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We consider Linear Stochastic Approximation (LSA) with constant stepsize and Markovian data. Viewing the

joint process of the data and LSA iterate as a time-homogeneous Markov chain, we prove its convergence to a

unique limiting and stationary distribution in Wasserstein distance and establish non-asymptotic, geometric

convergence rates. Furthermore, we show that the bias vector of this limit admits an infinite series expansion

with respect to the stepsize. Consequently, the bias is proportional to the stepsize up to higher order terms.

This result stands in contrast with LSA under i.i.d. data, for which the bias vanishes. In the reversible chain

setting, we provide a general characterization of the relationship between the bias and the mixing time of the

Markovian data, establishing that they are roughly proportional to each other.

While Polyak-Ruppert tail-averaging reduces the variance of the LSA iterates, it does not affect the bias. The

above characterization allows us to show that the bias can be reduced using Richardson-Romberg extrapolation

with𝑚 ≥ 2 stepsizes, which eliminates the𝑚 − 1 leading terms in the bias expansion. This extrapolation

scheme leads to an exponentially smaller bias and an improved mean squared error, both in theory and

empirically. Our results immediately apply to the Temporal Difference learning algorithm with linear function

approximation, Markovian data, and constant stepsizes.
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1 INTRODUCTION
In this paper, we consider the following Linear Stochastic Approximation (LSA) iteration driven by

Markovian noise:

𝜃𝑘+1 = 𝜃𝑘 + 𝛼
(
𝐴(𝑥𝑘 )𝜃𝑘 + 𝑏 (𝑥𝑘 )

)
, 𝑘 = 0, 1, 2, . . . ,

where (𝑥𝑘 )𝑘≥0 is a Markov chain representing the underlying data stream, 𝐴 and 𝑏 are determin-

istic functions, and 𝛼 > 0 is a constant stepsize. LSA is an iterative data-driven procedure for
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approximating the solution 𝜃 ∗ to the linear fixed point equation 𝐴𝜃 ∗ + ¯𝑏 = 0, where 𝐴 :=
∑
𝑖 𝜋𝑖𝐴(𝑖),

¯𝑏 :=
∑
𝑖 𝜋𝑖𝑏 (𝑖), and 𝜋 is the stationary distribution of the chain (𝑥𝑘 )𝑘≥0 .

Stochastic Approximation (SA), which uses recursive stochastic updates to solve fixed-point

equations, is a fundamental algorithmic paradigm in many areas, such as stochastic control and

filtering [KY03, Bor08], approximate dynamic programming and reinforcement learning (RL) [Ber19,

SB18]. For example, the celebrated Temporal Difference (TD) learning algorithm [Sut88] in RL,

potentially equipped with linear function approximation, is a special case of LSA and an important

algorithm primitive in RL. Variants of TD algorithm such as TD(𝜆) and Gradient TD, as well as

Stochastic Gradient Descent for linear-quadratic estimation, can also be written as LSA [LS18].

Classical work on SA and LSA focuses on the setting with diminishing stepsizes, which allows for

asymptotic convergence of 𝜃𝑘 to 𝜃
∗
[RM51, Blu54, BM00]. Due to its simplicity and fast convergence,

SAwith constant stepsizes has attracted attention in a growing line of recent work, which establishes

non-asymptotic results valid for finite values of 𝑘 [LS18, SY19, CMSS21b, BRS21]. These results

provide upper bounds on the mean-squared error (MSE) E∥𝜃𝑘 − 𝜃 ∗∥2, and such bounds typically

consist of the sum of two terms: a finite-time “bias” term
1
that decays with 𝑘 , and a steady-state

MSE upper bound that is independent of 𝑘 .

In this work, we study LSA with constant stepsizes in the lens of Markov chain theory. We

provide a more precise characterization of the MSE in terms of the decomposition

E∥𝜃𝑘 − 𝜃 ∗∥2 ≍ ∥E𝜃𝑘 − E𝜃 (𝛼 )∞ ∥2︸              ︷︷              ︸
optimization error

+ ∥E𝜃 (𝛼 )∞ − 𝜃 ∗∥2︸           ︷︷           ︸
asymptotic bias

2

+Var(𝜃𝑘 )︸   ︷︷   ︸
variance

,

where the random variable 𝜃
(𝛼 )
∞ denotes the limit (as 𝑘 →∞) of the LSA iterate 𝜃𝑘 with stepsize 𝛼 .

Our main results characterize the behavior of the three terms above.

