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In this paper we consider a class of conditional McKean–Vlasov SDEs
(CMVSDE for short). Such an SDE can be considered as an extended version
of McKean–Vlasov SDEs with common noises, as well as the general version
of the so-called conditional mean-field SDEs (CMFSDE) studied previously
by the authors (Ann. Appl. Probab. 27 (2017) 3201–3245; SIAM J. Control
Optim. 56 (2018) 1154–1180), but with some fundamental differences. In
particular, due to the lack of compactness of the iterated conditional laws, the
existing arguments of Schauder’s fixed point theorem do not seem to apply in
this situation, and the heavy nonlinearity on the conditional laws caused by
change of probability measure adds more technical subtleties. Under some
structural assumptions on the coefficients of the observation equation, we
prove the well-posedness of the solutions in a weak sense along a more direct
approach. Our result is the first that deals with McKean–Vlasov type SDEs
involving state-dependent conditional laws.

1. Introduction. In this paper we are interested in the well-posedness of the following
general form of conditional McKean–Vlasov stochastic differential equations (SDEs), defined
on a certain filtered probability space (�,F,P,F= {Ft }):

(1.1)

⎧⎪⎪⎨⎪⎪⎩
dXt = b

(
t,X·∧t , Y·∧t ,μ

X|Y
·∧t

)
dt +

2∑
i=1

σi

(
t,X·∧t , Y·∧t ,μ

X|Y
·∧t

)
dBi

t X0 = x;
dYt = h

(
t,X·∧t , Y·∧t ,μ

X|Y
·∧t

)
dt + σ̂ dB2

t Y0 = 0,

where b, h, σ1, σ2 are measurable functions defined on appropriate spaces, σ̂ is a constant,
(B1,B2) is an (F,P)-Brownian motion, and μ

X|Y
t (·) := P{Xt ∈ ·|FY

t } denotes the regular
conditional distribution of Xt given FY

t = σ {Ys : s ≤ t}.
Special forms of SDE (1.1) have appeared in many applications, especially those involving

partial information, and have been studied by the authors in different co-authorships in the
past (see, e.g., [2, 11]). In many of these applications the conditional law appears in the form
of conditional expectations E[Xt |FY

t ], in the spirit of the nonlinear filtering problems, and
hence are often referred to as conditional mean-field SDEs. Consequently, the coefficients
of these SDEs depend either linearly on E[Xt |FY

t ] (see, e.g., [11]), or linearly on the law
of E[Xt |FY

t ] (see, e.g., [2]). We should note that SDEs with a general coupling between the
solutions and their conditional law in the coefficients such as (1.1) have not been completely
explored yet in the literature. In fact, there seem to be some fundamental difficulties when
the usual solution methods are employed.
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SDE (1.1) can also be viewed from another angle. Assuming for example h ≡ 0, then
FY ≡ FB2

, and the SDE becomes the so-called McKean–Vlasov SDE with common noise.
We refer to [1, 3–5, 10] and the references cited therein for various recent studies for SDEs
with similar natures and their applications. In this case, two facts are worth noting: (1) the
probability measure determining the conditional law is fixed throughout; and (2) the con-
ditioning filtration is given exogenously, and is independent of the state X. The case when
the coefficient h �= 0, however, is quite different. Since the “observation” process Y depends
on X, the conditioning filtration FY becomes state-dependent, whence endogenous. Among
other complications caused by such a “coupling” nature, one of the severe consequences is
that the conditional laws {μX|Y } are no longer compact, losing an important technical basis
of the well-posedness arguments for McKean–Vlasov SDEs with common noises (see, e.g.,
[5]).

To illustrate this point, let us ask the following simple question one would encounter nat-
urally in constructing any iteration scheme in seeking the solution for SDE (1.1): Given a
pair of random variables taking values in any metric space, does the strong convergence
(Xn,Y n) → (X,Y ) imply the convergence μXn|Yn → μX|Y , in the sense of probability dis-
tributions? The answer to this question unfortunately negative. For example, let Xn ≡ U ,
where U is a random variable such that Var(U) > 0 (whence P{U �= EP[U ]} > 0), and
Yn = 1

n
Xn = 1

n
U . Then Xn → X = U , and Yn → Y ≡ 0, as n → ∞. Obviously, for suit-

able nonconstant, bounded measurable function f , we have, for any n, E[f (Xn)|FYn] =
f (U) �= E[f (U)] = E[f (X)|FY ]. This shows, in particular, that μXn|Yn

does not converge
to μX|Y . We note, however, that in the usual common noise case the conditioning σ -field is
fixed (i.e., Yn = Y = B2), so such a problem does not occur.

In light of the nonlinear filtering theory, a tempting remedy to “fix” the conditioning fil-
tration is to consider the so-called reference measure Q0, a prior probability measure that
is equivalent to P but under which (B1, Y ) is a Brownian motion. But doing so would lead
to another dilemma: The conditional law in (1.1) is defined under the original probability P

(under which (B1,B2) is a Brownian motion), not the reference measure Q0. The two condi-
tional laws can be connected via the Bayes rule (known as the Kallianpur–Strieble formula),
but will inevitably cause some serious technical issues, especially when the conditional law
μX|Y (under P) is now a part of the solution of the CMVSDE (1.1).

Our plan of attack is based on the following basic ideas. We shall design an iteration
scheme which would include the conditional law μX|Y as a component, considered as
measure-valued process defined on an appropriate space where the weak convergence can be
more conveniently analyzed. More specifically, we shall argue that μX|Y is a measure-valued
process that has continuous paths in the space of probability laws under the Wasserstein met-
ric, and that it can be identified as part of the fixed point, along with the processes (X,Y ).
The main difficulty in implementing such an idea is that throughout the process we need to
use the reference probability Q0, via the Kallianpur–Strieble formula. This leads to some new
technicalities that are not commonly seen in the existing literature of nonlinear filtering or the
McKean–Vlasov SDEs with common noises. In particular, it seems that a certain bounded-
ness of the Girsanov kernel involved in connecting reference measure and the original ones
(in both directions) becomes inevitable, and it essentially amounts to asking for a pathwise
bound for the solution of a linear SDE (or a martingale), which is next to impossible. As a
consequence, we shall impose a structural assumption on the observation drift coefficient h,
and we hope to be able to remove such restrictions in our future works.

This paper is organized as follows. In Section 2 we introduce the basic notation, defini-
tions, and assumptions. In particular, we shall define the processes of the conditional laws,
and establish some basic facts on its path regularities in terms of the Wasserstein metric. In
Section 3 we introduce our solution scheme and give some justifications of our main ideas.
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In Section 4 we establish our fundamental estimates. In the Sections 5 and 6 we prove the
existence and uniqueness (in law) of the weak solution, respectively.

2. Preliminaries. Throughout this paper we denote CT := C([0, T ],R), and P0 to be
the Wiener measure on CT . We shall consider the following canonical space (�0,F0,Q0):

(2.1) �0 := C2
T := C

([0, T ];R2), F0 := B
(
C2

T

)
, Q0 := P0 ⊗ P0.

In the above, B(C2
T ) denotes the Borel σ -field on C2

T . Furthermore, we denote (B1, Y ) to be
the canonical process, that is, (B1

t , Yt )(ω) = (ω1(t),ω2(t)), t ∈ [0, T ], where ω = (ω1,ω2) ∈
C2

T . Then (B1, Y ) is a two-dimensional-Brownian motion under Q0. Also, we define F0 =
{F0

t }t∈[0,T ] := {Bt (C
2
T )}t∈[0,T ], where Bt (C

2
T ) := σ {ω(· ∧ t) : ω ∈ C2

T }, to be the natural

filtration generated by (B1, Y ), and we denote F := F0
Q0

, the augmentation of F0 under Q0,
so that F satisfies the usual hypotheses.

Now let (X , d) be any metric space, and B(X ) the topological Borel σ -field on X .
For any sub-σ -field G ⊆ F0, and p ≥ 1, we denote L

p
G(X ) to be the space of all random

variables ξ �→ X , such that ξ is G-measurable and for any/some e ∈ X , EQ0[d(e, ξ)p] < ∞.
Similarly, for a sub-filtration G⊆ F, and p ≥ 1, we let Lp

G([0, T ];X ) be the space of all X -
valued, Lp-integrable, G-adapted processes on [0, T ]. Furthermore, we denote CT (X ) to
be all X -valued continuous functions defined on [0, T ], and denote L0

G(CT (X )) to be the
space of all X -valued, G-adapted continuous processes. Finally, for any p ≥ 1, we define

(2.2)

⎧⎪⎪⎨⎪⎪⎩
S

p
G(X ) :=

{
z ∈ L0

G

(
CT (X )

) : ∃e ∈ X ,EQ0[
sup

t∈[0,T ]
d(zt , e)

p
]
< +∞

}
;

S∞−
G (X ) := ⋂

p≥1

S
p
G(X ).

