its neighboring participants.

The second category employs the gradient tracking communi-

cation strategy [11]. In particular, each participant introduces

an additional variable to track the global gradient, which is

employed to update the local model parameter. As such, in

each iteration, the participant should communicate both the

model parameter and the tracked gradient. Compared with the

gossip-based approach, the tracked gradient is a better approx-

imation for the global gradient. As such, the gradient tracking

is preferable when the data distribution across participants is

heterogeneous.

Based on the aforementioned two communication strategies,

a wide variety of decentralized optimization approaches have

been proposed. For instance, the most straightforward decen-

tralized optimization approach employs the full gradient to up-

date local model parameters and then conducts communication

at every iteration. However, the full gradient descent approach

suffers from large computational cost in each iteration when

the number of samples is large. To handle the large-scale

data, a line of research is to employ the stochastic gradient to

update the model parameter in each participant. As such, the

computational cost is reduced significantly in each iteration.

In particular, [8] theoretically demonstrated that decentralized

stochastic gradient descent (DSGD) algorithm has almost the

same convergence rate with the centralized counterpart for

nonconvex optimization problems and the decentralized com-

munication topology only affects the high-order term of the

convergence rate of DSGD. Such a favorable convergence rate

of DSGD promotes the development of decentralized federated

learning in the past few years. Nevertheless, the stochastic

gradient introduces large variance so that the convergence rate

is inferior to the full-gradient-based decentralized optimization

approach. To address this drawback, multiple variance-reduced

approaches have been developed to accelerate the convergence

rate of decentralized stochastic gradient descent.

Integration of Decentralized Optimization and Federated

Learning

Most existing federated optimization approaches concen-

trate on the centralized setting, which suffers from the in-

trinsic problems of the centralized system. Thus, integrating

decentralized optimization with FL becomes inevitable and

promising. Formally, for decentralized FL, each participant

conducts the following steps in each communication round:

• It computes stochastic gradient based on its local dataset

and leverages it to update its model parameter. This local

updates is conducted for p iterations, where p > 1.

• When the local update is done, each participant communi-

cates its local model parameter or tracked gradient with

its neighboring participants according to the employed

communication strategy.

Obviously, this decentralized communication strategy avoids

communicating with the central server so that there are no

communication bottleneck and failure issues in the central

server as the centralized federated learning. However, this

integration introduces new challenges to decentralized opti-

mization. In particular, as the bridge between the upper-level

FL models and the lower-level distributed data, decentralized

optimization faces with a wide variety of challenges. Just as

shown in Figure 1, various FL models require to develop new

decentralized optimization approaches to achieve good gen-

eralization performance. The complicated data distributions

make conventional decentralized optimization approaches not

work. The decentralized communication under the FL setting

requires new algorithmic design to handle new communication

challenges. In the following, we will systematically discuss
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Fig. 1. The illustration of decentralized optimization for federated learning. The decentralized optimization unifies FL models, distributed data, and
communication together. In particular, the optimization algorithm on each device bridges the model and data by using the stochastic gradient, which is
computed on local data and model, to update local model parameters. Meanwhile, the optimization algorithms across devices can unify all models and data
in the entire system via the communication framework to learn a well-generalizing machine learning model.

these challenges and potential techniques to address them

from the perspective of the model, communication, and data,

which will help FL researchers and practitioners deepen their

understanding of decentralized FL.

DECENTRALIZED OPTIMIZATION MEETS MODELS

The goal of FL is to learn a well-performing ML model

for the real-world application. To deal with different kinds

of applications, numerous FL models have been developed.

How to ensure the decentralized optimization approach to learn

a well-generalized ML model is important and challenging.

In what follows, we systematically discuss the fundamental

challenges and potential techniques for addressing them.

How to Achieve Good Generalization Performance?

The ultimate goal of an ML model is to have good

generalization performance. To improve the generalization

performance, a lot of efforts have been devoted to the de-

sign of ML models. In recent years, the over-parameterized

deep neural network has demonstrated superior generalization

performance. As such, it has been applied to various FL

applications. In turn, it also introduces new challenges to

decentralized federated optimization. Specifically, the over-

parameterized deep neural network has many local minima

where different local minima have different generalization

performance. Thus, it is of importance to find the local minima

that have good generalization performance.

