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Abstract—Human cognition has become a fundamental metric
to evaluate the Quality of Experience (QoE) and service provided
in modern day communication systems. Expected Utility Theorem
(EUT) is widely used to mathematically model human behavior
and analyze decision-making process. However, studies carried
out in literature reveal that the decision-making ability of users
under certain circumstances, violate the precepts of EUT and
proposed an alternative model called Prospect Theory (PT).
On the other hand, Non-Orthogonal Multiple Access (NOMA)
has been advocated as a new promising technique to improve
network capacity performance. In NOMA research, issues such
as congestion control and power allocation have been the primary
focus and end-user QoE has largely been ignored. In the past,
we have designed a NOMA pricing framework to simultaneously
boost user QoE and base station profits while addressing the other
issues of power selection and resource allocation. The primary
focus of this paper is to introduce the new prospect-theoretic
postulates to the NOMA pricing framework to further study the
user QoE in wireless multimedia services. The prospect-theoretic
QoE model for NOMA communication has been derived using
the weighting function and value function. Further, we have sim-
ulated a NOMA network to evaluate the efficacy of the developed
prospect-theoretic QoE model. Simulation results exemplify the
potentials of prospect-theoretic QoE modeling of NOMA pricing
framework in wireless multimedia communications.

Index Terms—Non-Orthogonal Multiple Access Pricing, Qual-
ity of Experience, Prospect Theory.

I. INTRODUCTION

Non-Orthogonal Multiple Access (NOMA) is an emerging

network access technique and has been widely investigated

as a potential candidate to mitigate the explosive boom in

internet-ready devices and improve the communication sys-

tems efficiencies [1]. In power-domain NOMA communication

[2], the available spectrum is split into several resource blocks

with varied characteristics in terms of throughput and latency.

The service provider then groups several users together in each

of the available resource blocks. The data of all the users in

a block are superimposed and encoded at varied power levels.

The transmission of such a superimposed signal allows the

service provider to provide faster service to higher number of

users, resulting in a significant boost in spectral efficiency.

Strategic choice of power distribution among users, non-

uniform pricing of NOMA resource and resource allotment

are some of the existing open issues. In previous works we

have introduced NOMA Pricing (NOMAP), a novel pricing

framework for NOMA wireless communications to address

part of the open issues, in order to boost the end-user QoE

and service provider profits [3, 4]. Under NOMAP, the users

were given a free choice to strategically determine the NOMA

resource block(s) to utilize for data transmission. NOMAP

also facilitated the service providers to have a dynamic non-

uniform pricing schema where the resource blocks could

be priced based on external factors such as interference,

congestion and network demand. The users can also determine

the amount of encoding power to purchase to save money

and also meet their QoE demands based on Expected Utility

Theorem (EUT) . This pricing of QoE approach facilitates

users to achieve satisfactory service quality, and enables the

base station to attain higher profits. EUT has been widely used

in QoE modeling of wireless communication systems and is

also the underlying philosophy of NOMAP. The fundamental

shortcoming of EUT is that it assumes the users to be rational

and uninfluenced by external factors. Kahneman and Tversky

revealed that the decision-making ability of human under risk,

violate the fundamentals of EUT and presented a critique

called Prospect Theory (PT) [5]. The human psychological risk

seeking, and risk aversion behaviors can be captured using the

weighting and value function as prescribed in PT.

Human cognition aware PT has been gaining excessive

attention among the investigators in the field of wireless

communication and multimedia networks. PT was used to

capture the underlying rationality among players in secure

unmanned aerial vehicles (UAVs) communication [6]. In the

research works [7] and [8], the authors have applied PT to

psychologically model wireless network access among users

and end-user subjective perceptions in autonomous wireless

communications. PT pricing models are also being investigated

to boost network revenue. Resource pricing and allocation

in MEC-enabled blockchain systems was investigated using

deep reinforcement learning and PT to strike a good balance
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between risks and rewards [9]. Dynamic value and weighting

functions have also been explored to capture human cognition

of risks and losses [10]. In this work, we have meaningfully

incorporated the postulated PT into our NOMA pricing frame-

work to further study the end-user QoE.

The rest of this manuscript is organized as follows. In

section II, we introduce the prospect-theoretic NOMAP frame-

work and provide the utility definitions. The optimization

solution is briefed in section III and an algorithm is presented

as an implementation reference. We carried out simulation

on MATLAB to study and evaluate the performance and the

results are discussed in the section IV. We provide conclusions

and insights into the probable future work in Section V.