Let us now denote P(X ) to be the space of all probability measures on the metric space
X , and Pp(X ) = {γ ∈ P(X ) : ∃e ∈ X ,

∫
X d(z, e)pγ (dz) < +∞} ⊂ P(X ), p ≥ 1. For

p ≥ 1, we endow Pp(X ) with the p-Wasserstein metric:

Wp
p (γ1, γ2) := inf

{∫
X 2

d(z1, z2)
pρ(dz1, dz2) : ρ ∈ P

(
X 2),

ρ(· × X ) = γ1, ρ(X × ·) = γ2

}
(2.3)

= inf
{
EQ0[

d(ξ1, ξ2)
p] : ξ1, ξ2 ∈ L1

F0(X ),with Pξ1 = γ1, and Pξ2 = γ2
}
.

Recall that, if the metric space (X , d) is complete, then also (Pp(X ),Wp) is complete,
for all p ≥ 1.

In what follows we shall focus on the case p = 1. It is well known that, for X = R,
(P1(R),W1(·, ·)) is a complete and separable metric space. Furthermore, since �0 = C2

T =
CT ⊗ CT is Polish, we know that for each t ∈ [0, T ], the regular conditional probability
Qω2

t (·) := Q0(·|FY
t }(ω2) exists, that is, for any A ∈ F0, ω2 �→ Qω2

t (A) is Bt (CT )/B(R)

measurable and, for any ω2 ∈ �0, Qω2

t (·) is a probability measure. Since Bt (CT ) is generated

by the paths Y·∧t (ω
2) = ω2(· ∧ t), ω2 ∈ CT , we will denote Qω2

t =QY·∧t = Qω2·∧t , when there
is no confusion.

Now for any random variable ξ defined on (�0,F0,Q0), and t ∈ [0, T ], we consider the
regular conditional distribution:

(2.4) P
Y·∧t

ξ (·)(ω2) := Q0[ξ ∈ ·|FY
t

](
ω2) =Qω2

t ◦ ξ−1(·) =: Pω2·∧t

ξ (·) ∈ P1
(:= P1(R)

)
.

We would like to show that the mapping (t,ω2) �→ P
ω2·∧t

ξ (·) ∈ P1 actually defines a measure-
valued process as it should. More precisely, we have the following result.
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LEMMA 2.1. Let ξ be a random variable defined on (�0,F0,Q0). Then for each t ∈
[0, T ], the mapping ω2 �→ P

Y·∧t

ξ (·)(ω2) = P
ω2·∧t

ξ (·) is Bt (CT )/B(P1)-measurable.

PROOF. To begin with, note that B(P1) = σ {Br(μ) : μ ∈ P1, r > 0}, where Br(μ) =
{ν ∈ P1 : W1(ν,μ) ≤ r}. Thus, [Pω2·∧t

ξ ]−1(Br(μ)) = {ω2 ∈ CT : W1(P
ω2·∧t

ξ ,μ) ≤ r}. Next, we
recall the Kantorovich–Rubinstein formula (cf. [9] or [8]):

(2.5) W1
(
P

ω2·∧t

ξ ,μ
) = sup

{∣∣∣∣∫
R

ϕ dP
ω2·∧t

ξ −
∫
R

ϕ dμ

∣∣∣∣ : ϕ ∈ Lip1(R)

}
,

where Lip1(R) is the space of all Lipschitz functions with Lipschitz constant 1. We claim
that there exists a countable subset 
 ⊂ Lip1(R) such that (2.5) can be replaced by

(2.6) W1
(
P

ω2·∧t

ξ ,μ
)= sup

{∣∣∣∣∫
R

ϕ dP
ω2·∧t

ξ −
∫
R

ϕ dμ

∣∣∣∣ : ϕ ∈ 


}
,

and we can then conclude that[
P

ω2·∧t

ξ

]−1(
Br(μ)

) = {
ω2 ∈ CT : W1

(
P

ω2·∧t

ξ ,μ
) ≤ r

}
=

{
ω2 ∈ CT : sup

ϕ∈


∣∣∣∣∫
R

ϕ dP
ω2·∧t

ξ −
∫
R

ϕ dμ

∣∣∣∣ ≤ r

}

= ⋂
ϕ∈


{
ω2 ∈ CT :

∣∣∣∣∫
R

ϕ dP
ω2·∧t

ξ −
∫
R

ϕ dμ

∣∣∣∣ ≤ r

}

= ⋂
ϕ∈


{
ω2 ∈ CT : ∣∣EQ0[

ϕ(ξ)|FY
t

](
ω2)− ϕ̄

∣∣ ≤ r
}

= ⋂
ϕ∈


EQ0[
ϕ(ξ)|FY

t

]−1(
Br(ϕ̄)

)
,

where ϕ̄ := ∫
R ϕ dμ ∈ R. Since for each ϕ ∈ 
, the mapping ω2 �→ EQ0[ϕ(ξ)|FY

t ](ω2) is

Bt (CT )-measurable, we conclude that [Pω2·∧t

ξ ]−1(Br(μ)) ∈ Bt (CT ).
It remains to find the countable subset 
 ∈ Lip1(R) so that (2.6) holds. To this end, we

consider the following subset of C1(R) (the space of differentiable functions which are de-
fined on R):

(2.7) H0 :=
{
f ∈ C1(R) : |f |2H := ∣∣f (0)

∣∣2 +
∫
R

∣∣f ′(y)
∣∣2e−|y| dy < ∞

}
,

and let H := H0, the closure of H0 under the norm | · |H. Then (H, | · |H) is a separable Banach
space (in fact, a Hilbert space), and clearly Lip1(R) ⊂ H.

Now, for each f ∈ H, define ϕf (x) = f (0) + ∫ x
0 [(f ′(y) ∧ 1) ∨ (−1)]dy, x ∈ R, then

ϕf ∈ Lip1(R). Furthermore, since (H, | · |H) is separable, there exists a countable dense subset

H ⊂ H, and then it is not hard to check that 
 := {ϕf : f ∈ 
H} is a countable dense subset
of Lip1(R) under the norm | · |H. Consequently, for any μ ∈ P1(R) and f ∈ Lip1(R), we
can find {fn} ⊂ 
 ⊂ Lip1(R) such that |f − fn|H → 0, as n → ∞. Since f and fn’s are all
absolutely continuous, we have

(2.8)
∣∣∣∣∫

R
f dμ −

∫
R

fn dμ

∣∣∣∣ ≤ ∣∣f (0) − fn(0)
∣∣+ ∣∣∣∣∫

R

∣∣∣∣∫ x

0

∣∣f ′(y) − f ′
n(y)

∣∣dy

∣∣∣∣μ(dx)

∣∣∣∣.
Note that for each x ∈ R, we have [∫ x

0 |f ′(y) − f ′
n(y)|dy]2 ≤ |x|e|x||f − fn|H → 0, as n →

∞, and since {f,fn, n ∈ N} ⊂ Lip1(R), we have | ∫ x
0 |f ′(y) − f ′

n(y)|dy| ≤ 2|x|. But μ ∈
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P1(R) implies that
∫
R |x|μ(dx) < ∞. The dominated convergence theorem and (2.8) thus

imply that
∫
R fn dμ → ∫

R f dμ, as n → ∞. This, together with (2.5), easily leads to (2.6).
The proof is now complete. �

We remark that Lemma 2.1 does not imply directly that the mapping (t,ω2) �→ P
Y·∧t

ξ is
B([0, T ]) ⊗ B(CT )/B(P1) jointly measurable. But as we shall argue in the next section

(see, also [2]), for fixed ω2 ∈ CT , the mapping t �→ P
ω2·∧t

ξ is a P1-valued continuous function,
which then renders the desired joint measurability. Throughout our paper we shall focus on
the case X = CT (P1), the space of all P1-valued continuous functions defined on [0, T ].
The set Sp

FY (CT (P1)) defined by (2.2) as well as the set S∞−
FY (CT (P1)) will therefore be

particularly useful in our discussion.
To conclude this section we introduce the following standard assumptions on the coef-

ficients b, σ1, σ2, and h of SDE (1.1). For convenience, in what follows we shall assume
σ1 = σ , σ2 = 0, and σ̂ = 1.

ASSUMPTION 2.2. The function ϕ = (b, σ,h) : [0, T ] × � × C2
T × CT (P1) �→ R3 is

bounded, progressively measurable, and for some constant C > 0, it holds that∣∣ϕ(t, x, y,μ) − ϕ
(
t, x′, y,μ′)∣∣ ≤ C

[
sup

s∈[0,t]
∣∣xs − x′

s

∣∣+ sup
s∈[0,t]

W1
(
μs,μ

′
s

)]
,

t ∈ [0, T ], x, x′, y ∈ CT ,μ,μ′ ∈ CT (P1).

(2.9)

REMARK 2.3. We should note that the case when σ2 �= 0 is known as the “correlated
noise case” in the nonlinear filtering theory, which is well-understood and without substan-
tial difficulties, although technically slightly more tedious. We prefer not to pursue such com-
plexity in this paper, but focus on the conditional McKean–Vlasov nature instead.

We also recall the notion of a weak solution to SDE (1.1), which will be the main objective
of this paper.

DEFINITION 2.4. A six-tuple (�,F,F,P, (B1,B2), (X,Y )) is called a weak solution of
(1.1), if:

(i) (�,F,F,P ) is a filtered probability space satisfying the usual assumptions;
(ii) (B1,B2) is an (F,P)-Brownian motion;

(iii) (X,Y ) ∈ L2
F([0, T ];R2) such that all terms in (1.1) are well-defined and (1.1) holds

for all t ∈ [0, T ], P-a.s.

