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Abstract

The practicality of reinforcement learning algorithms has been limited due to poor scaling
with respect to the problem size, as the sample complexity of learning an ϵ-optimal policy is
Ω̃
(

|S||A|H3/ϵ2
)

over worst case instances of an MDP with state space S, action space A, and
horizon H. We consider a class of MDPs for which the associated optimal Q∗ function is low
rank, where the latent features are unknown. While one would hope to achieve linear sample
complexity in |S| and |A| due to the low rank structure, we show that without imposing further
assumptions beyond low rank of Q∗, if one is constrained to estimate the Q function using only
observations from a subset of entries, there is a worst case instance in which one must incur a
sample complexity exponential in the horizon H to learn a near optimal policy. We subsequently
show that under stronger low rank structural assumptions, given access to a generative model,
Low Rank Monte Carlo Policy Iteration (LR-MCPI) and Low Rank Empirical Value Iteration
(LR-EVI) achieve the desired sample complexity of Õ

(

(|S|+ |A|)poly(d,H)/ϵ2
)

for a rank d
setting, which is minimax optimal with respect to the scaling of |S|, |A|, and ϵ. In contrast
to literature on linear and low-rank MDPs, we do not require a known feature mapping, our
algorithm is computationally simple, and our results hold for long time horizons. Our results
provide insights on the minimal low-rank structural assumptions required on the MDP with
respect to the transition kernel versus the optimal action-value function.

1



Contents

1 Introduction 4

2 Related Work 6

3 Preliminaries 8

4 Information Theoretic Lower Bound 9

5 Assumptions 10

6 Algorithm 13
6.1 Formal Algorithm Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Matrix Estimation Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Main Results 16
7.1 Discussion of Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Extension to Approximately Low-Rank MDPs . . . . . . . . . . . . . . . . . . . . . . 21

8 Experiments 22

9 Conclusion 24

A Extensions 29
A.1 Continuous State and Action Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.2 Infinite-Horizon Discounted MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.3 Matrix Completion via Nuclear Norm Regularization . . . . . . . . . . . . . . . . . . 31

B Example Illustrating Assumption 3 (Low Rank Q functions for Near Optimal
Policies) 33

C Experimental Details for Oil Discovery Problem 34
C.1 Rank of c(s, a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.2 Rank of Q∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.3 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D Additional Experiments for Double Integrator Problem 39
D.1 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E Proof of Lemma 1 43

F Proof of Proposition 4 44

G Proof of Lemma 10 (Random Sampling of Anchor States and Actions) 45

H Proof of Lemma 12 (Entrywise Bounds for Matrix Estimation) 48

I Inductive Arguments for Theorems 7, 8, and 9 49

2



J Proofs for Approximately Low Rank Models 55

K Proofs for Continuous MDPs 57

L Proofs for Infinite-Horizon Discounted MDPs 60

M Proofs for LR-EVI with Matrix Estimation using Nuclear Norm Regularization 62

N Additional Theorems for Reference 64

3



1 Introduction

Reinforcement learning (RL) methods have been increasingly popular in sequential decision making
tasks due to their empirical success, e.g., Atari Games [31], StarCraft II [46], and robotics [27]. RL
algorithms can be applied to any sequential decision making problem which can be modeled by a
Markov decision process (MDP) defined over a state space S and an action space A. The agent
interacts with the environment across a horizon of length H. In each step of the horizon, the agent
observes the current state of the environment and takes an action. In response the environment
returns an instantaneous reward and transitions to the next state. The key Markov property that
the dynamics of an MDP must satisfy is that the distribution of the instantaneous reward and
the next state is only a function of the current state and action. As a result it is sufficient for
the agent to only consider policies that define a distribution over the actions given the current
state of the environment. The goal of the agent is to find an optimal policy which maximizes its
cumulative expected reward over the horizon. When the dynamics and reward function of the MDP
are known in advance, that can be solved directly using dynamic programming. Reinforcement
learning considers the setting in which the MDP dynamics are unknown and thus the algorithm
must query from the MDP to both learn the model as well as find an optimal policy.

Despite the empirical success and popularity of RL, its usage in practical applications is limited
by the high data sampling costs in the training process, resulting from poor scaling of RL algorithms
with respect to the size of the state and action spaces. Given a finite-horizon homogeneous MDP
with state space S, action space A, and horizon H, one needs Ω̃

(

|S||A|H3/ϵ2
)

samples given a
generative model to learn an optimal policy [38]. The required number of samples is often too large
as many real-world problems when modeled as a Markov decision process (MDP) have very large
state and action spaces. For example, the n-city Capacitated Vehicle Routing Problem (CVRP),
a classical combinatorial problem from operations research, involves a state space {0, 1}n and an
action space being all partial permutations of n− 1 cities [13].

A key function that is used in the course of solving for an optimal policy is the Qπ function,
which is also referred to as the action-value function of policy π. It is defined over steps h ∈ [H],
states s ∈ S, and actions a ∈ A. Qπ

h(s, a) represents the expected cumulative reward that an agent
would collect if it were at state s at step h, took action a, and subsequently followed the policy π
for all future steps until the end of the horizon. When the state and action space are finite, the
Qπ

h function can be represented as a |S| × |A| matrix. The Q function associated to the optimal
policy is denoted by Q∗. Given Q∗

h, the optimal policy at step h is trivial to find as it would follow
from simply choosing the action that optimizes Q∗

h for each state. Many RL algorithms rely on
estimating the Q∗

h functions across all state action pairs in order to find a near optimal policy,
resulting in the |S||A| sample complexity dependence. Furthermore, the tight lower bound also
suggests one may need to estimate the full Q∗

h function to find the optimal policy in worst case
MDPs.

MDPs with Low Rank Structures. A glaring limitation of general purpose RL algorithms is
that they do not exploit application dependent structure that may be known in advance. Many
real-world systems in fact have additional structure that if exploited should improve computational
and statistical efficiency. The critical question becomes what structure is reasonable to assume,
and how to design new algorithms and analyses to efficiently exploit it. In this work, we focus on
the subclass of MDPs that exhibit latent low-dimensional structure with respect to the relationship
between states and actions, e.g., Q∗

h is low rank when viewed as a |S|-by-|A| matrix. A sufficient
but not necessary condition that would result in such a property is that the transition kernel has
low Tucker rank when viewed as a |S|-by-|S|-by-|A| tensor of state transition probabilities, and the
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expected instantaneous reward function can be represented as a |S|-by-|A| low rank matrix.
While low rank structure has been extensively used in the matrix and tensor estimation litera-

ture, it has not been widely studied in the RL literature, except for the theoretical results from [37]
and empirical results from [56, 34, 33]. However, we will give examples at the end of Section 5 to
illustrate that this property is in fact quite widespread and common in many real world systems.
While the sample complexity under the fully general model scales as |S||A|, we would expect that
the sample complexity under a rank-d model would scale as d(|S|+ |A|), as the low rank assumption
on a matrix reduces the degrees of freedom of Q∗

h from |S||A| to d(|S| + |A|). Even though this
intuition holds true in the classical low rank matrix estimation setting, the additional dynamics of
the MDP introduce complex dependencies that may amplify the error for long horizons. The work
in [37] proposes an algorithm that learns an ϵ-optimal Q function under a low rank assumption on
Q∗

h, resulting in a sample complexity of Õ(poly(d)(|S|+ |A|)exp(H)/ϵ2) in the general finite-horizon
MDP setting. While they do achieve the reduction from |S||A| to poly(d)(|S|+ |A|), they have an
exponential dependence on the horizon that arises from an amplification of the estimation error
due to the MDP dynamics and nonlinearity of low rank matrix estimation. A key contribution
of this work is to characterize conditions under which we are able to achieve both linear sample
complexity on |S| and |A| along with polynomial dependence on H.

The term “low rank” has been used to describe other types of low dimensional models in the
MDP/RL literature, especially in the context of linear function approximation, and we would like
to clarify up front that these models are significantly different. In particular, the typical use of
“low rank MDPs” refers to an assumption that the transition kernel when viewed as a tensor is
low rank with respect to the relationship between the originating state action pair (s, a) and the
destination state s′. This implies that the relationship across time for a given trajectory exhibits a
latent low dimensional structure in that the relationship between the future state and the previous
state and action pair is mediated through low dimensional dynamics. However, this assumption
does not imply that the Q function is low rank when viewed as a matrix, which would imply a low
dimensional relationship between the current state and the action taken at that state. Another
assumption which is easily confused with ours is the assumption that Q∗ is linearly-realizable.
This implies that Q∗ can be written as a linear combination of d matrices {ϕℓ}ℓ∈[d] (each of size
|S| by |A|). While this implies that the set of plausible Q∗ lives in a low dimensional space
parameterized by {ϕℓ}ℓ∈[d], this does not imply that Q∗ is low rank with respect to the relationship
between S and A. The guarantees for RL algorithms under low rank MDP and linearly-realizable
Q∗ structure either require prior knowledge of the feature representation as given by {ϕℓ}ℓ∈[d], or
otherwise do not admit polynomial time algorithms. While assuming a priori knowledge of the
feature representation is often restrictive and unlikely in real applications, this assumption enables
a reduction to supervised learning such that the sample complexity no longer depends on the size
of the state and action space, but only on the dimension of the representation. The low rank
structure we assume in this work does not require any knowledge of the latent low dimensional
representation, but as a result the optimal sample complexity necessarily must still scale linearly
with the size of the state and action space.

Our Contributions. We identify sufficient low-rank structural assumptions that allow for com-
putationally and statistically efficient learning, reducing the sample complexity bounds to scale
only linearly in |S|, |A| and polynomially in H (as opposed to exponential in H in [37] or |S||A| in
the general tabular MDP setting). First, we show that there are additional complexities that arise
from MDPs with long horizons; we provide an example where the optimal action-value function Q∗

is low rank, yet the learner must observe an exponential (in H) number of samples to learn a near
optimal policy when exploiting the low-rank structure of Q∗. This lower bound illustrates that
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exploiting low rank structure in RL is significantly more involved than classical matrix estimation.
We propose a new computationally simple model-free algorithm, referred to as Low Rank Monte
Carlo Policy Iteration (LR-MCPI). Under the assumption that Q∗ is low rank, by additionally
assuming a constant suboptimality gap, we prove that LR-MCPI achieves the desired sample com-
plexity, avoiding the exponential error amplification in the horizon. Additionally we prove that
LR-MCPI also achieves the desired sample complexity when all ϵ-optimal policies π have low rank
Qπ functions. Under the stronger assumption that the transition kernel and reward function have
low rank, we show that the model-free algorithm in [37], which we refer to as Low Rank Empirical
Value Iteration (LR-EVI), also achieves the desired sample complexity. Table 1 summarizes our
sample complexity bounds in their corresponding settings, and compares them with existing results
from literature in the tabular finite-horizon MDP setting; here d refers to the rank parameter.1

MDP Assumptions Sample Complexity

Low-rank Q∗
h & suboptimality gap ∆min > 0 (Theorem 7) Õ

(

d3(|S|+|A|)H4

∆2
min

)

ϵ-optimal policies have low-rank Qπ
h (Theorem 8) Õ

(

d3(|S|+|A|)H6

ϵ2

)

Transition kernels and rewards are low-rank (Theorem 9) Õ
(

d3(|S|+|A|)H5

ϵ2

)

Low-rank Q∗
h & constant horizon [37] Õ

(

d5(|S|+|A|)
ϵ2

)

Tabular MDP with homogeneous rewards [38] Θ̃
(

|S||A|H3

ϵ2

)

Table 1: Our sample complexity bounds alongside results from the literature, where d denotes the
rank.

We extend our results to approximately low-rank MDPs, for which we show that our algorithm
learns action-value functions with error ϵ+O(H2ξ), where ξ is the rank-d approximation error, with
an efficient number of samples. Furthermore, we empirically validate the improved efficiency of our
low-rank algorithms. In the appendix, we show that our algorithm learns near-optimal action-value
functions in a sample-efficient manner in the continuous setting, similar to the results in the table
above. Finally, we prove that using existing convex program based matrix estimation methods
instead of the one in [37] also achieves the desired reduction in sample complexity.

2 Related Work

Tabular Reinforcement Learning. Sample complexity bounds for reinforcement learning algo-
rithms in the tabular MDP setting have been studied extensively, e.g., [3, 53, 11, 26]. Even with a
generative model, Ω

(

|S||A|/ϵ2(1− γ)3
)

samples are necessary to estimate an ϵ-optimal action-value
function [6]. The work [38] presents an algorithm and associated analysis that achieves a matching
upper bound on the sample complexity (up to logarithmic factors), proving that the lower bound
is tight. Our work focuses on decreasing the sample complexity’s dependence on |S| and |A| from
|S||A| to |S|+ |A| under models with a low-rank structure.

Complexity Measures for RL with General Function Approximation. The search for the
most general types of structure that allow for sample-efficient reinforcement learning has resulted
in many different complexity measures, including Bellman rank [22, 15], witness rank [41], Bellman

1The sample complexity bounds of Theorems 7, 8, and 9 presented in the table hide terms that are properties of
the matrix, which are constant under common regularity assumptions (and will be discussed in later sections) and
terms independent of |S| or |A|.
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Eluder dimension [23], and Bilinear Class [16]. For these classes of MDPs with rank d, finding an
ϵ-optimal policy requires Õ

(

poly(d,H)/ϵ2
)

samples. Unfortunately, these complexity measures are
so broad that the resulting algorithms that achieve sample efficiency are often not polynomial time
computable, and they rely on strong optimization oracles in general, e.g., assuming that we can
solve a high dimensional non-convex optimization problem. We remark that our settings, including
those under our strongest assumptions, cannot be easily incorporated into those frameworks.

Linear Function Approximation - Linear Realizability and Low Rank MDPs. To combat
the curse of dimensionality, there is an active literature that combines linear function approximation
with RL algorithms. As mentioned in the introduction, although these models are referred to as
“low rank”, they are significantly different than the type of low rank structure that we consider in
our model. Most notably, the resulting Q∗ matrix may not be low rank. As a result we only provide
a brief overview of the results in this literature, largely to illustrate the types of properties that one
would hope to study for our type of low rank model. One model class in this literature assumes that
Q∗ is linearly-realizable with respect to a known low dimensional feature representation, given by a
known feature extractor ϕ : S×A→ R

d for d≪ |S|, |A|. [50, 51] show that an exponential number
of samples in the minimum of the dimension d or the time horizon H may still be required under
linear realizability, implying that additionally assumptions are required. These results highlight an
interesting phenomenon that the dynamics of the MDP introduce additional complexities for linear
function approximation in RL settings that are not present in supervised learning.

A more restrictive model class, sometimes referred to as Linear/Low-rank MDPs, imposes lin-
earity on the dynamics of the MDP itself, i.e. the transition kernels and reward functions are linear
with respect to a known low dimensional feature extractor ϕ [24, 55, 54, 48, 19]. As this does not
impose structure on the relationship between s and a, the resulting Q functions may not be low
rank. When the feature extractor is known, there are algorithms that achieve sample complexity or
regret bounds that are polynomial in d with no dependence on |S| or |A|. There have been attempts
to extend these results to a setting where the feature mapping is not known [2, 32, 45], however
the resulting algorithms are not polynomial time, as they require access to a strong nonconvex
optimization oracle. Furthermore they restrict to a finite class of latent representation functions.

Low Rank Structure with respect to States and Actions. There is a limited set of works
which consider a model class similar to ours, in which there is low rank structure with respect
to the interaction between the states and actions and hence their interaction decomposes. This
structure could be imposed on either the transition kernel, or only on the optimal Q∗ function.
[56, 34, 33] provide empirical results showing that Q∗ and near-optimal Q functions for common
stochastic control tasks have low rank. Their numerical experiments demonstrate that the per-
formance of standard RL algorithms, e.g., value iteration and TD learning, can be significantly
improved in combination with low-rank matrix/tensor estimation methods. The theoretical work
[37] considers the weakest assumption that only imposes low rankness on Q∗. They develop an al-
gorithm that combines a novel matrix estimation method with value iteration to find an ϵ-optimal
action-value function with Õ

(

d5(|S|+ |A|)/ϵ2
)

samples for infinite-horizon γ-discounted MDPs as-
suming that Q∗ has rank d. While this is a significant improvement over the tabular lower bound
Ω̃
(

|S||A|/((1− γ)3ϵ2)
)

[6], their results require strict assumptions. The primary limitation is that
they require the discount factor γ to be bounded from above by a small constant, which effectively
limits their results to short, constant horizons. Lifting this limitation is left as an open question in
their paper. In this work, we provide a concrete example that illustrates why long horizons may
pose a challenge for using matrix estimation in RL. Subsequently we show that this long horizon
barrier can be overcome by imposing additional structural assumptions. The algorithm in [37] also
relies on prior knowledge of special anchor states and actions that span the entire space. We will
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show that under standard regularity conditions, randomly sampling states and actions will suffice.

Matrix Estimation. Low-rank matrix estimation methods focus on recovering the missing entries
of a partially observed low-rank matrix with noise. The field has been studied extensively with
provable recovery guarantees; see the surveys [9, 12]. However, the majority of recovery guarantees
of matrix estimation are in the Frobenius norm instead of an entry-wise/ℓ∞ error bound, whereas
a majority of common analyses for reinforcement learning algorithms rely upon constructing en-
trywise confidence sets for the estimated values. Matrix estimation methods with entry-wise error
bounds are given in [10, 14, 1], but all require strict distributional assumptions on the noise, e.g.,
independent, mean-zero sub-Gaussian/Gaussian error. The matrix estimation method proposed
in [37] provides entry-wise error guarantees for arbitrary bounded noise settings and is the method
we use in our algorithm in order to aid our analysis.

3 Preliminaries

We consider a standard finite-horizon MDP given by (S,A, P,R,H) [42]. Here S and A are the
finite state and action spaces, respectively. H ∈ Z+ is the time horizon. P = {Ph}h∈[H] is the
transition kernel, where Ph(s

′|s, a) is the probability of transitioning to state s′ when taking action
a in state s at step h. R = {Rh}h∈[H] is the reward function, where Rh : S × A → ∆([0, 1]) is the
distribution of the reward for taking action a in state s at step h. We use rh(s, a) := Er∼Rh(s,a)[r]
as the mean reward. A stochastic, time-dependent policy of an agent has the form π = {πh}h∈[H]

with πh : S → ∆(A), where the agent selects an action according to the distribution πh(s) at time
step h when at state s.

For each policy π, the value function and action-value function of π represent the expected total
future reward obtained from following policy π given a starting state or state-action pair at step h,

V π
h (s) := E

[

∑H
t=h rt(st, at)

∣

∣

∣ sh = s
]

, (1)

Qπ
h(s, a) := E

[

∑H
t=h rt(st, at)

∣

∣

∣ sh = s, ah = a
]

, (2)

where at ∼ πt(st) and st+1 ∼ Pt(·|st, at). The optimal value and action-value functions are given
by V ∗

h (s) := supπ V
π
h (s) and Q∗

h(s, a) := supπ Q
π
h(s, a), respectively, for all s ∈ S, h ∈ [H]. These

functions satisfy the Bellman equations

V ∗
h (s) = max

a∈A
Q∗

h(s, a), Q∗
h(s, a) = rh(s, a) + Es′∼Ph(·|s,a)[V

∗
h+1(s

′)], ∀s, a, h (3)

with V ∗
H+1(s) = 0. For an MDP with finite spaces and horizon, there always exists an optimal

policy π∗ that satisfies V π∗

h (s) = V ∗
h (s) for all s, h.

The primary goal in this work is to find a near-optimal policy or action-value function. For
ϵ > 0, π is an ϵ-optimal policy if |V ∗

h (s) − V π
h (s)| ≤ ϵ, ∀(s, h) ∈ S × [H]. Similarly, Q = {Qh}h∈[H]

is called an ϵ-optimal action-value function if |Q∗
h(s, a) − Qh(s, a)| ≤ ϵ, ∀(s, a, h) ∈ S × A × [H].

We will view Q∗
h, Q

π
h and rh as |S|-by-|A| matrices and Ph(·|·, ·) as an |S|-by-|S|-by-|A| tensor, for

which various low-rank assumptions are considered. For a given function V : S → R, we sometimes
use the shorthand [PhV ](s, a) := Es′∼Ph(·|s,a)[V (s′)] for the conditional expectation under Ph.

Throughout this paper, we assume access to a simulator (a.k.a. the generative model framework,
introduced by [25]), which takes as input a tuple (s, a, h) ∈ S × A× [H] and outputs independent
samples s′ ∼ Ph(·|s, a) and r ∼ Rh(s, a) . This assumption is one of the stronger assumptions in
reinforcement learning literature, but common in the line of work that studies sample complexity
without directly addressing the issue of exploration, e.g., [38, 3].
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Notation. Let a ∧ b := min(a, b), a ∨ b := max(a, b), δa denote the distribution over A that puts
probability 1 on action a, σi(M) denote the i-th largest singular value of a matrix M , and Mi

denote the i-th row. The n-by-n identity matrix is denoted by In×n, and [H] := {1, . . . , H}. We
use several vector and matrix norms: Euclidean/ℓ2 norm ∥ · ∥2, spectral norm ∥M∥op = σ1(M),
nuclear norm ∥M∥∗, entrywise ℓ∞ norm ∥M∥∞ (largest absolute value of entries), and Frobenius

norm ∥M∥F . We define the condition number of a rank-d matrix M as κM := σ1(M)
σd(M) .

4 Information Theoretic Lower Bound

While one may hope to learn the optimal action-value functions when only assuming that Q∗
h is low

rank, we argue that the problem is more nuanced. Specifically, we present two similar MDPs with
rank-one Q∗, where the learner has complete knowledge of the MDP except for one state-action
pair at each time step. As the learner is restricted from querying that specified state-action pair,
in order to distinguish between the two MDPs and learn the optimal policy, the learner must use
the low-rank structure to estimate the unknown entry. We then show that doing so requires a
exponential number of observations in the horizon H.

Consider MDPs M θ = (S,A, P,Rθ, H) indexed by a real number θ, where S = A = {1, 2}. At
h = 1, rθ1(s1, a) = 0, P1(·|s0, a) = δa for all a ∈ A, and the starting state s1 is deterministic. For
h > 1,

rθH =

(

1
2

1 + 2θ

)

, rθh =

(

−1
4 0
−1

2 2H−hθ

)

, and Ph(·|s, a) = δs, ∀s, a, ∀h ∈ {2, . . . , H−1},

where δs denotes the Dirac delta distribution at s. The rewards are deterministic except for the
terminal reward at state 2, where the reward distribution Rθ

H(2) is such that the reward takes value
2 with probability 1

2 + θ, and takes value 0 otherwise.
If action a = 1 (resp., 2) is taken at the initial step h = 1, the MDP will transition to state

1 (resp., 2) and then stay at this state in all subsequent steps. Thus learning the optimal policy
only depends on determining the optimal action in step 1. Let θ take one of two possible values:
θ1 = − 3

4·2H−1 and θ2 =
3

4·2H−1 . To determine the correct action at the initial step, one must correctly
identify θ. We will show that identifying θ takes an exponential number of samples in the horizon
H.

Lemma 1. The optimal policy for the above MDP (for both values of θ) for steps h ≥ 1 is π∗
h(1) =

π∗
h(2) = 2 for all h ∈ {2, . . . , H − 1}. Furthermore,

Q∗,θ
h =

(

1
4

1
2

1
2 + 2H−hθ, 1 + 2H−h+1θ

)

, V ∗,θ
h =

(

1
2

1 + 2H−h+1θ

)

, ∀h ∈ {2, . . . , H − 1}.

Lemma 1, proved in Appendix E, shows that Q∗
h is rank one. We will calculate the optimal

Q function and policy at step h = 1 in the proof of Theorem 2 after introducing the observation
model.