II. PROSPECT-THEORETIC NOMA PRICING FRAMEWORK

In this work, we consider a NOMA network with ‘m’

resource block and ‘n’ users in each block. All ‘n’ users in

the block are catered simultaneously by superimposing their

signals over one another at varied power levels. The users then

recover their data from the complex signal using successive

interference canceller. The user closest to the base station

would have their data at the top of the carrier signal and so

would experience no interference from other user data. As the

distance from the base station, and number of users between

end-user and base station increase, the data is subjected to

more interference. Therefore, these signals need to be encoded

with higher power. Under NOMAP framework, the user gets to

choose the resource block and amount of power to purchase in

the corresponding user block to maximize their overall QoE.

Fig. 1. Prospect Theoretic NOMA Pricing Concept

The NOMAP network considered in this work is illustrated

in Figure 1 above. NOMAP provides the user with a free

choice of block and power selection. Two rational users named

EUT user and PT user are considered in this figure. It is

assumed that both users request the same data and have

identical QoE demand. In our previous work based on EUT

QoE model [3], we found out that a user’s choice of resource

block is insignificant as the price is different in each block.

In other words, the EUT user was always able to meet their

QoE goals by varying the amount of power purchased in any

of the resource block. The objective of this work is to see if

the PT user might prefer one block over the other to either

achieve better QoE gain or, to save money.

In order to formulate the behavior of the PT user mathe-

matically, we leverage the PT postulates - weighting function,

value function and the reference point dependence. This would

capture the risk seeking, loss aversion and isolation behavior

of humans under stress [11]. PT uses weighting function to

map true probabilities to subjective probabilities of events. The

weighting function [5] of PT is shown in equation (1).

w(ε) = exp (−β(− ln ε)α) , 0 < ε ≤ 1 (1)

where ε is the true probability of user choosing resource block

m and w(ε) is the PT subjective probability. α and β are

positive coefficients used to control the shape of weighting

function. The user QoE is dynamic and changes rapidly. While

evaluating the user QoE, users are more sensitive to losses than

to gains. This phenomenon is called loss aversion and this can

be mathematically captured using a value function. The value

function [5] is shown in equation (2).

v(xm) =

{
xκ
m, for xm ≥ x∗

m

−λ(−xm)κ, for xm < x∗
m

(2)

where κ and λ are positive parameters controlling the shape

and steepness of the value function respectively. The x∗
m is the

expected gain by the user and xm is the actual achieved gain.

The gain of the user xm in the NOMA network is per-session

measure of user perceived satisfaction and it can be modeled

using a two-level logarithmic function.

xm = γ log2

(
1 +B log2

(
1 +

Pi |hi|2∑N
k=j+1 Pk |hk|2 + σ2

))
−C

(3)

where B is the amount of bandwidth purchased to transmit

data. Pi and hi denote the power transmitted and channel gain

between base station and end user, respectively. The noise

power in the communication channel is given by σ2. The

interference experienced by the user is the summation of Pk

and hk corresponding to k users closer to the base station.

The parameter γ represents the payoff parameter or currency

gain for the logarithmic QoE and C represents the total cost

paid by user to obtain this service.

The QoE of the user in a wireless network can be repre-

sented the product of probability of user choosing one of the

available resource blocks and the actual value of gain from

the resource block.

QoE = w (pm) v (xm) (4)

III. OPTIMIZATION SOLUTION AND ALGORITHM DESIGN

In a NOMA network, the two player interaction between

service provider and the end user can be modeled as a game

theoretic problem. Stackelberg game can be used for concave

[3], and Best Response game can be used for non-concave [4]

utility equations respectively. The games are generally solved

backward induction technique, and so the service provider
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knows the strategy of the user and can determine the right

price for the resource blocks. The strategies for the service

provider to maximize the revenue are widely studied both in

the literature and in our previous work. Finding the preeminent

solution or pricing policy for the service provider is not part

of this research. In this work, we strive to find and optimize

a strategy for the end-user exploiting PT.

The optimization problem for the PT user is to determine

the optimal amount of power Pi corresponding to the cost C
declared by the service provider for the mth resource block.