REMARK 2.5. It is worth noting that Definition 2.4 only defines processes (X,Y ), along
with a probability set-up including the Brownian motion (B1,B2). The conditional law μX|Y
then comes naturally as the function of X and Y , under probability P. But the example in
the Introduction shows that, unless some more structural information on the process μX|Y
is known, the simple minded iteration scheme will likely fail. The main idea of our solu-
tion scheme is to add the conditional law μX|Y into the iteration process itself to help the
convergence analysis.

3. The solution scheme. In this section we introduce the iteration scheme that will lead
to the desired weak solution. A key element in this scheme is the process of conditional
laws, μX|Y = {μX|Y

t } which, by Lemma 2.1, is a P1(R)-valued measurable process, and
will be used to “decouple” the SDEs for X and Y in (1.1). In light of the analysis in our
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previous work [2], we shall argue that it is actually a P1(R)-valued continuous process. That
is, μX|Y ∈ CT (P1). We therefore shall start our scheme by considering μ as a free variable
taking values in L0

FY (CT (P1)), and then try to find the desired conditional law by a fixed-
point argument. All our arguments are essentially independent of the drift coefficient b, under
Assumption 2.2. Thus, for notational simplicity, in what follows we shall assume that b ≡ 0,
as adding it back does not cause substantial difficulties.

To begin with, for μ ∈ L0
FY (CT (P1)), we consider the following simplified system of

SDEs on (�0,F0,Q0):

(3.1)

{
dXt = σ(t,X·∧t , Y·∧t ,μ·∧t ) dB1

t X0 = x;
dLt = h(t,X·∧t , Y·∧t ,μ·∧t )Lt dYt L0 = 1.

Since μ is FY -adapted, we can write μ·∧t = �t(Y·∧t ), t ∈ [0, T ], Q0-a.s., for some pro-
gressively measurable functional � : [0, T ] ×CT �→ CT (P1). But Y is part of the canonical
process, therefore SDE (3.1) can be thought of as one that has random and functional type co-
efficients. Thus under Assumption 2.2, it has a unique strong solution on the probability space
(�0,F0,Q0), and we denote it by (Xμ,Lμ). Since h is bounded, we see that the process Lμ

is an (F,Q0)-martingale, and can be written as the Doléans–Dade stochastic exponential:

(3.2) L
μ
t = exp

{∫ t

0
h(s,X·∧s, Y·∧s,μ·∧s) dYs − 1

2

∫ t

0

∣∣h(s,X·∧s, Y·∧s,μ·∧s)
∣∣2 ds

}
,

t ∈ [0, T ]. Moreover, since also σ is bounded, it is not hard to show that (Xμ,Lμ) ∈
S∞−
F (R2). Furthermore, as a strong solution, there exists a measurable nonanticipating func-

tional � :C2
T × C (P1) �→C2

T such that (Xμ,Lμ) = �(B1, Y,μ), Q0-a.s.
Next, the Q0-martingale Lμ defines a new probability measure on (�0,F): Pμ(dω) :=

L
μ
T Q

0(dω). Then, under the new probability Pμ, the process (B1,B2 = Y −∫ ·
0 h(s,X

μ
·∧t , Y·∧t ,

μ·∧t ) dt) is a Brownian motion. Furthermore, we denote the regular conditional probability
distribution of the process Xμ, given FY , under the probability measure Pμ by μ̃t , t ∈ [0, T ].
Since μ̃ is obviously uniquely determined for each μ ∈ L0

FY (CT (P1)), we can then define the

so-called solution mapping by T (μ) := μ̃. That is, T is a mapping from L0
FY (CT (P1)) to

L0
FY ([0, T ];P1) (the space of all FY -adapted P1-valued processes), and by the Kallianpur–

Striebel formula (cf., e.g., [6, 7]) we see that, for A ∈ B(�) and t ∈ [0, T ], one has

(3.3)
[
T (μ)

]
t (A) = μ̃t (A)

�= Pμ{Xμ
t ∈ A|FY

t

} = EQ0[Lμ
t 1{Xμ

t ∈A}|FY
t ]

EQ0[Lμ
t |FY

t ] .

Let us now assume that the mapping T has a fixed point. That is, there exists μ̂ ∈
L0
FY (CT (P1)), such that T (μ̂) = μ̂. Then, denoting (X̂, L̂) := (Xμ̂,Lμ̂) to be the corre-

sponding solution to (3.1) with μ = μ̂, and P̂ = Pμ̂, the Kallianpur–Strieble formula (3.3)

implies that μ̂t = μ
X̂|Y
t , t ∈ [0, T ], under P̂. In other words, writing

B̂2
t = Yt −

∫ t

0
h(s, X̂·∧s, Y·∧s, μ̂·∧s) ds,

we see that (�0,F0,F0, P̂, (B1, B̂2), (X̂, Y )) is a weak solution of (1.1).
In order to make our scheme to work we shall carry out the following tasks in the next

sections.

(i) Identify a subspace E ⊂ L0
FY (CT (P1)), and show that the solution mapping T is

from E to itself.
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(ii) Show that we can at least find a sequence of FY -stopping times {τN }, such that
T N := T |[0,τN ] is a contraction, hence has a fixed point μ̂N on [0, τN ]. We then argue
that these μ̂N ’s can be “patched” together to become a fixed point μ̂ ∈ E .

(iii) Show that the law of the solution (X,Y ) is unique.

REMARK 3.1. We should note that the “localization” procedure is merely technical, in
order to deal with the unboundedness caused by the fraction in (3.3). In fact, such a techni-
cality only occurs in CMVSDEs when h �= 0, and it is the fundamental difference between
SDE (1.1) and CMVSDEs of the “common noise” type that we often see in the literature.

To simplify notation, in what follows we denote L−μ = (Lμ)−1, for μ ∈ L0
FY (CT (P1))

and the corresponding solution (Xμ,Lμ) to SDE (3.1). We note that L−μ is the inverse
Girsanov kernel of Lμ, and it is a Pμ-martingale, but not a Q0-martingale. Last but not
least, for any ξ ∈ CT , we shall also use the notation ξ∗

t = sups∈[0,t] |ξs |, and for any p > 0,
ξ

∗,p
t = [ξ∗

t ]p , t ∈ [0, T ].

4. The main estimates. In this section we establish the main estimates that will be cru-
cial for us to implement the solution scheme. Before we start, we emphasize again that the
conditional law μX|Y in CMVSDE (1.1) is under the probability P (under which (B1,B2) is
a Brownian motion), but our scheme is defined under the reference measure Q0, connected
to P via a Girsanov kernel L, defined by SDE (3.1) or explicitly by (3.2).

Now, for any μ,μ′ ∈ L0
FY (CT (P1)), denote μ̃ := T (μ), μ̃′ := T (μ′). Let (Xμ,Lμ),

(Xμ′
,Lμ′

) be the solution of SDE (3.1) and define

(4.1) ζt

(
μ,μ′) := EQ0[(

Lμ)∗,4
t + (

L−μ)∗,4
t + (

Lμ′)∗,4
t + (

L−μ′)∗,4
t |FY

t

]
, t ∈ [0, T ].

Then it is not hard to check that ζ(μ,μ′) is a continuous, increasing FY -adapted process with
ζ0(μ,μ′) = 4. We have the following result.

PROPOSITION 4.1. Let Assumption 2.2 be in force. Then, for all 0 ≤ s ≤ t ≤ T , it holds
Q0-almost surely that

(4.2) W1
(
μ̃s, μ̃

′
t

) ≤ Cζt

(
μ,μ′){(EQ0[∣∣Xμ

s − X
μ′
t

∣∣2|FY
T

]) 1
2 + (

EQ0[∣∣Lμ
s − L

μ′
t

∣∣2|FY
T

]) 1
2
}
,

where ζ(μ,μ′) is defined by (4.1). Furthermore, for each p ≥ 1, there exists a Cp > 0, such

that EQ0[ζp
T (μ,μ′)] ≤ Cp , for all μ,μ′ ∈ L0

FY (CT (P1)).

PROOF. First recall the Kantorovich–Rubinstein formula (see (2.5)): For 0 ≤ s ≤ t ≤ T ,

W1
(
μ̃s, μ̃

′
t

) = sup
{∣∣∣∣∫

R
ϕ dμ̃s −

∫
R

ϕdμ̃′
t

∣∣∣∣, ϕ ∈ Lip1(R)

}
.

Since both μ̃s , μ̃′
t are probability measures, it suffices to consider only those test functions

ϕ ∈ Lip1(R) with ϕ(0) = 0 so that |ϕ(z)| ≤ |z|, z ∈ R. In other words, we can write

(4.3) W1
(
μ̃s, μ̃

′
t

) = sup
{∣∣∣∣∫

R
ϕ dμ̃s −

∫
R

ϕdμ̃′
t

∣∣∣∣, ϕ ∈ Lip1(R), ϕ(0) = 0
}
.