Observation model: The learner has exact knowledge of rθH(1), rθh(s, a), Ph, r
θ
1, P1 for all (s, a) ∈

Ω := {(1, 1), (1, 2), (2, 1)} and h ∈ [H − 1]. Note that these known rewards and transitions are
independent of θ. In addition, the learner is given n iid samples from Rθ

H(2).
One interpretation of this observation model is that the learner has infinitely many samples of

the form (s, a, s′), s′ ∼ Ph(·|s, a) for each (s, a), so Ph can be estimated with zero error. Similarly,
the learner has infinitely many samples from rθH(1) and rθh(s, a) for (s, a) ∈ Ω. However, the learner
cannot observe rθh(2, 2) and hence must estimate Qθ

h(2, 2) using the low-rank structure. Finally, n
noisy observations of the terminal reward rθH(2) at state 2 are given.
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Theorem 2. Consider the above class of MDPs and observation model. To learn a 1/8-optimal
policy with probability at least 0.9, the learner must observe n = Ω(4H) samples from Rθ

H(2).

Proof. From Lemma 1, we have V ∗,θ1
2 =

(

1/2
1/4

)

and V ∗,θ2
2 =

(

1/2
7/4

)

. Hence, at h = 1 the

optimal action is π∗
1(s0) = 1 for θ = θ1 and π∗

1(s0) = 2 for θ = θ2. If θ = θ1 and action 2 is taken
instead, π1(s0) = 2, then this action incurs a 1/4 penalty in value relative to the optimal action, i.e.,

Q∗,θ1
1 (s0, 2) ≤ Q∗,θ1

1 (s0, 1)− 1
4 . If θ = θ2 and action 1 is taken, π1(s0) = 1, then this action incurs a

5/4 penalty relative to the optimal action. Therefore, to learn an ϵ-optimal policy for ϵ < 1/4, e.g.,
ϵ = 1/8 as stated in the theorem, the learner must correctly determine whether θ = θ1 or θ = θ2.
It is well known from existing literature, see e.g., [49, 4, 29], that one needs Ω

(

1/(2θ1 − 2θ2)
2
)

samples to distinguish two (scaled) Bernoulli distributions with mean 1/2 + θ, θ ∈ {θ1, θ2} with

probability at least 0.9. Substituting (2θ1 − 2θ2)
2 > 4H−1

9 proves the result.

Consider the following operational interpretation of the above example. The learner can use
the rank-one structure to estimate Q∗

h(2, 2) given Q∗
h(s, a), (s, a) ∈ Ω as follows: Q∗

h(2, 2) =
Q∗

h(1, 2)Q
∗
h(2, 1)/Q

∗
h(1, 1), coinciding with the matrix estimation algorithm in [37]. Lemma 1 shows

that an ε = 2H−hθ error in Q∗
h(2, 1) leads to a 2 · ε = 2H−h+1θ error in Q∗

h(2, 2) and Q∗
h−1(2, 1).

As such, the error is amplified exponentially when propagating backwards through the horizon,
showing that this low-rank based procedure is inherently unstable.

This example illustrates that reinforcement learning with low-rank structure is more nuanced
than low-rank estimation without dynamics, and that the constant horizon assumption in [37] is
not merely an artifact of their analysis. Furthermore, as the entries of Q∗

h are similar in magnitude,
the blow up in error is not due to the missing entry containing most of the signal. This motivates us
to consider additional assumptions beyond Q∗

h being low rank. In the above example, the optimal
state-action pair (2, 2) is not observed, and the reward rh and transition kernel Ph are not low-rank.
To achieve stable and sample-efficient learning with long horizons, we will consider when additional
structures in the MDP dynamics can be exploited to identify and sample from the optimal action.

5 Assumptions

In this section, we present three low rank settings that enable sample-efficient reinforcement learn-
ing, with each setting increasing in the strength of the low rank structural assumption.

Assumption 1 (Low-rank Q∗
h). For all h ∈ [H], the rank of the matrix Q∗

h is d. Consequently,
Q∗

h can be represented via its singular value decomposition Q∗
h = U (h)Σ(h)(V (h))⊤, for a |S| × d

orthonormal matrix U (h), a |A| × d orthonormal matrix V (h), and a d× d diagonal matrix Σ(h).

Assumption 1 imposes that the action-value function of the optimal policy is low rank. This
assumption can be contrasted with another common structural assumption in the literature, namely
linearly-realizable Q∗, meaning that Q∗

h(s, a) = w⊤
h ϕ(s, a) for some weight vector wh ∈ R

d and a
known feature mapping ϕ : S ×A→ R

d [50, 51]. In comparison, Assumption 1 decomposes ϕ into
the product of separate feature mappings on the state space U (h) and the action space V (h). Hence,
linearly-realizable Q∗ does not imply low-rank Q∗

h. Furthermore, we assume the latent factors U (h)

and V (h) are completely unknown, whereas the linear function approximation literature typically
assumes ϕ is known or approximately known.

Assumption 1 only imposes low-rankness on Q∗
h, allowing for the Qπ function associated to

non-optimal policies π to be full rank. Assumption 1 is likely too weak, as Theorem 2 illustrates
a doubly exponential growth in policy evaluation error under only this assumption. Below we
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present three additional assumptions. Each of these assumptions enable our algorithms to achieve
the desired sample complexity when coupled with Assumption 1.

Assumption 2 (Suboptimality Gap). For each (s, a) ∈ S ×A, the suboptimality gap is defined as
∆h(s, a) := V ∗

h (s)−Q∗
h(s, a). Assume that there exists an ∆min > 0 such that

min
h∈[H],s∈S,a∈A

{∆h(s, a) : ∆h(s, a) > 0} ≥ ∆min.

Assumption 2 stipulates the existence of a suboptimality gap bounded away from zero. In the
finite setting with |S|, |A|, H < ∞, there always exists a ∆min > 0 for any non-trivial MDP in
which there is at least one suboptimal action. This is an assumption commonly used in bandit and
reinforcement learning literature.

Assumption 3 (ϵ-optimal Policies have Low-rank Q Functions). For all ϵ-optimal policies π,
the associated Qπ

h matrices are rank-d for all h ∈ [H], i.e., Qπ
h can be represented via Qπ

h =
U (h)Σ(h)(V (h))⊤ for some |S|×d matrix U (h), |A|×d matrix V (h), and d×d diagonal matrix Σ(h).

Assumption 3 imposes that all ϵ-optimal policies π have low-rank Qπ
h. We have not seen this

assumption in existing literature. It is implied by the stronger assumption that all policies have low-
rank Qπ

h; see Appendix B for an MDP that satisfies Assumption 3 but fails the stronger assumption.
The stronger assumption is analogous to the property that Qπ is linear in the feature map ϕ for
all policies, which is commonly used in work on linear function approximation and linear MDPs.

To state our strongest low-rank assumption, we first recall the definition of tensor Tucker rank.

Definition 3 (Tucker Rank [28]). The Tucker rank of a tensor X ∈ R
n1×n2×n3 is the smallest

(d1, d2, d3) such that there exists a core tensor G ∈ R
d1×d2×d3 and orthonormal latent factor matrices

Ai ∈ R
ni×di for i ∈ [3] such that for all (a, b, c) ∈ [n1]× [n2]× [n3],

X(a, b, c) =
∑

ℓ1∈[d1]

∑

ℓ2∈[d2]

∑

ℓ3∈[d3]
G(ℓ1, ℓ2, ℓ3)A1(a, ℓ1)A2(b, ℓ2)A3(c, ℓ3).

Our strongest low-rank assumption imposes that the expected reward functions are low rank,
and the transition kernels have low Tucker rank along one dimension.

Assumption 4 (Low-rank Transition Kernels and Reward Functions). The expected reward func-
tion has rank d, and the transition kernel Ph has Tucker rank (|S|, |S|, d) or (|S|, d, |A|), with shared
latent factors. For the Tucker rank (|S|, |S|, d) case, this means that for each h ∈ [H], there exists
a |S| × |S| × d tensor U (h), an |A| × d matrix V (h), and an |S| × d matrix W (h) such that

Ph(s
′|s, a) =∑d

i=1 U
(h)(s′, s, i)V (h)(a, i) and rh(s, a) =

∑d
i=1W

(h)(s, i)V (h)(a, i).

For the Tucker rank (|S|, d, |A|) case, this means that for each h ∈ [H], there exists a |S| × |A| × d
tensor V (h), an |S| × d matrix U (h), and an |A| × d matrix W (h) such that

Ph(s
′|s, a) =∑d

i=1 U
(h)(s, i)V (h)(s′, a, i) and rh(s, a) =

∑d
i=1 U

(h)(s, i)W (h)(a, i).

Assumption 4 is our strongest low-rank structural assumption as it implies that the Qπ
h functions

associated with any policy π are low rank, which subsequently implies both Assumptions 3 and 1.
In fact, Assumption 4 implies that for any value function estimate V̂h, the matrix rh + [PhV̂h+1] is
low rank, as stated in the following proposition.

11



Proposition 4. If the transition kernel has Tucker rank (|S|, |S|, d) or (|S|, d, |A|) and the expected
reward function has rank d with shared latent factors, i.e., Assumption 4 holds, then the matrix
rh + [PhV̂h+1] has rank at most d for any V̂h+1 ∈ R

|S|.

See Appendix F for the proof. Proposition 4 results from the fact that for any fixed h, the
matrices corresponding to rh and Ph(s

′|·, ·) for all s′ share either the same column or row space,
which is critically used in the analysis of our Low Rank Empirical Value Iteration algorithm.

Next we present several definitions used to characterize the error guarantees of the matrix
estimation algorithm. It is commonly understood in the matrix estimation literature that other
properties of the matrix beyond low rank, such as its incoherence or condition number, govern
how efficiently a matrix can be estimated. Consider a trivial rank-1 MDP where H = 1 and the
reward is a sparse matrix with only d nonzero entries taking value 1. Since the locations of the
nonzero entries are unknown, we will likely observe only zeros upon sampling any small subset of
entries. Estimation using a small number of samples would be possible, however, if an expert were
to provide knowledge of a special set of rows and columns, which have been referred to as anchor
states and actions in [37]. For some sets S#

h ⊆ S and A#
h ⊆ A, we use Qh(S

#
h , A#

h ) to denote the

submatrix obtained by restricting Qh to state-action pairs from S#
h ×A#

h .

Definition 5 ((k, α)-Anchor States and Actions). A set of states S#
h ⊂ S and a set of actions

A#
h ⊂ A are (k, α)-anchor states and actions for a rank-d matrix Qh if |S#

h |, |A
#
h | ≤ k, the submatrix

Qh(S
#
h , A#

h ) has rank d, and ∥Qh∥∞/σd(Qh(S
#
h , A#

h )) ≤ α.

Any set of valid anchor states and anchor actions must have at least size d in order for the
associated anchor submatrix to be rank d. As the full matrix Qh has rank d, this also implies that
all rows (resp., columns) of Qh can be written as a linear combination of the rows associated to

states S#
h (resp., columns associated to actions A#

h ). The parameter α depends on the quality of
the anchor sets; sub-matrices that are close to being singular result in large α. We remark that
assuming knowledge of a minimal set of anchor states and actions is common in literature, i.e.,
anchor-based topic modelling [5, 8] and linear feature-based RL [48, 55]. Furthermore, Shah et al.
[37] posit that it suffices empirically to choose states and actions that are far from each other as
anchor states and actions. However, in the worst case, finding valid anchor states and actions may
require significant a priori knowledge about the unknown matrix.

Alternately, anchor states and actions can be randomly constructed for matrices that satisfy
standard regularity conditions such as incoherence, commonly used in matrix estimation [7].

Definition 6 (Incoherence). Let Qh ∈ R
|S|×|A| be a rank-d matrix with singular value decomposition

Qh = UΣV ⊤ with U ∈ R
|S|×d and V ∈ R

|A|×d. Qh is µ-incoherent if maxi∈[|S|] ∥Ui∥2 ≤
√

µd/|S|
and maxj∈[|A|] ∥Vj∥2 ≤

√

µd/|A|, where Ui denotes the i-th row of a matrix U .

A small incoherence parameter µ ensures that the masses of U and V are not too concentrated
in a couple of rows or columns. Consequently, a randomly sampled subset of rows (resp., columns)
will span the row (resp., column) space, so these subsets of rows and columns contain sufficient
information to reconstruct the entire matrix. Both µ and κ, the condition number of Qh, will
be used in the analysis to show that the entrywise error amplification from the matrix estimation
method scales with µ, d, κ instead of the size of the state or action space, k, or α.

Discussion of Assumptions. While low rank structure with incoherence is widely accepted in
the matrix and tensor estimation literature, we provide a few examples to illustrate how these
properties could also naturally arise in MDPs. Consider a continuous MDP which is converted
to a tabular MDP via discretization, which is a common approach for tackling continuous MDPs.
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As the size of the discretization is artificial, the true complexity of the MDP is governed by the
structure of the continuous MDP, which is independent of the discretization size. As long as the
reward function and dynamics are sufficiently smooth with respect to the continuous MDP, the
resulting tabular MDP will have approximate low-rank structure as d would be at most logarithmic
with respect to |S|, |A|, due to a universal low rank property of smooth functions [44]. Additionally,
the incoherence condition intuitively states that there cannot be a disproportionately small set of
rows or columns that represent a disproportionately large amount of the signal. For MDPs that are
derived from uniform discretizations of continuous MDPs with smoothness properties, incoherence
also arises naturally as there will be a constant fraction of the rows or columns representing any
fixed length interval of the continuous state space. Even in inherently discrete settings such as
a recommendation system with users and movies, when the population is sufficiently large, one
could view the discrete population of states/actions as representing a sample from an underlying
continuous population with appropriate smoothness conditions. Finally, in many physical systems
as relevant to most stochastic control tasks, there exist low dimensional feature representations
that capture the “sufficient statistics” of the state, which fully govern the dynamics of the system.

6 Algorithm

Our algorithm follows from a natural synthesis of matrix estimation with empirical value iteration
and Monte Carlo policy iteration. We first describe the vanilla approximate dynamic programming
algorithms for the general tabular MDP settings. Empirical value iteration simply replaces the
expectation in the Bellman update in Equation (3) with empirical samples [20]. Specifically, to
estimate Q∗

h(s, a), one collects N samples of one step transitions, which entails sampling a reward
and next state from Rh(s, a) and Ph(·|s, a). Let r̂h(s, a) denote the empirical average reward of
the N samples from Rh(s, a). Let P̂h(·|s, a) denote the empirical distribution over N next states
sampled from Ph(·|s, a). Given an estimate V̂h+1 for the optimal value function at step h+ 1, the
empirical Bellman update equation is

Q̂h(s, a) = r̂h(s, a) + Es′∼P̂h(·|s,a)[V̂h+1(s
′)], and V̂h(s) = max

a∈A
Q̂h(s, a). (4)

Evaluating Q̂h and V̂h requires collecting N samples for each of the |S||A| state action pairs (s, a).
Monte Carlo policy iteration for tabular MDPs approximates Qπ

h(s, a) for a policy π by replacing
the expectation in the definition (2) of Qπ with empirical trajectory samples, which is similar to
first-visit Monte Carlo policy evaluation except we use the generative model to start at a specified
state-action pair and time step [42]. This involves sampling N independent trajectories starting
from state-action pair (s, a) at step h and following a given policy π until the end of the horizon
H. For a fixed policy π and state action pair (s, a), let the sequence of rewards along the i-th
sampled trajectory be denoted (rih, r

i
h+1, . . . r

i
H). We will use r̂cumh (s, a) to denote the empirical

average cumulative reward across the N trajectories, given by

r̂cumh (s, a) := 1
N

∑N
i=1

∑H
t=h r

i
t. (5)

Given an estimate of the optimal policy for steps greater than h, denoted by (π̂h+1, π̂h+2, . . . π̂H),
the Monte Carlo estimate for the optimal action-value function and optimal policy at step h are

Q̂h(s, a) = r̂cumh (s, a), and π̂h(s) = δa for a = argmax
a′∈A

Q̂h(s, a
′), (6)

where the trajectories used to compute r̂cumh (s, a) are sampled by following the policy (π̂h+1, π̂h+2, . . . π̂H),

and recall δa denotes the distribution that puts probability 1 on action a. Computing Q̂h and π̂h
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involves sampling |S||A|N trajectories, which are each of length H − h, which results in a sample
complexity of |S||A|N(H − h) individual transitions from the MDP.

The dependence on |S||A| in the sample complexity for both of the classical algorithms described
above is due to using empirical samples to evaluate Q̂h for every state-action pair (s, a) ∈ S × A.
The assumption that Q∗

h is at most rank d imposes constraints on the relationship between Q∗
h(s, a)

at different state-action pairs, such that by approximating Q∗
h using empirical samples at only

O(d|S|+d|A|) locations, we should intuitively be able to use the low rank constraint to predict the
remaining entries. Let Ωh ⊂ S × A denote the subset of entries (s, a) for which we use empirical
samples to approximate Q̂h(s, a), computed via either (4) or (6). Given estimates of Q̂h(s, a) at
(s, a) ∈ Ωh, we can then use a low-rank matrix estimation subroutine to estimate the Q function
for (s, a) ̸∈ Ω. This is the core concept of our algorithm, which we then combine with the two
classical approaches of empirical value iteration and Monte Carlo policy iteration.

6.1 Formal Algorithm Statement

We present two Low Rank RL algorithms, which take as input any matrix estimation algorithm,
ME(·), that takes in a subset of entries of the matrix and returns an estimate of the whole matrix, the
sets {Ωh}h∈[H] that indicate the state action pairs for which data should be collected by querying
the MDP generative model, and {Ns,a,h}(s,a,h)∈S×A×H , which denotes how many samples to query
at state-action pair (s, a) at timestep h. We use “Low Rank Empirical Value Iteration” (LR-EVI)
to refer to the algorithm which uses option (a) for Step 1 below, and we use “Low Rank Monte
Carlo Policy Iteration” (LR-MCPI) to refer to the algorithm which uses option (b) for Step 1.

Hyperparameters: {Ωh}h∈[H], {Ns,a,h}(s,a,h)∈S×A×H , and ME(·)
Initialize: Set V̂H+1(s) = 0 for all s, and let π̂H+1 be any arbitrary policy.

For each h ∈ {H,H − 1, H − 2, . . . 1} in descending order,

• Step 1: For each (s, a) ∈ Ωh, compute Q̂h(s, a) using empirical estimates according to either
(a) empirical value iteration or (b) Monte Carlo policy evaluation.

(a) Empirical Value Iteration: Collect Ns,a,h samples of a single transition starting from

state s and action a at step h. Use the samples to estimate Q̂h(s, a) according to

Q̂h(s, a) = r̂h(s, a) + Es′∼P̂h(·|s,a)[V̂h+1(s
′)],

where r̂h(s, a) denotes the empirical average reward of the Ns,a,h samples from Rh(s, a),

and P̂h(·|s, a) denotes the empirical distribution over the Ns,a,h states sampled from
Ph(·|s, a).

(b) Monte Carlo Policy Evaluation: Collect Ns,a,h independent full trajectories starting
from state s and action a at step h until the end of the horizon H, where actions are
chosen according to the estimated policy (π̂h+1, π̂h+2, . . . π̂H). Let Q̂h(s, a) = r̂cumh (s, a),
where r̂cumh (s, a) denotes the empirical average cumulative reward across the Ns,a,h tra-
jectories starting from (s, a) at step h. If (rih, r

i
h+1, . . . r

i
H) denotes the sequence of

rewards along the i-th sampled trajectory from (s, a) at step h, then

Q̂h(s, a) = r̂cumh (s, a) := 1
Ns,a,h

∑Ns,a,h

i=1

∑H
t=h r

i
t.

• Step 2: Predict the action-value function for all (s, a) ∈ S ×A according to ME(·):

Q̄h = ME

(

{Q̂h(s, a)}(s,a)∈Ωh

)

.
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• Step 3: Compute the estimates of the value function and the optimal policy according to

V̂h(s) = max
a∈A

Q̄h(s, a) and π̂h(s) = δargmax Q̄h(s,a)
.

The tabular MDP variant of the algorithm proposed in [37] is equivalent to LR-EVI where

anchor states S#
h and actions A#

h are given and Ωh = (S#
h × A) ∪ (S × A#

h ). Furthermore, LR-
EVI is equivalent to a modification of the algorithm in [56] with a different choice for the matrix
estimation algorithm used in Step 2 and the corresponding sample set Ωh constructed in Step 1.

6.2 Matrix Estimation Subroutine

A critical piece to specify for the algorithm above is how to choose the subset Ωh, and what
matrix estimation subroutine ME(·) to use to predict the full Qh function, where Qh is Q∗

h, Q
π
h,

or Q′
h = rh + PhV̂h+1 depending on the low-rank setting, given Q̂h(s, a) for (s, a) ∈ Ωh. The

performance of any matrix estimation algorithm will depend both on the selected subset Ωh, as
well as the entrywise noise distribution on Q̂h(s, a) relative to the “ground truth” low-rank matrix.
As a result, the subset Ωh should be determined jointly with the choice of matrix estimation
algorithm.

A limitation of a majority of results in the classical matrix estimation literature is that they
do not admit entrywise bounds on the estimation error, and the analyses may be sensitive to the
distribution of the observation error , i.e., require mean-zero sub-Gaussian noise. When estimating
Q∗

h, the observations are biased unless one has learned the optimal policy at time steps h + 1
to H. Since Qh is low-rank under our assumptions, our estimates of the observations for the
matrix estimation method are unbiased with bounded noise, therefore enabling us to relax the
small discount factor requirement.

Many standard analyses of RL algorithms rely upon the construction of entrywise confidence
sets for the estimates of the Q function. Our results and analyses rely on entrywise error bounds for
the matrix estimation step that balance the worst case entrywise error amplification with the size
of the observation set. As such, similar theoretical guarantees can be obtained for our algorithm
under any matrix estimation method that admits suitable entrywise error bounds.

The majority of our theoretical results will be shown for the variant of the algorithm that uses
a matrix estimation algorithm from [37], which is incidentally equivalent to exploiting a skeleton
decomposition of a low rank matrix [18]. Their algorithm uses a specific sampling pattern, in which

Ωh is constructed according to Ωh = (S# × A) ∪ (S × A#), where S#
h and A#

h are assumed to be

valid anchor states and actions for the matrix Qh (cf. Definition 5). Given estimates Q̂h(s, a) for
all (s, a) ∈ Ωh, their algorithm estimates the Q function at all state action pairs according to

Q̄h(s, a) = Q̂h(s,A
#)
[

Q̂h(S
#, A#)

]†
Q̂h(S

#, a), (7)

where M † denotes the pseudoinverse of M , and Q̄ is the output of the matrix estimation algorithm.
The simple explicit formula for the estimates enables direct entrywise error bounds. Instead of
ensuring a uniform error bound over each state-action pair in (S# ×A) ∪ (S ×A#), we show that

additional sampling of the anchor submatrix Ω#
h = S# × A# yields a smaller error amplification

compared to the method propsosed in [37]. In addition, we show that if Qh is µ-incoherent,
introduced in Definition 6, Õ(µd, κ)-anchor states and actions can be constructed randomly by
including each state in S# independently with probability p1 = Θ(µd log(|S|)/|S|) and including
each action in A# independently with probability p2 = Θ(µd log(|S|)/|S|). As a result, a priori
knowledge of the anchor states and actions is not required under these regularity conditions.
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In Section A.3, we show that our theoretical results also extend to the variation of our algorithm
that uses soft nuclear norm minimization for matrix estimation alongside uniform Bernoulli sam-
pling, utilizing entrywise guarantees shown in [10]. One matrix estimation algorithm that solves the
soft nuclear norm minimization problem is Soft-Impute [30]. Soft-Impute proceeds by iteratively
filling in the missing values by using a soft-thresholded singular value decomposition on the matrix
of observed entries. In contrast to the sampling pattern used in the matrix estimation method
given in Equation 13, the sampling pattern needed to ensure the entrywise guarantees from [10]
assumes that each state-action pair is observed with probability pSI .

