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Abstract

Recent development in the �eld of explainable arti�cial intel-
ligence (XAI) has helped improve trust in Machine-Learning-
as-a-Service (MLaaS) systems, in which an explanation is
provided together with the model prediction in response to
each query. However, XAI also opens a door for adversaries
to gain insights into the black-box models in MLaaS, thereby
making the models more vulnerable to several attacks. For ex-
ample, feature-based explanations (e.g., SHAP) could expose
the top important features that a black-box model focuses on.
Such disclosure has been exploited to craft effective backdoor
triggers against malware classi�ers. To address this trade-off,
we introduce a new concept of achieving local differential
privacy (LDP) in the explanations, and from that we establish
a defense, called XRAND, against such attacks. We show that
our mechanism restricts the information that the adversary
can learn about the top important features, while maintaining
the faithfulness of the explanations.

1 Introduction
Over decades, successes in machine learning (ML) have pro-
moted a strong wave of AI applications that deliver vast ben-
e�ts to a diverse range of �elds. Unfortunately, due to their
complexity, ML models suffer from opacity in terms of ex-
plainability, which reduces the trust in and the veri�ability
of the decisions made by the models. To meet the necessity
of transparent decision making, model-agnostic explainers
have been developed to help create effective, more human-
understandable AI systems, such as LIME (Ribeiro, Singh,
and Guestrin 2016) and SHAP (Lundberg and Lee 2017),
among many others (Sundararajan, Taly, and Yan 2017; Sel-
varaju et al. 2017; Vu and Thai 2020; Vu, Nguyen, and Thai
2022; Ying et al. 2019; Shrikumar, Greenside, and Kundaje
2017; Vu et al. 2021).

In MLaaS systems, a customer can build an ML model
by uploading their data or crowdsourcing data, and execut-
ing an ML training algorithm. Then, the model is deployed
in the cloud where users can receive the model predictions
for input queries. MLaaS assumes black-box models as the
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end-users have no knowledge about the algorithm or inter-
nal information about the underlying ML models. Several
proposals advocate for deploying model explanations in the
cloud, such that a predicted label and an explanation are
returned for each query to provide transparency for end-
users. In practice, such an explainable MLaaS system model
has been developed by many cloud providers (Azure 2021;
Bluemix 2021), with applications in both industries (Com-
munity 2018) and academic research (Shokri, Strobel, and
Zick 2021; Milli et al. 2019).

Despite the great potential of those explainers to im-
prove the transparency and understanding of ML models in
MLaaS, they open a trade-off in terms of security. Speci�-
cally, they allow adversaries to gain insights into black-box
models, essentially uncovering certain aspects of the mod-
els that make them more vulnerable. Such an attack vector
has recently been exploited by the research community to
conduct severalexplanation-guided attacks(Shokri, Stro-
bel, and Zick 2021; Milli et al. 2019; Miura, Hasegawa,
and Shibahara 2021; Zhao et al. 2021; Severi et al. 2021).
It was shown that an explainer may expose the top impor-
tant features on which a black-box model is focusing, by
aggregating over the explanations of multiple samples. An
example of utilizing such information is the recent highly
effective explanation-guided backdoor attack (XBA) against
malware classi�ers investigated by (Severi et al. 2021). The
authors suggest that SHAP can be used to extract the top-
k goodware-oriented features. The attacker then selects a
combination of those features and their values for crafting
a trigger; and injects trigger-embedded goodware samples
into the training dataset of a malware classi�er, with an aim
of changing the prediction of malware samples embedded
with the same trigger at inference time.
Defense Challenges.To prevent an adversary from exploit-
ing the explanations, we need to control the information
leaked through them, especially the top-k features. Since the
explanation on each queried sample is returned to the end
users, a viable defense is to randomize the explanation such
that it is dif�cult for attackers to distinguish top-k features
while maintaining valuable explainability for the decision-
making process. A well-applied technique to achieve this is
preserving local differential privacy (LDP) (Erlingsson, Pi-
hur, and Korolova 2014; Wang et al. 2017) on the expla-
nations. However, existing LDP-based approaches (Erlings-



son, Pihur, and Korolova 2014; Xiong et al. 2020; Sun, Qian,
and Chen 2021; Zhao et al. 2020) are not designed to protect
the top-k features aggregated over the returned explanations
on queried data samples. Therefore, optimizing the trade-
off between defenses against explanation-guided attacks and
model explainability is an open problem.