Note that for any ϕ ∈ Lip1(R) with ϕ(0) = 0, by definition of μ̃, μ̃′ (see (3.3)) we have∣∣∣∣∫
R

ϕ dμ̃s −
∫
R

ϕ dμ̃′
t

∣∣∣∣ = ∣∣EP[ϕ(Xμ
s

)|FY
s

]−EP′[
ϕ
(
X

μ′
t

)|FY
t

]∣∣,
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where P = Pμ and P′ = Pμ′
. By the Kalliapur–Strieble formula (3.3) we have

EP[ϕ(Xμ
s

)|FY
s

] = EQ0[Lμ
s ϕ(X

μ
s )|FY

s ]
EQ0[Lμ

s |FY
s ] = EQ0[Lμ

s ϕ(X
μ
s )|FY

T ]
EQ0[Lμ

s |FY
T ] , Q0-a.s.,

where the second equality follows from the fact that FY
T = FY

s ∨FY
s,T , and Fs = FB1,Y

s and
FY

s,T are independent under Q0. Similarly, we have

EP′[
ϕ
(
X

μ′
t

)|FY
t

] = EQ0[Lμ′
t ϕ(X

μ′
t )|FY

t ]
EQ0[Lμ′

t |FY
t ]

= EQ0[Lμ′
t ϕ(X

μ′
t )|FY

T ]
EQ0[Lμ′

t |FY
T ]

, Q0-a.s.

Hence, we deduce that, Q0-almost surely,∣∣∣∣∫
R

ϕ dμ̃s −
∫
R

ϕ dμ̃′
t

∣∣∣∣ = ∣∣∣∣EQ0[Lμ
s ϕ(X

μ
s )|FY

T ]
EQ0[Lμ

s |FY
T ] − EQ0[Lμ′

t ϕ(X
μ′
t )|FY

T ]
EQ0[Lμ′

t |FY
T ]

∣∣∣∣
≤ 1

EQ0[Lμ
s |FY

T ]E
Q0[∣∣Lμ

s ϕ
(
Xμ

s

)− L
μ′
t ϕ

(
X

μ′
t

)∣∣|FY
T

]

+ |EQ0[Lμ′
t ϕ(X

μ′
t )|FY

T ]|
EQ0[Lμ′

t |FY
T ]EQ0[Lμ

s |FY
T ]

EQ0[∣∣Lμ
s − L

μ′
t

∣∣|FY
T

]
=: I 1

s,t + I 2
s,t ,

(4.4)

where I i
s,t , i = 1,2, are defined in the obvious way. Now by Jensen’s inequality we have

(recall the definition of L−μ),

(4.5)
(
EQ0[

Lμ
s |FY

T

])−1 ≤ EQ0[
L−μ

s |FY
T

]
and

(
EQ0[

L
μ′
t |FY

T

])−1 ≤ EQ0[
L

−μ′
t |FY

T

]
,

and recalling the notation ξ∗ for ξ ∈ CT , and that ϕ ∈ Lip1(R) with ϕ(0) = 0, we have∣∣∣∣ EQ0[Lμ′
t ϕ(X

μ′
t )|FY

T ]
EQ0[Lμ′

t |FY
T ]EQ0[Lμ

s |FY
T ]

∣∣∣∣
≤ (

EQ0[(
Lμ′)∗,2

t |FY
T

]) 1
2
(
EQ0[(

Xμ′)∗,2
t |FY

T

]) 1
2

×EQ0[(
L−μ′)∗

t |FY
T

]
EQ0[(

L−μ)∗
t |FY

T

] =: ζ 1
t .

(4.6)

To analyze ζ 1 we first recall that, under Q0, the coordinate process (B1, Y ) on �0 = C2
T =

CT ⊗ CT is a two-dimensional Brownian motion. Therefore, if we denote the conditional
probability Q0[A|FY

T ](ω2) =Qω2[A], A ∈ B(C2
T ), then we can consider the SDE for Xμ in

(3.1) as on the probability space (CT ,B(CT ),Qω2
) for P0-a.e. ω2 ∈ CT . Note that for fixed

ω2, the process

X
μ
t

(·,ω2) = x +
∫ t

0
σ
(
s,Xμ

s

(·,ω2),ω2·∧s,μ·∧s

(
ω2))dB1

s , t ∈ [0, T ],

is a Qω2
-martingale, and as σ is bounded, by the Burkholder–Davis–Gundy inequality we

have

Eω2[(
Xμ)∗,2

T

] ≤ CEω2[〈
Xμ 〉

T

] = CEω2
[∫ T

0
σ 2(· · · ) ds

]
≤ C, P0-a.e. ω2 ∈ CT ,
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where Eω2[·] = EQω2 [·] = EQ0[·|FY
T ](ω2), and C > 0 is a generic constant depending only

on T > 0 and the bounds of σ and h, which is allowed to vary between expressions. Thus we
have EQ0[(Xμ)

∗,2
T |FY

T ] ≤ C, Q0-a.s.
Now repeatedly applying Hölder’s inequality and the fact abc ≤ a3 +b3 + c3, for a, b, c ≥

0, we obtain from the definition of ζ 1
t in (4.6)

ζ 1
t ≤ CEQ0[(

Lμ′)∗,3
t + (

L−μ′)∗,3
t + (

L−μ)∗,3
t |FY

t

]
= CEQ0[(

Lμ′)∗,3
t + (

L−μ′)∗,3
t + (

L−μ)∗,3
t |FY

T

]
(4.7)

=: ζ 2
t , t ∈ [0, T ].

Now, for notational simplicity we denote �L
μ,μ′
s,t := L

μ
s − L

μ′
t , and �X

μ,μ′
s,t := X

μ
s − X

μ′
t .

Then, combining (4.5)–(4.7), and recalling the definition of I 2
s,t (see (4.4)), we have

(4.8) I 2
s,t ≤ ζ 2

t E
Q0[∣∣�L

μ,μ′
s,t

∣∣|FY
T

] ≤ ζ 2
t

(
EQ0[∣∣�L

μ,μ′
s,t

∣∣2|FY
T

]) 1
2 , Q0-a.s.,0 ≤ s ≤ t ≤ T .

Similarly, we have the estimate for I 1
s,t (noting that (Lμ′

)∗t ≥ L
μ′
0 = 1), for 0 ≤ s ≤ t ≤ T ,

I 1
s,t ≤ EQ0[(

L−μ)∗
t |FY

T

]{(
EQ0[(

Xμ)∗,2
t |FY

T

]) 1
2
(
EQ0[∣∣�L

μ,μ′
s,t

∣∣2|FY
T

]) 1
2

+ (
EQ0[(

Lμ′)∗,2
t |FY

T

]) 1
2
(
EQ0[∣∣�X

μ,μ′
s,t

∣∣2|FY
T

]) 1
2
}

≤ CEQ0[(
L−μ)∗,2

t + (
Lμ′)∗,2

t |FY
T

]
× {(

EQ0[∣∣�L
μ,μ′
s,t

∣∣2|FY
T

]) 1
2 + (

EQ0[∣∣�X
μ,μ′
s,t

∣∣2|FY
T

]) 1
2
}
.

(4.9)

Using (4.8) and (4.9), we deduce easily from (4.4) that, for all 0 ≤ s ≤ t ≤ T , Q0-a.s.,∣∣∣∣∫
R

ϕ dμ̃s −
∫
R

ϕ dμ̃′
t

∣∣∣∣
≤ Cζt

(
μ,μ′)((EQ0[∣∣�X

μ,μ′
s,t

∣∣2|FY
T

]) 1
2 + (

EQ0[∣∣�L
μ,μ′
s,t

∣∣2|FY
T

]) 1
2
)
,

(4.10)

where C > 0 is a constant depending only on T and the bounds of σ , h, and

ζt

(
μ,μ′) := EQ0[(

Lμ)∗,4
t + (

L−μ)∗,4
t + (

Lμ′)∗,4
t + (

L−μ′)∗,4
t |FY

t

]
= EQ0[(

Lμ)∗,4
t + (

L−μ)∗,4
t + (

Lμ′)∗,4
t

+ (
L−μ′)∗,4

t |FY
T

]
, t ∈ [0, T ].

(4.11)

From its definition we can easily see that ζt (μ,μ′), t ∈ [0, T ], is an FY -adapted, increas-
ing process with ζ0(μ,μ′) = 4. Moreover, by the last expression of (4.11) we see that it is
L2(Q0)-continuous. Thus, the continuity of t → ζt (μ,μ′) follows. Finally, for each p ≥ 1,
there exists some constant Cp > 0, depending only on p and the bounds of coefficients, such
that

EQ0[
ζ

p
T

(
μ,μ′)] ≤ Cp, for all μ,μ′ ∈ L0

FY

(
CT (P1)

)
,p ≥ 1.

This proves the proposition. �

We now consider the following subspace of L0
FY (CT (P1)):

(4.12) E := S∞−
FY (P1).

We shall argue that the conclusion of Proposition 4.1 is strong enough to imply the following
important property of the solution mapping T .



A GENERAL CONDITIONAL MCKEAN–VLASOV SDE 2013

COROLLARY 4.2. Let Assumption 2.2 hold. Then T (E ) ⊆ E .