We use LR-EVI (resp., LR-MCPI) + SI to refer to the algorithm that uses option (a) (resp., op-
tion (b)) for Step 1 and Soft-Impute as the matrix estimation method. In Section 8, we empirically
compare LR-EVI and LR-MCPI for both variations of matrix estimation algorithms.

7 Main Results

In this section, we present the sample complexity, i.e., an upper bound on the number of observed
samples of the reward and next state, guarantees for LR-MCPI and LR-EVI with the matrix
estimation method presented in Section 6.2 under different low-rank assumptions, from the weakest
to the strongest. For (s, a) /∈ Ω#

h = S#
h ×A#

h , we denote Ns,a,h = Nh, For (s, a) ∈ Ω#
h = S#

h ×A#
h ,

we denote Ns,a,h = N#
h = α2k2Nh, such that entries in the anchor submatrix get a factor of α2k2

more samples.

Theorem 7. Assume that Q∗
h is rank d and has suboptimality gap ∆min (Assumptions 1 and 2), and

S#
h , A#

h are (k, α)-anchor states and actions for Q∗
h for all h ∈ [H]. Let Nh = Õ

(

(H − h+ 1)2α2k2/∆2
min

)

and N#
h = α2k2Nh. LR-MCPI returns an optimal policy with probability at least 1−δ with a sample

complexity of Õ
(

(|S|+ |A|)α2k3H4/∆2
min + α4k6H4/∆2

min

)

.

The dependence on the rank d is not explicitly shown in the sample complexities stated in
these theorems as it is captured by k, which we bound with Lemma 10 (presented later in this
section). In the tabular setting, there always exists a ∆min > 0. This sample complexity improves
upon |S||A| when ∆min is greater than |S|−1/2 ∧ |A|−1/2. When ∆min is small, if stronger low-rank
assumptions also hold, then the results in Theorems 8 and 9 below may provide stronger bounds.

Under the assumption that the Qπ
h function is low rank for all ϵ-optimal policies, Theorem 8

states that LR-MCPI learns an ϵ-optimal policy with a sample complexity independent of ∆min.

Theorem 8. Assume that for all ϵ-optimal policies π, Qπ
h is rank d (Assumption 3), and S#

h , A#
h

are (k, α)-anchor states and actions for Qπ̂
h, where π̂ is the learned policy from LR-MCPI for all

h ∈ [H]. Let Nh = Õ
(

(H − h+ 1)2α2k2H2/ϵ2
)

and N#
h = α2k2Nh. Then, LR-MCPI returns an

ϵ-optimal policy and action-value function with probability at least 1 − δ with a sample complexity
of Õ

(

(|S|+ |A|)α2k3H6/ϵ2 + α4k6H6/ϵ2
)

.

The strongest assumption that the transition kernel has low Tucker rank and the reward function
is low rank, implies that Qπ

h for all policies π is low rank. As such, the result in Theorem 8 also
implies an efficient sample complexity guarantee for LR-MCPI under Assumption 4. We can further
remove a factor of H by using LR-EVI instead. Empirical value iteration (see Step 1(a)) reduces
the sample complexity by a factor of H since it does not require sampling a full rollout of the policy
to the end of the horizon, as required for the Monte Carlo estimates (see Step 1(b)).

Theorem 9. Assume that for any ϵ-optimal value function Vh+1, the matrix corresponding to
Q′

h = [rh + [PhVh+1]] is rank d (a consequence of Assumption 4), and S#
h , A#

h are (k, α)-anchor
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states and actions for Q̂′
h = [rh + [PhV̂h+1]], where V̂h+1 is the learned value function from LR-

EVI for all h ∈ [H]. Let Nh = Õ
(

(H − h+ 1)2α2k2H2/ϵ2
)

and N#
h = α2k2Nh. Then, LR-EVI

returns an ϵ-optimal Q function and policy with probability at least 1− δ with a sample complexity
of Õ

(

(|S|+ |A|)α2k3H5/ϵ2 + α4k6H5/ϵ2
)

.

From Proposition 4, under Assumption 4 (low-rank transition kernel and expected rewards),
the matrix corresponding to [rh + [PhV̂h+1]] has rank d for any value function estimate V̂h+1.
This is critical to the analysis of LR-EVI as it guarantees that the expectation of the matrix Q̄h

constructed from Empirical Value Iteration in Step 1(a) is low rank. This property is not satisfied
by Assumptions 3 and 1, and as such the analysis for Theorem 9 does not extend to these weaker
settings. Additionally, this property eliminates the need for constructing estimates with rollouts,
which removes a factor of H in the sample complexity compared to LR-MCPI under Assumption
3.

Our sample complexity bounds depend on k, α, presuming that the algorithm uses some given
set of (k, α)-anchor states and actions. When there may not be a domain expert to suggest anchor
states and actions, we show in the next lemma that one can construct (k, α)-anchor states and
actions with high probability by random sampling, where k and α scale with the incoherence and
the bounded condition number of the target matrix.

Lemma 10. Let Qh be a rank d, µ-incoherent matrix with condition number κ. Let S# and A# be
constructed randomly such that each state s is included in S# with probability p1 = Θ(dµ/ log(|S|)),
and each action a is included in A# with probability p2 = Θ(dµ/ log(|A|)). With probability 1 −
O
(

H(|S| ∧ |A|)−10
)

, S# and A# are (k, α) anchor states and actions for Qh for k = Õ(µd) and
α = O(κ).

Lemma 10 asserts that without a priori knowledge, one can find a set of Õ(µd, κ)-anchor states
and actions using the sampling subroutine defined in Section 6.2, given that the corresponding
matrix is µ-incoherent with condition number κ.

Comparison to Impossibility Result in Theorem 2. Recall that Theorem 2 establishes an
exponential 4H lower bound for learning a near-optimal policy in MDPs with low-rank Q∗. While
the constructed MDP has a constant suboptimality gap, the lower bound does not contradict
Theorem 7 which achieves a poly(H) sample complexity for LR-MCPI under a stronger generative
model, i.e. after estimating the optimal action at step h, LR-MCPI can subsequently sample full
trajectories from the estimate of the optimal policy, which would then include entry (2, 2), which
was prohibited in the setup of Theorem 2. In contrast, LR-EVI does not admit an efficient sample
complexity for the MDP constructed in Section 4, and one can show that it exhibits exponential
blowup in the estimation error due to an amplification of the estimation error in the terminal step
when propagating the estimates backwards via value iteration. The MDP does not have a low rank
transition kernel violating Assumption 4, as needed for Theorem 9.

7.1 Discussion of Optimality

Theorems 7, 8 and 9 show that under our various low rank assumptions, LR-MCPI and LR-
EVI learn near-optimal polices in a sample efficient manner, decreasing the dependence of sample
complexity on S and A from |S||A| to |S|+ |A|. Furthermore in Lemma 11 we establish a d(|S|+
|A|)H3/ϵ2 sample complexity lower bound for MDPs with low rank reward and transition kernel
in the sense of Assumption 4 via minor modifications of existing lower bounds for tabular MDPs.
Since Assumption 4 implies the optimal Q∗ function is low rank, the same lower bound holds for
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the latter setting. Comparing our results to the lower bound, it follows that the dependence on
|S|, |A|, and ϵ in our sample complexity upper bound is minimax optimal.

Lemma 11. For any algorithm, there exists an MDP M = (S,A, P,R,H) with rank d reward Rh

and transition kernel Ph for all h ∈ [H] such that Ω
(

d(|S|+ |A|)H3/ϵ2
)

samples are needed to learn
an ϵ-optimal policy with high probability.

Proof. Existing lower bounds from [38] prove the necessity of Ω(d|S|H3/ϵ2) samples to learn an
ϵ-optimal policy with high probability for a time-homogeneous MDP with |S| states and d actions.
Replicating each action |A|/d times results in an MDP |A| actions and rank d reward functions and
transition kernels, and this MDP is at least as hard as the original MDP. Repeating this construction
with an MDP with d states and |A| actions proves an Ω(d|A|H3/ϵ2) sample complexity lower bound.
Combining these two lower bounds proves the lemma.

As an aside we also point out that previously shown lower bounds for linearly-realizable MDPs
[50, 51] are not directly applicable to our setting, as the constructed instances therein need not
have low-rank Q∗ or transition kernels, and the size of their state space scales exponentially in d.

Our sample complexity bounds depend on k and α, the size and quality of the (k, α)-anchor
sets. As stated in Lemma 10, we can construct a set of Õ(µd, κ)-anchor states and actions for any
µ-incoherent matrix with condition number κ simply by randomly sampling a subset of state and
action. The results presented in the table in Section 1 are obtained by substituting k = Õ(dµ)
and α = O(κ) into the sample complexity bounds in Theorems 7, 8 and 9 and treating µ and κ as
constants, as is standard in the matrix estimation literature, e.g., [1].

In the event that there is a domain expert who provides a set of (k, α)-anchor states and actions,
then the sample complexity bound may be better by using the given set rather than randomly
sampling if µ and κ are large. Note that k must be minimally at least d, and the quality of a given
set of anchor states and actions depends on the smallest singular value associated to the anchor
submatrix as reflected in α, which for poorly chosen anchor state and actions could scale with H.

In Theorems 7, 8 and 9, the cubic dependence on d is likely suboptimal, but this results from the
suboptimal dependence on d in the corresponding entrywise error bounds in the matrix estimation
literature [37, 1, 10]. Without knowledge of good anchor states/actions from a domain expert, the
dependence on µ that arises from randomly sampling anchor states and actions is not surprising,
as it also commonly arises in the classical matrix estimation literature under uniform sampling
models. Any improvements in the matrix estimation literature on the dependence on d, µ would
directly translate into improved bounds via our results.

Our dependence on the horizon H is fairly standard as it matches the dependence on H for
vanilla Q-value iteration. There is a gap between the dependence on H in our upper bounds and
the H3 lower bound in Lemma 11, which is given for homogeneous MDPs. Our upper bound
results allow for nonhomogenous rewards and transition kernels, which would likely increase the
lower bound to H4. Reducing the upper bounds to H4 would likely require using the total variance
technique from [38], which requires estimates of the variance of the policy at a given state-action
pair. One can show that the variance of the Bellman operator is low rank under the strongest
assumption of a low Tucker rank transition kernel, but the corresponding rank of the matrix of
variances is O(d2). Hence, while it may be possible to adapt this variance technique to achieve
the optimal dependence on H in our low-rank settings, doing so may incur a significantly worse
dependence on d, i.e., d6.
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7.2 Proof Sketch

The analysis of LR-MCPI and LR-EVI are fairly similar, and involves first showing that upon each
application of the matrix estimation subroutine stated in (7), the amplification of the entrywise
error is bounded, as stated below in Lemma 12.

Lemma 12. Let S# and A# be (k, α)-anchor states and actions for matrix Qh. For all (s, a) ∈
Ωh = (S# × A) ∪ (S × A#) \ (S# × A#), assume that Q̂h(s, a) satisfies |Q̂h(s, a) − Qh(s, a)| ≤ η,
and for all (s, a) ∈ S# × A#, assume that Q̂h(s, a) satisfies |Q̂h(s, a) −Qh(s, a)| ≤ η#. Then, for
all (s, a) ∈ S ×A, the estimates Q̄h(s, a) computed via (7) satisfy

∣

∣Q̄h(s, a)−Qh(s, a)
∣

∣ = O(αkη + α2k2η#).

Proof Sketch for Lemma 12 As our algorithm constructs Q̂h(s, a) for (s, a) ∈ Ωh via averaging
over samples from the MDP, the condition |Q̂h(s, a)−Qh(s, a)| ≤ η is satisfied with high probability
for η = O((H − h)/

√

Ns,a,h), shown via a simple application of Hoeffding’s inequality. To prove
Lemma 12, we show that the error is bounded by

∣

∣Q̄h(s, a)−Qh(s, a)
∣

∣ ≲
∥

∥

∥[Q̂h(S
#, A#)]†

∥

∥

∥

op
·
∥

∥

∥Q̂h(S
#, a)Q̂h(s,A

#)−Qh(S
#, a)Qh(s,A

#)
∥

∥

∥

F

+

∥

∥

∥

∥

[

Q̂h(S
#, A#)

]†
−
[

Qh(S
#, A#)

]†
∥

∥

∥

∥

op

·
∥

∥

∥
Qh(S

#, a)Qh(s,A
#)
∥

∥

∥

F

≲

(

1

σd(Qh(S#, A#)))

)

· k∥Qh∥∞(2η + η2)

+

(

η#k

(σd(Qh(S#, A#)))2

)

· ∥Qh∥2∞k = O(αkη + α2k2η#).

The first inequality comes from an application of the triangle inequality and the definition of
the operator norm since for any rank d matrix Q with (k, α)-anchor states and actions, for all
(s, a) ∈ S × A, Q(s, a) = Q(s,A#)[Q(S#, A#)]†Q(S#, a). The operator norm terms are bounded
using Weyl’s inequality and a classic result from the perturbation of pseudoinverses. The other two
terms are bounded by our assumption on Q̂h and that the reward functions are bounded by one.

As η is the dominant error term as η# is the error on the small anchor sub-matrix, {Q̄h(s, a)}(s,a)∈S#×A#

with size Õ(k)× Õ(k), the critical insight from Lemma 12 is that the amplification of the error due
to matrix estimation is only a factor of αk, which is constant for a good choice of anchor states
and actions. We set Ns,a,h for each (s, a) ∈ Ωh to guarantee αkη and α2k2η# are sufficiently small
for a subsequent induction argument that shows the algorithm maintains near optimal estimates
of Q∗ and π∗. For each of the Theorems 7, 8, and 9, we will apply Lemma 12 to different choices
of Qh, chosen to guarantee that Q̂h(s, a) is an unbiased estimate of Qh. For Theorem 7, we choose
Qh = Q∗

h. For Theorem 8, we choose Qh = Qπ̂
h, where π̂ is an ϵ-optimal policy. For Theorem 9, we

choose Qh = rh + [PhV̂h+1], where V̂h+1 is the value function estimate for step h+ 1.
Choosing Qh to be potentially distinct from Q∗

h is a simple yet critical distinction between
our analysis and [37]. The analysis in [37] applies a bound similar to Lemma 12 with a choice of
Qh = Q∗

h. However, as Q̂h will not be unbiased estimates of Q∗
h, the initial error η will contain a

bias term that is then amplified exponentially in H when combined with an inductive argument
for LR-EVI.

Proof Sketch for Lemma 10 To prove that the random sampling method presented in Section
6.2 finds Õ(µd, κ)-anchor states and actions with high probability, let us denote the singular value
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decomposition of matrix Qh with UΣV T . For a randomly sampled set of anchor states and actions
S# and A#, let Ũ and Ṽ denote the submatrices of U and V limited to S# and A#, such that the an-
chor submatrix Qh(S

#, A#) is given by ŨΣṼ T . By the matrix Bernstein inequality [43], when rows
and columns are sampled uniformly with probability p1 = Θ(dµ/ log(|S|)), p2 = Θ(dµ/ log(|A|)),
the columns of Ũ and Ṽ are nearly orthogonal. In particular, with high probability

∥p−1
1 ŨT Ũ − Id×d∥op ≤

1

2
and ∥p−1

2 Ṽ T Ṽ − Id×d∥op ≤
1

2
,

implying that the anchor submatrix is rank d. By an application of the singular value version of
the Courant-Fischer minimax theorem [21], we can relate σd(Qh(S

#, A#)) to σd(Qh) to show that

α = max
h
∥Qh∥∞/σd(Qh(S

#
h , A#

h )) = O(κ).

Inductive Argument for Main Theorems. The final step is to use the error analysis of each
iteration in an inductive argument that argues the estimated policy at each step is near optimal.
As the induction argument is similar across all three theorems, we present the inductive argument
for Theorem 8, and refer readers to the Appendix for the full proofs of all the theorems. For
Theorem 8, the induction step is that if π̂H−t+1 is tϵ/H-optimal, then for time step H − t, the
policy found with LR-MCPI, π̂H−t, is (t+1)ϵ/H-optimal. We then induct backwards across horizon,
i.e. t ∈ {1, . . . H}.

To show the induction step, first we argue that by Hoeffding’s inequality, for (s, a) ∈ ΩH−t,

with high probability |Q̂H−t −Qπ̂
H−t| = O(ϵ/α2k2H) for NH−t = Õ

(

(t+ 1)2α2k2H2/ϵ2
)

, N#
H−t =

α2k2NH−t. It is critical that Q̂H−t are indeed unbiased estimates of Qπ̂
H−t as the estimate is

constructed via Monte Carlo rollouts. By Assumption 3 and the inductive hypothesis, Qπ̂
H−t is low

rank, such that by an application of Lemma 12, it follows that for all (s, a) ∈ S ×A, |Q̄H−t(s, a)−
Qπ̂

H−t(s, a)| ≤ ϵ/2H for the appropriate choice of NH−t. Finally we argue that assuming the
inductive hypothesis, choosing greedily according to Q̄H−t results in a (t + 1)ϵ/H-optimal policy.
For some state s, we denote a∗ = π∗

H−t(s) and â = π̂H−t(s) = maxa Q̄H+t(s, a). The final induction
step is shown via

V ∗
H−t(s)− V π̂

H−t(s) = Q∗
H−t(s, a

∗)− Q̄H−t(s, â) + Q̄H−t(s, â)−Qπ̂
H−t(s, â)

≤ |Q∗
H−t(s, a

∗)−Qπ̂
H−t(s, a

∗)|+ |Qπ̂
H−t(s, a

∗)− Q̄H−t(s, a
∗)|+ |Q̄H−t(s, â)−Qπ̂

H−t(s, â)|
≤ max

s′
(V ∗

H−t+1(s
′)− V π̂

H−t+1(s
′)) +

ϵ

2H
+

ϵ

2H
,

where maxs′(V
∗
H−t+1(s

′)− V π̂
H−t+1(s

′)) ≤ tϵ/H from the induction hypothesis.
The proof of Theorem 7 involves a similar inductive argument except that given the stronger

suboptimality gap assumption, we guarantee that π̂h is an exactly optimal policy with high prob-
ability. This removes the linear growth in the error across the horizon that arises in Theorem 8,
enabling us to reduce Nh by H2. The proof of Theorem 9 also involves a similar inductive argument,
but under Assumption 4, we additionally show that at each time step Q′

H−t = rH−t+[PH−tV̂H−t+1],

the expected value of Q̂H−t for LR-EVI, is close to not only Q∗
H−t but also Qπ̂

H−t, which ensures
that LR-EVI not only recovers an ϵ-optimal Q function, but also an ϵ-optimal policy.

Sample Complexity Calculation. The sample complexity of LR-MCPI is given by
∑

h(H −
h)(Nh|Ωh|+N#

h k2), and the sample complexity of LR-EVI is given by
∑

h(Nh|Ωh|+N#
h k2). The

set |Ωh| scales as O(k|S|+k|A|), where k = Õ(µd) when the anchor states and actions are sampled

randomly. The final sample complexity bounds result from substituting the choices of Nh and N#
h

as specified in the statements of Theorems 7, 8, and 9 into the summation.

20



7.3 Extension to Approximately Low-Rank MDPs

Our sample complexity results rely on either Q∗
h, Q

π
h, or [rh + PhV̂h+1] having rank d, which may

only be approximately satisfied. Furthermore, our algorithms require knowledge of the rank of
those matrices, which may not be feasible to assume in practice. Hence, we extend our results
under the low-rank reward and low Tucker rank transition kernel setting (Assumption 4) to a
(d, ξR, ξP )-approximate low-rank MDP.

Assumption 5 ((d, ξR, ξP )-Approximate Low-rank MDP). An MDP specified by (S,A, P,R,H) is
a (d, ξR, ξP )-approximate low-rank MDP if for all h ∈ [H], there exists a rank d matrix rh,d and a
low Tucker rank transition kernel Ph,d with Tucker rank either (|S|, d, |A|) or (|S|, |S|, d), such that
∀h,

max
(s,a)∈S×A

|rh(s, a)− rh,d(s, a)| ≤ ξR and sup
(s,a)×A

2dTV(Ph(·|s, a), Ph,d(·|s, a)) ≤ ξP , (8)

where dTV is the total variation distance.

Assumption 8 extends the exact low-rank Assumption 4, where ξR is the entrywise low-rank
approximation error of the reward function, and ξP is the low-rank approximation error of the
transition kernel in total variation distance. For small values of ξR and ξP , the MDP can be
approximated well by a rank d MDP, and subsequently, it follows that for any estimate of the
future value function, rh + [PhV̂h+1] is close to a corresponding rank d approximation.

Proposition 13. Consider a (d, ξR, ξP )-approximate low-rank MDP with ξR, ξP , rh,d, and Ph,d as

defined in Assumption 8, with respect to the low rank approximation. For all h ∈ [H] and any V̂h+1,
∣

∣

∣[rh,d + Ph,dV̂h+1]− [rh + PhV̂h+1]
∣

∣

∣

∞
≤ ξR + (H − h)ξP .

Theorem 14 shows that LR-EVI with the matrix estimation routine defined in Section 6.2 is
robust with respect to the low rank approximation error.

Theorem 14. Assume we have a (d, ξR, ξP )-approximate low-rank MDP (Assumption 8) where
rh,d and Ph,d refer to the corresponding low rank approximations for the reward function and

transition kernel. For all h ∈ [H], let S#
h , A#

h be (k, α)-anchor states and actions for Q′
h,d =

[rh,d + Ph,dV̂h+1], where V̂h+1 is the learned value function from Low Rank Empirical Value itera-

tion. Let NH−t = Õ
(

k2α2H4/ϵ2
)

, N#
H−t = α2k2NH−t for all t ∈ {0, . . . , H − 1}. Then LR-EVI

returns an
(

ϵ+ Õ
(

k2α2
(

ξRH + ξPH
2
))

)

-optimal policy with probability at least 1−δ with a sample

complexity of Õ
(

k3α2(|S|+ |A|)H5/ϵ2 + k6α4H5/ϵ2
)

.

The proof of this theorem (see Appendix J) follows the same steps as the proof of Theorem 9
but additionally accounts for the low rank approximation error using applications of Proposition
13. Proposition 13 is first used to bound the error between Q̂h(s, a) and Q′

h,d(s, a) for (s, a) ∈ Ωh.
Second, the proposition is used to bound the second term in the below inequality which controls
the error of our estimate relative to Q∗

h and Qπ̂
h:

|Q̂h(s, a)−Q∗
h(s, a)| ≤ |Q̂h(s, a)−Q′

h,d(s, a)|+ |Q′
h,d(s, a)−Q′

h(s, a)|+ |Q′
h(s, a)−Q∗

h(s, a)|

for all (s, a) ∈ S ×A where Q′
h = rh + PhV̂h+1 and Q′

h,d = rh,d + Ph,dV̂h+1.
Theorem 14 shows that in the approximate rank setting, the error of the policy our algorithm

finds is additive with respect to the approximation error while remaining sample efficient. If Q′
h,d is

µ-incoherent with condition number κ, one can use the result of Lemma 10 to find Õ(µd, κ)-anchor
states and actions without a priori/domain knowledge.
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8 Experiments

We empirically compare the performance of combining low-rank matrix estimation with empirical
value iteration and Monte Carlo policy iteration on a tabular version of the Oil Discovery problem
[39]. Our results also join other empirical works that show the benefit of using low-rank variants
of RL algorithms on stochastic control problems [56, 34, 33].