Existing federated optimization approaches, including both

centralized and decentralized ones, mainly concentrate on the

convergence performance. That is how fast an optimization

algorithm converges to the local minima. In fact, other than

the convergence speed, a decentralized optimization approach

should also have the capability to find the local minima with

good generalization performance. Thus, both convergence and

generalization performance are of importance when designing

decentralized optimization approaches for FL. In what follows,

we list the essential aspects that need to investigate for the

development of decentralized optimization approaches.

• Adaptation of existing approaches: In recent years,

a few new optimization approaches under the single-

machine setting have been proposed to pursue the so-

lution that has good generalization performance. For

instance, [3] developed a sharpness-aware optimization

approach to find the flat minima, since [5] empirically

demonstrated that the flat minima enjoy better gener-

alization performance than sharp minima. A straight-

forward strategy to empower decentralized optimization

approaches with the capability of finding well-generalized

solutions is to adapt existing single-machine approaches,

e.g., the sharpness-aware approach, to the decentralized

FL. However, this naive strategy may not work for

decentralized FL. For instance, the sharpness-aware op-

timization approach has more computational cost due

to the maximization and minimization steps in each

iteration. Then, the limited computation capability of the

participants, e.g., mobile devices, restricts its adaptation

to decentralized FL. Moreover, the heterogeneous data

distribution across participants also introduces new chal-

lenges when coordinating the maximization and mini-

mization steps in each iteration. Thus, adapting existing

approaches to decentralized FL requires new efforts to

address the computation and communication issues.
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• Co-design of FL models and decentralized opti-

mization approaches: Other than adapting existing ap-

proaches to decentralized FL, another promising strategy

is to co-design the FL model and the decentralized

optimization approach to pursue the well-generalized

solution. On the one hand, when designing a FL model

with good generalization performance, the model that is

easy to be parallelized should be preferable. Especially,

it should avoid employing the global information, e.g.,

the rank across all samples, since it is difficult for

decentralized optimization approaches to get the global

information. On the other hand, developing new decen-

tralized optimization approaches for optimizing the well-

generalized FL models should be computation-efficient

and communication-efficient. For instance, when the FL

model requires the global information, it is necessary to

employ some strategies to approximate it to avoid the

frequent communication across participants.

How to Handle Big Models?

To pursue the well-generalized ML model, a surge of

interest focuses on developing big models. Specifically, the big

model has a huge number of model parameters and it is trained

with the huge volume of training data. For instance, GPT-3 [1]

has 175 billion model parameters and it is trained with 45TB

training data. With such large model size and training data,

big models enjoy superior generalization performance. For

instance, GPT-3 can achieve great generalization performance

for few-shot and zero-shot learning. Thus, adapting big models

for FL can benefit a wide variety of real-world applications.

However, the big model incurs new challenges for decen-

tralized FL due to its large model size and the huge volume of

training data. Directly deploying big models to decentralized

FL seems infeasible since the computation capability of the

participants is limited. Moreover, training big models with

decentralized FL requires a huge number of participants to

get enough training data. Such kinds of large-scale distributed

data is more likely to be heterogeneous. Without a central

server, it is difficult for a decentralized FL system to get the

global information to address the heterogeneous issue. Thus,

it is difficult to train big models with decentralized FL.

How to apply the promising big model to decentralized FL

requires new efforts in the design of learning paradigms and

corresponding decentralized optimization approaches. In what

follows, we discuss several prominent aspects to address this

unique challenge.

• Zeroth-order approaches: Since it is infeasible to train

a big model under the decentralized FL setting due to

the huge model and data size, a potential strategy for

leveraging big models is to employ the pre-trained big

models as a service provider. In particular, rather than

training a big model from scratch, we can directly utilize

the pre-trained big model to benefit the small model

training. For instance, as shown in [12], the big language

model GPT-3 can generate an augmented sample for the

input sample, which can be utilized for prompt tuning.

Therefore, we can put the big model on each participant.