Contributions. (1) We introduce a new concept of achiev-
ing LDP in model explanations that simultaneously protects
the top-k features from being exploited by attackers while
maintaining the faithfulness of the explanations. Based on
this principle, we propose a defense against explanation-
guided attacks on MLaaS, called XRAND, by devising a
novel two-step LDP-preserving mechanism. First, at the ag-
gregated explanation, we incorporate the explanation loss
into the randomized probabilities in LDP to make top-k
features indistinguishable to the attackers. Second, at the
sample-level explanation, guided by the �rst step, we mini-
mize the explanation loss on each sample while keeping the
features at the aggregated explanation intact. (2) Then, we
theoretically analyze the robustness of our defense against
the XBA in MLaaS by establishing two certi�ed robustness
bounds in both training time and inference time. (3) Finally,
we evaluate the effectiveness of XRAND in mitigating the
XBA on cloud-hosted malware classi�ers.

Organization. The remainder of the paper is structured
in the following manner. Section 2 presents some back-
ground knowledge for our paper. Section 3 discusses the
explanation-guided attacks against MLaaS and establishes
the security model for our defense. Our defense, XRAND, is
introduced in Section 4 where its certi�ed robustness bounds
are presented in Section 5. Experimental evaluation of our
solution is given in Section 6. Section 7 discusses related
work and Section 8 provides some concluding remarks. All
technical appendices can be accessed via the full version of
our paper (Nguyen et al. 2022).

2 Preliminaries
Local explainers. The goal of model explanations is to
capture the importance of each feature value of a given point
of interest with respect to the decision made by the classi�er
and which class it is pushing that decision toward. Given a
samplex 2 Rd wherex j denotes thej th feature of the sam-
ple, letf be a model function in whichf (x) is the probabil-
ity that x belongs to a certain class. An explanation of the
model's outputf (x) takes the form of an explanation vector
wx 2 Rd where thej th element ofwx denotes the degree
to which the featurex j in�uences the model's decision. In
general, higher values ofwx j imply a higher impact.

Perturbation-based explainers, such as SHAP (Lundberg
and Lee 2017), obtain an explanation vectorwx for x via
training a surrogate model of the formg(x) = wx 0 +
P d

j =1 wx j x j by minimizing a loss functionL (f; g ) that
measures how unfaithfulg is in approximatingf .

• Sample-level explanation.In the context of this paper, we
refer towx as a sample-level explanation.

• Aggregated explanation.We denote an aggregated expla-
nationw as the sum of explanation vectors across sam-

ples in a certain setX , i.e.,wX =
P

x 2X wx . WhenX is
clear from the context, we shall use a shorter notationw.

Local Differential Privacy (LDP). LDP is one of the
state-of-the-arts and provable approaches to achieve individ-
ual data privacy. LDP-preserving mechanisms (Erlingsson,
Pihur, and Korolova 2014; Wang et al. 2017; Bassily and
Smith 2015; Duchi, Jordan, and Wainwright 2018; Acharya,
Sun, and Zhang 2019) generally build on the ideas of ran-
domized response (RR) (Warner 1965).

De�nition 1. " -LDP. A randomized algorithmA satis�es
"-LDP, if for any two inputsx and x0, and for all pos-
sible outputsO 2 Range(A), we have:P r [A (x) =
O] � e" P r [A (x0) = O], where" is a privacy budget and
Range(A) denotes every possible output ofA .

The privacy budget" controls the amount by which the
distributions induced by inputsx and x0 may differ. A
smaller" enforces a stronger privacy guarantee.