Experimental Setup: We formulate this problem as a finite-horizon MDP, where the state and
action spaces are both {0, 1, . . . , D} for D = 399, and the horizon length H = 10. The learner’s goal
is to locate the oil deposits over a 1 dimensional space, where the target location lh = round(400(1−
1
h)) changes with h to make the learning task more difficult. At step h the learner receives a reward
fh(s) that depends on how close the learner is to the oil deposit at lh, perturbed by a zero-mean
Gausian noise with variance σ2

h(s, a) = (0.5 + a/400)2/10. The action a chosen indicates what
state the learner attempts to move to next, and the learner additionally pays a transportation cost
proportional to the distance between s and a, denoted by c(s, a). As a result the reward function
is

rh(s, a) = fh(s)− c(s, a) +N (0, σ2
h(s, a)),

where we choose fh(s) and c(s, a) according to

fh(s) = 1− 1

4

⌈

4

D
max (0, |s− lh| − 20)

⌉

and c(s, a) = 0.01× round

( |s− a|
100

)

,

where round(s) rounds s to the nearest integer. c(s, a) is discretized to take on only 5 distinct values,
but the level sets of c(s, a) are diagonal bands, such that c(s, a) is in fact full rank. However, the
stable rank of c(s, a), as defined by ∥c(s, a)∥2F /∥c(s, a)∥2∗ is only 1.46, which implies that c(s, a) is
close to a low-rank matrix [36]. See Appendix C.1 for further discussion about c(s, a).

The learner’s intended movements are perturbed, resulting in the following transition kernel:

Ph(s
′|s, a) = max{0,min{D, δa +Unif(−Ch, Ch)}}

where Unif(−Ch, Ch) denotes the discrete uniform distribution over {−Ch,−Ch + 1, . . . , Ch} and
Ch = 4(H − h + 1) determines the amount of noise in the transitions. Since E[Ph(s

′|s, a)] only
depends on the time step h and action a, it follows that the rows of E[Ph(s

′| :, :)] are the same and
the rank of E[Ph(s

′| :, :)] is one. Hence, the transition kernel has Tucker rank (|S|, 1, |A|).
Because the reward function is approximately low-rank and the transition kernel has low Tucker

rank, it follows that this MDP is approximately low rank (satisfying Assumption 5). See Appendix
C.2 for a visualization of Q∗

1 and more discussion on the rank of Q∗
h.

Algorithms: We compare LR-EVI, LR-EVI + SI, LR-MCPI, and LR-MCPI + SI with empirical
value iteration (EVI) and Monte Carlo policy iteration (MCPI). Recall that LR-EVI + SI is
essentially the same as LR-EVI but uses Soft-Impute from the fancyimpute package [35] for
the matrix estimation method, whereas LR-EVI uses the matrix estimation algorithm presented in
section 6.2. The observation set, i.e. Ωh, that is used for Soft-Impute is a Bernoulli sampled subset
of entries where the probability of including each entry is denoted pSI . Equivalently LR-MCPI +
SI is the same as LR-MCPI except that it uses Soft-Impute with Bernoulli sampled |Ωh|. The
vanilla EVI (resp., MCPI) refers to our algorithm using option (a) (resp., option (b)) for Step 1
without the matrix estimation step, setting Ωh = S × A for all h ∈ [H] and change Step 2 to be
Q̄h = Q̂h.

To empirically validate the performance of the algorithms, for a fixed sample budget N , we
compare the max entrywise error of Q̄1 of all the algorithms. We test five different allocation
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schemes on how to distribute the N samples across the time steps to determine Ns,a,h and use the
best one for each algorithm. We ensure that an equal number of samples are allocated to each
state-action pair. As N may not be divisible by D2, the true samples used is within D2 of N due
to rounding. We show that LR-EVI and LR-MCPI are robust to p = pS = pA as both algorithms
perform well for a range of values of p, and it suffices to choose p to be small. We perform a grid
search to determine pSI for each value of N , choosing the best performing parameter for each. See
Appendix C.3 for the details on how we chose and set the hyperparameters of the algorithms.

Results: For each value of N ∈ [106, 107, 108, 109], we run each of the above algorithms 10 times.
Figure 1 shows the average ℓ∞ error of Q̄1 across the 10 simulations, along with error bars whose
height indicates one standard deviation above and below the mean. Note that for vanilla EVI to
produce an estimate, it requires one sample per (s, a, h), which already requires 1.6× 106 samples.
For vanilla MCPI to produce an estimate, it requires one trajectory per (s, a, h) of length H−h+1,
which requires 8.8 × 106 one-step samples. As a result, there is no bar depicted for either EVI or
MCPI for N = 106, as both algorithms require more than 106 samples to even produce any estimate.

Figure 1: Max entrywise error of Q̄1 vs. sample budget for LR-EVI, LR-EVI + Soft Impute,
empirical value iteration and LR-MCPI, LR-MCPI + Soft-Impute, Monte Carlo policy iteration
at h = 1. Note that the optimal Q∗

1 function ranges in value from roughly 8.3 to 9.6, such that 0.8
error would be roughly 10% error.

For N = 106, the error bar for LR-MCPI + SI has a height of 11.5 but is trimmed to align the
y-axis in both graphs. Figure 1 shows that when the sample budget is small (N = 106), the
low rank RL algorithms can still produce reasonable estimates even when there are not sufficient
samples to even run the vanilla RL algorithms, i.e., less than 8.8×106 one-step samples. Our chosen
MDP is also not strictly low rank, but only approximately low rank, thus our results validate that
our algorithms are not sensitive to the exact rank, as they perform very well on this approximately
low rank MDP as well. The Monte Carlo Policy Iteration variants seem to require more samples to
achieve the same performance relative to Empirical Value Iteration variants. This is expected as
the sample complexity of MCPI is multiplied by H due to sampling entire trajectories rather than
one step samples. The MDP in this illustration is well-behaved for LR-EVI as it has a low rank
transition kernel, but the practical benefit of LR-MCPI is that it is more robust to MDPs that
may not have low rank structure in the transition kernel, as exhibited by the MDP constructed in
Section 4.

We also compare the performance of EVI and MCPI and their low-rank variants on the Double
Integrator, a stochastic control problem, see Appendix D for full details. The results from the Dou-
ble Integrator simulations also show the benefit of the low-rank methods when the sample budget is
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small; LR-MPCI produces a reasonable estimate of Q∗
1 even when there are not sufficient samples

to run MCPI. However, LR-EVI and LR-MPCI are sensitive to the choice of matrix estimation
method, so in practice, one should carefully tune the matrix estimation methods’ hyperparameters
given computational limits on storage and runtime. When the sample budget is large, the low-rank
methods lose their advantage and may even perform worse than tabular variants.

9 Conclusion

In this work, we prove novel sample complexity bounds using matrix estimation methods for MDPs
with long time horizons without knowledge of special anchor states and actions, showing that
incorporating matrix estimation methods into reinforcement learning algorithms can significantly
improve the sample complexity of learning a near-optimal action-value function. Furthermore, we
empirically verify the improved efficiency of incorporating the matrix estimation methods. We also
provide a lower bound that highlights exploiting low rank structure in RL is significantly more
challenging than the static matrix estimation counterpart without dynamics. While we show a
gain from |S||A| to |S| + |A|, the sample complexity may not be optimal with respect to d and
H, which may be an interesting topic for future study. For example one could consider how to
incorporate advanced techniques in existing tabular reinforcement learning literature that decrease
the dependence on the time horizon into our low rank framework. While our results show the
value of exploiting low-rank structure in reinforcement learning, the algorithms heavily rely on a
generative model assumption, which may not always be realistic. Extensions to online reinforcement
learning is an interesting and potentially impactful future direction.
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A Extensions

We extend our results to the continuous MDP setting and infinite-horizon discounted MDP setting.
We also discuss the use of alternative matrix estimation subroutines. Each of these extensions are
fairly minor technically, but we include them to illustrate the wider implications of the low rank
framework.

A.1 Continuous State and Action Spaces

Our results in Theorems 8 and 9 can be extended to the continuous MDP setting where S and A
are both continuous spaces. In particular, the action-value function obtained when running LR-
EVI and LR-MCPI on a discretized version of the continuous MDP can be used to construct an
ϵ-optimal action-value function for the continuous MDP, similar to the reduction used in [37]. We
assume the same regularity conditions on the continuous MDP as used in [37].

Assumption 6 (MDP Regularity for Continuous MDPs [37]). Assume the MDP satisfies

• (Compact Domain): S = [0, 1]n, A = [0, 1]n,

• (Lipschitz): Q∗
h is L-Lipschitz with respect to the one-product metric:

|Q∗
h(s, a)−Q∗

h(s
′, a′)| ≤ L(∥s− s′∥2 + ∥a− a′∥2) ∀ h ∈ [h].

We follow the same steps as in [37] to discretize the state and action spaces into β-nets (Sβ and
Aβ , respectively), i.e. Sβ is a set such that for all s ∈ S, there exists an s′ ∈ Sβ where |s′− s|2 ≤ β.

We next define the discretized MDP to be Mβ = (Sβ , Aβ , P β , r,H) where P β
h is defined as follows:

P β
h (s

′|s, a) =
∫

{s′′∈S:|s′′−s′|2≤β}
Ph(s

′′|s, a)ds′′.

After discretizing the state and action spaces, LR-MCPI or LR-EVI is run on the discretized MDP.
Our approach differs from the one from [37] because we only discretize the continuous sets once
and then run the tabular algorithm while their algorithm changes the discretization error β at
each iteration. To run LR-MCPI or LR-EVI on the discretized MDP, one needs to be able to
sample transitions/rollouts from P β

h instead of Ph. See Appendix K for details on how we exploit
the generative model to obtain transitions/rollouts on Mβ . The following lemma shows how the
optimal Q function on Mβ can be used to approximate Q∗ of the original MDP with small enough
β.

Lemma 15. Let MDP Mβ = (Sβ , Aβ , P β , R,H) be the discretized approximation to MDP M =
(S,A, P,R,H) where Sβ and Aβ are β-nets of S and A, respectively. Let Q∗ and Qβ be the optimal
Q functions of M and Mβ, respectively. For any s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such that
∥s− s′∥2 ≤ β, ∥a− a′∥2 ≤ β and for all h ∈ [H],

|Q∗
h(s, a)−Qβ

h(s
′, a′)| ≤ 2L(H − h+ 1)β, |V ∗

h (s, a)− V β
h (s′, a′)| ≤ 2L(H − h+ 1)β.

If the transition kernels and reward functions of Mβ are low rank, satisfying Assumption 4, then
LR-EVI finds an ϵ-optimal Qh function with an efficient number of samples. If Mβ only satisfies
Assumption 3, then LR-MCPI finds an ϵ-optimal Qh function with an efficient number of samples.
For sake of brevity, we present only the sample complexity bound of LR-EVI under Assumption 4.
See Appendix K for the analogous result with LR-MCPI.
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Theorem 16. Let Qβ
h = [rh + [PhV̂h+1]](s,a)∈Sβ×Aβ where V̂h+1 is the value function learned when

running LR-EVI on the discretized MDP Mβ. Let Assumption 4 hold on Mβ, and S#
h , A#

h be

(k, α)-anchor states and actions for Qβ
h for all h ∈ [H]. Then, the learned Q̄h from LR-EVI can

be used to construct an ϵ-optimal Q function with probability at least 1 − δ when β = ϵ/4LH and

NH−t = Õ
(

(t+ 1)2k2α2H2/ϵ2
)

, N#
H−t = Õ

(

(t+ 1)2k4α4H2/ϵ2
)

for all t ∈ {0, . . . , H − 1} with a

sample complexity of Õ
(

k3α2Hn+5/ϵn+2V ol(B)
)

, where B is the unit norm ball in R
n.

Theorem 16 shows that if the low-rank and matrix estimation assumptions hold on the dis-
cretized MDP, then one can use the learned Qh estimate from LR-EVI to construct an ϵ-optimal
estimate of Q function. Both algorithms are sample efficient (with respect to the dimension of
the state and action spaces) as the bounds have a 1/ϵn+2 dependence instead of 1/ϵ2n+2, which

is minimax optimal without the low-rank assumption. Furthermore, if Qβ
h is µ-incoherent with

condition number κ, one can use the result of Lemma 10 to find Õ(µd, κ)-anchor states and actions
without a priori/domain knowledge. Using the finite-horizon version of Corollary 2 from [40], we
can construct an O(ϵH)-optimal policy by defining a policy greedily with respect to Q̄.

The proof of Theorem 16 follows from combining Theorem 9 with a covering number lemma
to upper bound the size of the β-nets. β is chosen carefully to account for the error amplification
with respect to H from Lemma 15 while ensuring that the algorithms use an efficient number of
samples.

A.2 Infinite-Horizon Discounted MDPs

We consider the standard setup for infinite-horizon tabular MDPs, (S,A, P,R, γ), where S and A
denote the finite state and action spaces. R : S × A → ∆([0, 1]) denotes the reward distribution,
and use rh(s, a) = Er∼R(s,a)[r] to denote the expected reward. P denotes the transition kernel, and
0 < γ < 1 denotes the discount factor. The value and action-value function of following the policy
π are defined as:

V π(s) := E

[ ∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

s0 = s

]

, Qπ(s, a) := E

[ ∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

s0 = s, a0 = a

]

,

for Rt ∼ R(st, at), at ∼ π(st), and st ∼ P (·|st−1, at−1). We define the optimal value function as
V ∗(s) = supπ V

π(s) for all s ∈ S and the optimal action-value function as Q∗(s, a) = r(s, a) +
γEs′∼P (·|s,a)[V

∗(s′)]. Since the reward function is bounded, for any policy π, Qπ(s, a), V π(s) ≤ 1
1−γ

for all (s, a) ∈ S × A. To use matrix estimation methods, we require the transition kernel to have
low Tucker rank and the reward function to have shared latent factors, which is our strongest
low-rank assumption (Assumption 4).

Assumption 7 (Low-rank Transition Kernels and Reward Functions (Infinite-horizon)). The ex-
pected reward function has rank d, and the transition kernel P has Tucker rank (|S|, |S|, d) or
(|S|, d, |A|), with shared latent factors. For the Tucker rank (|S|, |S|, d) case, this means that there
exists a |S| × |S| × d tensor U , an |A| × d matrix V , and an |S| × d matrix W such that

P (s′|s, a) =∑d
i=1 U(s′, s, i)V (a, i) and r(s, a) =

∑d
i=1W (s, i)V (a, i).

For the Tucker rank (|S|, d, |A|) case, this means that there exists a |S|×|A|×d tensor V , an |S|×d
matrix U , and an |A| × d matrix W such that

P (s′|s, a) =∑d
i=1 U(s, i)V (s′, a, i) and r(s, a) =

∑d
i=1 U(s, i)W (a, i).

30



Similar to the finite-horizon setting, this assumption implies that r + γ[PV̄ ] has low rank for any
value function estimate.

Proposition 17. For any MDP that satisfies Assumption 7, for any estimate of the value function,
the rank of r + γ[PV̄ ] is upperbounded by d.

The algorithm we consider that admits an efficient sample complexity is LR-EVI with the same
matrix estimation method adapted for the infinite-horizon discounted setting, i.e., including the
discount factor in the estimates and running Step 1, Step 2, and Step 3 for T iterations instead of
recursing backwards through the horizon. We overload notation and let Q̂i refer to the Q function
estimated in the i-th iteration of the algorithm. The correctness result and sample complexity
bound in this setting is as follows.

Theorem 18 (Correctness and Sample Complexity of LR-EVI under Assumption 7). Assume that
for any ϵ-optimal value function V̄ , the matrix corresponding to Q′

t = [r + [PV̂t]] has rank d (a

consequence of Assumption 7) for all t ∈ [T ], and S#
t , A#

t are (k, α)-anchor states and actions
for Q̂′

t = [r + [PV̂t]], where V̂t is the learned value function from LR-EVI at iteration t for all

t ∈ [T ]. Let Nt = Õ
(

α2k2/ϵ2(1− γ)4
)

and N#
t = O(α2k2Nt). Then, LR-EVI returns an ϵ-optimal

Q function with probability at least 1− δ with a sample complexity of Õ
(

(|S|+|A|)α2k3

ϵ2(1−γ)4
+ α4k6

ϵ2(1−γ)4

)

.

Theorem 9 states that if the transition kernel has low Tucker rank, one can learn an ϵ-optimal Q
function with sample complexity that scales with the sum of the sizes of the state and action space
instead of the product. Furthermore, if Q′

t is µ-incoherent, then one can use Lemma 10 to find
Õ(µd, κ)-anchor states and actions without domain knowledge, where κ is the condition number of
Q′. To prove the correctness result in Theorem 9, we show that at each iteration the error of the
Q function decreases with the following lemma.

Lemma 19. Let S#
t , A#

t and Nt be as defined as in Theorem 18, and let the estimate of the value
function at step t satisfy |V̄t − V ∗|∞ ≤ Bt. Ater one iteration of the algorithm, the resulting
estimates of the value function and action-value function satisfy

|Q̄t+1 −Q∗|∞ ≤
(1 + γ)Bt

2
, |V̄t+1 − V ∗|∞ ≤

(1 + γ)Bt

2

with probability at least 1− δ
T for each t ∈ [T ].

Running the algorithm for a logarithmic number of times returns an ϵ-optimal Q function,
which gives the sample complexity shown in Theorem 9.

A.3 Matrix Completion via Nuclear Norm Regularization

While all of the above results are stated for the variants of LR-MCPI and LR-EVI that use the
matrix estimation algorithm as stated in Section 6.2, our results are not limited only to this specific
choice of the matrix estimation algorithm. As briefly mentioned in Section 6.2, the analysis relies
on using entrywise error bounds for the outputs of the matrix estimation algorithm. While the
algorithm stated in Section 6.2 lends itself to explicit entrywise error bounds given its explicit form,
it requires the non-standard sampling pattern associated to a set of anchor states and actions.

We show next that similar results can be derived for a different variation of LR-MCPI or LR-EVI
that performs matrix estimation by solving the convex relaxation of the low-rank matrix completion
problem. We utilize Theorem 1 from [10] to obtain entry-wise bounds on the matrix estimator.
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Chen et al. [10] state that it is straightforward to extend their results to the rectangular matrix
setting, but for ease of notation, they only consider square matrices. To directly apply the theorem,
we let |S| = |A| = n but note that it is easy to extend our results to |S| ̸= |A|. Their analysis
assumes data is gathered via a Bernoulli sampling model; i.e. each state-action pair is added to Ωh

with probability p, i.e., Ωh = {(s, a)|X(s,a) = 1} where X(s,a) ∼ Bernoulli(p) for (s, a) ∈ S ×A.
The matrix estimator is the minimizer of a least-squares loss function with a nuclear norm

regularizer, which is the convex relaxation of the low rank constraint. For the observed matrix
Mij = M∗

ij+Eij , with M∗ being the matrix we wish to recover and error matrix E, the formulation
is

min
Z∈Rn×n

g(Z) ≜ 1
2

∑

(i,j)∈Ωh
(Zij −Mij)

2 + λ∥Z∥∗, (9)

with Ωh constructed via Bernoulli sampling as mentioned above [10].
We next present the primary result that is needed from [10] for the readers’ convenience. Assume

that Ω is constructed with the Bernoulli sampling model and the error matrix E = [Ei,j ] is composed
of i.i.d. zero-mean sub-Gaussian random variables with norm at most η.

Theorem 20 (Theorem 1 in [10]). Let M∗ have rank−d and be µ-incoherent with condition number
κ, where d, κ ∈ O(1). Let λ = Cλnσ

√
np in Equation 9 for a large enough positive constant Cλ.

Assume that n2p ≥ Cµ2n log3 n and σ ≤ c
√

np
µ3 logn

∥M∗∥∞ for some sufficiently large constant

C > 0 and small constant c > 0. Then with probability 1 − O(n−3), any minimizer Zcvx of
Equation 9 satisfies

∥Zcvx −M∗∥∞ ≤ Ccvx
σ

σd(M∗)

√

µn log n

p
∥M∗∥∞

for some constant Ccvx > 0.

Applying Theorem 20 into our analyses for LR-MCPI and LR-EVI gives us the necessary error
bounds to prove the desired linear |S| + |A| sample complexities for LR-MCPI and LR-EVI with
Ωh generated according to the Bernoulli sampling model and

ME

(

{Q̂h(s, a)}(s,a)∈Ωh

)

←− CvxSolver

(

min
Q∈R|S|×|A|

g(Q) ≜ 1
2

∑

(s,a)∈Ωh
(Q(s, a)− (Q̂h(s, a)))

2 + λ∥Q∥∗
)

.

We state only the result for LR-EVI under Assumption 4 (low-rank reward function and low
Tucker rank transition kernel). The modifications to the theorems and proofs to show the analogous
result for LR-MCPI under Assumption 3 are essentially the same.

Theorem 21. Let ph = µ3d2κ2H4C2
cvx log(n)/ϵ

2n. Assume that for any ϵ-optimal value function
V̂h+1, Q

′
h = [rh + [PhV̂h+1]] has rank d (Assumption 4), is µ-incoherent, and has condition number

κ for all h ∈ [H]. Then, the learned policy from the algorithm specified above is ϵ-optimal with prob-
ability at least 1−O

(

Hn−3 + exp
(

−µ3d2κ2H4n log(n)/ϵ2
))

. Furthermore, the number of samples

used is upper bounded by Õ
(

µ3H5n/ϵ2
)

with the same probability.

The proof of Theorem 21 follows the same argument as the proof of Theorem 9 but uses Theorem
20 to control the error amplification from the matrix estimation method. Similar to our main results,
using this matrix estimation method as a subroutine reduces the sample complexity’s dependence on
|S| and |A| from |S||A| to |S|+ |A|. This theorem provides a potential explanation for the successful
experimental results in [56], and answers an open question posed in [37]; it guarantees that using
existing matrix estimation methods based on convex problems as a subroutine in traditional value
iteration has significantly better sample complexity compared to vanilla value iteration when finding
ϵ-optimal action-value functions.
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B Example Illustrating Assumption 3 (Low Rank Q functions for
Near Optimal Policies)

Assumption 3 states that the ϵ-optimal policies π have associated Q functions that are low rank. At
first glance, it might be unclear if this Assumption can be satisfied without requiring the stronger
conditions in Assumption 4 of low rank rewards and low Tucker rank transition kernels. In this
section, we present an MDP (S,A, P,R,H) in the reward maximization setting with all ϵ-optimal
policies π (ϵ-optimal π for all s ∈ S and h ∈ [H]) having low-rank Qπ without the transition
kernel having low Tucker rank. Specifically, we upperbound the rank of Qπ with a function of
ϵ and the size of the state/action space. where Πϵ is the policy class containing all ϵ-optimal
deterministic policies. With the following example, we show that there exists an MDP with a
non-trivial relationship between dϵ and ϵ, |S|, and |A|. We now present the H-step MDP that
exhibits this property. Let S = A = 0 ∪ [m], and the reward function be rh(s, a) = 0 for all

(s, a, h) ∈ S ×A× [H − 1] and rH(s, a) = 1−
(

sa
(m+1)2

)1/2
for all (s, a) ∈ S ×A.

For all h ∈ [H − 1], the transition kernel is

Ph(0|s, a) =
{

0, if s = a,

1, otherwise,
Ph(s

′|s, a) =
{

1, if s′ = s = a,

0, otherwise,

for s′ ∈ {1, . . . ,m}. We note that

Ph(0|·, ·) =















0 1 1 . . . 1
1 0 1 . . . 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0















,

and for s′ ∈ [m], Ph(s
′|s, a) = Es′ is an all-zero matrix with the s′-th diagonal entry equal to one, so

the transition kernels do not have low Tucker rank. Next, we prove the main result of this section,
which upper bounds the rank of the Qh functions of ϵ-optimal policies.

We remark that at time step 2, selecting action 0 is always optimal, regardless of the state.

