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Abstract—Human cognition has become a fundamental metric
to evaluate the Quality of Experience (QoE) and service provided
in modern day communication systems. Expected Utility Theorem
(EUT) is widely used to mathematically model human behavior
and analyze decision-making process. However, studies carried
out in literature reveal that the decision-making ability of users
under certain circumstances, violate the precepts of EUT and
proposed an alternative model called Prospect Theory (PT).
On the other hand, Non-Orthogonal Multiple Access (NOMA)
has been advocated as a new promising technique to improve
network capacity performance. In NOMA research, issues such
as congestion control and power allocation have been the primary
focus and end-user QoE has largely been ignored. In the past,
we have designed a NOMA pricing framework to simultaneously
boost user QoE and base station profits while addressing the other
issues of power selection and resource allocation. The primary
focus of this paper is to introduce the new prospect-theoretic
postulates to the NOMA pricing framework to further study the
user QoE in wireless multimedia services. The prospect-theoretic
QoE model for NOMA communication has been derived using
the weighting function and value function. Further, we have sim-
ulated a NOMA network to evaluate the efficacy of the developed
prospect-theoretic QoE model. Simulation results exemplify the
potentials of prospect-theoretic QoE modeling of NOMA pricing
framework in wireless multimedia communications.

Index Terms—Non-Orthogonal Multiple Access Pricing, Qual-
ity of Experience, Prospect Theory.

I. INTRODUCTION

Non-Orthogonal Multiple Access (NOMA) is an emerging
network access technique and has been widely investigated
as a potential candidate to mitigate the explosive boom in
internet-ready devices and improve the communication sys-
tems efficiencies [1]. In power-domain NOMA communication
[2], the available spectrum is split into several resource blocks
with varied characteristics in terms of throughput and latency.
The service provider then groups several users together in each
of the available resource blocks. The data of all the users in
a block are superimposed and encoded at varied power levels.
The transmission of such a superimposed signal allows the
service provider to provide faster service to higher number of
users, resulting in a significant boost in spectral efficiency.
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Strategic choice of power distribution among users, non-
uniform pricing of NOMA resource and resource allotment
are some of the existing open issues. In previous works we
have introduced NOMA Pricing (NOMAP), a novel pricing
framework for NOMA wireless communications to address
part of the open issues, in order to boost the end-user QoE
and service provider profits [3, 4]. Under NOMAP, the users
were given a free choice to strategically determine the NOMA
resource block(s) to utilize for data transmission. NOMAP
also facilitated the service providers to have a dynamic non-
uniform pricing schema where the resource blocks could
be priced based on external factors such as interference,
congestion and network demand. The users can also determine
the amount of encoding power to purchase to save money
and also meet their QoE demands based on Expected Utility
Theorem (EUT) . This pricing of QoE approach facilitates
users to achieve satisfactory service quality, and enables the
base station to attain higher profits. EUT has been widely used
in QoE modeling of wireless communication systems and is
also the underlying philosophy of NOMAP. The fundamental
shortcoming of EUT is that it assumes the users to be rational
and uninfluenced by external factors. Kahneman and Tversky
revealed that the decision-making ability of human under risk,
violate the fundamentals of EUT and presented a critique
called Prospect Theory (PT) [5]. The human psychological risk
seeking, and risk aversion behaviors can be captured using the
weighting and value function as prescribed in PT.

Human cognition aware PT has been gaining excessive
attention among the investigators in the field of wireless
communication and multimedia networks. PT was used to
capture the underlying rationality among players in secure
unmanned aerial vehicles (UAVs) communication [6]. In the
research works [7] and [8], the authors have applied PT to
psychologically model wireless network access among users
and end-user subjective perceptions in autonomous wireless
communications. PT pricing models are also being investigated
to boost network revenue. Resource pricing and allocation
in MEC-enabled blockchain systems was investigated using
deep reinforcement learning and PT to strike a good balance
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between risks and rewards [9]. Dynamic value and weighting
functions have also been explored to capture human cognition
of risks and losses [10]. In this work, we have meaningfully
incorporated the postulated PT into our NOMA pricing frame-
work to further study the end-user QoE.