Then, the participant can leverage the model output from

the local input data to optimize the parameter of the

prompt learning part. Since the model parameters of big

models are typically not accessible, we need to develop

the zeroth-order decentralized optimization approach for

this kind of task. Currently, there are very few works

about zeroth-order decentralized optimization approaches

for FL. Thus, the systematic investigation about the

computation and communication complexities of zeroth-

order approaches is of immense importance and necessity.

• Low-dimensional approaches: Since the big model has

a large number of model parameters, a potential strategy

to train or fine-tune this kind of big models is to optimize

model parameters in the low-dimensional space. For

instance, one can employ the sketching method to project

model parameters in a low-dimensional subspace and

then perform optimization in such a subspace. However,

this strategy causes new challenges for decentralized FL.

For instance, how fast the low-dimensional approach

will converge is not clear. Hence, new efforts should be

devoted to the systematic investigation on the algorithmic

design and theoretical analysis about the low-dimensional

decentralized federated optimization approaches.

How to Deal with Inductive Biases?

Although the big model is promising in improving general-

ization performance, it requires powerful computation capabil-

ity and a large volume of training data. For some real-world FL

applications, it is difficult to obtain large-scale training data.

For instance, the healthcare data is typically not large enough

to train a big model. To address this issue, an alternative strat-

egy is to incorporate the inductive bias to regularize the model

to have the desired performance. Specifically, an important

kind of inductive bias is to make a FL model to capture the

intrinsic structure in the data. For instance, the convolutional

neural network should be invariant to the translation and

rotation of input samples. A high-dimensional model should

be aware of the low-dimensional subspace. Moreover, another

important inductive bias is to make a FL model to capture the

domain knowledge in specific applications. For instance, the

graph neural network for molecular graphs should be aware

of the valid subgraph structure.

To incorporate inductive biases into FL models, some mod-

els use constraint to deal with them. For instance, the low-rank

matrix completion model has a trace-norm constraint to pursue

a low-rank solution. Most existing decentralized optimization

approaches concentrate on the unconstrained problem. How

to solve the constraint problem under the decentralized and

periodical communication condition is still under explored,

which requires systematic investigation as follows.

• Convex constraint: The convex constraint is widely used

in ML models to deal with inductive biases, such as

the low-rank constraint. To solve the FL model with

convex constraint, a critical challenge is the computa-

tion complexity when dealing with the constraint. The

possible strategy includes the projection gradient de-

scent and conditional gradient descent. However, how
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these approaches converge under the decentralized FL

setting is still unclear. Thus, it is necessary to adapt

those algorithms to decentralized FL and investigate their

computation and communication complexities.

• Non-convex constraint: Compared with the convex con-

straint, non-convex constraint is much more difficult to

solve since the convex combination of the solutions

may not satisfy the constraint. Thus, it requires new

algorithmic design to deal with the non-convex constraint.

Especially, it would be better if the new algorithm does

not require the global information since it is difficult

to get it under the decentralized FL setting. Moreover,

more efforts should be devoted to the investigation of

the computation and communication complexities of this

kind of decentralized federated optimization approaches.

More Challenges

Other than the generalization issue, there are some other

challenges in decentralized FL, e.g., the fairness issue. In

particular, even though machine learning has achieved re-

markable success in many real-world applications, it has been

observed that the prediction result could have discrimination

for minority groups. To address this issue, new decentral-

ized optimization algorithms should be explored to learn a

fair machine learning model. More specifically, some efforts

have been made to developing new machine learning models,

which are able to guarantee individual and group fairness.

Those fair machine learning models cause new challenges for

decentralized optimization. For instance, some of those new

models belong to the min-max optimization problem, rather

than the traditional minimization problem. How to facilitate

them to decentralized FL is under-explored. Especially, how

the communication period affects the convergence rate is still

unclear. Therefore, more endeavor is needed to establish the

foundations of decentralized federated optimization for these

emerging machine learning models.

Moreover, in decentralized FL, each participant might op-

timize multiple tasks simultaneously, i.e., the multi-objective

optimization problem. How to solve the multi-objective op-

timization problem under the decentralized FL setting is still

unexplored. Especially, the intrinsic properties in decentralized

FL bring unique challenges. For instance, different participants

pay different attention to those objectives. How to differentiate

the tasks should be considered when designing new decentral-

ized optimization approaches for this kind of FL applications.