Lemma 22. Let π be an ϵ-optimal policy, that is V ∗
h (s)−V π

h (s) ≤ ϵ for all (s, h) ∈ S× [H]. Then,
rank(Qπ

H) = 2, and rank(Qπ
h) ≤ 1 + ⌊ϵ2(m+ 1)2⌋ for all h ∈ [H − 1].

Proof of Lemma 22. Let π be an ϵ-optimal policy. We first show that Qπ
H = r2 is a matrix with

rank 2. By construction, the first two rows of Qπ
H are:

(Qπ
2 )1 = [1, 1, 1, . . . , 1] , (Qπ

2 )2 =

[

1, 1−
(

1

(m+ 1)2

)1/2

, 1−
(

2

(m+ 1)2

)1/2

, . . . , 1−
(

m+ 1

(m+ 1)2

)1/2
]

,

and for any i ∈ {3, . . .m+ 1}, the i-th row of Qπ
2 is

(Qπ
2 )i =

[

1, 1−
(

i

(m+ 1)2

)1/2

, 1−
(

2i

(m+ 1)2

)1/2

, . . . , 1−
(

(m+ 1)i

(m+ 1)2

)1/2
]

.

Hence, (Qπ
2 )i = (1− i1/2)(Qπ

2 )1 + i1/2(Qπ
2 )2, and rank(Qπ

2 ) = 2.
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Let h ∈ [H], to bound the rank of Qπ
h, we first note that for all s ∈ S, |V π

H(s) − 1| =
(

sπ(s)
(m+1)2

)1/2
≤ ϵ since π is ϵ-optimal. It follows that π(s) < ϵ2(m+1)2

s , and if ϵ2(m+1)2

s < 1, π(s)

must equal 0, which is the optimal action. Hence, there are at most s ≤ ϵ2(m + 1)2 number of
states in which π can deviate from the optimal policy. The value function of an ϵ-optimal policy is

V π
H(s) =















1, if s = 0,

1, if s > ϵ2(m+ 1)2,

1−
(

sπ(s)
(m+1)2

)1/2
, otherwise.

Since π is ϵ-optimal, we have 1−V π
h+1(s) ≤ ϵ for all s ∈ S. Due to the construction of the dynamics,

if one starts at state s at time step h, one will be at either state s (choosing action π(s) = s at each
time step) or state 0 (taking any other sequence of actions). Thus, V π

h+1(s) = V π
H(s) or V π

h+1(s) = 1
depending on the sequence of action. It follows that V π

h+1(s) ≥ V π
H(s). It follows that if s = 0 or

s > ϵ2(m+ 1)2, V π
h+1(s) = 1. Otherwise, V π

h+1(s) ≥
(

sπ(s)
(m+1)2

)1/2
for s ≤ ⌊ϵ2(m+ 1)2⌋.

We next compute the Q function at the time step h to show that we can upperbound the rank
of Qh by the number of states that πh deviates from the optimal policy. Specifically, for each
s ≤ ⌊ϵ2(m+ 1)2⌋, let πh(s) = s for h ∈ [H]. It follows that

Qπ
h(s, a) = rh(s, a) +

m
∑

s′=0

Ph(s
′|s, a)V π

h+1(s
′)

= 0 + Ph(0|s, a)V π
h+1(0) +

m
∑

s′=⌊ϵ2(m+1)2⌋+1

Ph(s
′|s, a)V π

h+1(s
′) +

⌊ϵ2(m+1)2⌋
∑

s′=1

Ph(s
′|s, a)V π

h+1(s
′)

= Ph(0|s, a) +
m
∑

s′=⌊ϵ2(m+1)2⌋+1

Ph(s
′|s, a) +

⌊ϵ2(m+1)2⌋
∑

s′=1

Ph(s
′|s, a)

(

1−
(

sπ(s)

(m+ 1)2

)1/2
)

.

In matrix form, it follows that

Qπ
h ≥















0 1 1 . . . 1
1 0 1 . . . 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0















+
m
∑

s′=⌊ϵ2(m+1)2⌋+1

Es′ +

⌊ϵ2(m+1)2⌋
∑

s′=1

Es′

(

1−
(

sπ(s)

(m+ 1)2

)1/2
)

= Jm×m −
⌊ϵ2(m+1)2⌋
∑

s′=1

Es′
(

sπ(s)

(m+ 1)2

)1/2

.

Thus, at most ⌊ϵ2(m+1)2⌋-rows ofQπ
h are different from the all-ones row. It follows that rank(Qπ

h) ≤
1+ ⌊ϵ2(m+1)2⌋, and each state s ≤ ⌊ϵ2(m+1)2⌋ that πh performs optimally at tightens the above
upperbound on the rank by one. Since the bound holds for arbitrary h ∈ [H − 1], it follows that it
holds for all h ∈ [H − 1].

C Experimental Details for Oil Discovery Problem

In this section we discuss the rank of the cost function, the rank of the Q∗ function, and details of
how we tuned the hyperparameters of our algorithms for the experiments presented in Section 8.
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C.1 Rank of c(s, a)

Recall that c(s, a) = 0.01× round
(

|s−a|
100

)

. Figure 2 displays a heat map and the singular values of

the cost function.

Figure 2: Heat map (left) and singular values (right) of c(s, a).

Even though each entry of c(s, a) can only be one of five values, the rank of c(s, a) is 400
as all of the singular values are greater than zero. However, Figure 2 shows that the mag-
nitude of the singular values decrease quickly. Furthermore, the stable rank of c(s, a) is small
∥c(s, a)∥2F /∥c(s, a)∥2∗ = 1.46. It follows that c(s, a) is “approximately” low-rank.

C.2 Rank of Q∗

Figure 3 displays a heat map of Q∗
1 and a plot of Q∗

1 singular values from largest to smallest.

Figure 3: Heat map (left) and singular values (right) of Q∗
1.

While all of the singular values of Q∗
1 are greater than zero (rank(Q∗

1) = 400), the magnitude of
the first singular value is significantly larger than all the other singular values; σ1/

∑400
i=1 σi = 0.995.

Table 2 displays the rank and stable rank of Q∗
h for h ∈ [H].
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h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Rank 400 400 400 400 400 400 400 400 400 400
Stable Rank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.000

Table 2: Rank and stable rank of Q∗
h for h ∈ [H].

From the results in Table 2, it’s clear that despite rank(Q∗
h) = 400 for all h ∈ [H], Q∗

h is
approximately low rank for all h ∈ [H] because all the stable ranks are close to one.

C.3 Hyperparameter Tuning

In this section, we discuss the hyperparameters of our algorithms and our methodology on how to
choose their value.

Allocation Scheme Ns,a,h : In the proof of our theorems for LR-EVI and LR-MCPI, the sample
allocations Ns,a,h are chosen to ensure that at each time step h, the algorithm takes enough samples
so that that ∥Q̄h − Q∗

h∥∞ ≤ ϵ(H − h + 1)/H. In practice, the algorithm does not have access to
the optimal Q function and cannot use this condition as a criteria to choose Ns,a,h, so we instead
empirically test a few different allocation schemes and choose the best. We choose Ns,a,h to be
uniform for all s, a, not distinguishing between (s, a) in the anchor submatrix or not.

To determine how to allocate samples across the ten time steps for each algorithm, we run
a set of experiments benchmarking the algorithm’s performance on a set of different allocation
schedules. For an allocation scheme τ = {τ i}h∈H , where τ i ≥ 0,

∑

h∈[H] τ
i = 1, and total sample

budget ofN , we will allocate roughly τ iN samples to the estimation of Q̄h. Essentially τ specifies the
proportion of samples that are allocated to the estimates at each step, where there is some rounding
involved as the number of samples must be integral. For some sequence of nonnegative numbers
{ai1, ai2, . . . aiH}, the corresponding allocation scheme τ i follows by simply normalizing according
to τ ih = aih/

∑

h′∈[H] a
i
h′ . The five different allocation schemes we consider are, τ i = {τ ih}h∈[H],

corresponding to

a1h = H − h+ 1,

a2h = (H − h+ 1)2,

a3h = (H − h+ 1)3

a4h = ⌊(h+ 1)/2⌋,
a5h = 1.

τ5 is simply a constant allocation schedule, which evenly allocates samples across the steps. When
there is an insufficient sample budget to implement other allocation schemes, we let the Empirical
Value Iteration algorithms default to τ5, evenly allocating one-step samples across steps h.

τ1 is a linearly decreasing allocation schedule. Note that as Monte Carlo Policy Iteration
requires samples of length (H − h + 1) trajectories to estimate Qh, the allocation that would
uniformly allocate trajectories across h for MCPI corresponds to τ1. When there is an insufficient
sample budget to implement other allocation schemes, we let the Monte Carlo Policy Iteration
algorithms default to τ1, evenly allocating trajectories across steps h.

τ4 is also a linearly decreasing allocation schedule, but simply at a slower rate. τ2 is a quadrat-
ically decreasing allocation schedule, which matches the allocation schedule chosen in our Theorem
9 for LR-EVI, as indicated by the number of one-step samples Nh scaling as (H − h + 1)2 in its
dependence on h. τ3 is a cubically decreasing allocation schedule, which matches the allocation
schedule chosen in our Theorems 7 and 8 for LR-MCPI. In particular, the number of trajectories
Nh scales as (H − h + 1)2 in its dependence on h, but the samples used need to be multiplied by
the trajectory length (H − h+ 1), resulting in a cubic relationship.
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Table 3 displays the average entrywise error of Q̄1 of all the algorithms over ten trials for
each of these allocation schemes, where we set the sample budget N = 108, pS , pA = 0.025, and
pSI = 0.2. “—” refers to the algorithm not having enough samples to take even one sample for
each state-action pair at one time step according to the specified allocation scheme.

τ1 τ2 τ3 τ4 τ5

LR-EVI 0.0803 0.0736 0.0948 0.0828 0.0825
LR-MCPI 0.1742 0.1419 0.1532 0.1795 0.2031

LR-EVI + SI 0.5638 0.4512 1.0065 0.5541 0.5358
LR-MCPI + SI 0.6126 0.6535 0.6868 0.6285 0.6406

EVI 0.2927 1.5558 — 0.255 0.2264
MCPI 0.52 0.5437 — 0.5498 0.6127

Table 3: Mean ℓ∞ error of Q̄1 of LR-EVI, LR-MCPI, LR-EVI + SI, LR-MCPI + SI, EVI, and
MCPI.

To calibrate these results, recall that entries in Q∗
1 take values from roughly 8.3 to 9.6. While the

performances are generally pretty similar, from the results in Table 3 the best allocation schemes
for the algorithms are τ2 for LR-EVI, τ2 for LR-MCPI, τ2 for LR-EVI + SI, τ1 for LR-MCPI +
SI, τ5 for EVI, and τ1 for MCPI. We use these allocation schemes for the experiments in Section
8.

Note that for our algorithms to run, they require minimally one sample for the value iteration
algorithms or one trajectory for the policy iteration algorithms for each (s, a) ∈ Ωh. Hence, for
smaller values of N , e.g., N = 106, there may be state-action pairs in Ωh that do not receive
even one sample/trajectory following the best allocation scheme chosen from the data in Table 3.
Hence, if that problem occurs, we default to allocation scheme τ5 for the value iteration algorithms
and we default to τ1 for the policy iteration algorithm. These allocations uniformly spread the
samples/trajectories to ensure that the algorithm still produces an estimate when N may be small.

Finally we describe the details of the rounding that we implement to ensure that Ns,a,h are
integral, yet are distributed as close as possible to the desired allocation schedule τ = {τh} with the
sample budget of N . For Empirical Value Iteration algorithms, Ns,a,h denotes one-step samples at
(s, a) used to construct the estimate forQh. Thus we compute initial values byNs,a,h = ⌊τhN/|Ωh|⌋,
where the floor function is applied as the number of samples must be integral. Subsequently,
we compute the number of excess samples, given by N∆ = N −∑h∈[H]

∑

(s,a)∈Ωh
Ns,a,h. Then,

recursing forwards through the horizon, we add one sample to each state action pair in Ωh, i.e.,
Ns,a,h = Ns,a,h + 1, provided that there is sufficient samples N∆ ≥ |Ωh|. Then we recompute the
number of extra samples, i.e., N∆ = N∆− |Ωh| and repeat continuing at h+1. With this rounding
scheme, the final number of samples used by our algorithm will be within [N − D2, N ], where
D2 = 1.6× 105.

For Monte Carlo Policy Iteration algorithms, Ns,a,h denotes number of trajectories sampled
starting from (s, a), that are used to construct the estimate for Qh. Thus we compute initial
values by Ns,a,h = ⌊τhN/|Ωh|(H − h + 1)⌋, where the floor function is applied as the number of
trajectories must be integral. Subsequently, we compute the number of excess samples, given by
N∆ = N −∑h∈[H]

∑

(s,a)∈Ωh
Ns,a,h(H − h+ 1). Then, recursing forwards through the horizon, we

add one trajectory to each state action pair in Ωh, i.e., Ns,a,h = Ns,a,h + 1, provided that there is
sufficient samples N∆ ≥ |Ωh|(H − h + 1). Then we recompute the number of extra samples, i.e.,
N∆ = N∆ − |Ωh|(H − h+ 1) and repeat continuing at h+ 1. With this rounding scheme, the final
number of samples used by our algorithm will be again within [N −D2, N ].
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Choosing p = pS = pA for LR-EVI and LR-MCPI: While our theorems use knowledge of the
rank and incoherence to choose pS , pA, and Nh, one cannot assume knowledge of these quantities in
practice. However, many other matrix estimation methods face similar challenges. For example, in
[56], to compute the Q function of the optimal policy, they need to choose pSI , which depends on the
rank of Q∗, for their algorithm, which combines value iteration and Soft-Impute. They show their
algorithm is robust to the choice of pSI by showing their algorithm performed similarly for multiple
pSI values. Similarly, we show LR-EVI and LR-MCPI are robust to the choice of p = pS = pA (the
only parameters in LR-EVI and LR-MPCI that depend on the rank and incoherence for a fixed
allocation scheme and N) in a similar manner. To show that LR-EVI and LR-MCPI are robust to
p = pS = pA, we ran both LR-EVI and LR-MPCI with allocation scheme τ2 and N = 108 for each
p ∈ [0.025, 0.05, 0.075, 0.1], repeating each experiment 10 times. Since Q∗

h effectively has a rank of
one, p should be minimally greater than or equal to 1/400 = 0.0025; ideally even larger to ensure
that with high probability there are a sufficient number of rows and columns sample. We set the
smallest value of p to be 0.025, which results in an expected number of sampled rows/columns of
10 our of 400, which is already a fairly small number. Table 4 shows the average ℓ∞ error of Q̄1 at
time step h = 1 for different values of p.

p = 0.025 p = 0.05 p = 0.075 p = 0.1

LR-EVI 0.077 0.084 0.09 0.129
LR-MCPI 0.152 0.179 0.196 0.216

Table 4: The mean ∥Q̄1∥∞ error of LR-MCPI and LR-EVI for different values of p.

To calibrate these results, recall that entries in Q∗
1 take values from roughly 8.3 to 9.6. The

results show that for the different values of p, LR-EVI performs well and the errors are on the
same order. Furthermore, the errors are less for smaller values of p. The same results hold for
LR-MCPI for the different values of p. As a result, for the experiments in Section 8, we set
p = pS = pA = 0.025. As our table suggests, the algorithm has decent performance for different
values of p, so empirically one could choose p based on given computational and memory constraints.
The tradeoff is that small values of p could reduce computation and memory usage, but it does
assume the MDP satisfies the desired low rank conditions. By choosing p to be as larger, one may
increase some robustness to the low rank conditions, as the guarantees would be able to tolerate
MDPs with larger ranks.

Choosing pSI : In contrast to LR-EVI and LR-MPCI, for larger values of N , pSI needs to be
increased as the gain from decreasing the noise is not as beneficial as observing more samples.
For LR-EVI + SI and LR-MCPI + SI, we determine the best value of pSI for the four different
values of N ∈ [106, 107, 108, 109] used in our experiments in Section 8. We test eight values of
pSI ∈ [0.2, 0.3, . . . , 0.9] for the different N .

For LR-EVI + SI to run, it minimally requires one sample for each (s, a) ∈ Ωh, which would
mean at least pSI ∗ 1.6 ∗ 106 total samples in expectation. Thus for the lowest sample budget of
N = 106, we set pSI = 0.2 to ensure that LR-EVI + SI has sufficient samples to run successfully
for all ten trials.

Similarly, LR-MCPI + SI requires at least one trajectory for each (s, a) ∈ Ωh to run, which
would mean a total of pSI ∗ 8.8 ∗ 106 one-step samples in expectation. Thus for the lowest sample
budget of N = 106, we set pSI = 0.075 to ensure that LR-MCPI + SI has sufficient samples to run
successfully for all ten trials.

For the larger values of N ∈ [107, 108, 109], we test eight values of pSI ∈ [0.2, 0.3, . . . , 0.9]. Figure
4 shows the average ℓ∞ error of Q̄1 for LR-EVI + SI and LR-MCPI + SI for the different values
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of pSI and N for LR-EVI + SI using allocation scheme τ2 and LR-MCPI + SI using allocation
scheme τ1, where each experiment is repeated ten times.

(a) LR-EVI + SI (b) LR-MCPI + SI

Figure 4: Max entrywise error of Q̄1 vs. pSI for four different values of N for LR-EVI + SI and
LR-MCPI + SI.

Figure 4 shows that when the sample budget is smaller, i.e. N = 107, smaller values of p
perform better; this is expected as there is insufficient sample budget so that increasing p means
the number of samples or trajectories allocated to each (s, a) ∈ Ωh will be small, resulting in large
noise. For large sample budget, i.e. N = 109, the performance is not very sensitive to the choice of
pSI , though the larger values of pSI do perform better. This is also expected as there is sufficient
samples to both sample more entries while still having Ns,a,h large enough that the noise is well
controlled. For N = 108 the performance with respect to pSI is quite different in these two plots,
and it may be due in part to the different allocation schemes. Allocation scheme τ2 significantly
skews the proportion of samples to the earlier time steps compared to τ1. Hence for N = 108, with
scheme τ2, increasing pSI results in the error LR-EVI + SI growing perhaps due to high noise in
the later time steps. In contrast, with scheme τ1, for N = 108, the error of LR-MCPI + SI does
not increase in pSI .

Table 5 displays the value of pSI we use for our experiments in Section 8. As discussed before,
the value of pSI is chosen for N = 106 simply to ensure that the observation set is small enough such
that the algorithms can produce some estimate for the given sample budget. For N ∈ [107, 108, 109],
pSI is chosen according to the value that minimized the error in the results displayed in Figure 4.

N = 106 N = 107 N = 108 N = 109

LR-EVI + SI 0.2 0.3 0.3 0.9
LR-MCPI + SI 0.075 0.2 0.5 0.9

Table 5: Values of pSI for each N in the experiments in Section 8.

D Additional Experiments for Double Integrator Problem

We empirically evaluate the benefit of including a low-rank subroutine in tabular RL algorithms on
the discretized finite-horizon version of the Double Integrator problem, a stochastic control problem
seen in [56, 37].
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Experimental Setup: We formulate the Double Integrator problem as finite-horizon tabular
MDP with state space S = {(x, ẋ)} for x ∈ {−2,−1.9, . . . , 1.9}, ẋ ∈ {−1,−0.9, . . . , 0.9}, action
space A = {−0.5,−0.499, . . . , 0.5}, and H = 5. With this setup, the size of the state space is
|S| = 40× 20 = 800, and the size of the action space is |A| = 1000. The learner’s goal is to control
a unit brick on a frictionless surface and guide it to the origin, state (0, 0). x refers to the brick’s
position, and ẋ denotes the brick’s velocity. At each step, the learner is given a noisy reward that
penalizes them for the brick’s current position,

rh((x, ẋ), a) = −
x2 + ẋ2

2
+N (0, 1),

for all h ∈ [H], and N (0, 1) is a standard normal random variable. The learner chooses an action
a to change the velocity of the brick. The dynamics of the system for a given state-action pair
((x, ẋ), a) for all h ∈ [H] are

x′ := min(max(x+ ẋ,−2), 1.9), ẋ′ := min(max(⌊ẋ+ a⌋,−1), 0.9),

where ⌊ẋ⌋ rounds ẋ down to the nearest tenth. Since the reward function does not depend on
the action, the rank of the reward function is one. Due to the deterministic dynamics, for a given
next state (x′, ẋ′), the current state (x, ẋ) must minimally satisfy x′ = x + ẋ. Thus, there are at
most twenty (x, ẋ) pairs that satisfy x′ = x + ẋ (the velocity can only take on twenty different
values), so there are at most twenty non-zero entries in P ((x′, ẋ′)|·, ·). Therefore, the Tucker rank
of P ((x′, ẋ′)|(x, ẋ), a) is upperbounded by (|S|, 20, |A|). Hence, this MDP satisfies Assumption 4.
Figure 5 displays a heat map of Q∗

1 and a plot of Q∗
1 singular values from largest to smallest.

Figure 5: Heat map (left) and singular values (right) of Q∗
1.

While the transition kernel has Tucker rank upper bounded by (|S|, 20, |A|), the rank of Q∗
h is

ten for h ∈ [4] while the rank of Q∗
H = rH is one. Table 6 displays the rank and stable rank of Q∗

h

for h ∈ [H].

h = 1 h = 2 h = 3 h = 4 h = 5

Rank 10 10 10 10 1
Stable Rank 1.04 1.02 1.01 1.00 1.00

Table 6: Rank and stable rank of Q∗
h for h ∈ [H].
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From the results in Table 6, it’s clear that the rank of Q∗
h is much smaller than |S| or |A|.

Algorithms: We compare the same algorithms used in the oil discovery experiments. Since
|S| ≠ |A|, we allow for pS and pA to be different. Instead of using Soft-Impute from the
fancyimpute package, we use the implementation from [17] because it yielded better results and
shorter runtimes.

D.1 Hyperparameter Tuning

In this section, we discuss the results of tuning the allocation schemes, pS , pA, and pSI for our
different algorithms.

Allocation Schemes: To determine how to divide samples across the five time steps, we test
our algorithms on the five different allocation schemes introduced in Appendix C.3. Recall that the
allocation scheme τ i is τ ih = aih/

∑

h′∈[H] a
i
h′ for [a1, . . . , aH ]. The five different allocation schemes

we consider are, τ i = {τ ih}h∈[H], corresponding to

a1h = H − h+ 1,

a2h = (H − h+ 1)2,

a3h = (H − h+ 1)3

a4h = ⌊(h+ 1)/2⌋,
a5h = 1.

With our implementation, roughly τ ihN̄ samples are allocated to estimating Q∗
h (N̄ is the sample

budget). Table 7 displays the mean entrywise error of Q̄1 of all the algorithms over five trials for
each allocation schemes. We set the sample budget N = 108, pS = 0.1, pA = 0.08, and pSI = 0.4.

τ1 τ2 τ3 τ4 τ5

LR-EVI 0.761 1.20 4.30 2.15 0.507
LR-MCPI 0.550 0.416 0.633 2.07 1.16
LR-EVI+SI 0.459 0.469 1.343 0.512 0.456
LR-MCPI+SI 0.394 0.405 0.388 0.436 0.441

EVI 1.044 2.921 1.343 3.074 1.469
MCPI 0.642 0.615 1.09 2.225 2.526

Table 7: Mean ℓ∞ error of Q̄1 of LR-EVI, LR-MCPI, LR-EVI+SI, LR-MCPI+SI, EVI, and MCPI.

While the errors are roughly similar for many of the allocation schemes for each algorithm, we
choose the allocation scheme that corresponds to the lowest error. Hence, we use allocation scheme
τ5 for LR-EVI, τ2 for LR-MCPI, τ5 for LR-EVI+SI, τ3 for LR-MCPI+SI, τ1 for EVI, and τ2 for
MCPI.