PROOF. For any μ ∈ E we put μ̃ = T (μ). Setting μ′ = μ in Proposition 4.1, we deduce
from (4.2) that

EQ0[
W1(μ̃s, μ̃t )

4]
≤ C

(
EQ0[

ζT (μ,μ)8]) 1
2
{(
EQ0[∣∣Xμ

s − X
μ
t

∣∣8]) 1
2 + (

EQ0[∣∣Lμ
s − L

μ
t

∣∣8]) 1
2
}

(4.13)

≤ C
{(
EQ0[∣∣Xμ

s − X
μ
t

∣∣8]) 1
2 + (

EQ0[∣∣Lμ
s − L

μ
t

∣∣8]) 1
2
}
.

Here and in what follows we shall denote C > 0 to be a generic constant depending only on
T and the bounds of h, which varies from line to line. Since σ and h are bounded, it is clear
that EQ0[(Lμ

T )p] ≤ Cp , for all μ ∈ CT (P1), and it follows by standard estimates that

EQ0[∣∣Xμ
s − X

μ
t

∣∣8 + ∣∣Lμ
s − L

μ
t

∣∣8] ≤ C|s − t |4, 0 ≤ s ≤ t ≤ T .

Hence, by (4.13) we have EQ0[W1(μ̃s, μ̃t )
4] ≤ C|s − t |2, s, t ∈ [0, T ]. Thus, by Kol-

mogorov’s continuity criterion, it follows that μ̃ = (μ̃)t∈[0,T ] admits a continuous modifi-
cation, which we shall use from now on. In other words, we have proved that T (μ) = μ̃ is
CT (P1)-valued.

It remains to check that T (μ) ∈ E . To see this we fix p ≥ 1, and note that for any μ′ ∈ E

we always have T (μ′)0 = P′ ◦ (X
μ′
0 )−1 = δ{x}. Applying (4.2) again we see that

EQ0[
sup

t∈[0,T ]
W1(μ̃t , δx0)

p
]

= EQ0[
sup

t∈[0,T ]
W1

(
μ̃t , μ̃

′
0
)p]

≤ CEQ0[
ζT

(
μ,μ′)p · sup

t∈[0,T ]
((
EQ0[∣∣Xμ

t − x
∣∣2|FY

T

])p
2 + (

EQ0[∣∣Lμ
t − 1

∣∣2|FY
T

])p
2
)]

≤ C
(
EQ0[

ζT

(
μ,μ′)2p]) 1

2
(
1 +EQ0[(

Xμ)∗,2p
T

]+EQ0[(
Lμ)∗,2p

T

]) 1
2 < +∞.

Since μ̃ is obviously FY -adapted, by definition (2.2) we then have μ̃ ∈ S
p

FY (P1). Note now
that the above argument holds for all p ≥ 1, we conclude that T (μ) = μ̃ ∈ E . The proof is
now complete. �

REMARK 4.3. As we pointed out before, Proposition 4.1 actually shows that T (μ) ∈
S∞−
FY (P1), for any μ ∈ L0

FY (CT (P1)). This is due largely to the fact that we have assumed
that all coefficients σ and h are bounded. In general, we should have, for any p ≥ 1, the
solution mapping T : Sp

FY (P1) �→ E = S∞−
FY (P1) ⊆ S

p

FY (P1). The case when p = 2 is
frequently used.

5. Existence of a weak solution. We are now ready to prove the existence of the weak
solution to SDE (1.1). To begin with, we note that Proposition 4.1 only shows that (assum-
ing, e.g., s = t), the (Wasserstein) distance between μ̃t = T (μ)t and μ̃′

t = T (μ′)t can be
controlled by the distances of the corresponding solutions (Xμ,Lμ) and (Xμ′

,Lμ′
) at each

fixed t ∈ [0, T ]. But in order to look for a fixed point in the space E , we need to strengthen
the estimate in terms of the distance in L

p

FY (C (P1)). In light of Remark 4.3, we shall only
consider the case p = 2.
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We begin by a brief analysis. Let μ,μ′ ∈ S2
FY (P1). For notational simplicity we denote

the corresponding triplets (X,L,P) := (Xμ,Lμ,Pμ) and (X′,L′,P′) := (Xμ′
,Lμ′

,Pμ′
), re-

spectively, and put μ̃ := T (μ) and μ̃′ := T (μ′) as before. We also set �X := X − X′,
�L := L − L′, and

δϕ
(
t, x, x′, y,μ,μ′) := ϕ(t, x, y,μ) − ϕ

(
t, x′, y,μ′), ϕ = σ,h.

Our goal is to use estimate (4.2) in Proposition 4.1 to obtain the desired contraction estimate:
For some constant 0 < C < 1,

(5.1) EQ0[
sup

0≤t≤T

W1
(
μ̃, μ̃′)2

]
≤ CEQ0[

sup
0≤t≤T

W1
(
μ,μ′)2

]
.

To begin with, we note that (4.2) only gives us

(5.2) sup
s≤t

W1
(
μ̃s, μ̃

′
s

)2 ≤ Cζt

(
μ,μ′)2

EQ0[
sup
s≤t

|�Xs |2 + sup
s≤t

|�Ls |2|FY
T

]
, t ∈ [0, T ].

But on the other hand, since X and X′ satisfy (3.1), following the standard arguments using
the Burkholder–Davis–Gundy inequality and Assumption 2.2, one can easily check that, for
t ∈ [0, T ],

EQ0[
sup

s∈[0,t]
|�Xs |4|FY

T

]

≤ CEQ0
[(∫ t

0

∣∣δσ (s,X·∧s,X
′·∧s, Y·∧s,μ·∧s,μ

′·∧s

)∣∣2 ds

)2
|FY

T

]

≤ CEQ0
[∫ t

0
sup
r≤s

|�Xr |4 ds|FY
T

]
+ CEQ0

[(∫ t

0
sup
r≤s

W1
(
μr,μ

′
r

)2
ds

)2
|FY

T

]

= C

∫ t

0
EQ0[

sup
r≤s

|�Xr |4|FY
T

]
ds + C

(∫ t

0
sup
r≤s

W1
(
μr,μ

′
r

)2
ds

)2
.

Observe that in the last equality above we used the fact that μ and μ′ are FY -adapted. Now
applying Gronwall’s inequality we obtain that

(5.3)
(
EQ0[

sup
s∈[0,t]

|�Xs |4|FY
T

]) 1
2 ≤ C

∫ t

0
sup
r≤s

W1
(
μr,μ

′
r

)2
ds, t ∈ [0, T ],Q-a.s.

Similarly, since h is bounded, we also obtain from (3.1) that, for t ∈ [0, T ],

EQ0[
sup
s≤t

|�Ls |2
]
≤ C{EQ0

[∫ t

0
|�Ls |2 ds

]

+EQ0
[∫ t

0
L2

s

∣∣δh(s,X·∧s,X
′·∧s, Y·∧s,μ·∧s,μ

′·∧s

)∣∣2 ds

]
,

and again applying Gronwall’s inequality we get

EQ0[
sup

s∈[0,t]
|�Ls |2

]
≤ CEQ0

[∫ t

0
L2

s

(
sup
r≤s

|�Xr |2 + sup
r∈[0,s]

W1
(
μr,μ

′
r

)2
)
ds

]

≤ CEQ0
[∫ t

0

(
EQ0[

L4
s |FY

T

]) 1
2
[(
EQ0[

sup
r≤s

|�Xr |4|FY
T

]) 1
2 + sup

r≤s
W1

(
μr,μ

′
r

)2
]
ds

]
.
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Now by (5.3) we conclude from the above that, for t ∈ [0, T ], Q0-a.s.,

(5.4) EQ0[
sup

s∈[0,t]
|�Ls |2

]
≤ CEQ0

[∫ t

0

(
EQ0[

L4
s |FY

T

]) 1
2 · sup

r≤s
W1

(
μr,μ

′
r

)2
ds

]
.

Moreover, noting that EQ0[L4
s |FY

T ] ≤ ζt (μ,μ′), we see from (5.2), (5.3), and (5.4) that
we would easily have the desired estimate (5.1) so the contraction mapping theorem can be
applied (at least in the case when the time duration is small) if we could find a bound for
ζt (μ,μ′) that is independent of μ, μ′. But this is in general difficult, since each Lμ is the
solution to a linear SDE driven by the Q0-Brownian motion Y , thus under the conditional
expectation EQ0[·|FY

t ], this essentially amounts to asking a pathwise uniform bound for a
family of martingales, which is generally impossible. We shall therefore impose the following
extra structural assumption on the coefficient h in SDE (1.1).

ASSUMPTION 5.1. The function h in (1.1) is of the form

(5.5) h(t, x, y·∧t ) =
N∑

i=1

fi(t, x)gi(t, y·∧t ),

where fi ∈ C
1,2
b ([0, T ] ×R), 1 ≤ i ≤ N , and gi’s are bounded and measurable.

We remark that Assumption 5.1 trivially contains all the traditional nonlinear filtering
problems, in which h = h(t, x). In what follows, without loss of generality we shall assume
N = 1, and f := f1, g := g1. We have the following crucial result regarding the process
ζ(μ,μ′) defined by (4.1), for any μ,μ′ ∈ S2

FY (P1).