The rest of this manuscript is organized as follows. In
section II, we introduce the prospect-theoretic NOMAP frame-
work and provide the utility definitions. The optimization
solution is briefed in section III and an algorithm is presented
as an implementation reference. We carried out simulation
on MATLAB to study and evaluate the performance and the
results are discussed in the section I'V. We provide conclusions
and insights into the probable future work in Section V.

II. PROSPECT-THEORETIC NOMA PRICING FRAMEWORK

In this work, we consider a NOMA network with ‘m’
resource block and ‘n’ users in each block. All ‘n’ users in
the block are catered simultaneously by superimposing their
signals over one another at varied power levels. The users then
recover their data from the complex signal using successive
interference canceller. The user closest to the base station
would have their data at the top of the carrier signal and so
would experience no interference from other user data. As the
distance from the base station, and number of users between
end-user and base station increase, the data is subjected to
more interference. Therefore, these signals need to be encoded
with higher power. Under NOMAP framework, the user gets to
choose the resource block and amount of power to purchase in
the corresponding user block to maximize their overall QoE.
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Fig. 1. Prospect Theoretic NOMA Pricing Concept

The NOMAP network considered in this work is illustrated
in Figure 1 above. NOMAP provides the user with a free
choice of block and power selection. Two rational users named
EUT user and PT user are considered in this figure. It is
assumed that both users request the same data and have
identical QoE demand. In our previous work based on EUT
QoE model [3], we found out that a user’s choice of resource
block is insignificant as the price is different in each block.
In other words, the EUT user was always able to meet their
QoE goals by varying the amount of power purchased in any
of the resource block. The objective of this work is to see if

the PT user might prefer one block over the other to either
achieve better QoE gain or, to save money.

In order to formulate the behavior of the PT user mathe-
matically, we leverage the PT postulates - weighting function,
value function and the reference point dependence. This would
capture the risk seeking, loss aversion and isolation behavior
of humans under stress [11]. PT uses weighting function to
map true probabilities to subjective probabilities of events. The
weighting function [5] of PT is shown in equation (1).

w(e) =exp(—P(—1ne)¥),0<e<1 (1)

where ¢ is the true probability of user choosing resource block
m and w(e) is the PT subjective probability. « and /3 are
positive coefficients used to control the shape of weighting
function. The user QoE is dynamic and changes rapidly. While
evaluating the user QoE, users are more sensitive to losses than
to gains. This phenomenon is called loss aversion and this can
be mathematically captured using a value function. The value
function [5] is shown in equation (2).

xh}
v(Tm,) = mn’

o) ={ 75 e
where x and A are positive parameters controlling the shape
and steepness of the value function respectively. The z, is the
expected gain by the user and z,,, is the actual achieved gain.
The gain of the user x,, in the NOMA network is per-session

measure of user perceived satisfaction and it can be modeled
using a two-level logarithmic function.
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where B is the amount of bandwidth purchased to transmit
data. P; and h; denote the power transmitted and channel gain
between base station and end user, respectively. The noise
power in the communication channel is given by o%. The
interference experienced by the user is the summation of P
and hj corresponding to k users closer to the base station.
The parameter v represents the payoff parameter or currency
gain for the logarithmic QoE and C' represents the total cost
paid by user to obtain this service.

The QoE of the user in a wireless network can be repre-
sented the product of probability of user choosing one of the
available resource blocks and the actual value of gain from
the resource block.

Tm = ’YlogQ <1 +B logQ <1 +

QOE =w (pm) v (xm) 4)
III. OPTIMIZATION SOLUTION AND ALGORITHM DESIGN

In a NOMA network, the two player interaction between
service provider and the end user can be modeled as a game
theoretic problem. Stackelberg game can be used for concave
[3], and Best Response game can be used for non-concave [4]
utility equations respectively. The games are generally solved
backward induction technique, and so the service provider
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knows the strategy of the user and can determine the right
price for the resource blocks. The strategies for the service
provider to maximize the revenue are widely studied both in
the literature and in our previous work. Finding the preeminent
solution or pricing policy for the service provider is not part
of this research. In this work, we strive to find and optimize
a strategy for the end-user exploiting PT.

The optimization problem for the PT user is to determine
the optimal amount of power P; corresponding to the cost C'
declared by the service provider for the m!" resource block.
The optimal value for P; lies between P, and P40 Poin
denotes the minimum power required to meaningfully encode
the data and transmit. The maximum power that the base
station can allot for user ¢ in resource block m is limited by
Ppyq.. Such an optimal value for power P; is determined for
possible resource blocks which the user can utilize for data
transmission.