The optimal value for Pi lies between Pmin and Pmax. Pmin

denotes the minimum power required to meaningfully encode

the data and transmit. The maximum power that the base

station can allot for user i in resource block m is limited by

Pmax. Such an optimal value for power Pi is determined for

possible resource blocks which the user can utilize for data

transmission.

Algorithm 1 Power optimization and resource block selection

- PT-NOMAP
1) Initialization:

1.1. Initialize all the system parameters for the weighting function (
α,β) and the value function (κ,λ)

1.2. The total number of resource blocks is given by m. Each of the
resource blocks are initialized with different values for noise σ
and number of users nm. The users closer to the base station
than the end user introduce interference h.

1.3. The total number of power options between Pmin and Pmax

is given by u. The step size between Pmin and Pmax can
be reduced to save computational time, or increased to obtain
best solutions. The total number of transmission (groups of data
purchased) is given by u

2) Iterations:
For: Each of the resource blocks m

For: number of power intervals between Pmin and Pmax

compute the optimal value for the power Pi using
equation (3)
compute the QoE for the user using equation (4)

choose the resource block with highest QoE gain m∗.

if: QoEn ≥ QoEn−1 [case 1: risk seeking]

then: Set P ∗
i = Pi + Pstep

Declare P ∗
i as power to purchase and m∗ as the

choice of resource block.

else if: QoEu < QoEu−1

if: Pi < Pi−1 [case 2a: isolation]

Declare Pi as power to purchase and m∗ as the
choice of resource block.

if: Pi ≥ Pi−1 [case 2b: loss aversion]

Set Pmax = Pi−1

Recompute the optimal value for power between
new Pmin and Pi−1

choose the resource block with best QoE as m∗
Declare new Pi as power to purchase and m∗ as
the choice of resource block.

end For
end For

3) Output: The optimal power to purchase Pi∗ and the resource block
m to join for each of the u services.

The two level logarithmic utility definition model introduces

concavity to the gain function xm. This can easily be validated

by taking the second order derivative for the function. For the

initial few rounds of transmission the optimized value x∗
m is

determined from the equation (3). Since the gain function is

concave, the optimal value for Pi that would yield highest

possible utility can be determined by equating the first order

derivative to zero. Once the optimality is achieved, the PT

QoE equation (4) is be evaluated to determine the perceived

experience. Whenever we have a value function that follow

the postulates of PT, the optimal
∑N

i=1 P
∗ = P ∗

i that maxi-

mizes the QoE equation has to be a monotonically increasing

function [12]. Therefore, the optimality can be achieved by

choosing a monotonically increasing values of power for the

end user.

Since the PT value function equation (2) used in this

research is concave for gains, convex for losses, and steeper

for losses than for gains, allocating more resource at the

current transmission than at the previous and/or subsequent

transmission opportunities would result in significantly less

QoE. Therefore, in this paper we use a curve smoothing

function which limits the PT user from rapidly altering the

amount of transmission power purchased for data transmission.

An algorithm to determine the optimality for the PT user

is discussed considering the risk seeking, loss aversion and

isolation behavior of humans. When the channel conditions

are favorable [case 1], the users tend to go all-out to achieve

even higher QoE. This captures the risk-seeking attitude. When

there is a loss [case 2b], the user becomes primitive and tries

to reduce further losses. And finally when the loss is so bad

[case 2a], the user tends to pretend that nothing went wrong

and does nothing. The algorithm is presented as Algorithm 1.

IV. SIMULATION RESULTS AND DISCUSSIONS

The developed optimization solution was put into test over

a minimalistic NOMA network. The simulation was carried

out in MATLAB to validate the efficiency of the proposed

PT-NOMA pricing against the EUT-NOMA pricing and EUT-

uniform pricing (tradition pricing scheme). The coefficients for

the weighting function were initialized to be α = 0.5 and β =
5 respectively. The coefficients for the value function were

initialized at κ = 0.5 and λ = 3 respectively. The minimum

and maximum SNR considered for the simulation were 2dB
and 60dB. The cost parameter in the gain equation was set as

γ = 10.