PROPOSITION 5.2. Let Assumptions 2.2 and 5.1 be in force. Then there exists a con-
tinuous, increasing, FY -adapted process A = {At }t∈[0,T ], with A0 > 0, such that for any
μ,μ′ ∈ S2

FY (P1), it holds that ζt (μ,μ′) ≤ At , t ∈ [0, T ], Q0-a.s.

PROOF. For any μ ∈ S2
FY (P1), let X = Xμ be the solution to (3.1). Since f ∈

C1,2([0, T ] ×R), thanks to Assumption 5.1, applying Itô’s formula we get:

(5.6) df (t,Xt) = ∂tf (t,Xt) dt + ∂xf (t,Xt) dXt + 1

2
∂2
xxf (t,Xt) d〈X〉t , t ∈ [0, T ].

Now let us consider the following two processes: For t ∈ [0, T ],

(5.7)

⎧⎪⎪⎨⎪⎪⎩
Zt =

∫ t

0
g(s, Y·∧s) dYs;

Mt = M
μ
t :=

∫ t

0
Zs∂xf (s,Xs)σ (s,X·∧s, Y·∧s,μ·∧s)dB1

s .

Recalling that B1 and Y are independent under Q0, we have d〈M,Z〉t = d〈X,Z〉t ≡ 0. Thus
(5.6) and integrating by parts yield, for t ∈ [0, T ],∫ t

0
h(s,Xs,Y·∧s) dYs

=
∫ t

0
f (s,Xs)g(s, Y·∧s) dYs

=
∫ t

0
f (s,Xs) dZs

= f (t,Xt)Zt(5.8)
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−
∫ t

0
Zs

[
∂tf (s,Xs) ds + ∂xf (t,Xs) dXs + 1

2
∂2
xxf (s,Xs) d〈X〉s

]
= f (t,Xt)Zt − Mt

−
∫ t

0
Zs

[
∂tf (s,Xs) + 1

2
∂2
xxf (s,Xs)

∣∣σ(s,X·∧s, Y·∧s,μ·∧s)
∣∣2]ds.

Since σ is bounded and f ∈ C
1,2
b we easily deduce that

(5.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣f (t,Xt)Zt −
∫ t

0
Zs

[
∂tf (s,Xs) + 1

2
∂2
xxf (s,Xs)

∣∣σ(s,X·∧s, Y·∧s,μ·∧s)
∣∣2]ds

∣∣∣∣
≤ CZ∗

t ,

〈M〉t =
∫ t

0

∣∣Zs∂xf (s,Xs)σ (s,X·∧s, Y·∧s,μ·∧s)
∣∣2 ds

≤ CZ
∗,2
t t ∈ [0, T ].

Here C > 0 is a generic constant depending only on the bounds of f and σ . Since Z∗ is
FY -adapted, a direct computation using (5.8) and (5.9) shows that, for all p > 0, t ∈ [0, T ],

EQ0
[
sup
s≤t

(
exp

{
p

∫ s

0
h(r,Xr,Y·∧r ) dYr

})∣∣∣FY
T

]

= EQ0
[
sup
s≤t

(
exp

{
pf (s,Xs)Zs − pMs

− p

∫ s

0
Zr

[
∂tf (r,Xr) + 1

2
∂2
xxf (r,Xr)

∣∣σ(r,X·∧r , Y·∧r ,μ·∧r )
∣∣2]dr

})∣∣∣FY
T

]
(5.10)

≤ Cp

(
EQ0[

sup
s≤t

(
exp

{−pMs − p2〈M〉s})2|FY
T

]) 1
2
eCpZ

∗,2
t

≤ Cp

(
EQ0[

exp
{−2pMt − 2p2〈M〉t}|FY

T

]) 1
2 eCpZ

∗,2
t = Cp

(
EQ0[Et |FY

T

]) 1
2 eCpZ

∗,2
t ,

where Cp > 0 is some generic constant that may depend on p, and is allowed to vary from
line to line, and Et := exp{−2pMt − 1

2〈2pM〉t } is the Doléans–Dade stochastic exponential
of the process 2pM . That is, E solves the linear SDE

Et = 1 −
∫ t

0
Esd(2pMs)

= 1 − 2p

∫ t

0
EsZs∂xf (s,Xs)σ (s,X·∧s, Y·∧s,μ·∧s) dB1

s , t ∈ [0, T ].
(5.11)

Now consider the regular conditional probability Pω2

T (·) := Q0[·|FY
T ](ω2), for P0-a.e. ω2 ∈

CT . For an F-adapted process ξ we denote ξω2
(ω1) = ξ(ω1,ω2), (ω1,ω2) ∈ C2

T . Then, since

μ is FY -adapted, (5.11) means that for Eω2
, for P0-a.e. ω2 ∈ CT , it holds Pω2

T almost surely

Eω2

t = 1 − 2p

∫ t

0
Eω2

s Zω2

s ∂xf
(
s,Xω2

s

)
σ
(
s,Xω2

·∧s,ω
2·∧s,μ

ω2

·∧s

)
dB1

s , t ∈ [0, T ].

That is, Eω2
is an exponential martingale under Pω2

T , and thus EQ0[Et |FY
T ](ω2) = 1, for P0-

a.e. ω2 ∈ CT . Consequently, since h is bounded, for μ ∈ S2
FY (P1) and p ≥ 1 we see from the

definition of Lμ (3.2) and (5.10) that, for some generic constant Cp > 0,

EQ0[(
Lμ)∗,p

t |FY
T

] ≤ CpE
Q0

[
sup

0≤s≤t

(
exp

{
p

∫ s

0
h(r,Xr,Y·∧r ) dYr

})∣∣∣FY
T

]
≤ CpeCpZ

∗,2
t .
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But this particularly implies that, for p = 4 (recall the definition (4.1) of ζt (μ,μ′)) there
exists a constant C(= Cp) > 0, such that for any μ,μ′ ∈ S2

FY (P1), it holds that

(5.12) ζt

(
μ,μ′) ≤ C exp

{
CZ

∗,2
t

} =: At, t ∈ [0, T ],
where Z is defined by (5.7). Clearly, the process A is continuous, FY -adapted, increasing,
and is independent of the choice of μ, proving the proposition. �

We now give the main result of this section.

THEOREM 5.3. Let Assumptions 2.2 and 5.1 be in force. Then, the solution mapping
T (·) defined by (3.3) has a unique fixed point in S2

FY (P1).

PROOF. First consider the process A in Proposition 5.2. For N ≥ 1, define the FY -
stopping time τN := inf{t ≥ 0 : At > N} ∧ T . Then, Q0{τN ↗ T } = 1. Moreover, let us
now define, for N ∈ N and p ≥ 1, Sp,N

FY (P1) := {μ·∧τN
: μ ∈ S

p

FY (P1)}, and

(5.13) TN(μ)t := T (μ)t∧τN
, t ∈ [0, T ],μ ∈ S

p,N

FY (P1).

Then, applying Proposition 4.1 and Corollary 4.2 we conclude that TN is a mapping from
S

2,N

FY (P1) to itself.

We first show that each TN , N ∈ N, has a fixed point. To this end, let μ ∈ S
2,N

FY (P1)

and let (Xμ,Lμ) be the corresponding solution of (3.1). Consider the function (t, x,ω) �→
h(t, x, Y·∧t (ω))1[0,τN ](t,ω). Since τN is an FY -stopping time, and Y is a canonical Brow-
nian motion (Yt(ω) = ω2

t ) under Q0, there is some bounded and measurable functional
hN : [0, T ] ×R×CT →R, such that:

(i) for each x ∈ R, and (t,ω) ∈ [0, T ]×�0, hN(t, x,ω) = hN(t, x,ω2·∧t ). In other words,
the mapping (t,ω) �→ hN(t, x,ω) is FY -progressively measurable; and

(ii) it holds that

(5.14) hN (
t,X

μ
t , Y·∧t

) = h
(
t,X

μ
t , Y·∧t

)
1[0,τN ](t,ω), t ∈ [0, T ].

Using the function hN we can solve the SDE

(5.15) L
μ,N
t = 1 +

∫ t

0
hN (

s,Xμ
s , Y·∧s

)
Lμ,N

s dYs, t ∈ [0, T ].

Then, by uniqueness, it is easy to check that Lμ,N ≡ L
μ
·∧τN

, where Lμ solves (3.1).