Algorithm 1 Power optimization and resource block selection
- PI-NOMAP

1) Initialization:

1.1. Initialize all the system parameters for the weighting function (
a, 3) and the value function (k, \)

1.2. The total number of resource blocks is given by m. Each of the
resource blocks are initialized with different values for noise o
and number of users n.,. The users closer to the base station
than the end user introduce interference h.

1.3. The total number of power options between P,,;n and Prmax
is given by u. The step size between P, and Ppg. can
be reduced to save computational time, or increased to obtain
best solutions. The total number of transmission (groups of data
purchased) is given by u

2) Iterations:
For: Each of the resource blocks m

For: number of power intervals between P, i, and Ppqq
compute the optimal value for the power P; using
equation (3)
compute the QoE for the user using equation (4)

choose the resource block with highest QoE gain m*.
if: QoE,, > QoE, _; [case I: risk seeking]

then: Set P = P; + Pstep
Declare P as power to purchase and m™ as the
choice of resource block.
else if: QoF, < QoF,_1
if: P; < P;_1 [case 2a: isolation]
Declare P; as power to purchase and m™ as the
choice of resource block.

if: P; > P;_1 [case 2b: loss aversion]
Set Praz = Pi—1
Recompute the optimal value for power between
new Pmin and Pi—l
choose the resource block with best QoE as m*
Declare new P; as power to purchase and m™* as
the choice of resource block.
end For
end For
3) Output: The optimal power to purchase P;* and the resource block
m to join for each of the u services.

The two level logarithmic utility definition model introduces
concavity to the gain function z,,,. This can easily be validated
by taking the second order derivative for the function. For the

initial few rounds of transmission the optimized value x}, is
determined from the equation (3). Since the gain function is
concave, the optimal value for P; that would yield highest
possible utility can be determined by equating the first order
derivative to zero. Once the optimality is achieved, the PT
QoE equation (4) is be evaluated to determine the perceived
experience. Whenever we have a value function that follow
the postulates of PT, the optimal vazl P* = P that maxi-
mizes the QoE equation has to be a monotonically increasing
function [12]. Therefore, the optimality can be achieved by
choosing a monotonically increasing values of power for the
end user.

Since the PT value function equation (2) used in this
research is concave for gains, convex for losses, and steeper
for losses than for gains, allocating more resource at the
current transmission than at the previous and/or subsequent
transmission opportunities would result in significantly less
QoE. Therefore, in this paper we use a curve smoothing
function which limits the PT user from rapidly altering the
amount of transmission power purchased for data transmission.
An algorithm to determine the optimality for the PT user
is discussed considering the risk seeking, loss aversion and
isolation behavior of humans. When the channel conditions
are favorable [case 1], the users tend to go all-out to achieve
even higher QoE. This captures the risk-seeking attitude. When
there is a loss [case 2b], the user becomes primitive and tries
to reduce further losses. And finally when the loss is so bad
[case 2a], the user tends to pretend that nothing went wrong
and does nothing. The algorithm is presented as Algorithm 1.

IV. SIMULATION RESULTS AND DISCUSSIONS

The developed optimization solution was put into test over
a minimalistic NOMA network. The simulation was carried
out in MATLAB to validate the efficiency of the proposed
PT-NOMA pricing against the EUT-NOMA pricing and EUT-
uniform pricing (tradition pricing scheme). The coefficients for
the weighting function were initialized to be « = 0.5 and 3 =
5 respectively. The coefficients for the value function were
initialized at x = 0.5 and A = 3 respectively. The minimum
and maximum SNR considered for the simulation were 2dB
and 60dB. The cost parameter in the gain equation was set as
v = 10.