Meanwhile, different tasks might have different inductive

biases. How to deal with those inductive biases simultaneously

should also be investigated under the decentralized FL setting.

DECENTRALIZED OPTIMIZATION MEETS COMMUNICATION

In FL, different participants have different communication

conditions, such as limited communication budget, large com-

munication latency, to name a few. Adapting decentralized

optimization approaches to these complicated communication

conditions is of importance and necessity.

Limited Communication Budget

For decentralized optimization, each participant should

communicate its local model parameters or gradients with

its neighboring participants. When the size of FL models

is large, the communication cost will be high, which can

degenerate the empirical convergence speed. Thus, a core

research question is to reduce the communication complexity.

In fact, numerous efforts have been made to improve the

communication complexity of the centralized FL. However,

they are not applicable to the decentralized setting, espe-

cially how those techniques affect the convergence rate of

decentralized optimization approaches is not clear. To address

the communication complexity issues, the following aspects

should be investigated.

• Reducing communication rounds: To improve the com-

munication complexity, a promising strategy is to reduce

the number of communication rounds. However, the peri-

odic communication incurs new challenges for decentral-

ized optimization with the gradient tracking technique.

In particular, the tracked gradient in conventional decen-

tralized optimization approaches is computed based on

the local gradients in two consecutive iterations. With

the periodic communication, it is unclear whether the

gradients in two consecutive iterations or communication

rounds should be used. Thus, it is necessary to investigate

different algorithmic designs and how they affect the

converge rate and communication complexity.

• Reducing communication cost: Another commonly em-

ployed strategy is to compress the communicated vari-

ables. As such, the communication cost in each commu-

nication round is reduced significantly. How to apply the

compression techniques to the decentralized communica-

tion approach in the presence of periodic communication

is still under-explored. Thus, it is promising to investigate

how to combine the compression technique and periodic

communication strategy to reduce the communication

complexity of decentralized optimization approaches.

Large Communication Latency

Since different participants possess different computation

and communication capabilities, there usually exists large

communication latency in a FL system, which can slow down

the empirical convergence speed of decentralized optimization

approaches. Even though some methods have been proposed

for the centralized FL, they are not applicable to the decen-

tralized FL due to the decentralized communication strategy.

Thus, it is necessary to develop new decentralized optimization

approaches to deal with the large latency issue in FL.

A promising direction to address this challenge is the

asynchronous communication strategy, where each participant

overlaps its computation and communication. As such, the

empirical convergence speed will be improved. However, there

exist new challenges when employing the asynchronous com-

munication strategy for decentralized optimization. Especially

when employing the gradient tracking technique, both model

parameters and tracked gradients should be communicated.

As such, there exists asynchrony between computation and
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communication, as well as two communication procedures for

model parameters and gradients. Thus, it is challenging and

important to investigate how the asynchronous decentralized

optimization approaches for FL converge and how large com-

munication latency it can admit.

Hybrid Communication Topologies

In some real-world FL applications, both the centralized

and decentralized communication topologies are utilized to

leverage their advantages. In particular, the decentralized com-

munication in a P2P structure can alleviate the single-point

failure issue in the centralized one. In turn, the centralized

communication is able to benefit the convergence speed.

Thus, it is necessary to develop new federated optimization

approaches for the hybrid communication topology. Key issues

in topology design are to decide the number of communicating

neighbors and to choose these neighbors.

On the one hand, under the FL setting, the new decentral-

ized optimization approach for improving the generalization

performance should be developed, and its convergence rate

requires to study. In particular, how the spectral gap affects the

convergence rate needs to investigate. On the other hand, the

communication-efficient decentralized optimization approach

under the FL setting should be studied, and the convergence

rate should be established.

DECENTRALIZED OPTIMIZATION MEETS DATA

In FL, the training data is much more complicated than

the data-centre setting. For instance, the data might be highly

heterogeneous across all participants. Moreover, in some ap-

plications, such as autonomous driving, the data are sequen-

tially generated. All these scenarios bring new challenges for

decentralized federated optimization.