Now for μ,μ′ ∈ S
2,N

FY (P1), let (Xμ,Lμ), (Xμ′
,Lμ′

) be the corresponding solutions to

(3.1), respectively. We shall denote X := Xμ, X′ := Xμ′
, and LN := Lμ,N , L′N := Lμ′,N for

simplicity. Since hN is uniformly Lipschitz continuous in x with the same Lipschitz constant
as h given in Assumption 2.2, we deduce from (5.3)–(5.4) that, for t ∈ [0, T ],

EQ0[
sup

s∈[0,t]
∣∣Xs − X′

s

∣∣4|FY
T

]
≤ C

[∫ t

0
sup
r≤s

W1
(
μr,μ

′
r

)2
ds

]2
,(5.16)

EQ0[
sup

s∈[0,t]
∣∣LN

s − L′N
s

∣∣2]
≤ CEQ0

[∫ t

0

(
EQ0[

L4
s∧τN

|FY
T

]) 1
2 · sup

r≤s∧τN

W1
(
μr,μ

′
r

)2
ds

]
(5.17)

≤ C
√

N

∫ t

0
EQ0[

sup
r≤s∧τN

W1
(
μr,μ

′
r

)2
]
ds.
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Here in the above we used the facts that EQ0[L4
s∧τN

|FY
T ] ≤ At∧τN

≤ N by definition of τN .
Let us denote μ̃N

t (·) := PN {Xt ∈ ·|FY
t } and μ̃′N

t (·) := P′N {X′
t ∈ ·|FY

t }, t ∈ [0, T ], where
dPN := LN

T dQ0, and dP′N := L′N
T dQ0, respectively.

Recall again that τN is an FY -stopping time, and observe for B ∈ B(R) we have

μ̃N
t (B) = PN{

Xt ∈ B|FY
t

}
= EQ0[LN

t 1{Xt∈B}|FY
t ]

EQ0[LN
t |FY

t ] = EQ0[Lt∧τN
1{Xt∈B}|FY

T ]
EQ0[Lt∧τN

|FY
T ]

= EQ0[Lt1{Xt∈B}|FY
T ]

EQ0[Lt |FY
T ] = μ̃t (B), t ≤ τN,Q0-a.s.

In other words, we have μ̃N·∧τN
= μ̃·∧τN

= TN(μ), by definition (5.13). Similarly, we have
μ̃′N·∧τN

= μ̃′·∧τN
= TN(μ′). Consequently, from (5.2) and Proposition 5.2, as τN is an FY -

stopping time and, hence, FY
T -measurable, for t ∈ [0, T ],

sup
s≤t∧τN

W1
(
μ̃N

s , μ̃′N
s

)2

= sup
s≤t∧τN

W1
(
μ̃s, μ̃

′
s

)2(5.18)

≤ N2EQ0[
sup

s≤t∧τN

∣∣Xs − X′
s

∣∣2 + sup
s≤t∧τN

∣∣Ls − L′
s

∣∣2|FY
T

]
.

Combining (5.18) with (5.16) and (5.17) we derive, for all μ,μ′ ∈ S
2,N

FY (P1), that

EQ0[
sup
s≤t

W1
(
TN(μ)s,TN

(
μ′)

s

)2
]

≤ CN

∫ t

0
EQ0[

sup
r≤s∧τN

W1
(
μr,μ

′
r

)2
]
ds(5.19)

≤ CN

∫ t

0
EQ0[

sup
r≤s

W1
(
μr,μ

′
r

)2
]
ds, t ∈ [0, T ].

Consequently, iterating (5.19) k times we have, for μ,μ′ ∈ S
2,N

FY (P1),

EQ0[
sup
s≤t

W1
(
T k

N (μ)s,T
k

N

(
μ′)

s

)2
]

≤ Ck
N

∫ t

0

∫ t1

0
· · ·

∫ tk−1

0
EQ0[

sup
r≤tk

W1
(
μr,μ

′
r

)2
]
dtk · · · dt1

≤ (CNt)k

k! EQ0[
sup
r≤t

W1
(
μr,μ

′
r

)2
]
, t ∈ [0, T ].

Choosing k large enough, we see that T k
N : S

2,N

FY (P1) → S
2,N

FY (P1) is a contraction, thus

there is a unique μ̄N ∈ S
2,N

FY (P1) such that T k
N (μ̄N) = μ̄N , which implies that TN(μ̄N) =

TN(T k
N (μ̄N)) = T k

N (TN(μ̄N)). Then by uniqueness we obtain TN(μ̄N) = μ̄N .
To construct the desired fixed point for T on [0, T ] we shall argue that there is a standard

extension, μ̄, of the family {μ̄N }N≥1: μ̄t = μ̄N
t , whenever t ∈ [0, τN ], as Q0{τN ↗ T } = 1.

For this, we first claim that, given μ ∈ S2
FY (P1) and any FY -stopping time τ ≤ T , one has

(5.20) T (μ)t∧τ = T (μ·∧τ )t , t ∈ [0, T ].
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Indeed, for any bounded measurable function ϕ and t ∈ [0, T ], we have∫
R

ϕ(x)T (μ)t∧τ (dx) = EPμ[
ϕ
(
Xμ

s

)|FY
s

]|s=t∧τ

= EQ0[ϕ(X
μ
s )L

μ
s |FY

T ]
EQ0[Lμ

s |FY
T ]

∣∣∣∣
s=t∧τ

= EQ0[ϕ(X
μ
t∧τ )L

μ
t∧τ |FY

T ]
EQ0[Lμ

t∧τ |FY
T ]

= EPμ[
ϕ
(
X

μ
t∧τ

)|FY
t∧τ

]
=

∫
R

ϕ(x)T (μ·∧τ )t (dx).

This proves (5.20). Now, using (5.20) and the definition of TN we can further deduce that

TN

(
μ̄N+1·∧τN

) = T
(
μ̄N+1·∧τN

)
·∧τN

= (
T

(
μ̄N+1)

·∧τN+1

)
·∧τN

= TN+1
(
μ̄N+1)

·∧τN
= μ̄N+1·∧τN

.

Thus μ̄N+1·∧τN
is also a fixed point of TN . By the uniqueness of the fixed point for TN we must

have μ̄N+1·∧τN
= μ̄N on [0, τN ]. That is, μ̄N+1 is an “extension” of μ̄N .

The rest of the proof is now standard. We can “patch” all the μ̄’s together by defining a
measure-valued process

μ̄t := μ̄N
t , t ∈ [0, τN ],N ≥ 1.

Then μ̄ is well defined on [0, T ] and one can easily check μ̄ ∈ S2
FY (P1). Furthermore, using

(5.20) again we have, for any N ≥ 1,

T (μ̄)·∧τN
= T (μ̄·∧τN

)·∧τN
= T

(
μ̄N )

·∧τN
= TN

(
μ̄N ) = μ̄N = μ̄·∧τN

.

Thus, μ̄ is a fixed point of T on [0, T ] = ⋃∞
N=1[0, τN ]. Finally, note that if ν is another

fixed point of T , then by definition, for each N ≥ 1, ν·∧τN
must be a fixed point of TN .

The uniqueness of the fixed point then implies that μ̄·∧τN
= ν·∧τN

, which in turn implies the
uniqueness of the fixed point of T . The proof is now complete. �

Now let μ̄ ∈ S2
FY (P1) be the fixed point of T , and denote (X,L) := (Xμ̄,Lμ̄). Recalling

the construction of T (μ̄) we see that, under Q0, the couple of processes (X,L) satisfies the
following SDE:

(5.21)

{
dXt = σ(t,X·∧t , Y·∧t , μ̄·∧t ) dB1

t X0 = x0,

dLt = h(t,Xt , Y·∧t )Lt dYt L0 = 1, t ∈ [0, T ].
Furthermore, by construction (3.3) we see that μ̄t = P{Xt ∈ ·|FY

t }, where dP := LT dQ0.
Now, denoting μ̄ = μX|Y , we have the following theorem.

THEOREM 5.4. Let Assumptions 2.2 and 5.1 be in force. Then the SDE (1.1) possesses
a weak solution.

PROOF. First note that, given the fixed point μ̄ of the mapping T , and the corre-
sponding solution (X,L) to SDE (5.21) on the probability space (�,F,Q0), if we define
dP := LT dQ0, and B2

t := Yt − ∫ t
0 h(s,Xs,Y·∧s) ds, t ∈ [0, T ], then the Girsanov theorem

tells us that the process (B1,B2) is an (F,P)-Brownian motion.
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Now, recalling that μ
X|Y
t (·) = μ̄t (·) = P{Xt ∈ ·|FY

t }, t ∈ [0, T ], we have, for t ∈ [0, T ],{
dXt = σ

(
t,X·∧t , Y·∧t ,μ

X|Y
·∧t

)
dB1

t X0 = x0;
dYt = h(t,Xt , Y·∧t ) dt + dB2

t Y0 = 0.

In other words, the six-tuple (�,F,F,P, (B1,B2), (X,Y )) is a weak solution of SDE (1.1),
proving the theorem. �

6. Uniqueness in law. In this section we shall address the issue of uniqueness of the
weak solution to SDE (1.1). Namely, we shall prove that the weak solution of (1.1) is unique
in law. Our main idea extends the one in our previous work [2] in a nontrivial way. That is, we
note the fact that if (X,Y,P) is a weak solution to (1.1), and μX|Y is the conditional law of
X given FY , under P, then as we argued before we must have μX|Y ∈ S2

FY (P1) ⊂ L0
FY (CT ).

Therefore, there exists a progressively measurable Borel functional � :CT → CT (P1), such
that

(6.1) μ
X|Y
t = �(Y)t = �(Y·∧t )t , t ∈ [0, T ],P-a.s.

We shall use this function � as the bridge to connect two weak solutions, and then argue that
they must be unique in law. More precisely, we have the following theorem.