3 XAI-guided Attack Against MLaaS

We discuss how XAI can be used to gain insights into
MLaaS models, and establish the threat model for our work.

3.1 Exposing MLaaS via XAI

From a security viewpoint, releasing additional information
about a model's mechanism is a perilous prospect. As a
function of the model that is trained on a private dataset,
an explanation may unintentionally disclose critical infor-
mation about the training set, more than what is needed to
offer a useful interpretation. Moreover, the explanations may
also expose the internal mechanism of the black-box mod-
els. For example, �rst, the behavior of explanations varies
based on whether the query sample was a member of the
training dataset, making the model vulnerable to member-
ship inference attacks (Shokri, Strobel, and Zick 2021). Sec-
ond, the explanations can be coupled with the predictions
to improve the performance of generative models which, in
turn, strengthens some model inversion attacks (Zhao et al.
2021). Furthermore, releasing the explanations exposes how
the black-box model acts upon an input sample, essentially
giving up more information about its inner workings for
each query, hence, model extractions attacks can be carried
out with far fewer queries, as discussed in (Milli et al. 2019;
Miura, Hasegawa, and Shibahara 2021).

Finally, (Severi et al. 2021) argues that the explanations
allow an adversary to gain insight into a model's decision
boundary in a generic, model-agnostic way. The SHAP val-
ues can be considered as an approximation of the con�-
dence of the decision boundary along each feature dimen-
sion. Hence, features with SHAP values that are near zero
infer low-con�dence areas of the decision boundary. On the
other hand, features with positive SHAP values imply that
they strongly contribute to the decision made by the model.
As a result, it provides us with an indication of the overall
orientation for each feature, thereby exposing how the model
rates the importance of each feature.





Algorithm 1: XRAND: Explanation-guided RR mechanism
Input: modelf , datasetD, aggregated explanationw, " , k,

� , test samplex
Output: S, " -LDP w0

x

1: Step 1 - At aggregated explanation:
2: for xn 2 D do
3: ComputeL (xn ) # using Eq. 1
4: for i 2 [1; k], j 2 [k + 1 ; k + � ] do
5: ComputeL (xn )( i; j ) # using Eq. 1
6: Compute� L (i; j ) # using Eq. 3
7: end for
8: end for
9: Randomizingw:

w0  XRAND(w; "; k; �; � L (i; j )) # using Eq. 2
10: Return S
11: Step 2 - At sample-level explanation:
12: wx  SHAP explanation forx
13: w0

x  Solve the optimization problem in (5)
14: Return w0

x

and retain a mappingv : N ! N from the sorted indices
to the original indices. Given that� is a prede�ned thresh-
old to control the range of out-of-top-k features that some of
top-k features can swap with, and� is a parameter bounded
in Theorem 1 under a privacy budget" , XRAND de�nes the
probability of �ipping a top-k featurei to an out-of-top-k
featurej as follows:

8i 2 [1; k]; j 2 [k + 1 ; k + � ]; � � k :

i =

8
>><

>>:

i; with probabilitypi =
exp(� )

exp(� ) + � � 1
;

j; with probabilityqi;j =
� � 1

exp(� ) + � � 1
qj

(2)

whereqj = exp( � � L ( i;j ))P
t 2 [k +1 ;k + � ] exp( � � L ( i;t )) and � L (i; j ) is the

aggregated changes ofL (Eq. 1) when �ipping featuresi
andj , which is calculated as follows:

� L (i; j ) =
1
N

NX

n =1

(jL (xn ) � L (xn )( i; j )j) (3)

whereL (xn ) is the original lossL of a samplexn 2 D
andL(xn )( i; j ) is the lossL of the samplexn after �ipping
featuresi andj (Alg. 1, lines 3,5).