Convergence and optimization error. With a constant stepsize 𝛼 , the process (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 is a
time-homogeneous Markov chain. We show that under appropriate conditions, the sequence of

(𝑥𝑘 , 𝜃𝑘 ) converges to a unique limiting random variable (𝑥∞, 𝜃 (𝛼 )∞ ) in distribution and in𝑊2, the

Wasserstein distance of order 2, regardless of the initial distribution. Moreover, the distribution of

(𝑥∞, 𝜃 (𝛼 )∞ ) corresponds to the unique stationary distribution of the chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0. We further

provide non-asymptotic bounds on the distributional distance between 𝜃𝑘 and 𝜃
(𝛼 )
∞ in𝑊2, which

in turn upper bounds the optimization error ∥E𝜃𝑘 − E𝜃 (𝛼 )∞ ∥. Both bounds decay exponentially in

𝑘 thanks to the use of a constant stepsize. We emphasize that the existence of the limit 𝜃∞ and

the convergence rate cannot be deduced from the existing upper bound on the MSE E∥𝜃𝑘 − 𝜃 ∗∥2,
which does not vanish as 𝑘 →∞.

Variance and asymptotic bias. By the law of large numbers, the variance Var(𝜃𝑘 ) can be

eliminated by averaging the LSA iterates. For example, the Polyak-Ruppert tail-averaged iterate

¯𝜃𝑘 := 1

𝑘/2
∑𝑘−1
𝑡=𝑘/2 𝜃𝑡 has variance of order O(1/𝑘). Consequently, for large 𝑘 , the MSE of

¯𝜃𝑘 is

dominated by the asymptotic bias, i.e., E∥ ¯𝜃𝑘 − 𝜃∗∥2 ≈ ∥E ¯𝜃∞ − 𝜃 ∗∥2 = ∥E𝜃 (𝛼 )∞ − 𝜃 ∗∥2. Our second
main result establishes that the asymptotic bias is proportional to the stepsize 𝛼 (up to a second

order term):

E𝜃
(𝛼 )
∞ − 𝜃 ∗ = 𝛼𝐵 (1) + O(𝛼2), (1.1)

where 𝐵 (1) is a vector independent of 𝛼 and admits an explicit expression in terms of 𝐴,𝑏 and the

transition kernel 𝑃 of the data Markov chain (𝑥𝑘 )𝑘≥0. Crucially, equation (1.1) is an equality rather

than an upper bound. The asymptotic bias is not affected by averaging the LSA iterates.

1
Not to be confused with the asymptotic bias discussed below.
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Bias expansion and extrapolation. The equality (1.1) implies that bias can be reduced using

a simple and clever technique called Richardson-Romberg (RR) extrapolation: run LSA with two

stepsizes 𝛼 and 2𝛼 , compute the respective averaged iterates
¯𝜃
(𝛼 )
𝑘

and
¯𝜃
(2𝛼 )
𝑘

, and output their linear

combination 𝜃
(𝛼 )
𝑘

= 2
¯𝜃
(𝛼 )
𝑘
− ¯𝜃
(2𝛼 )
𝑘

. Doing so cancels out the leading term in the bias characteriza-

tion (1.1) and results in an order-wise smaller bias E𝜃
(𝛼 )
∞ − 𝜃 ∗ = O(𝛼2).

In fact, the bias characterization (1.1) extends to higher orders. We establish that the bias admits

the following infinite series expansion:

E𝜃
(𝛼 )
∞ − 𝜃 ∗ = 𝛼𝐵 (1) + 𝛼2𝐵 (2) + 𝛼3𝐵 (3) + · · · , (1.2)

where the 𝐵 (𝑖 ) ’s are independent of 𝛼 . Consequently, RR extrapolation can be executed with any

𝑚 ≥ 2 stepsizes to eliminate the𝑚 − 1 leading terms in equation (1.2), reducing the asymptotic bias

to a high order term O(𝛼𝑚).

When put together, the above results show that the combination of Constant Stepsize, Averaging,

and Extrapolation allows one to approach the best of three worlds: (a) using a constant stepsize leads
to fast, geometric-in-𝑘 convergence for the optimization error, (b) tail-averaging eliminates the

variance at an (optimal) 1/𝑘 rate, and (c) RR extrapolation order-wise reduces the asymptotic bias.

We highlight that the𝑚 iterate sequences used in RR extrapolation can be computed in parallel,

using the same data stream (𝑥𝑘 )𝑘≥0. Therefore, compared with standard LSA, the above-combined

procedure is data efficient (in terms of the sample complexity 𝑘 for achieving a given MSE), does

not require sophisticated tuning of stepsize, and incurs a minimal increase in computational cost.