Heterogeneous Data

When different participants have different data distributions,

the stochastic gradient at each participant is significantly

different from the global gradient. As such, the local model

parameters at different participants will converge to different

stationary points. Thus, it is of importance to alleviate the het-

erogeneous data distribution issue to guarantee convergence.

However, there does not exist a central server to get the

global information. Thus, alleviating the heterogeneous issue

for decentralized FL requires new algorithmic designs.

In traditional decentralized optimization, a commonly used

approach to address the aforementioned issue is the gradient

tracking technique. In particular, the gradient tracking tech-

nique requires to communicate both model parameters and

gradients. As such, the gradient at each participant is able to

track the global gradient. The effect from the heterogeneous

data distribution can be alleviated to some extent. However,

under the FL setting, the communication is performed peri-

odically. Thus, whether the gradient tracking technique can

effectively track the global gradient is unclear. Therefore, it

is necessary to investigate how these two strategies affect

the heterogeneity term in the convergence rate. Moreover,

unlike the centralized FL where it is easy to obtain the

global information to alleviate the heterogeneous issue, new

strategies, such as combining centralized and decentralized

communication, should be investigated to address this issue.

Sequential Data

Most existing decentralized FL models concentrate on the

independent data, where different samples are independent of

each other. However, in some real-world applications, there

exists dependence between different samples. For instance, in

autonomous driving, the car interacts with the environment,

and then the data is sequentially generated. As such, there

exists dependence among this kind of sequential data. In fact,

this kind of application belongs to multi-agent reinforcement

learning when there are multiple self-driving cars. Typically,

since the self-driving car need to interact with its surrounding

cars, it is appropriate to formulate this application as a

decentralized FL task.

Traditional decentralized optimization approaches for FL

just focus on the standard gradient, ignoring the dependence

in the data. Thus, it is necessary to develop new decentralized

optimization approaches for the federated sequential decision

task. In particular, a potential direction is to study the de-

centralized stochastic gradient descent (SGD) with periodic

communication for Markov process. Specifically, in the se-

quential decision task, it is typically assumed that the decision

procedure follows the Markov process. As such, we should

investigate how the decentralized Markov SGD converges

under the periodic communication strategy. Moreover, the

communication complexity should also be investigated. In par-

ticular, how the communication period affects the convergence

rate should be investigated to benefit the FL practitioners.

Multi-modal Data

The multi-modal data is very common in real-world FL

applications. Different modalities might be distributed in dif-

ferent participants. For instance, the healthcare data could

include different types of diagnosis records, and these records

sometimes are distributed in different hospitals since a patient

may take CT scan in one hospital and get diagnosis in another

hospital. To make predictions for these kinds of patients, we

need to unify the features from all hospitals. To address such

kinds of multi-modal data, the centralized FL developed the

vertical FL paradigm to coordinate the feature learning across

all participants. However, under the decentralized FL setting,

the data owners of different modalities might not be connected

directly, and there is no central server to coordinate the

collaboration among data owners. Thus, the existing vertical

FL paradigm does not work for the decentralized setting.

New learning paradigms should be investigated to address

the dependence among different data owners when making

predictions. A potential solution to address this inter-device

dependence issue is to employ the hybrid communication

topology where the global communication is conducted but

infrequently. As such, each local device could leverage the

outdated multi-modal data to do prediction. Correspondingly,

new decentralized optimization approaches for this kind of FL
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application should be developed to address the dependence

among multi-modal data, e.g., how large the outdated period

can be admitted without hampering the convergence rate.

CONCLUSIONS

In this article, we provide a comprehensive discussion about

decentralized optimization approaches for federated learning.

In particular, the integration of decentralized optimization and

federated learning brings new challenges and opportunities.

The decentralized optimization is able to address the intrinsic

problems of the conventional federated learning system. In

turn, federated learning provides new opportunities to boost

the development of decentralized optimization. We system-

atically investigate these challenges and opportunities from

different perspectives, including the model, data, and com-

munication, which points out the potential research directions

and can help readers deepen their understanding about decen-

tralized federated learning.
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