After randomizing the aggregated explanation, we obtain
the setSof features that need to be �ipped in the aggregated
explanation, as follows:

S = f (i; j )ji andj are �ipped,i 2 [1; k]; j 2 [k +1 ; k + � ]g
(4)

Step 2 (Alg. 1, lines 11-14). For each input test sample
x, we proceed with sample-level explanation for �nding the
noisy explanationw0

x . First, we generate a set of constraints
Q = f (i; j )jw0

x i
� w0

x j
g that issuf�cient for S. In particular,

for each pair(i; j ) 2 S, we add the following pairs toQ:
(v(i + 1) ; v(j )); ( v(j ); v(i � 1)); (v(I ); v(j � 1)); (v(j +
1); v(i )) . Givenwx as the SHAP explanation ofx, we aim to

�nd � 2 Rd such thatw0
x = wx + � satis�es the constraints

in Q while minimizing the lossL . To obtain� , we solve the
following optimization problem:

min
�

X

z2 N ( x )

�
(wx + � )T z � f (z)

� 2
exp

�
�

kz � xk2

� 2

�
+ � k� k

(5)

s.t. wx i + � i � wx j + � j ; 8(i; j ) 2 Q

� i = 0 8i =2 Q

where� is a regularization constant.
The resulting noisy explanation will bew0

x = wx + � . This
problem is convex and can be solved by convex optimization
solvers (Kingma and Ba 2014; Diamond and Boyd 2016).

4.2 Privacy Guarantees of XRAND

To bound privacy loss of XRAND, we need to bound� in Eq.
2 such that the top-k features in the explanationw0preserves
LDP, as follows:

Theorem 1. Given two distinct explanationsw and ew
and a privacy budget� i , XRAND satis�es " i -LDP in
randomizing each featurei in top-k features ofw, i.e.,
P (XRAND(w i )= zjw )
P (XRAND( ew i )= zj ew) � exp(" i ), if:

� � " i + ln( � � 1) + ln(min
exp(� � L (i; j ))

P k+ �
t = k+1 exp(� � L (i; t ))

)

wherez 2 Range(XRAND). Proof: See Appx. A.

Based on Theorem 1, the total privacy budget" to ran-
domize all top-k features is the sum of all the privacy budget
� i , i.e., " =

P k
i =1 " i , since each featurei is randomized in-

dependently. From Theorem 1 and Eq. 2, it can be seen that
as the privacy budget" increases,� can increase and the �ip-
ping probabilityqi;j decreases. As a result, we switch fewer
features out of top-k.

Privacy and Explainability Trade-off. To understand the
privacy and explainability trade-off, we analyze the data util-
ity of XRAND mechanism through the sum square error
(SSE) of the original explanationw and the one resulting
from XRAND w0. The smaller the SSE is, the better data
utility the randomization mechanism achieves.

Theorem 2. Utility of XRAND: SSE =P
x 2D

P d
i =1 (w0

x i
� wx i )

2 =
P

x 2D

P k+ �
i =1 (w0

x i
� wx i )

2,
whered is the number of features in the explanation.

Proof. It is easy to see that we only consider the probability
of �ipping the top-k features to be out-of-the-top-k up to the
featurek+ � . Thus, all features afterk+ � , i.e., fromk+ � +1
to d are not changed. Hence the theorem follows.

From the theorem, at the same", the smaller the� , the
higher the data utility that XRAND achieves. Intuitively, if�
is large, it is more �exible for the top-k features to be �ipped
out, but it will also impair the model explainability since
the original top-k features are more likely to be moved far
away from the topk. With high values of" , we can obtain a
smaller SSE, thus, achieving better data utility. The effect of
" and� on the SSE value is illustrated in Fig. 6 (Appendix).



5 Certi�ed Robustness
Our proposed XRAND can be used as a defense against the
XBA since it protects the top-k important features. We fur-
ther establish the connection between XRAND with certi�ed
robustness against XBA. Given a data samplex: 1) In the
training time, we guarantee that up to a portion of poison-
ing samples in the outsourced training data, XBA fails to
change the model predictions; and 2) In the inference time,
we guarantee that up to a certain backdoor trigger size, XBA
fails to change the model predictions. A primer on certi�ed
robustness is given in Appx. B.