The results above should be contrasted with the setting of LSA with i.i.d. data, where the 𝑥𝑘 ’s
are sampled independently from the distribution 𝜋 . In this setting, it has been shown (sometimes

implicitly) in existing work that the asymptotic bias is zero [LS18, MLW
+
20]. Such a result should

not be surprising, as similar results are well known in the literature on stochastic gradient descent

(SGD) for optimizing quadratic functions given i.i.d. data, for which the SGD update is linear. It is

perhaps surprising that using Markovian data leads to a non-zero asymptotic bias, even when the

LSA iteration is linear in 𝜃𝑘 . In Figure 1, we provide the dependency graphs for LSA with i.i.d. data

and Markovian data. In the Markovian setting, the correlation between the 𝑥𝑘 ’s leads to additional

correlation among the iterate 𝜃𝑘 ’s; in particular, the iterate sequence (𝜃𝑘 )𝑘≥0 is no longer a Markov

chain by itself. As such, 𝜃𝑘+1 has an implicit, nonlinear dependence on 𝜃𝑘 through (𝑥𝑘−1, 𝑥𝑘 ). This
non-linearity is the source of the asymptotic bias.

𝑥0

𝜃0

· · · 𝑥𝑘 𝑥𝑘+1 · · ·

· · · 𝜃𝑘 𝜃𝑘+1 · · ·

𝑥0

𝜃0

· · · 𝑥𝑘 𝑥𝑘+1 · · ·

· · · 𝜃𝑘 𝜃𝑘+1 · · ·

Fig. 1. Dependency Graphs of LSA. Left: i.i.d. data. Right: Markovian data.

Bias and mixing time. We generalize and quantify the observations above by relating the

asymptotic bias to the mixing time of the underlying Markov chain (𝑥𝑘 )𝑘≥0 and the second largest

eigenvalue modulus (SLEM) |𝜆2 | of the transition kernel. We show that the leading coefficient 𝐵 (1)

in the expansion (1.2) has norm upper bounded by O
( |𝜆2 |
1−|𝜆2 |

)
, at least in the setting where the chain

(𝑥𝑘 )𝑘≥0 is reversible. It is well known that the mixing time of (𝑥𝑘 )𝑘≥0 can be tightly upper and

lower bounded by |𝜆2 | [LP17]. Consequently, the faster the underlying chain (𝑥𝑘 )𝑘≥0 mixes, the
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smaller the asymptotic bias is. As a special case, LSA with i.i.d. data has zero mixing time and |𝜆2 |,
hence zero bias.

All our results can be immediately specialized to the TD algorithm in RL with linear function

approximation and Markovian data. For both LSA and TD, we provide numerical results that

corroborate the prediction of our theory and demonstrate the benefit of using constant stepsizes,

tail averaging and RR extrapolation.

Paper Organization: In Section 2, we review existing results related to our work. We formalize

the problem and assumptions in Section 3, and present our main results in Section 4. In Section 5,

we provide numerical results for both LSA and TD. We outline the proofs of the main results in

Section 6. The paper is concluded in Section 7 with a discussion of future directions.

2 RELATEDWORK
In this section, we review existing results that are most related to our work.

2.1 Classical Results on Stochastic Approximation
The study of stochastic approximation can be traced back to the work of Robbins and Monro

[RM51]. Under suitable assumptions, Robbins and Monro [RM51] prove that the SA algorithm

asymptotically converges in 𝐿2, and Blum [Blu54] shows that the convergence holds almost surely.

Subsequent works [Rup88, Pol90] propose the technique of iterate averaging, now known as the

Polyak-Ruppert (PR) averaging, which improves the convergence rates. A Central Limit Theorem

(CLT) for asymptotic normality of the averaged iterates is established in [PJ92]. Borkar and Meyn

[BM00] introduce the Ordinary Differential Equation (ODE) technique for analyzing SA algorithms,

and they show that under certain conditions, the SA iterates approximate the solution of a suitable

ODE. Utilizing the ODE technique, recent work [BCD
+
21] establishes a functional CLT for SA

driven by Markovian noise.

The asymptotic theory of SA is well-developed and covered in several excellent textbooks [KY03,

Bor08, BMP12]. Convergence results in classical SA work typically assume that the stepsize 𝛼𝑘
at iteration 𝑘 satisfies:

∑∞
𝑘=1

𝛼𝑘 = ∞ and

∑∞
𝑘=1

𝛼2
𝑘
< ∞, This assumption implies that the stepsize

sequence is diminishing but square-summable. Our work, on the other hand, focuses on the setting

of constant stepsizes, i.e., 𝛼𝑘 = 𝛼 for all 𝑘 ≥ 0.

2.2 SA and SGD with Constant Stepsizes
Using constant stepsizes has been a popular choice in practice due to fast convergence and easy

implementation. Recent years have witnessed a growing body of work on the constant stepsize

setting of SA and the closely related Stochastic Gradient Descent (SGD) algorithm.