Choosing pS and pA: Similar to Soft-Impute, varying ps and pa as a function of the total
number of samples improves the performance of LR-EVI and LR-MPCI. When the sample budget
is small (N̄ = 107), one should set ps and pa to be smaller, which increases the bias from the matrix
estimation method but decreases the noise on the empirical estimates. However, when the sample
budget is increased (N̄ = 109), one should increase ps and pa to reduce the bias of the matrix
estimation method as the estimation error on Q̂ is already very small. Thus, for N̄ ∈ [107, 108, 109],
we try the following (ps, pa) ∈ [(0.025, 0.02), (0.05, 0.04), (0.1, 0.08), (0.2, 0.16)] over five trials. Ta-
ble 8 displays the entrywise error of Q̄1 obtained from running LR-EVI with allocation scheme τ5.
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Table 9 displays the entrywise error of Q̄1 obtained from running LR-MCPI with allocation scheme
τ2.

N̄ = 107 N̄ = 108 N̄ = 109

(ps, pa) = (0.025, 0.02) 1.72 1.09 0.650
(ps, pa) = (0.05, 0.04) 2.74 0.236 0.190
(ps, pa) = (0.1, 0.08) 5.43 0.488 0.0175
(ps, pa) = (0.2, 0.16) 10.9 1.05 0.0365

Table 8: Mean ℓ∞ error of Q̄1 of LR-EVI for varying values of (pS , pA).

N̄ = 107 N̄ = 108 N̄ = 109

(ps, pa) = (0.025, 0.02) 2.26 1.50 1.34
(ps, pa) = (0.05, 0.04) 4.70 0.293 0.143
(ps, pa) = (0.1, 0.08) 4.54 0.288 0.0452
(ps, pa) = (0.2, 0.16) 10.84 0.747 0.108

Table 9: Mean ℓ∞ error of Q̄1 of LR-MCPI for varying values of (pS , pA).

Hence, for LR-EVI, we use (ps, pa) = (0.025, 0.02) for N̄ = 107, (ps, pa) = (0.05, 0.04) for
N̄ = 108, and (ps, pa) = (0.1, 0.08) for N̄ = 109. For LR-MCPI, we use (ps, pa) = (0.025, 0.02) for
N̄ = 107, (ps, pa) = (0.1, 0.08) for N̄ = 108, and (ps, pa) = (0.1, 0.08) for N̄ = 109.

Choosing pSI : For LR-EVI + SI and LR-MCPI + SI, we test different values of pSI for N ∈
[107, 108, 109] to determine what to set pSI to in our final experiments in Section 8. We test five
values of pSI ∈ [0.1, 0.5, . . . , 0.9] for the different N . Figure 6 shows the average ℓ∞ error of Q̄1 for
LR-EVI + SI and LR-MCPI + SI for the different values of pSI and N for LR-EVI + SI using
allocation scheme τ5 and LR-MCPI + SI using allocation scheme τ3, where each experiment is
repeated five times.

Figure 6: Mean ℓ∞ error of Q̄1 of LR-EVI+SI(Left) and LR-MCPI+SI(Right) for various values of
pSI and N̄

From these results, we choose the pSI value that corresponds to the lowest error for our final ex-
periments. Note that for N̄ = 107, the error is strictly increasing as pSI increases for LR-MCPI+SI.
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Hence, for LR-EVI+SI, we use pSI = 0.3 for N̄ = 107, pSI = 0.9 for N̄ = 108, and pSI = 0.9 for
N̄ = 109. For LR-MPCI+SI, we use pSI = 0.1 for N̄ = 107, pSI = 0.9 for N̄ = 108, and pSI = 0.9
for N̄ = 109.

Results: For each value of the sample budget N̄ ∈ [107, 108, 109], we run each of the six algo-
rithms ten times, with the hyperparameters specified above, and compute the average ℓ∞ error
of Q̄1. Figure 7 displays the mean entrywise error of Q̄1 over ten simulations with the error bars
corresponding to the standard deviation. For vanilla MCPI to produce an estimate of Q∗

1, it re-
quires at least

∑H
h=1 SAh = 1.2 × 107 one-step samples. Hence, there is no error bar for MCPI

with N̄ = 107.

Figure 7: Max entrywise error of Q̄1 vs. sample budget for LR-EVI, LR-EVI + Soft Impute,
empirical value iteration and LR-MCPI, LR-MCPI + Soft-Impute, Monte Carlo policy iteration
at h = 1. Note that the optimal Q∗

1 function ranges in value from roughly −11.2 to 0, such that
1.12 error would be roughly 10% error.

Similarly to the results from the oil discovery problem, Figure 7 shows that even when there are
not enough samples to MCPI, LR-MCPI produces a reasonable estimate. Furthermore, the low-
rank algorithms perform better than the tabular versions, EVI and MCPI, when the sample budget
is small, i.e., N̄ = 107 or N̄ = 108. When the sample budget is large, i.e., N̄ = 109, the low-rank
methods perform similarly to EVI and MCPI, except for LR-MCPI+SI. The relatively large error
from LR-MCPI+SI for N̄ = 109 suggests that the matrix estimation methods are sensitive to the
choice of hyperparameters, so in practice, one should carefully tune these given their computational
limits, e.g., storage and runtime constraints. In contrast to the oil discovery simulations, the policy
iteration algorithms achieve a similar error to the value iteration algorithms with the same sample
budget.

E Proof of Lemma 1

Proof of Lemma 1. Consider the MDP defined in Section 4. Let πh(1) = πh(2) = 2 for all h ∈
{2, . . . , H − 1}. We prove that

Qπ,θ
h =

(

1
4

1
2

1
2 + 2H−hθ, 1 + 2H−h+1θ

)

, V π,θ
h =

(

1
2

1 + 2H−h+1θ

)
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with backwards induction on h. Since V π,θ
H =

(

1
2

1 + 2θ

)

, the base case occurs at step H − 1.

Applying the exact Bellman operator, it follows that

Qπ,θ
H−1 =

(

1
4

1
2

1
2 + 2θ, 1 + 22θ

)

and

V π,θ
H−1 =

(

1
2

1 + 22θ

)

because for both values of θ, 1 + 4θ > 0. Next, assume that the induction hypothesis holds, that is
for some t ∈ {2, . . . , H − 1},

Qπ,θ
t =

(

1
4

1
2

1
2 + 2H−tθ, 1 + 2H−t+1θ

)

, V π,θ
t =

(

1
2

1 + 2H−t+1θ

)

.

Applying the exact Bellman operator, it follows that

Qπ,θ
t−1 = rt−1 + Pt−1V

π,θ
t

=

(

−1
4 0
−1

2 2H−t+1θ

)

+

(

V π,θ
t (1) V π,θ

t (1)

V π,θ
t (2) (2)

)

=

(

1
4

1
2

1
2 + 2H−t+1θ, 1 + 2H−t+2θ

)

.

Because 2H |θ| = 3/4, 1 + 2Hθ > 0, which implies that Qπ,θ
t−1(2, 2) > Qπ,θ

t−1(2, 1). Therefore,

V π,θ
t−1 =

(

1
2

1 + 2H−t+2θ

)

and the induction hypothesis holds. Finally, since one stays in the same state at all steps after
h = 1 by construction, πh(1) = πh(2) = 2 for all h ∈ {2, . . . , H − 1} is the unique optimal policy

because 2H |θ| = 3/4, which implies that Qπ,θ
h (2, 2) = 2Qπ,θ

h (2, 1) > 0.

F Proof of Proposition 4

Proposition 4 states that if the reward function and transition kernel are low rank, then for any
value function estimate V̂h+1, rh + [PhV̂h+1] has rank upper bounded by d.

Proof of Proposition 4. Let MDP M = (S,A, P, r,H) satisfy Assumption 4 (specifically, Ph has
Tucker rank (|S|, |S|, d). Hence, for any value function estimate V̂h+1,

rh(s, a) + PhV̂h+1 =
d
∑

i=1

W (h)(s, i)V (h)(a, i) +
∑

s′∈S
V̂h+1(s

′)Ph(s
′|s, a)

=

d
∑

i=1

W (h)(s, i)V (h)(a, i) +
∑

s′∈S
V̂h+1(s

′)
d
∑

i=1

U (h)(s′, s, i)V (h)(a, i)

=
d
∑

i=1

V (h)(a, i)

(

W (h)(s, i) +
∑

s′∈S
V̂h+1(s

′)U (h)(s′, s, i)

)

.

Since W (h)(:, :)+
∑

s′∈S V̂h+1(s
′)U (h)(s′, :, :) is an |S|×d matrix, rh(s, a)+PhV̂h+1 has rank at most

d. The same result holds when Ph has Tucker rank (|S|, d, |A|) from a similar argument.
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G Proof of Lemma 10 (Random Sampling of Anchor States and
Actions)

As stated in Lemma 10, our sampling method is as follows: we sample states and actions using the
Bernoulli model. Let Ũ ∈ R

|S|×d, Ṽ ∈ R
|A|×d such that

Ũi =

{

Ui with probability p1,

0 otherwise
, Ṽi =

{

Vi with probability p2,

0 otherwise

Let Q̃h := ŨΣṼ ⊤ ∈ R
|S|×|A|. The sampled anchor states and actions are the states corresponding

to the non-zero rows and columns, respectively. We remark that the Bernoulli model is chosen
for convenience and similar results hold if we sample with replacement. To prove Lemma 10,

we present two intermediate lemmas, the first shows p
−1/2
1 Ũ and p

−1/2
2 Ṽ have near orthonormal

columns, which implies that Ũ and Ṽ have full column rank, with high probability.

Lemma 23. Let Qh, U, Ũ ,Σ, V, and Ṽ be defined as above. Let Qh be µ-incoherent. Then, with
probability at least 1− 4(|S| ∧ |A|)−10, we have

∥p−1
1 Ũ⊤Ũ − Id×d∥op ≤

√

40µd log(|S|)
p1|S|

+
40µd log(|S|)

p1|S|

∥p−1
2 Ṽ ⊤Ṽ − Id×d∥op, ≤

√

40µd log(|A|)
p2|A|

+
40µd log(|A|)

p2|A|
.

Proof of Lemma 23. For each i ∈ [|S|], let Z(i) ∈ R
|S|×d be the matrix obtained from U by zeroing

out all but the i-th row. Let δ1, . . . , δ|S| be i.i.d. Bernoulli(p1) random variables. We can express

U =
∑

i∈[|S|]
Z(i) and Ũ =

∑

i∈[|S|]
δiZ

(i)

Note that

Ũ⊤Ũ =
∑

i∈[|S|]

∑

j∈[|S|]
δiδjZ

(i)⊤Z(j) (10)

=
∑

i∈[|S|]
δ2i Z

(i)⊤Z(i) (11)

by construction of Z(i) and Z(j). Hence,

E[Ũ⊤Ũ ] = p1
∑

i∈[|S|]
Z(i)⊤Z(i)

= p1
∑

i∈[|S|]

∑

j∈[|S|]
Z(i)⊤Z(j)

= p1U
⊤U

= p1Id×d (12)

where the last equality is due to U having orthonormal columns. For each i ∈ [|S|], we define the
following the mean-zero matrices

X(i) := (δ2i − E[δ2i ])Z
(i)⊤Z(i) = (δi − p1)Z

(i)⊤Z(i).
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Since Q∗
h is µ−incoherent,

∥X(i)∥op ≤ |δi − p1|∥Z(i)⊤Z(i)∥op ≤ ∥Z(i)⊤Z(i)∥op = ∥Ui−∥22 ≤
µrd

|S| surely.

Furthermore,

∑

i∈[|S|]
E[X(i)⊤X(i)] =

∑

i∈[|S|]
E[X(i)X(i)⊤ ] =

∑

i∈[|S|]
E[(δi − p)2]Z(i)⊤Z(i)Z(i)⊤Z(i)

= p1(1− p1)
∑

i∈[|S|]
∥Ui−∥22Z(i)⊤Z(i)

⪯ p1 ·
dµ

|S|
∑

i∈[|S|]
Z(i)⊤Z(i)

=
dµp1
|S| U

TU

=
dµp1
|S| Id×d.

Thus,

∥
∑

i∈[|S|]
E[X(i)⊤X(i)]∥op = ∥

∑

i∈[|S|]
E[X(i)X(i)⊤ ]∥op ≤

dµp1
|S|

From the matrix Bernstein inequality (Theorem 32), we have

P

(

∥Ũ⊤Ũ − p1Id×d∥op ≥ t
)

= P





∥

∥

∥

∥

∥

∥

∑

i∈[|S|]

(

(δ2i − p1)Z
(i)⊤Z(i)

)

∥

∥

∥

∥

∥

∥

op

≥ t





= P





∥

∥

∥

∥

∥

∥

∑

i∈[|S|]
X(i)

∥

∥

∥

∥

∥

∥

op

≥ t





≤ 2|S| exp
(

− t2/2
p1µd
|S| + µd

3|S| t

)

≤ 2|S| exp
(

− t2

2p1µd
|S| + 2µd

|S| t

)

where the first equality follows from equations 11 and 12. For t =
√

40p1µd log(|S|)
|S| + 40µd log(|S|)

|S| , we

have
∥

∥

∥Ũ⊤Ũ − p1Id×d

∥

∥

∥

op
≤
√

40p1µd log(|S|)
|S| +

40µd log(|S|)
|S|

with probability at least 1 − 2|S|−10. Dividing both sides by p1 yields the first inequality in the
lemma. The corresponding bound for Ṽ holds from a similar argument. Taking a union bound
over the two events proves the lemma.

Now, we present our second lemma that shows that the uniformly sample submatrix (Õ(d) by
Õ(d) in expectation) has rank-d with its smallest non-zero singular value bounded away from zero.
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Lemma 24. Let p1 =
µd log(|S|)
320|S| and p2 =

µd log(|A|)
320|A| . Under the event in Lemma 23, we have

σd((p1 ∨ p2)
−1Q̃) ≥ 1

2
σd(Qh).

Proof Of Lemma 24. Under the assumption that p1 = µd log(|S|)
320|S| and p2 = µd log(|A|)

320|A| and the event

in Lemma 23, we have ∥p−1
1 Ũ⊤Ũ−Id×d∥op ≤ 1

2 . From Weyl’s inequality, we have σd(p
−1
1 Ũ⊤Ũ) ≥ 1

2 ,

which implies σd(p
−1/2
1 Ũ) ≥ 1√

2
. From a similar argument, σd(p

−1/2
1 Ṽ ) ≥ 1√

2
. Let p = p1∨p2, from

the singular value version of the Courant-Fischer minimax theorem (Theorem 7.3.8 [21]), we have

σd(p
−1Q̃) = max

S:dim(S)=d
min

x∈S,x ̸=0

∥p−1ŨΣṼ ⊤x∥2
∥x∥2

= max
S:dim(S)=d

min
x∈S,x ̸=0

∥(p−1/2Ũ)Σ(p−1/2Ṽ ⊤)x∥2
∥Σ(p−1/2Ṽ ⊤)x∥2

∥Σ(p−1/2Ṽ ⊤)x∥2
∥p−1/2Ṽ ⊤x∥2

∥p−1/2Ṽ ⊤x∥2
∥x∥2

≥ max
S:dim(S)=d

min
x∈S,x ̸=0

∥(p−1/2Ũ)Σ(p−1/2Ṽ ⊤)x∥2
∥(p−1/2Ũ)†∥op∥(p−1/2Ũ)Σ(p−1/2Ṽ ⊤)x∥2

· ∥Σ(p−1/2Ṽ ⊤)x∥2
∥Σ−1∥op∥Σ(p−1/2Ṽ ⊤)x∥2

∥p−1/2Ṽ ⊤x∥2
∥x∥2

= σd(p
−1/2Ũ) · σd(Σ) max

S:dim(S)=d
min

x∈S,x̸=0

∥p−1/2Ṽ ⊤x∥2
∥x∥2

= σd(p
−1/2Ũ) · σd(Σ)σd(p−1/2Ṽ ⊤)

≥ σd(p
−1/2
1 Ũ) · σd(Σ)σd(p−1/2

2 Ṽ ⊤)

≥ 1√
2
σd(Qh)

1√
2

=
1

2
σd(Qh)

where the first inequality comes from properties of the operator norm and inverses/pseudo-inverses
and the second inequality comes from replacing p = p1 ∨ p2 with either p1 or p2.

Using the two above lemmas, we next prove Lemma 10.

Proof of Lemma 10. Let p1, p2 be defined as in Lemma 24. From the previous two lemmas, it follows
that with probability at least 1 − 4(|S| ∧ |A|)−10, we have σd((p1 ∨ p2)

−1Q̃) ≥ 1
2σd(Qh). Next, we

upper bound α = ∥Qh∥∞
σd(Qh(S#,A#))

assuming that Qh is µ-incoherent with condition number κ. Let

the singular value decomposition of the rank d matrix Qh be Qh = UΣV ⊤. For (s, a) ∈ S ×A,

|Qh(s, a)| = |UsΣVa|
≤ ∥Σ∥op|UsVa|
≤ σ1(Qh)∥Us∥2|Va∥2

≤ σ1(Qh)

√

µd

|S|

√

µd

|A|

=
dσ1(Qh)µ
√

|S||A|
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where the third inequality comes from Qh being µ incoherent. Hence,

∥Qh∥∞
σd(Qh(S#, A#))

≤ dσ1(Qh)µ

σd(Qh(S#, A#))
√

|S||A|

≤ dσ1(Qh)µ

σd(Qh(S#, A#))(|S| ∧ |A|)

=
320σ1(Qh)

σd((p1 ∨ p2)−1Qh(S#, A#)) log(|S| ∧ |A|)

=
640σ1(Qh)

σd(Qh) log(|S| ∧ |A|)
=

640κ

log(|S| ∧ |A|)

where the third line comes from the definition of p1 and p2 and the fourth line comes from Lemma
23. Hence, α ∈ O(κ). Next, we upperbound the size of the anchor sets with high probability.

From the one-sided Bernstein’s inequality, Proposition 31, for C ′′ = 25600
3µd ,

P

(

|S#| − E[|S#|] ≥ C ′′p1|S|
)

≤ exp

(

− p21(C
′′)2|S|

2(p1 +
p1C′′

3 )

)

≤ exp

(

− µdC ′′

640(1 + 1
3)

log(|S|)
)

= |S|−10.

With a similar argument,

P

(

|A#| − E[|A#|] ≥ C ′′p2|A|
)

≤ |A|−10.

From our definition of p1, p2, it follows that E
[

|S#|
]

= O (dµ log(|S|)) and E
[

|A#|
]

= O (dµ log(|A|)).
A union bound on the above two events and the one in Lemma 23 asserts that

|S#| ∈ O (dµ log(|S|)) , |A#| ≤ O (dµ log(|A|)) , and α ∈ O(κ)

with probability at least 1− 6(|S| ∧ |A|)−10.

H Proof of Lemma 12 (Entrywise Bounds for Matrix Estimation)

Lemma 12 provides bounds for the entrywise error amplification of the matrix estimation method
as a function of on k and α, assuming that S# and A# are (k, α)-anchor states and actions for
matrix Qh.

Proof of Lemma 12. Let S# and A# be (k, α)-anchor states and actions for matrix Qh. For all
(s, a) ∈ Ω# = S# × A#, assume that Q̂h(s, a) satisfies |Q̂h(s, a) − Qh(s, a)| ≤ η#, and for all
(s, a) ∈ Ω \ Ω#, assume that Q̂h(s, a) satisfies |Q̂h(s, a) − Qh(s, a)| ≤ η. We follow the same
argument as the proof of Proposition 13 in [37] except we upperbound equations (22) and (23) with
∥Qh∥∞ instead of Vmax. Following the steps in [37], i.e., using the triangle inequality and from the
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definition of the operator norm, for all (s, a) ∈ S × A, since S# and A# are (k, α)-anchor states
and actions,

|Q̄h(s, a)−Qh(s, a)| ≤
√
2
∥

∥

∥[Q̂h(S
#, A#)]†

∥

∥

∥

op

∥

∥

∥
Q̂h(S

#, a)Q̂h(s,A
#)−Qh(S

#, a)Qh(s,A
#)
∥

∥

∥

F

+
∥

∥

∥
[Q̂h(S

#, A#)]† − [Qh(S
#, A#)]†

∥

∥

∥

op

∥

∥

∥
Qh(S

#, a)Qh(s,A
#)
∥

∥

∥

F
.

Following the steps in the proof of Proposition 13, we upperbound the first operator norm term
with Weyl’s inequality and our assumption on ϵ and the second operator norm term with a classic
result from perturbing pseudoinverses,

∥

∥

∥
[Q̂h(S

#, A#)]†
∥

∥

∥

op
≤ 2

σd(Qh(S#, A#))
∥

∥

∥[Q̂h(S
#, A#)]† − [Qh(S

#, A#)]†
∥

∥

∥

op
≤ 2(1 +

√
5)

η#k

σd(Qh(S#, A#))2
.

Since for all s, s′ ∈ S and a, a′A,

∣

∣

∣Q̂h(s
′, a)Q̂h(s, a

′)−Qh(s
′, a)Qh(s, a

′)
∣

∣

∣ ≤
∣

∣(Qh(s
′, a) + η)(Qh(s, a

′) + η)−Qh(s
′, a)Qh(s, a

′)
∣

∣

≤ η|Qh(s
′, a)|+ η|Qh(s, a

′)|+ η2

≤ 2η∥Qh∥∞ + η2,

then,
∥

∥

∥Q̂h(S
#, a)Q̂h(s,A

#)−Qh(S
#, a)Qh(s,A

#)
∥

∥

∥

F
≤ (2η∥Qh∥∞+η2)k. Because |Qh(s

′, a)Qh(s, a
′)| ≤

∥Qh∥2∞ for all s, s′ ∈ S and a, a′A, clearly
∥

∥Qh(S
#, a)Qh(s,A

#)
∥

∥

F
≤ ∥Qh∥2∞k. Using these inequal-

ities gives that for all (s, a) ∈ S ×A,

|Q̄h(s, a)−Qh(s, a)| ≤
(

6
√
2αkη + 2(1 +

√
5)α2k2η#

)

∈ O(αkη + α2k2η#) (13)

since η ≤ ∥Qh∥∞.

I Inductive Arguments for Theorems 7, 8, and 9

We next present the missing proofs of our sample complexity bounds in Section 7. Recall that for
ease of notation,

Ns,a,h :=

{

N#
h if (s, a) ∈ Ω#

h = S#
h ×A#

h

Nh otherwise.

Proof of Theorem 7. Assume that Q∗
h is rank d and has suboptimality gap ∆min (Assumptions 1

and 2), and S#
h , A#

h are (k, α)-anchor states and actions for Q∗
h for all h ∈ [H]. Let NH−t =

2(t+1)2(c′)2k2α2 log(2H|S||A|/δ)
∆2

min
, N#

H−t = α2k2NH−t, where c′ satisfies the inequality in Lemma 12, for

all h ∈ [H]. We prove the correctness of LR-MCPI with high probability with induction on t that
the learned policy π̂H−t is an optimal policy with probability at least 1− δ(t+ 1)/H.