5.1 Training-time Certi�ed Robustness
We consider the original training dataD as the proprietary
data, and the explanation-guided backdoor samplesDo as
the outsourced data inserted into the proprietary data. The
outsourced dataDo alone may not be suf�cient to train a
good classi�er. In addition, the outsourced data inserted into
propriety data can lessen the certi�ed robustness bound of
the propriety data. Therefore, we cannot quantify the certi-
�ed poisoning training size of the outsourced dataDo di-
rectly by applying a bagging technique (Jia, Cao, and Gong
2021). To address this problem, we quantify the certi�ed
poisoning training sizer of Do against XBA by uncovering
its correlation with the poisoned training dataD0 = D [ D o.

Given a model prediction on a data samplex using D,
denoted asf (D; x), we ask a simple question: “What is
the minimum number poisoning data samples, i.e., certi-
�ed poisoning training sizer D , added intoD to change the
model prediction onx: f (D; x) 6= f (D+ ; x)?” After adding
Do into D, we ask the same question: “What is the mini-
mum number poisoning data samples, i.e., certi�ed poison-
ing training sizerD 0, added intoD0 = D [ D o to change
the model prediction onx: f (D0; x) 6= f (D0

+ ; x)?” The dif-
ference betweenr D andr D 0 provides us a certi�ed poison-
ing training size onDo. Intuitively, if Do does not consist
of poisoning data examples, thenr D is expected to be rela-
tively the same withr D 0. Otherwise,rD 0 can be signi�cantly
smaller thanr D indicating thatDo is heavily poisoned with
at leastr = rD � r D 0 number of poisoning data samples
towards opening backdoors onx.

Theorem 3. Given two certi�ed poisoning training sizes
r �

D = arg min r D r D and r �
D 0 = arg min r D 0 r D 0, the certi-

�ed poisoning training sizer of the outsourced dataDo is:

r = r �
D � r �

D 0 (6)

Proof: Refer to Appx. C for the proof and its tightness.

5.2 Inference-time Certi�ed Robustness
It is not straightforward to adapt existing certi�ed robust-
ness bounds at the inference-time into XRAND, since there
is a gap between model training as in existing approaches
(Jia, Cao, and Gong 2021; Lecuyer et al. 2019; Phan et al.
2020) and the model training with explanation-guided poi-
soned data as in our system. Existing approaches can ran-
domize the data inputx and then derive certi�ed robustness
bounds given the varying output. This typical process does
not consider the explanation-guided poisoned data that can

potentially affect certi�ed robustness bounds in our system.
To address this gap, note that we can always �nd a mecha-
nism to inject random noise into the data samplesx such that
the samples achieve the same level of DP guarantee as the
explanations. Based on this, we can generalize existing cer-
ti�ed bounds against XBA at the inference time in XRAND.

When explanation-guided backdoor samples are inserted
into the training data, upon bounding the sensitivity that the
backdoor samples change the output off , there always ex-
ists a noise� that can be injected into a benign samplex,
i.e.,x + � , to achieve an equivalent" -LDP protection. Given
the explanationwx of x, we focus on achieving a robustness
condition toL p(� )-norm attacks, where� is the radius of
the norm ball, formulated as follows:

8� 2 L p(� ) : f l (x + � jwx ) > f : l (x + � jwx ) (7)

wherel 2 f 0; 1g is the true label ofx and: l is the NOT
operation ofl in a binary classi�cation problem.

There should exist a correlation among� and wx that
needs to be uncovered in order to bound the robustness con-
dition in Eq. 7. However, it is challenging to �nd a direct
mapping functionM : wx ! � so that when we randomize
wx , the change of� is quanti�ed. We address this challenge
by quantifying the sensitivity of� given the average change
of the explanation of multiple samplesx 2 X , as follows:

� � jw =
1

jX j d

X

x 2X

jwx � w0
x j1 (8)

wherejX j is the size ofX .
� � jw can be considered as a bounded sensitivity of

XRAND given the inputx since: (1) We can achieve the
same DP guarantee by injecting Laplace or Gaussian noise
into the inputx using the sensitivity� � jw ; and(2) The ex-
planation perturbation happens only once and is permanent,
that is, there is no other bounded sensitivity associated with
the one-time explanation perturbation. The sensitivity� � jw
establishes a new connection between explanation perturba-
tion and the model sensitivity given the input samplex. That
enables us to derive robustness bounds using different tech-
niques, i.e., PixelDP (Lecuyer et al. 2019; Phan et al. 2019)
and (boosting) randomized smoothing (RS) (Horváth et al.
2022; Cohen, Rosenfeld, and Kolter 2019), since we con-
sider the sensitivity� � jw as a part of randomized smoothing
to derive and enhance certi�ed robustness bounds.

The rest of this section only discusses the bound using
PixelDP, we refer the readers to Appx. D for the bound using
boosing RS. Given a randomized predictionf (x) satisfying
("; � )-PixelDP w.r.t. aL p(� )-norm metric, we have:

8l 2 f 0; 1g; 8� 2 L p(� ) : Ef l (x) � e" Ef l (x + � )+ � (9)

whereEf l (x) is the expected value off l (x), " is a prede-
�ned privacy budget, and� is a broken probability. When
we use a Laplace noise,� = 0 .

We then apply PixelDP with the sensitivity� � jw and a

noise standard deviation� = � � j w �
" for Laplace noise,

or � =
� � j w �

p
2 ln (1 :25=� )
" for Gaussian noise. From that,

when maximizing the attack trigger's magnitude� : � max =
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Horváth, M.; Mueller, M.; Fischer, M.; and Vechev, M.
2022. Boosting Randomized Smoothing with Variance Re-
duced Classi�ers. InInternational Conference on Learning
Representations.

Jia, J.; Cao, X.; and Gong, N. Z. 2021. Intrinsic certi�ed
robustness of bagging against data poisoning attacks.AAAI.
Kairouz, P.; Bonawitz, K.; and Ramage, D. 2016. Discrete
distribution estimation under local privacy. InInternational
Conference on Machine Learning, 2436–2444.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization.arXiv preprint arXiv:1412.6980.
Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; and Jana,
S. 2019. Certi�ed robustness to adversarial examples with
differential privacy. In2019 IEEE Symposium on Security
and Privacy (SP), 656–672.
Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2018. Fine-pruning:
Defending against backdooring attacks on deep neural net-
works. InInternational Symposium on Research in Attacks,
Intrusions, and Defenses, 273–294. Springer.
Lundberg, S. M.; and Lee, S.-I. 2017. A uni�ed approach to
interpreting model predictions. InProceedings of the 31st
international conference on neural information processing
systems, 4768–4777.
Lyu, L.; Li, Y.; He, X.; and Xiao, T. 2020. Towards differen-
tially private text representations. InProceedings of the 43rd
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 1813–1816.
Milli, S.; Schmidt, L.; Dragan, A. D.; and Hardt, M. 2019.
Model reconstruction from model explanations. InPro-
ceedings of the Conference on Fairness, Accountability, and
Transparency, 1–9.
Miura, T.; Hasegawa, S.; and Shibahara, T. 2021. MEGEX:
Data-Free Model Extraction Attack against Gradient-Based
Explainable AI.arXiv preprint arXiv:2107.08909.
Nguyen, T.; Lai, P.; Phan, N.; and Thai, M. T. 2022. XRand:
Differentially Private Defense against Explanation-Guided
Attacks.arXiv preprint arXiv:2212.04454.
Phan, H.; Thai, M.; Hu, H.; Jin, R.; Sun, T.; and Dou, D.
2020. Scalable differential privacy with certi�ed robustness
in adversarial learning. InInternational Conference on Ma-
chine Learning, 7683–7694.
Phan, N.; Vu, M. N.; Liu, Y.; Jin, R.; Dou, D.; Wu, X.; and
Thai, M. T. 2019. Heterogeneous Gaussian mechanism: pre-
serving differential privacy in deep learning with provable
robustness. InProceedings of the 28th International Joint
Conference on Arti�cial Intelligence, 4753–4759.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ” Why
should i trust you?” Explaining the predictions of any clas-
si�er. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
1135–1144.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.
Severi, G.; Meyer, J.; Coull, S.; and Oprea, A. 2021.
Explanation-Guided Backdoor Poisoning Attacks Against
Malware Classi�ers. In30th f USENIXg Security Sympo-
sium (f USENIXg Security 21).