THEOREM 6.1. Let Assumptions 2.2 and 5.1 hold. Let (�i,F i ,Fi ,Pi , (B1,i ,B2,i),

(Xi, Y i)), i = 1,2, be two weak solutions of (1.1). Then, it holds that

P1 ◦ (B1,1,B2,1,X1, Y 1)−1 = P2 ◦ (B1,2,B2,2,X2, Y 2)−1
.

PROOF. Consider the following SDEs on (�i,Fi ,Pi ), i = 1,2, respectively:

(6.2) dL̂i
t = −h

(
t,Xi

t , Y
i·∧t

)
L̂i

t dB
2,i
t , L̂i

0 = 1, t ∈ [0, T ].
(Note the difference between this SDE and the one in (3.1)). Since h is bounded, we know
that EPi [L̂i

T ] = 1, and dQi := L̂i
T dPi defines a probability measure such that (B1,i , Y i) is

an (Fi ,Qi)-Brownian motion, i = 1,2. Denote Li = [L̂i]−1.
Now let �i : CT → CT (P1), i = 1,2, be the progressively measurable Borel functionals,

such that (6.1) holds for μXi |Y i
, i = 1,2, respectively. Then, the process (X1,L1 = [L̂1]−1)

must satisfy the following SDE on (�1,F1,F1,Q1):

(6.3)

{
dX1

t = σ
(
t,X1·∧t , Y

1·∧t ,�
1·∧t

(
Y 1·∧t

))
dB

1,1
t X1

0 = x0,

dL1
t = L1

t h
(
t,X1

t , Y
1·∧t

)
dY 1

t L1
0 = 1, t ∈ [0, T ].

Note that under Q1, (B1,1, Y 1) is a Brownian motion, thus (6.3) is just an SDE with random
coefficients, and under the Assumptions 2.2 and 5.1, it has a pathwisely unique strong solu-
tion. That is, there exists a progressively measurable Borel functional ψ : C2

T �→ C2
T , such

that (X1,L1) = ψ(B1,1, Y 1).
We now consider the following auxiliary SDE on the filtered space (�2,F2,F2,Q2):

(6.4)

{
dX̄2

t = σ
(
t, X̄2·∧t , Y

2·∧t ,�
1·∧t

(
Y 2·∧t

))
dB

1,2
t X̄2

0 = x0,

dL̄2
t = L̄2

t h
(
t, X̄2

t , Y
2·∧t

)
dY 2

t L̄2
0 = 1, t ∈ [0, T ].

Note that SDE (6.4) actually has the same coefficients as (6.3), hence by pathwise unique-
ness we deduce that (X̄2, L̄2) = ψ(B1,2, Y 2) as well. But since Q1 ◦ (B1,1, Y 1)−1 = Q2 ◦
(B1,2, Y 2)−1 is the Wiener measure on (�0,F0) = (C2

T ,B(C2
T )), we conclude that

(6.5) Q1 ◦ ((B1,1, Y 1), (X1,L1))−1 = Q2 ◦ ((B1,2, Y 2), (X̄2, L̄2))−1
.
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Our next step is to use (X̄2, L̄2) to build a bridge that links the laws of (X1,L1) and
(X2,L2). To this end, let us now define a new probability P̄2 by dP̄2 = L̄2

T dQ2, and consider

the conditional law μ̄2 = μ̄X̄2|Y 2
, under P̄2. That is, for A ∈ B(R), it holds that

(6.6) μ̄2
t (A) = μ̄

X̄2|Y 2

t (A) := P̄2{X̄2
t ∈ A|FY 2

t

} = EQ2[L̄2
t · 1{X̄2

t ∈A}|FY 2

T ]
EQ2[L̄2

t |FY 2

T ] .

We shall assume without loss of generality that μ̄2 is a regular conditional probability. As
before, we can show that μ̄2 ∈ S2

FY (P1) (under Q2). Furthermore, it might be chosen that

(6.7) μ̄2
t (·) = �1

t

(
Y 2·∧t

)
(·), t ∈ [0, T ].

Indeed, recall that �1 : CT → CT (P1) and observe that, for any bounded Borel functionals
ϕ : R �→R and f :CT →R, (6.5) implies that

EP̄2
[
ϕ
(
Y 2·∧t

) ∫
R

f (x)�1
t

(
Y 2·∧t

)
(dx)

]
= EQ2

[
L̄2

t ϕ
(
Y 2·∧t

) ∫
R

f (x)�1
t

(
Y 2·∧t

)
(dx)

]
= EQ1

[
L1

t ϕ
(
Y 1·∧t

) ∫
R

f (x)�1
t

(
Y 1·∧t

)
(dx)

]
.

(6.8)

Recalling that �1
t (Y

1·∧t ) = μ
X1|Y 1

t (·) = P1{X1
t ∈ ·|FY 1

t }, t ∈ [0, T ], we have∫
R

f (x)�1
t

(
Y 1·∧t

)
(dx) = EP1[

f
(
X1

t

)|FY 1

t

]
.

Thus (6.8) now reads

EP̄2
[
ϕ
(
Y 2·∧t

) ∫
R

f (x)�1
t

(
Y 2·∧t

)
(dx)

]
= EQ1[

L1
t ϕ

(
Y 1·∧t

)
EP1[

f
(
X1

t

)|FY 1

t

]]
= EP1[

ϕ
(
Y 1·∧t

)
EP1[

f
(
X1

t

)|FY 1

t

]]
(6.9)

= EP1[
ϕ
(
Y 1·∧t

)
f
(
X1

t

)]
= EQ1[

L1
t ϕ

(
Y 1·∧t

)
f
(
X1

t

)]
.

On the other hand, (6.9), together with (6.5), also shows that

EP̄2
[
ϕ
(
Y 2·∧t

) ∫
R

f (x)�1
t

(
Y 2·∧t

)
(dx)

]
= EQ1[

L1
t ϕ

(
Y 1·∧t

)
f
(
X1

t

)]
= EQ2[

L̄2
t ϕ

(
Y 2·∧t

)
f
(
X̄2

t

)] = EP̄2[
ϕ
(
Y 2·∧t

)
f
(
X̄2

t

)]
= EP̄2[

ϕ
(
Y 2·∧t

)
EP̄2[

f
(
X̄2

t

)|FY 2

t

]] = EP̄2
[
ϕ
(
Y 2·∧t

) ∫
R

f (x)μ̄2
t (dx)

]
.

Since both ϕ and f are arbitrary, we have proved the claim (6.7). We note that using (6.7)
SDE (6.4) can be rewritten as

(6.10)

{
dX̄2

t = σ
(
t, X̄2·∧t , Y

2·∧t , μ̄
2·∧t

)
dB

1,2
t X̄2

0 = x0,

dL̄2
t = L̄2

t h
(
t, X̄2

t , Y
2·∧t

)
dY 2

t L̄2
0 = 1, t ∈ [0, T ],

with μ̄2·∧t (·) = P̄2{X̄2
t ∈ ·|FY 2

t }, t ∈ [0, T ], which satisfies (6.6).
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Our final observation is that, by the construction of the solution mapping T (3.3) and the
definition of μ2, we see that both μ2 and μ̄2 are in S2

FY2 (P1) under the probability Q2, and
they satisfy

T
(
μ̄2) = μ̄2, T

(
μ2) = μ2.

Namely, both μ2 and μ̄2 are the fixed points of the solution mapping T . Thus, the uniqueness
of the fixed point implies that μ̄2 = μ2.

Finally, recall that the process (X2,L2 = [L̂2]−1) satisfies the SDE on (�2,F2,Q2):

(6.11)

{
dX2

t = σ
(
t,X2·∧t , Y

2·∧t ,μ
2·∧t

)
dB

1,2
t X2

0 = x0,

dL2
t = L2

t h
(
t,X2

t , Y
2·∧t

)
dY 2

t L2
0 = 1, t ∈ [0, T ],

where μ2·∧t = P2{X2
t ∈ ·|FY 2

t }, t ∈ [0, T ], dP2 = L2
T dQ2. Consequently, both SDEs (6.10)

and (6.11) are defined on (�2,F2,Q2), have the same coefficients (given μ2), and are driven
by the same (F2,Q2)-Brownian motion (B1,2, Y 2). Thus the pathwise uniqueness of SDE
(given μ2) leads to that (X̄2, L̄2) ≡ (X2,L2), Q2-a.s.

Consequently, we now have dP̄2 = L̄2
T dQ2 = L2

T dQ2 = dP2. Combining this with (6.5)
we get

Q1 ◦ (B1,1, Y 1,X1,L1)−1 = Q2 ◦ (B1,2, Y 2, X̄2, L̄2)−1

= Q2 ◦ (B1,2, Y 2,X2,L2)−1
.

(6.12)

Since B
2,1
t = Y 1

t − ∫ t
0 h(s,X1

s , Y
1·∧s) ds, B

2,2
t = Y 2

t − ∫ t
0 h(s,X2

s , Y
2·∧s) ds, t ∈ [0, T ], we ob-

tain from (6.12) that

P1 ◦ (B1,1,B2,1,X1, Y 1)−1 = P2 ◦ (B1,2,B2,2,X2, Y 2)−1
.

The proof is now complete. �
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