The base case occurs at step t = 0 in which case our estimates, Q̂H(s, a) = 1
N(s,a,H)

∑N(s,a,H)

i=1 riH(s, a)

over ΩH , are only averages of realizations riH ∼ RH(s, a). Since RH(s, a) has bounded support for
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all (s, a) ∈ S ×A, from Hoeffding’s inequality (Theorem 30) with our choice of N(s,a,H),

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ∆min

2c′kα
∀(s, a) ∈ ΩH

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ∆min

2c′k2α2
∀(s, a) ∈ Ω#

H

with probability at least 1− δ/H because |Ωh| ≤ |S||A|. Step 2 of LR-MCPI gives

|Q̄H(s, a)−Q∗
H(s, a)| ≤ ∆min

2

for all (s, a) ∈ S × A from Lemma 12. From Step 3 of LR-MCPI, the identified policy is
π̂H(s) = argmaxa∈A Q̄H(s, a). Assume for sake of contradiction that there exists an s ∈ S such
that Q∗

H(s, π̂H(s)) < Q∗
H(s, π∗

H(s)). Let π̂H(s) = a, π∗
H(s) = a∗. Hence,

Q∗
H(s, a∗)−Q∗

H(s, a) = Q∗
H(s, a∗)− Q̄H(s, a) + Q̄H(s, a)−Q∗

H(s, a)

≤ Q∗
H(s, a∗)− Q̄H(s, a∗) +

∆min

2
≤ ∆min

where the first inequality comes from how π̂H(s) is defined and the matrix estimation step. Hence,
we reach a contradiction since Q∗

H(s, a∗)−Q∗
H(s, a) is less than the suboptimality gap. Thus, π̂H(s)

is an optimal policy. Hence, the base case holds.
Next, let x ∈ {0, . . . , H − 1}. Assume that the inductive hypothesis, the policy π̂H−x found in

Step 4 of LR-MCPI is an optimal policy with probability at least 1− δ(x+ 1)/H, holds.
Following Step 1 of LR-MCPI, we have Q̂H−x−1(s, a) = r̂cumH−x−1(s, a), which is an unbiased

estimate of Q∗
H−x−1(s, a) and also bounded. Hence, from Hoeffding’s inequality (Theorem 30),

with the choice of NH−x−1 =
2(x+2)2(c′)2k2α2 log(2H|S||A|/δ)

∆2
min

, N#
H−x−1 = α2k2NH−x−1, it follows that

|Q̂H−x−1(s, a)−Q∗
H−x−1(s, a)| ≤

∆min

2c′kα
∀(s, a) ∈ ΩH−x−1

|Q̂H−x−1(s, a)−Q∗
H−x−1(s, a)| ≤

∆min

2c′k2α2
∀(s, a) ∈ Ω#

H−x−1

with probability 1− δ
H|S||A| . Step 2 of LR-MCPI gives

|Q̄H−x−1 −Q∗
H−x−1|∞ ≤

∆min

2

from Lemma 12. From a union bound, it follows that π̂H−x is an optimal policy and the above event
occur with probability at least 1− δ(x+ 2)/H. From Step 3 of LR-MCPI, the identified policy is
π̂H−x−1(s) = argmaxa∈A Q̄H−x−1(s, a). Assume for sake of contradiction that there exists an s ∈ S
such that Q∗

H−x−1(s, π̂H−x−1(s)) < Q∗
H−x−1(s, π

∗
H−x−1(s)). Let π̂H−x−1(s) = a, π∗

H−x−1(s) = a∗.
Hence,

Q∗
H−x−1(s, a

∗)−Q∗
H−x−1(s, a)

= Q∗
H−x−1(s, a

∗)− Q̄H−x−1(s, a) + Q̄H−x−1(s, a)−Q∗
H−x−1(s, a)

≤ Q∗
H−x−1(s, a

∗)− Q̄H−x−1(s, a
∗) +

∆min

2
≤ ∆min
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where the first inequality comes from how π̂H−x−1(s) is defined and the matrix estimation step.
Hence, we reach a contradiction since Q∗

H−x−1(s, a
∗)−Q∗

H−x−1(s, a) is less than the suboptimality
gap. Thus, π̂H−x−1(s) is an optimal policy, and the inductive step holds for x+ 1. It follows from
mathematical induction that the learned policy π̂ is an optimal policy with probability at least
1− δ.

Next, we bound the number of required samples. The number of samples used is

H−1
∑

t=0

(k(|A|+ |S|))NH−t(t+ 1) + k2N#
H−t(t+ 1)

where the t+ 1 comes from the length of the rollout. With our choice of NH−t, it follows that

H−1
∑

t=0

(k(|A|+ |S|))NH−t(t+ 1)

=
H−1
∑

t=0

(k(|A|+ |S|))2(t+ 1)3(c′)2k2α2
H−t log(2H|S||A|/δ)
∆2

min

+
2(t+ 1)3(c′)2k4α4

H−t log(2H|S||A|/δ)
∆2

min

≤
(

2c′2k3α2(|S|+ |A|) log(2H|S||A|/δ)
∆2

min

+
k6α4c′2 log(2H|S||A|/δ

∆2
min

)H−1
∑

t=0

(t+ 1)3

∈ Õ

(

k3α2(|S|+ |A|)H4

∆2
min

+
k6α4H4

∆2
min

)

.

Proof of Theorem 8. This proof follows the same steps as the previous one. Assume that for all
ϵ-optimal policies π, Qπ

h is rank d (Assumption 3), and S#
h , A#

h are (k, α)-anchor states and actions
for Qπ̂

h, where π̂ is the learned policy from Low Rank Monte Carlo Policy Iteration for all h ∈ [H].

Let NH−t =
2(t+1)2(c′)2k2α2H2 log(2H|S||A|/δ)

ϵ2
, N#

H−t = α2k2NH−t, where c′ satisfies the inequality in
Lemma 12, for all h ∈ [H]. We prove the correctness of LR-MCPI with high probability with
induction on t that the learned policy π̂H−t is ϵ(t + 1)/H-optimal policy with probability at least
1− δ(t+ 1)/H.

The base case occurs at step t = 0 in which case our estimates, Q̂H(s, a) = 1
Ns,a,H

∑Ns,a,H

i=1 riH(s, a)

over ΩH , are only averages of realizations riH ∼ RH(s, a). Since RH(s, a) has bounded support for
all (s, a) ∈ S ×A, from Hoeffding’s inequality (Theorem 30) with our choice of Ns,a,H ,

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

2c′kαH
∀(s, a) ∈ Ωh

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

2c′k2α2H
∀(s, a) ∈ Ω#

h

with probability at least 1− δ/H because |Ωh| ≤ |S||A|. Step 2 of LR-MCPI gives

|Q̄H(s, a)−Q∗
H(s, a)| ≤ ϵ

2H

for all (s, a) ∈ S ×A from Lemma 12. Assume for sake of contradiction that there exists an s ∈ S
such that Q∗

H(s, π̂H(s)) < Q∗
H(s, π∗

H(s))− ϵ/H. Let π̂H(s) = a, π∗
H(s) = a∗. Hence,

Q∗
H(s, a∗)−Q∗

H(s, a) = Q∗
H(s, a∗)− Q̄H(s, a) + Q̄H(s, a)−Q∗

H(s, a)

≤ Q∗
H(s, a∗)− Q̄H(s, a∗) +

ϵ

2H

≤ ϵ

H
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where the first inequality comes from how π̂H(s) is defined and the matrix estimation step. Hence,
we reach a contradiction since Q∗

H(s, a∗) − Q∗
H(s, a) is less ϵ/H. Thus, Q̄H and π̂H are both

ϵ/H-optimal, and the base case holds.
Next, let x ∈ {0, . . . , H − 1}. Assume that the inductive hypothesis, the policy π̂H−x and

action-value function estimate Q̄H−x found in Step 3 of LR-MCPI are ϵ(x + 1)/H-optimal with
probability at least 1− δ(x+ 1)/H, holds.

Following Step 1 from LR-MCPI, we have Q̂H−x−1(s, a) = r̂cumH−x−1(s, a), which is bounded and

an unbiased estimate of Qπ̂(s, a) for π̂ = {π̂h}H−x≤h≤H , which is an ϵ-optimal policy. Hence, from

Hoeffding’s inequality (Theorem 30), with the choice ofNH−x−1 =
2(x+2)2(c′)2H2α2k2 log(2H|S||A|/δ)

ϵ2
, N#

H−x−1 =
α2k2NH−x−1, it follows that

|Q̂H−x−1(s, a)−Qπ̂
H−x−1(s, a)| ≤

ϵ

2c′αkH
∀(s, a) ∈ ΩH−x−1

|Q̂H−x−1(s, a)−Qπ̂
H−x−1(s, a)| ≤

ϵ

2c′α2k2H
∀(s, a) ∈ Ω#

H−x−1

with probability 1− δ
H|S||A| . Step 2 of LR-MCPI gives

∥Q̄H−x−1 −Qπ̂
H−x−1∥∞ ≤

ϵ

2H

from Lemma 12. The union bound asserts that the above error guarantee and π̂H−x and Q̄π̂
H−x are

(x+1)ϵ/H holds with probability at least 1− δ(x+2)/H. From step 3 of LR-MCPI, the identified
policy is π̂H−x−1(s) = argmaxa∈A Q̄H−x−1(s, a). For all (s, a) ∈ S ×A,

|Q̄H−x−1(s, a)−Q∗
H−x−1(s, a)| ≤ |Q̄H−x−1(s, a)−Qπ̂

H−x−1(s, a)|
+ |Qπ̂

H−x−1(s, a)−Q∗
H−x−1(s, a)|

≤ ϵ

2H
+
∣

∣

∣Es′∼PH−x−1(·|s,a)
[

V π̂
H−x(s

′)− V ∗
H−x(s

′)
]∣

∣

∣

≤ ϵ

2H
+
∣

∣Es′∼PH−x−1(·|s,a) [(x+ 1)ϵ/H]
∣

∣

=
(2x+ 3)ϵ

2H
.

Thus, Q̄H−x−1 is ϵ(x+2)
H -optimal. It follows from the construction of π̂H−x−1(s) that

Q̄H−x−1(s, π̂H−x−1(s)) ≥ Q̄H−x−1(s, a
′),

where a′ = argmaxaQ
∗
H−x−1(s, a). Hence, for all s ∈ S,

|V ∗
H−x−1(s)− V π̂

H−x−1(s)| ≤ |Q∗
H−x−1(s, a

′)− Q̄H−x−1(s, π̂H−x−1(s))|
+ |Q̄H−x−1(s, π̂H−x−1(s))−Qπ̂

H−x−1(s, π̂H−x−1(s))|

≤ (2x+ 3)ϵ

2H
+

ϵ

2H

=
(x+ 2)ϵ

H
.

Thus, π̂H−x−1(s) and Q̄H−x−1 are (x + 2)ϵ/H-optimal, and the inductive step holds for x + 1.
It follows from mathematical induction that the learned policy π̂ and action-value function are
ϵ-optimal with probability at least 1− δ.
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Next, we bound the number of required samples. The number of samples used is

H−1
∑

t=0

(k(|A|+ |S|))NH−t(t+ 1) + k2N#
H−t(t+ 1)

where the t+ 1 comes from the length of the rollout. With our choice of NH−t, it follows that

H−1
∑

t=0

(k(|A|+ |S|))NH−t(t+ 1)

=

H−1
∑

t=0

(k(|A|+ |S|))2(t+ 1)3(c′)2k2α2H2 log(2H|S||A|/δ)
ϵ2

+
2(t+ 1)3(c′)2k6α4H2 log(2H|S||A|/δ)

ϵ2

∈ Õ

(

k3α2(|S|+ |A|)H6

ϵ2
+

k6α4H6

ϵ2

)

.

Proof. Proof of Theorem 9 This proof follows the same steps as the previous two proofs. Assume
that for any ϵ-optimal value function Vh+1, the matrix corresponding to Q′

h = [rh + [PhVh+1]] is

rank d, and S#
h , A#

h are (k, α)-anchor states and actions for Q̂′
h = [rh + [PhV̂h+1]], where V̂h+1 is

the learned value function from Low Rank Empirical Value Iteration for all h ∈ [H]. Let NH−t =
2(t+1)2(c′)2k2α2H2 log(2H|S||A|/δ)

ϵ2
, N#

H−t = α2k2NH−t, where c′ satisfies the inequality in Lemma 12,

and Q′
h = [rh + PhV̂h+1] for all ϵ-optimal value fucntions V̂h+1 for all h ∈ [H]. We prove the

correctness of LR-EVI with high probability with induction on t that

∥Q̄H−t −Q∗
H−t∥∞ ≤

ϵ(t+ 1)

H
, ∥Q̄H−t −Qπ̂

H−t∥∞ ≤
ϵ(t+ 1)

H

where Q̄H−t and π̂H−t are the learned Q function and policy with probability at least 1−δ(t+1)/H.

The base case occurs at step t = 0 in which case our estimates, Q̂H(s, a) = 1
Ns,a,H

∑Ns,a,H

i=1 riH(s, a)

over ΩH , are only averages of realizations riH ∼ RH(s, a) since V̂H+1 = 0⃗. Since RH(s, a) has
bounded support for all (s, a) ∈ S × A, from Hoeffding’s inequality (Theorem 30) with our choice
of Ns,a,H ,

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

c′kαH
∀(s, a) ∈ Ωh

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

c′k2α2H
∀(s, a) ∈ Ω#

h

with probability at least 1− δ/H because |Ωh| ≤ |S||A|. Step 2 of LR-EVI gives

|Q̄H(s, a)−Q∗
H(s, a)| ≤ ϵ

H

for all (s, a) ∈ S ×A from Lemma 12. Since Q∗
H = Qπ̂

H , the base case holds.
Next, let x ∈ {0, . . . , H − 1}. Assume that the inductive hypothesis, the action-value function

estimates Q̄H−x and learned policy π̂H−x satisfy

∥Q̄H−x −Q∗
H−x∥∞ ≤

(x+ 1)ϵ

H
, ∥Q̄H−x −Qπ̂

H−x∥∞ ≤
(x+ 1)ϵ

H
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holds with probability at least 1− δ(x+ 1)/H. Following Step 1 from LR-EVI, we have

Q̂H−x−1(s, a) = r̂H−x−1(s, a) + Es′∼P̂H−x−1(·|s,a)[V̂H−x(s
′)],

an unbiased estimate ofQ′
H−x−1(s, a) = rH−x−1(s, a)+Es′∼PH−x−1(·|s,a)[V̂H−x(s

′)], which is bounded.

Hence, from Hoeffding’s inequality (Theorem 30), with the choice ofNH−x−1 =
(x+2)2(c′)2k2H2α2 log(2H|S||A|/δ)

2ϵ2
,

N#
H−x−1 = α2k2NH−x−1, it follows that

|Q̂H−x−1(s, a)−Q′
H−x−1(s, a)| ≤

ϵ

2c′kαH
∀(s, a) ∈ ΩH−x−1

|Q̂H−x−1(s, a)−Q′
H−x−1(s, a)| ≤

ϵ

2c′k2α2H
∀(s, a) ∈ Ω#

H−x−1

with probability 1− δ
H|S||A| . Step 2 of LR-EVI gives

|Q̄H−x−1 −Q′
H−x−1|∞ ≤

ϵ

H

from Lemma 12. The union bound asserts that the above error guarantee and Q̄H−x′ is close
to Q∗

H−x′ and Qπ̂
H−x′ for x ∈ [x] holds with probability at least 1 − δ(x + 2)/H. Hence, for all

(s, a) ∈ S ×A,

|Q̄H−x−1(s, a)−Q∗
H−x−1(s, a)| ≤ |Q̄H−x−1(s, a)−Q′

H−x−1(s, a)|+ |Q′
H−x−1(s, a)−Q∗

H−x−1(s, a)|
≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[max

a∈A
Q̄H−x(s

′, a′)− V ∗
H−x(s

′)]|

≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[(x+ 1)ϵ/H]|

=
(x+ 2)ϵ

H

Thus, Q̄H−x−1 is (x+ 2)ϵ/H-optimal. Next, we note that

|Q̄H−x−1(s, a)−Qπ̂
H−x−1(s, a)| ≤ |Q̄H−x−1(s, a)−Q′

H−x−1(s, a)|+ |Q′
H−x−1(s, a)−Qπ̂

H−x−1(s, a)|
≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[max

a∈A
Q̄H−x(s

′, a′)− V π̂
H−x(s

′)]|

≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[(x+ 1)ϵ/H]|

=
(x+ 2)ϵ

H

where the third inequality holds because

|max
a∈A

Q̄H−x(s
′, a′)− V π̂

H−x(s
′)| ≤ |Ea′∼π̂H−x(s′)[Q̄H−x(s

′, a′)]− Ea′∼π̂H−x(s′)[Q
π̂
H−x(s

′, a′)]

≤ ∥Q̂H−x −Qπ̂
H−x∥∞

≤ (x+ 1)ϵ

H

from the induction hypothesis, and the inductive step holds for x+1. It follows from mathematical
induction (and the triangle inequality) that the learned policy π̂ and action-value function are 2ϵ
and ϵ-optimal with probability at least 1−δ. Scaling Nh by a factor of four results in learning an ϵ-
optimal policy with probability at least 1−δ without changing the sample complexity’s dependence
on |S|, |A|, H, or ϵ.
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Next, we bound the number of required samples. The number of samples used is

H−1
∑

t=0

(k(|A|+ |S|))NH−t + k2N#
H−t.

Note that there is no (t + 1) term as samples are single transitions instead of rollouts. With our
choice of NH−t, it follows that

H−1
∑

t=0

(k(|A|+ |S|))NH−t

=
H−1
∑

t=0

k(|A|+ |S|)8(t+ 1)2(c′)2k2α2H2 log(2H|S||A|/δ)
ϵ2

+
8(t+ 1)2(c′)2k6α4H2 log(2H|S||A|/δ)

ϵ2

∈ Õ

(

k3α2(|S|+ |A|)H5

ϵ2
+

k6α4H5

ϵ2

)

.

J Proofs for Approximately Low Rank Models

We first present the proof of Proposition 13, which shows that if the reward function and transition
kernel are low rank, then for any value function estimate V̂h+1, rh + [PhV̂h+1] has rank upper
bounded by d.

Proof of Proposition 13. Let ξR, ξP , rh,d, [Ph,dV̂h+1] be defined as in Section 7.3. Then, for all
(s, a, h) ∈ S ×A× [H],

[rh,d + Ph,dV̂h+1](s, a)− [rh + PhV̂h+1](s, a)|
≤ |[rh − rh,d](s, a)|+ |[(Ph,d − Ph)V̂h+1](s, a)|
= ξR + |

∑

s′∈S
V̂h+1(s

′)(Ph,d(s
′|s, a)− Ph(s

′|s, a))|

≤ ξR + (H − h)|
∑

s′∈S
(Ph,d(s

′|s, a)− Ph(s
′|s, a))|

= ξR + (H − h)2dTV(Ph(·|s, a), Ph,d(·|s, a))TV

= ξR + (H − h)ξP

since V̂h+1(s) ∈ [0, H − h− 1].

We next prove that the learned policy’s error is additive with respect to the approximation
error.

Proof. Proof of Theorem 14 This proof follows the same steps as the proof of Theorem 9 while
accounting for the approximation error. Assume that we have a (d, ξR, ξP )-approximately low-rank

MDP. Let S#
h , A#

h be (k, α)-anchor states and actions, c′ be a constant that satisfies the inequality

in Lemma 12, NH−t =
2(t+1)2(c′)2k2α2H2 log(2H|S||A|/δ)

ϵ2
, N#

H−t = α2k2NH−t, and Q′
h = [rh + PhV̂h+1]
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for all ϵ-optimal value functions V̂h+1 for all h ∈ [H]. We prove the correctness of LR-EVI with
high probability with induction on t that

∥Q̄H−t −Q∗
H−t∥∞, ∥Q̄H−t −Qπ̂

H−t∥∞ ≤ (t+ 1)ϵ/H +
t
∑

i=0

(c′k2α2 + 1) (ξR + iξP )

where Q̄H−t and π̂H−t are the learned Q function and policy with probability at least 1−δ(t+1)/H
for each t ∈ {0, . . . , H − 1}.

The base case occurs at step t = 0 in which case our estimates, Q̂H(s, a) = 1
Ns,a,H

∑Ns,a,H

i=1 rH,i(s, a)

over ΩH , are only averages of realizations riH ∼ RH(s, a) since V̂H+1 = 0⃗. Since RH(s, a) has
bounded support for all (s, a) ∈ S × A, from Hoeffding’s inequality (Theorem 30) with our choice
of Ns,a,H

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

c′kαH
∀(s, a) ∈ Ωh

|Q̂H(s, a)−Q∗
H(s, a)| ≤ ϵ

c′k2α2H
∀(s, a) ∈ Ω#

h

with probability at least 1 − δ/H because |Ωh| ≤ |S||A|. Under the event above, it follows that
|Q̂H(s, a)−Q∗

H,d(s, a)| ≤ ϵ
c′Hα2k2H

+ ξR or |Q̂H(s, a)−Q∗
H,d(s, a)| ≤ ϵ

c′HαkH
+ ξR for all (s, a) ∈ ΩH .

Step 2 of LR-EVI gives

|Q̄H(s, a)−Q∗
H,d(s, a)| ≤

ϵ

H
+ Ck2α2ξR

for all (s, a) ∈ S × A from Lemma 12 for some positive constant C. By definition of the approxi-
mation error,

|Q̄H(s, a)−Q∗
H(s, a)| ≤ ϵ

H
+ (Ck2α2 + 1)ξR ∀(s, a) ∈ S ×A.

Since Q∗
H = Qπ̂

H , the base case holds.
Next, let x ∈ {0, . . . , H − 1}. Assume that the inductive hypothesis, the action-value function

estimates Q̄H−x and learned policy π̂H−x satisfy

∥Q̄H−x −Q∗
H−x∥∞ ≤

(x+ 1)ϵ

H
, ∥Q̄H−x −Qπ̂

H−x∥∞ ≤
(x+ 1)ϵ

H
+

x
∑

i=0

(Ck2α2 + 1) (ξR + iξP )

holds with probability at least 1 − δ(x + 1)/H. At step x + 1, following Step 1 from LR-EVI, we
have

Q̂H−x−1(s, a) = r̂H−x−1(s, a) + Es′∼P̂H−x−1(·|s,a)[V̂H−x(s
′)],

an unbiased estimate of Q′
H−x−1(s, a) = rH−x−1(s, a) + Es′∼PH−x−1(·|s,a)[V̂H−x(s

′)]. Furthermore,

Q̂H−x−1(s, a) ∈ [0, x+ 2] is a bounded random variable because of bounded rewards. Hence, from

Hoeffding’s inequality (Theorem 30), with the choice ofNH−x−1 =
(x+2)2(c′)2k2α2H2 log(2H|S||A|/δ)

2ϵ2
, N#

H−x−1 =
α2k2NH−x−1, it follows that

|Q̂H−x−1(s, a)−Q′
H−x−1(s, a)| ≤

ϵ

2c′kαH
∀(s, a) ∈ ΩH−x−1

|Q̂H−x−1(s, a)−Q′
H−x−1(s, a)| ≤

ϵ

2c′k2α2H
∀(s, a) ∈ Ω#

H−x−1
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with probability 1− δ
H|S||A| . Under the event above, it follows that |Q̂H−x−1(s, a)−Q′

H−x−1(s, a)| ≤
ϵ

c′k2α2H
+ ξR + (H − x − 1)ξP for all (s, a) ∈ ΩH−x−1 where Q′

h,d = rh,d + [Ph,dV̂h+1]. Step 2 of
LR-EVI gives

|Q̄H−x−1 −Q′
H−x−1,d|∞ ≤

ϵ

H
+ Ck2α2 (ξR + (H − x− 1)ξP )

from Lemma 12 for some positive constant C. The union bound asserts that the above error
guarantee holds with probability at least 1− δ(x+ 2)/H. Hence, for all (s, a) ∈ S ×A,

|Q̄H−x−1(s, a)−Q∗
H−x−1(s, a)|

≤ |Q̄H−x−1(s, a)−Q′
H−x−1,d(s, a)|+ |Q′

H−x−1,d(s, a)−Q′
H−x−1(s, a)|

+ |Q′
H−x−1(s, a)−Q∗

H−x−1(s, a)|
≤ ϵ

H
+ c′k2α2 (ξR + (H − x− 1)ξP )

+ ξR + (H − x− 1)ξP

+ |Es′∼PH−x−1(·|s,a)[max
a∈A

Q̄H−x(s
′, a′)− V ∗

H−x(s
′)]|

≤ ϵ

H
+ (1 + c′k2α2) (ξR + (H − x− 1)ξP )

+ |Es′∼PH−x−1(·|s,a)[(x+ 1)ϵ/H +
x
∑

i=0

(Ck2α2 + 1) (ξR + iξP )]|

=
(x+ 2)ϵ

H
+

x+1
∑

i=0

(Ck2α2 + 1) (ξR + iξP )].