Shokri, R.; Strobel, M.; and Zick, Y. 2021. On the privacy
risks of model explanations. InProceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, 231–241.
Shrikumar, A.; Greenside, P.; and Kundaje, A. 2017. Learn-
ing important features through propagating activation differ-
ences. InInternational Conference on Machine Learning,
3145–3153. PMLR.
Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. Fooling lime and shap: Adversarial attacks on post
hoc explanation methods. InProceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, 180–186.
Sun, L.; Qian, J.; and Chen, X. 2021. LDP-FL: Practical pri-
vate aggregation in federated learning with local differential
privacy. IJCAI.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. InInternational Conference
on Machine Learning, 3319–3328. PMLR.
Tran, B.; Li, J.; and Madry, A. 2018. Spectral signatures
in backdoor attacks. InProceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, 8011–8021.
Vu, M.; and Thai, M. 2020. PGM-Explainer: Probabilistic
Graphical Model Explanations for Graph Neural Networks.
In 34th Conference on Neural Information Processing Sys-
tems (NeurIPS 2020).
Vu, M. N.; Nguyen, T.; and Thai, M. T. 2022. NeuCEPT:
Learn Neural Networks's Mechanism via Critical Neurons
with Precision Guarantee. In2022 IEEE International Con-
ference on Data Mining (ICDM). IEEE.
Vu, M. N.; Nguyen, T. D.; Phan, N.; Gera, R.; and Thai,
M. T. 2021. c-Eval: A uni�ed metric to evaluate feature-
based explanations via perturbation. In2021 IEEE Interna-
tional Conference on Big Data (Big Data), 927–937. IEEE.
Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng,
H.; and Zhao, B. Y. 2019a. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In2019
IEEE Symposium on Security and Privacy (SP), 707–723.
IEEE.
Wang, N.; Xiao, X.; Yang, Y.; Zhao, J.; Hui, S. C.; Shin, H.;
Shin, J.; and Yu, G. 2019b. Collecting and analyzing mul-
tidimensional data with local differential privacy. InIEEE
ICDE, 638–649.
Wang, T.; Blocki, J.; Li, N.; and Jha, S. 2017. Locally differ-
entially private protocols for frequency estimation. In26th
USENIX Security Symposium, 729–745.
Wang, T.; Ding, B.; Xu, M.; et al. 2019c. MURS: practical
and robust privacy ampli�cation with multi-party differen-
tial privacy. InACSAC.
Warner, S. L. 1965. Randomized response: A survey tech-
nique for eliminating evasive answer bias.Journal of the
American Statistical Association, 60(309): 63–69.
Xiong, X.; Liu, S.; Li, D.; Cai, Z.; and Niu, X. 2020. A
comprehensive survey on local differential privacy.Security
and Communication Networks.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph

neural networks.Advances in neural information processing
systems, 32: 9240.
Zhang, X.; Wang, N.; Shen, H.; Ji, S.; Luo, X.; and Wang,
T. 2020. Interpretable deep learning under �re. In29th
f USENIXg Security Symposium (f USENIXg Security 20).
Zhao, X.; Zhang, W.; Xiao, X.; and Lim, B. 2021. Exploiting
Explanations for Model Inversion Attacks. InProceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 682–692.
Zhao, Y.; Zhao, J.; Yang, M.; Wang, T.; Wang, N.; Lyu, L.;
Niyato, D.; and Lam, K. Y. 2020. Local differential privacy
based federated learning for Internet of Things.IEEE Inter-
net of Things Journal.