In the Fig. 2 (top), EUT based NOMAP solution is com-
pared against proposed PT optimized NOMAP solution. The
transmission channel is assumed to be time varying with
additive white gaussian noise. The wireless channel causes
rapid fluctuation in the EUT solution. A large increase in
resource allocation followed by a large decrease in resource
allocation corresponding to noise results in significant user
dissatisfaction due to the steeper curve at the loss region of
the value function in equation (2). PT optimization on the
other hand reduces the fluctuations in user data by strategically
smoothing out the transmission power. It is also worth noting
that the user satisfaction is close to a monotonically increasing
function which we strive to achieve for best utility.
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Fig. 2. Evaluation of Prospect Theoretic NOMA Pricing

In Fig. 2 (bottom), the QoE achieved is compared against
channel noise. In the traditional method, the QoE drops with
increase in noise. In NOMAP, since the data is priced based on
the channel conditions, the user has an option to purchase more
power as the channel conditions worse. The additional power
purchased at lower cost helps NOMAP user to achieve better
QoE. The prospect theoretic solution on the other hand is an
acquisitive approach to keep user QoE stable in a time varying
channel. Therefore, the PT user can achieve best QoE using
the prescribed PT NOMAP model. However, it is worth noting
that the PT user expends more money (buys more power) than
an EUT user to achieve the attainable QoE.
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Fig. 3. Analysis of power purchasing behavior for random noise

The amount of power purchased by the user translates to the
QoE the user can achieve. In Fig 3., the optimal power required
for achieving highest utility for both EUT and PT user is
captured. The analysis was carried out on a high interference -
high throughput link. The result was captured with and without
allowing to users to switch between different resource blocks.
It can be observed that the results for the EUT user without
dynamic block selection had high fluctuation. This is because
the user adapts and purchase varying power to nullify the affect
of rapidly changing noise. The two curves for PT user are
significantly better as the user tends to keep switching blocks
between services to attain constant QoE. From the figure, it can

also be inferred that the PT user with dynamic block selection
purchased the least amount of power to achieve same QoE as
the EUT user.
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Fig. 4. Comparison of QoE with various currency gain per logarithmic scale
of quality gain

The gain function x,, has a positive cost parameter -y
to convert the gain to cost. Simulation were carried out to
study the impact of cost parameters on the overall QoE and
the results are captured as Fig. 4. Three different curves are
shown in the figure for various simulation parameter. It can
be observed that all the curves increase linearly. Thus, the
different initializations of the parameters do not affect the
the solution or outcome the the proposed PT-NOMAP scheme
always achieve high QoE gain.
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Fig. 5. Evaluation for QoE with increase in number of users (interference)
in a NOMA resource block

The NOMA resource blocks are dynamic: new users may
join and existing users could leave a block at any given time.
Therefore it is vital to study the impact on the QoE with
respect to the number of users in a resource block. Simulation
was carried out by increasing the number of users between the
end-user and base station (introducing interference). From the
Fig 5., it can be observed that the EUT user without NOMAP
(traditional pricing) is highly impacted by the number of
users. This is due to the uniform pricing scheme implemented
where the user pays the same amount of money irrespective of
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number of users in the resource block. The NOMAP reduces
the impact on the QoE as cost of power goes down with
increase in interference. The NOMAP with PT nullifies the
impact much better. This result illustrates the future potentials
of PT based NOMA pricing scheme for power-domain NOMA
communications.

V. CONCLUSIONS AND FUTURE WORKS

Extensive boom in wireless communication and falling
network spectral efficiency demands a need for efficient
network access schemes. Although NOMA is a promising
technology, key issues such as dynamic pricing and strategic
resource allocation are remaining open challenges. In our
previous work, we introduced NOMAP - a novel QoE pricing
framework for power-domain NOMA communication. The
NOMAP aims to simultaneously boost the end user experience
and service provider profits. PT has been gaining attention
among investigators to psychologically model human cogni-
tion of service satisfaction and QoE. In this work, we have
exploited the value function and weighting function from PT
to further study the NOMAP framework. The utility definitions
are defined and the optimization solutions are discussed. An
algorithm has been provided for implementation reference.
The NOMAP framework with and without the PT rules were
examined in a simulated NOMA network. The results indicate
a significant decrease in transmission power purchased to meet
QoE needs using PT. NOMAP with PT also yields better user
satisfaction in a dynamic setting and the results further attests
the incorporation of PT fundamentals in QoE modeling.

As for the future work, we would be investigating the
potentials of dynamic value and weighting function in QoE
modeling. With multimedia being the predominant traffic on
the wireless networks, we are also exploring the potentials
of introducing PT to generalized QoE models for multime-
dia communication. This would possibly allow the users to
have a control over the encoding schema, packet length and
compression coefficients.
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