With a similar argument, it follows that for all (s, a) ∈ S ×A,

Q̄H−x−1(s, a)−Qπ̂
H−x−1(s, a)| ≤

(x+ 2)ϵ

H
+

x+1
∑

i=0

(Ck2α2 + 1) (ξR + iξP )].

Thus, the inductive step holds for x+ 1, and from mathematical induction, the lemma holds.
Choosing t = H − 1 proves the correctness of the algorithm. Next, we bound the number of

required samples. The number of samples used is the same as in the proof of Theorem 9, which
implies a sample complexity of

Õ

(

k3α2(|S|+ |A|)H5

ϵ2
+

k6α4H5

ϵ2

)

.

K Proofs for Continuous MDPs

We next present the proofs of the results in Section A.1, starting with our procedure on how we
obtain samples/rollouts from the discretized MDP.

Using the generative model, we simulate trajectories from Mβ with the following procedure: to
sample a trajectory from Mβ following policy π starting at (s, a, h), first sample a state s′ from
Ph(·|s, a). Then, we take the closest discretized state s′β to s′ , i.e., s′β = argmins∈S ∥s − s′∥2,
to be the observed state in the trajectory. The generative model is then used to sample from
Ph+1(·|s′β , π(s′β)), and we repeat until the end of the horizon to obtain a trajectory from P β

h using
the generative model on the original MDP. Lemma 25 asserts the correctness of this procedure.
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Lemma 25. Let τπh (sh, ah) be a rollout obtained with the procedure detailed above starting at state-
action pair (sh, ah) at step h with policy π, τπβ,h(sh, ah) be a rollout following policy π from the
discretized MDP starting at state-action pair (sh, ah) at step h, and τ be a realization of a rollout
following policy π from the discretized MDP starting at state-action pair (sh, ah) at step h. Then,

P(τh(sh, ah)) = τ) = P(τβh (sh, ah) = τ).

Proof of Lemma 25. Let τ = (sh+1, π(sh+1), . . . , sH , π(sH)). From the Markov Property and the
procedure defined above, it follows that

P(τh(sh, ah)) = τ) =

∫

{s′:|sh+1−s′|2≤β}
P (s′|sh, ah)ds′ΠH−1

i=h+1

∫

{s′:|si+1−s′|2≤β}
P (s′|si, π(si))ds′

= P β
h (sh+1|sh, ah)ΠH−1

i=h+1P
β
h (si+1|si, π(si))

= P(τβh (sh, ah) = τ).

We next present the proof of Lemma 15, which allows us to use Qβ
h to estimate Q∗

h.

Proof of Lemma 15. We prove this lemma via induction. For h = H, by construction of the β-nets,
for any s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such that ∥s− s′∥2 ≤ β, ∥a− a′∥2 ≤ β,

|Q∗
H(s, a)−Qβ

H(s′, a′)| ≤ 2Lβ

because Q∗
H is L-Lipschitz. For all s ∈ S and s′ ∈ Sβ such that ∥s − s′∥2 ≤ β, let amax =

argmaxa∈AQ∗
H(s, a) and dA(a) be the function that maps the action a to the closest action in Aβ ,

which is at most β away. It follows that

|V ∗
H(s)− V β

H(s′)| = |Q∗
H(s, amax)− max

a∗∈Aβ
Qβ

H(s′, a∗)|

≤ |Q∗
H(s, amax)−Qβ

H(s′, d(amax))|
≤ 2Lβ

where the first inequality comes from Q∗
H(s, amax) being an upperbound of Qβ

H(s′, a′) and the max
operator, and the second inequality comes from Q∗

H being Lipschitz. Next, assume that for any

s ∈ S and s′ ∈ Sβ such that ∥s− s′∥2 ≤ β, |V ∗
H−t+1(s)− V β

H−t+1(s
′)| ≤ 2(H − t+ 1)Lβ. Let dS(s)

be the function that maps the state s to the closest state in Sβ , which is at most β away. For any
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s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such that ∥s− s′∥2 ≤ β, ∥a− a′∥2 ≤ β,

|Q∗
H−t(s, a)−Qβ

H−t(s
′, a′)|

≤ |Q∗
H−t(s, a)−Q∗

H−t(s
′, a′)|+ |Q∗

H−t(s
′, a′)−Qβ

H−t(s
′, a′)|

≤ 2Lβ + |Es∗∼P (·|s′,a′)[V
∗
H−t+1(s

∗)]− Es∗∼Pβ(·|s′,a′)[V
β
H−t+1(s

∗)]|

= 2Lβ + |
∫

s∗∈S
PH+1(s

∗|s′, a′)V ∗
H−t+1(s

∗)ds∗ −
∑

s∗∈Sβ

P β
H+1(s

∗|s′, a′)V β
H−t+1(s

∗)

= 2Lβ + |
∫

s∗∈S
PH+1(s

∗|s′, a′)V ∗
H−t+1(s

∗)ds∗

−
∑

s∗∈Sβ

∫

{s′′∈S:|s∗−s′′|2≤β}
V β
H−t+1(s

∗)Ph(s
′′|s′, a′)ds∗|

= 2Lβ + |
∫

s∗∈S
PH+1(s

∗|s′, a′)V ∗
H−t+1(s

∗)ds∗ −
∫

s∗∈S
PH+1(s

∗|s′, a′)V β
H−t+1(dS(s

∗))ds∗|

≤ 2Lβ + |Es∗∼P (·|s′,a′)2(H − t+ 1)Lβ|
= 2(H − t)Lβ

where the fourth line comes from the definition of P β
h . For all s ∈ S and s′ ∈ Sβ such that

∥s− s′∥2 ≤ β, let amax = argmaxa∈AQ∗
H−t(s, a). It follows that

|V ∗
H−t(s)− V β

H−t(s
′)| = |Q∗

H−t(s, amax)−Qβ
H−t(s

′, a′max)|
≤ |Q∗

H−t(s, amax)−Qβ
H−t(s

′, dA(amax))|
≤ 2(H − t)Lβ

Thus, from induction, for any s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such that ∥s−s′∥2 ≤ β, ∥a−a′∥2 ≤
β, for all h ∈ [H],

|Q∗
h(s, a)−Qβ

h(s
′, a′)| ≤ 2L(H − h+ 1)β, |V ∗

h (s, a)− V β
h (s′, a′)| ≤ 2L(H − h+ 1)β.

To prove the desired sample complexity bounds, we first state a lemma on covering numbers
that upperbounds the number of points required for our β-nets.

Lemma 26 (Theorem 14.2 from [52]). Let Θ ⊂ R
n. Then,

N(Θ, ϵ) ≤
(

3

ϵ

)n V ol(Θ)

V ol(B)

where N(Θ, ϵ) is the covering number of Θ, and B is the unit norm ball in R
n.

We next present the sample complexity bound of LR-MCPI when Mβ satisfies Assumption 3
and its proof.

Theorem 27. Let Qπ
h,β = [Qπ

h(s, a)](s,a)∈Sβ×Aβ , the action-value function of policy π at step h on
only the discretized state-action pairs. After discretizing the continuous MDP, let Assumption 3
hold on Mβ. Furthermore, assume that S#

h , A#
h are (k, α)-anchor states and actions for Qπ,β

h for all
h ∈ [H]. Let Q̄h be the action-value function estimates that Low Rank Monte Carlo Policy Iteration
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for Step 1 return for all h ∈ [H] when run on Mβ. For any s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such
that ∥s− s′∥2 ≤ β, ∥a− a′∥2 ≤ β and h ∈ [H],

|Q̄h(s
′, a′)−Q∗

h(s, a)| ≤ ϵ

with probability at least 1 − δ when β = ϵ
4LH , NH−t = 8(t+1)2(c′)2H2k2α2 log(2H|S||A|/δ)

ϵ2
, N#

H−t =
α2k2NH−t, and c′ satisfies the inequality in Lemma 12 for all t ∈ {0, . . . H − 1}. Furthermore, at

most Õ
(

k3α2Hn+6

ϵn+2V ol(B)

)

number of samples are required with the same probability where B is the unit

norm ball in R
n.

Proof of Theorem 27. After discretizing the continuous MDP to get Mβ for β = ϵ
4LH , we note

that |Sβ |, |Aβ | ∈ O( Hn

ϵnV ol(B)) from Lemma 26. Since the required assumptions for Theorem 8

hold on Mβ , it follows that each Q̄h is ϵ(H − h + 1)/H-optimal for all h ∈ [H] on Mβ when

running LR-MCPI with NH−t =
8(t+1)2(c′)2H2k2α2 log(2H|S||A|/δ)

ϵ2
, N#

H−t = α2k2NH−t using at most

Õ
(

k3α2Hn+6

ϵn+2V ol(B)

)

samples with probability at least 1 − δ. Since β = ϵ
4LH , from Lemma 15, for any

s ∈ S, a ∈ A and s′ ∈ Sβ , a′ ∈ Aβ such that ∥s−s′∥2 ≤ β, ∥a−a′∥2 ≤ β and for all t ∈ {0, . . . H−1},
|Q̄H−t(s

′, a′)−Q∗
H−t(s, a)| ≤ |Q̄H−t(s

′, a′)−Qβ
H−t(s

′, a′)|+ |Qβ
H−t(s

′, a′)−Q∗
H−t(s, a)|

≤ ϵ

2
+ 2L(t+ 1)β

≤ ϵ.

Hence, an ϵ-optimal Q function on the continuous space is Q̄c
h(s, a) = Q̄h(s

′, a′), where (s′, a′) is
the discretized state-action pair closest to (s, a).

Proof of Theorem 16. After discretizing the continuous MDP to get Mβ for β = ϵ
4LH , we note that

|Sβ |, |Aβ | ∈ O( Hn

ϵnV ol(B)) from Lemma 26. Since Assumption 4 holds on Mβ , from Theorem 9, it

follows that each Q̄h is ϵ/2-optimal for all h ∈ [H] on Mβ when running LR-EVI with NH−t =
4(t+1)2(c′)2k2α2H2 log(2H|S||A|/δ)

ϵ2
, N#

H−t =
4(t+1)2(c′)2k4α4H2 log(2H|S||A|/δ)

ϵ2
using at most Õ

(

k3α2Hn+5

ϵn+2V ol(B)

)

samples with probability at least 1− δ. Since β = ϵ
4LH , from Lemma 15, for any s ∈ S, a ∈ A and

s′ ∈ Sβ , a′ ∈ Aβ such that ∥s− s′∥2 ≤ β, ∥a− a′∥2 ≤ β and for all t ∈ {0, . . . H − 1},
|Q̄H−t(s

′, a′)−Q∗
H−t(s, a)| ≤ |Q̄H−t(s

′, a′)−Qβ
H−t(s

′, a′)|+ |Qβ
H−t(s

′, a′)−Q∗
H−t(s, a)|

≤ ϵ

2
+ 2L(t+ 1)β

≤ ϵ.

Hence, an ϵ-optimal Q function on the continuous space is Q̄c
h(s, a) = Q̄h(s

′, a′), where (s′, a′) is
the discretized state-action pair closest to (s, a).

L Proofs for Infinite-Horizon Discounted MDPs

In this section, we present the omitted proofs from Appendix A.2. We first prove that for any
estimate of the value function, r + PV̂t has rank that is at most d.

Proof of Proposition 17. Let MDP M = (S,A, P,R, γ) satisfy Assumption 7. For the Tucker rank
(|S|, |S|, d) case,it follows that

r(s, a) + γEs′∼P (·|s,a)[V̂ (s′)] =
∑d

i=1W (s, i)V (a, i) + γ
∑

s′∈S
∑d

i=1 U(s′, s, i)V (a, i)V̂ (s′)

=
∑d

i=1 V (a, i)
(

W (s, i) + γ
∑

s′∈S U(s′, s, i)V̂ (s′)
)
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Thus, r + γ[PV̂ ] has rank upper bounded by d, and the Tucker rank (|S|, d, |A|) case follows the
same steps.

To prove the correctness of LR-EVI for the infinite-horizon setting, we first show that the error
of the Q-function decreases in each iteration, Lemma 19.

Proof of Lemma 19. Let Q′
t+1 = r + γP V̄t and t ∈ [T − 1]. From proposition 17, Q′

t+1 has rank at

most d for all t ∈ [T − 1] Following step 1 from LR-EVI, Q̂t+1(s, a) =
1

Nt+1

∑Nt+1

i=1 R(s, a) + γV̄t(s
′
i)

for all (s, a) ∈ Ωt+1. Hence, Q̂t+1(s, a) is an unbiased estimate of Q′
t+1(s, a) for all (s, a) ∈ Ωt.

Furthermore, because of bounded rewards, Q̂t+1(s, a) ∈ [0, 1
1−γ ] is a bounded random variable.

With our choice of Nt+1 = 2(c′)2k2α2 log(2T |S||A|/δ)
(1−γ)4B2

t
, N#

t+1 = Nt+1α
2, k2, it follows from Hoeffding’s

inequality that for all (s, a) ∈ Ωt+1,

|Q̂t+1(s, a)−Q′
t+1(s, a)| ≤

(1− γ)Bt

2c′αk
∀(s, a) ∈ Ωt+1

|Q̂t+1(s, a)−Q′
t+1(s, a)| ≤

(1− γ)Bt

2c′α2k2
∀(s, a) ∈ Ω#

t+1

with probability at least 1− δ
T |S||A| . Step 2 of LR-EVI gives that for all (s, a) ∈ S ×A

|Q̄t+1(s, a)−Q′
t+1(s, a)| ≤

(1− γ)Bt

2

from Lemma 12. Hence, for all (s, a) ∈ S ×A,

|Q̄t+1(s, a)−Q∗(s, a)| ≤ |Q̄t+1(s, a)−Q′
t+1(s, a)|+ |Q′

t+1(s, a)−Q∗(s, a)|

≤ (1− γ)Bt

2
+ |γEs′∼P (·|s,a)[V̄t(s

′)− V ∗(s′)]|

≤ (1− γ)Bt

2
+ γBt

=
(1 + γ)Bt

2
.

From step 4 of LR-EVI, the estimate of the value function is defined as V̄t+1(s) = maxa∈A Q̄t+1(s, a)

for all s ∈ S. It follows that |V̄t+1(s)− V ∗(s)| ≤ (1+γ)Bt

2 .

Proof of Theorem 18. ] Since the value function estimate is initialized as the zero vector, |V̄0 −
V ∗|∞ ≤ 1

1−γ = B0. We prove the correctness of this algorithm by repeatedly applying Lemma 19

T times. From the union bound, the Q̄T that the algorithm returns satisfies

|Q̄T (s, a)−Q∗(s, a)| ≤
(

1 + γ

2

)T ( 1

1− γ

)

with probability at least 1− δ. With T = ln(ϵ(1−γ))

ln( 1+γ
2

)
, it follows that (1+γ

2 )T ( 1
1−γ ) = ϵ, so

|Q̄T (s, a)−Q∗(s, a)| ≤ ϵ

with probability at least 1− δ. Note that since Bt is strictly decreasing with respect to t, it follows

that Nt = 2(c′)2α2k2 log(2T/δ)
(1−γ)4B2

t−1
, N#

t = α2k2 are strictly increasing with respect to t. Furthermore,
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since BT−1 > ϵ, Nt ∈ Õ
(

α2k2

(1−γ)4ϵ2

)

for all t ∈ [T ]. It follows that the sample complexity of the

algorithm is

Õ

(

α2k3(|S|+ |A|)
ϵ2(1− γ)−4

+
α4k6

ϵ2(1− γ)−4

)

.

M Proofs for LR-EVI with Matrix Estimation using Nuclear Norm
Regularization

In this subsection, we present the omitted proofs from Section A.3. We first prove a lemma that
gives us the matrix estimation guarantee in our desired form.

Lemma 28. Assume that for any ϵ-optimal value function V̂h+1, the matrix corresponding to
[rh + [PhV̂h+1]] is rank d, µ-incoherent, and has condition number bounded by κ. Then, for

ph =
µ3d2κ2H4C2

cvx log(n)

ϵ2n
,

where Ccvx is defined as in Theorem 20 with probability 1−O(n−3), we have

∥Q̂h − rh + [PhV̂h+1]∥∞ ≤
ϵ

H
.

Proof of Lemma 28. Since Qh(s, a) is bounded by H − h, the estimates in Step 2 of LR-EVI-cvx
are bounded random variables. Hence, they are unbiased with sub-Gaussian parameter H −h [47].
Let Q′ = rh + [PhV̂h+1]. From Theorem 20, with probability 1−O(n−3),

∥Q̄h −Q′
h∥∞ ≤

Ccvx(H − h)

σr(Q′
h)

√

µn log n

ph
∥Q′∥∞.

Let Q′ have singular value decomposition UΣV T . Then, for (s, a) ∈ S ×A,

|Q′
h(s, a)| = |eTs UΣV T ea|

≤ ∥U(s)∥2∥Σ∥op∥V (a)∥2

≤ µd

n
σ1(Q

′
h)

≤ µdκ

n
σd(Q

′
h)

where the second inequality comes from incoherence and the last inequality comes from bounded
condition number. Plugging this inequality into the application of Theorem 20 gives

∥Q̄h −Q′
h∥∞ ≤ µdκCcvx(H − h)

√

µ log n

phn
.

From our choice of ph, we get the desired result.

Next, we prove a helper lemma that follows the same steps as the helper lemmas needed to prove
Theorems 7, 8, and 9. Similar lemmas can be proved in the suboptimality gap or all ϵ-optimal π
have low-rank Qπ setting.
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Lemma 29. Let ϵ, pH−t, and λ be defined as in Theorem 21. Then, the learned policy and action-
value function estimate satisfy

∥Q̄H−t −Q∗
H−t∥∞ ≤

ϵ(t+ 1)

H
, ∥Q̄H−t −Qπ̂

H−t∥∞ ≤
ϵ(t+ 1)

H

with probability at least 1−O((t+ 1)n−3) for all t ∈ {0, . . . , H1}.

Proof of Lemma 29. We prove this with induction on t. At step t = 0, it follows that from Lemma
28 with probability 1−O(n−3),

∥Q̄H −Q∗
H∥∞ ≤

ϵ

H
.

Since Q∗
H = Qπ̂

H , the base case holds.
Let x ∈ [H − 1]. Assume that the inductive hypothesis,

∥Q̄H−x −Q∗
H−x∥∞ ≤

ϵ(x+ 1)

H
, ∥∥Q̄H−x −Qπ̂

H−x∥∞ ≤
ϵ(x+ 1)

H

with probability at least 1−O
(

(x+ 1)n−3
)

, holds. Following the steps of LR-EVI with the convex
program based matrix estimation method, it follows that with probability 1−O(n−3),

∥Q̄H−s−1 −Q′
H−s−1∥∞ ≤

ϵ

H

where Q′
H−x−1 = rH−x−1+PH−x−1V̂H−x. The union bound asserts that the above error guarantee

holds with probability at least 1−O((x+ 2)n−3). Hence, for all (s, a) ∈ S ×A,

|Q̄H−x−1(s, a)−Q∗
H−x−1(s, a)| ≤ |Q̄H−x−1(s, a)−Q′

H−x−1(s, a)|+ |Q′
H−x−1(s, a)−Q∗

H−x−1(s, a)|
≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[V̂H−x(s

′)− V ∗
H−x(s

′)]|

≤ ϵ

H
+ |Es′∼PH−h(·|s,a)[(x+ 1)ϵ/H]|

=
(x+ 2)ϵ

H
.

Following the same steps,

|Q̄H−x−1(s, a)−Qπ̂
H−x−1(s, a)| ≤ |Q̄H−x−1(s, a)−Q′

H−x−1(s, a)|+ |Q′
H−x−1(s, a)−Qπ̂

H−x−1(s, a)|
≤ ϵ

H
+ |Es′∼PH−x−1(·|s,a)[V̂H−x(s

′)− V π̂
H−x(s

′)]|

≤ ϵ

H
+ |Es′∼PH−h(·|s,a)[(x+ 1)ϵ/H]|

=
(x+ 2)ϵ

H
.

Hence, from mathematical induction, the lemma holds.

We now present the proof of the main result of this section. Similarly, the same steps can be
used to prove similar results in our other low-rank settings.

Proof of Theorem 21. We prove the correctness of the algorithm by applying Lemma 29 at time
step 1, which occurs with probability at least 1− O(Hn−3). Next, the number of samples used is
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∑H−1
t=0 |ΩH−t|. By definition of our sampling procedure, k = |Ωh| ∼ Bin(n2, ph). Hence, from the

one-sided Bernstein’s inequality, Proposition 31, for h ∈ [H] and C ′′ =
√
8

Ccvx

√
3
, it follows that

P(|Ωh| − E[|Ωh|] ≥ C ′′phn
2) ≤ exp

(

− p2h(C
′′)2n2

2(ph +
phC′′

3

)

≤ exp

(

−3phC
′′n2

8

)

≤ exp
(

−µ3d2κ2H4n log(n)/ϵ2
)

.

Since E[|Ωh|] = n2ph = Ccvxµ
3d2κ2H4n log(n)/ϵ2, from the union bound, it follows that |Ωh| ∈

O(H4n log(n)/ϵ2) for all h ∈ [H] with probability at least 1− exp
(

−µ3d2κ2H4n log(n)/ϵ2
)

. Hence,
the sample complexity is upper bounded by

H−1
∑

t=0

|ΩH−t| ∈ Õ

(

µ3H5n

ϵ2

)

with probability at least 1−O(Hn−3)− exp
(

−µ3d2κ2H4n log(n)/ϵ2
)

.

N Additional Theorems for Reference

We present the following lemmas, propositions, and theorems for the readers’ convenience.

Theorem 30 (Hoeffding’s Inequality [47]). Let X1, . . . , Xn be independent, and Xi have mean µi

and sub-Gaussian parameter σi. Then, for all t ≥ 0, we have

P

[

n
∑

i=1

(Xi − µi) ≥ t

]

≤ exp

(

− t2

2
∑n

i=1 σ
2
i

)

.

Proposition 31 (Proposition 2.14 (One-sided Bernstein’s Inequality) [47]). Given n independent
random variables such that Xi ≤ b almost surely, we have

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ cn

)

≤ exp

(

− nc2

2( 1n
∑n

i=1 E[X
2
i ] +

bc
3 )

)

.

Theorem 32 (Matrix Bernstein [43]). Let X(1), . . . , X(n) ∈ R
d1×d2 be independent zero-mean

matrices satisfying

∥X(i)∥op ≤ b, a.s.

max{∥
n
∑

i=1

E[X(i)⊤X(i)]∥op, ∥
n
∑

i=1

E[X(i)X(i)⊤ ]∥op} ≤ nσ2.

Then

P





∥

∥

∥

∥

∥

n
∑

i=1

X(i)

∥

∥

∥

∥

∥

op

≥ t



 ≤ (d1 + d2) exp

(

− t2

2(nσ2 + bt
3 )

)

.
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Theorem 33 (Singular Value Courant-Fischer Minimax Theorem (Theorem 7.3.8 [21])). Let A ∈
R
m×n, and q = min(m,n), let σ1(A), σ2(A), . . . , σq(A) be the ordered singular values of A, and let

k ∈ [q]. Then,

σk(A) = min
S:dim(S)=m−k+1

max
x:0 ̸=X∈S

∥Ax∥2
∥x∥2

and

σk(A) = max
S:dim(S)=k

min
x:0 ̸=X∈S

∥Ax∥2
∥x∥2

.
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