In the Fig. 2 (top), EUT based NOMAP solution is com-

pared against proposed PT optimized NOMAP solution. The

transmission channel is assumed to be time varying with

additive white gaussian noise. The wireless channel causes

rapid fluctuation in the EUT solution. A large increase in

resource allocation followed by a large decrease in resource

allocation corresponding to noise results in significant user

dissatisfaction due to the steeper curve at the loss region of

the value function in equation (2). PT optimization on the

other hand reduces the fluctuations in user data by strategically

smoothing out the transmission power. It is also worth noting

that the user satisfaction is close to a monotonically increasing

function which we strive to achieve for best utility.
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Fig. 2. Evaluation of Prospect Theoretic NOMA Pricing

In Fig. 2 (bottom), the QoE achieved is compared against

channel noise. In the traditional method, the QoE drops with

increase in noise. In NOMAP, since the data is priced based on

the channel conditions, the user has an option to purchase more

power as the channel conditions worse. The additional power

purchased at lower cost helps NOMAP user to achieve better

QoE. The prospect theoretic solution on the other hand is an

acquisitive approach to keep user QoE stable in a time varying

channel. Therefore, the PT user can achieve best QoE using

the prescribed PT NOMAP model. However, it is worth noting

that the PT user expends more money (buys more power) than

an EUT user to achieve the attainable QoE.
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Fig. 3. Analysis of power purchasing behavior for random noise

The amount of power purchased by the user translates to the

QoE the user can achieve. In Fig 3., the optimal power required

for achieving highest utility for both EUT and PT user is

captured. The analysis was carried out on a high interference -

high throughput link. The result was captured with and without

allowing to users to switch between different resource blocks.

It can be observed that the results for the EUT user without

dynamic block selection had high fluctuation. This is because

the user adapts and purchase varying power to nullify the affect

of rapidly changing noise. The two curves for PT user are

significantly better as the user tends to keep switching blocks

between services to attain constant QoE. From the figure, it can

also be inferred that the PT user with dynamic block selection

purchased the least amount of power to achieve same QoE as

the EUT user.
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Fig. 4. Comparison of QoE with various currency gain per logarithmic scale
of quality gain

The gain function xm has a positive cost parameter γ
to convert the gain to cost. Simulation were carried out to

study the impact of cost parameters on the overall QoE and

the results are captured as Fig. 4. Three different curves are

shown in the figure for various simulation parameter. It can

be observed that all the curves increase linearly. Thus, the

different initializations of the parameters do not affect the

the solution or outcome the the proposed PT-NOMAP scheme

always achieve high QoE gain.
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Fig. 5. Evaluation for QoE with increase in number of users (interference)
in a NOMA resource block

The NOMA resource blocks are dynamic: new users may

join and existing users could leave a block at any given time.

Therefore it is vital to study the impact on the QoE with

respect to the number of users in a resource block. Simulation

was carried out by increasing the number of users between the

end-user and base station (introducing interference). From the

Fig 5., it can be observed that the EUT user without NOMAP

(traditional pricing) is highly impacted by the number of

users. This is due to the uniform pricing scheme implemented

where the user pays the same amount of money irrespective of
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number of users in the resource block. The NOMAP reduces

the impact on the QoE as cost of power goes down with

increase in interference. The NOMAP with PT nullifies the

impact much better. This result illustrates the future potentials

of PT based NOMA pricing scheme for power-domain NOMA

communications.

V. CONCLUSIONS AND FUTURE WORKS

Extensive boom in wireless communication and falling

network spectral efficiency demands a need for efficient

network access schemes. Although NOMA is a promising

technology, key issues such as dynamic pricing and strategic

resource allocation are remaining open challenges. In our

previous work, we introduced NOMAP - a novel QoE pricing

framework for power-domain NOMA communication. The

NOMAP aims to simultaneously boost the end user experience

and service provider profits. PT has been gaining attention

among investigators to psychologically model human cogni-

tion of service satisfaction and QoE. In this work, we have

exploited the value function and weighting function from PT

to further study the NOMAP framework. The utility definitions

are defined and the optimization solutions are discussed. An

algorithm has been provided for implementation reference.

The NOMAP framework with and without the PT rules were

examined in a simulated NOMA network. The results indicate

a significant decrease in transmission power purchased to meet

QoE needs using PT. NOMAP with PT also yields better user

satisfaction in a dynamic setting and the results further attests

the incorporation of PT fundamentals in QoE modeling.

As for the future work, we would be investigating the

potentials of dynamic value and weighting function in QoE

modeling. With multimedia being the predominant traffic on

the wireless networks, we are also exploring the potentials

of introducing PT to generalized QoE models for multime-

dia communication. This would possibly allow the users to

have a control over the encoding schema, packet length and

compression coefficients.
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