A majority of work in this line studies SA and SGD under the i.i.d. noise assumption, and

some provide finite-time bounds. The work in [LS18] analyzes LSA and establishes finite-time

upper and lower bounds on the MSE. The work [MLW
+
20] provides refined results, establishing

tight bounds with the optimal dependence on problem-specific constants as well as a CLT for the

averaged iterates with a characterization of the exact asymptotic covariance matrix. A line of recent

work makes use of new results on random matrix products to analyze LSA: the work [DMN
+
21]

establishes tight concentration bounds of LSA, and the paper [DMNS22] extends these bounds to

LSA with iterate averaging.

The work in [DDB20] studies constant stepsize SGD for strongly convex and smooth functions.

By connecting SGD to classical Markov chain analysis, they establish that the iterates converge to a

unique stationary distribution. This result is generalized to non-convex and non-smooth functions
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with quadratic growth in the work [YBVE21]. The paper [YBVE21] establishes asymptotic normality

of the averaged SGD iterates, and subsequent work [CMM22] studies the limit of the stationary

distribution as stepsize goes to zero. These results are established under the i.i.d. noise setting.

More recent work studies constant-stepsize SA under Markovian noise. The work [SY19] provides

finite-time bounds on the MSE of LSA. The work [MPWB21] considers LSA with PR averaging and

establishes instance-dependent MSE upper bounds with tight dimension dependence. Some papers

[SY19, DMNS22] also provide instance-dependent bounds on higher moments of LSA iterates.

Going beyond LSA, the work [CMSS20, CMSS21b] considers general SA with contractive mapping

and provides finite-time convergence results.

A portion of our results are similar in spirit to [DDB20, Proposition 2] and [DMN
+
21, Theorem

3], in that we both study LSA and SGD with constant stepsizes in the lens of time-homogeneous

Markov chains. A crucial difference is that we consider the Markovian data setting whereas they

consider i.i.d. data. Arising naturally in stochastic control and RL problems, the Markovian setting

leads to non-zero asymptotic bias and new analytical challenges, which are not present in the i.i.d.

setting. Our analysis for the Markovian setting involves more delicate coupling arguments and

builds on the Lyapunov function techniques from [SY19]. Along the way, we obtain a refinement of

the MSE bounds from the work [SY19]. We discuss these analytical challenges and improvements

in greater detail after stating our theorems; see Sections 4 and 6.

2.3 Applications in Reinforcement Learning and TD Learning
Many iterative algorithms in RL aim to solve for the fixed point of Bellman equations and can be

viewed as special cases of SA [SB18, Ber19]. For example, the TD algorithms [Sut88] with linear

function approximation, including TD(0) and more generally TD(𝜆), are LSA procedures. Our results

can be specialized to TD learning and hence are related to existing work in this line.

Classical results on TD Learning, similarly to those on SA, focus on asymptotic convergence

under diminishing stepsizes [Sut88, Day92, DS94, TVR97]. More recent works provide finite-time

results. The work [DSTM18] is among the first to provide MSE and concentration bounds for

linear TD learning in its original form without any centering or projection steps, and their analysis

assumes diminishing stepsize and i.i.d. noise. The work [BRS21] presents finite-time analysis of

TD(0) under both i.i.d. and Markovian noise, with both diminishing and constant stepsizes. Their

results require adding a projection step in TD(0) to ensure boundedness. The Lyapunov analysis

in [SY19] on LSA with constant stepsize, when specialized to TD(0), removes this projection step

and proves similar upper bounds on the MSE. The recent work in [CMSS21a, CMSS21b] uses

Lyapunov theory to study the tabular TD and obtains finite sample convergence guarantees. The

paper [KPR
+
21] provides sharp, instance-dependent ℓ∞ error bounds for the tabular TD algorithm

with i.i.d. data.

Q-learning [WD92], a standard algorithm in RL for estimating the optimal action-value function,

can be viewed as a (nonlinear) SA procedure with general contractive mappings. Classical works in

Q-learning [Tsi94, Sze97, EDMB03] establish asymptotic convergence under diminishing stepsizes.

More recent works characterize finite-time convergence rates. The work [CMSS21b] establishes

finite-time MSE bounds for tabular Q-learning with constant stepsizes and Markovian noise. The

work [CBD22] presents high probability bounds for Q-learning with diminishing stepsizes. While

related, results on Q-learning are not directly comparable to ours, as Q-learning involves a nonlinear

update.

3 SET-UP AND ASSUMPTIONS
In this section, we formally set up the problem and the assumptions/notations used in the sequel.
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3.1 Problem Set-up
3Let (𝑥𝑘 )𝑘≥0 be a Markov chain on the state space X with stationary distribution 𝜋 . Consider the

following linear stochastic approximation iteration

𝜃
(𝛼 )
𝑘+1 = 𝜃

(𝛼 )
𝑘
+ 𝛼

(
𝐴(𝑥𝑘 )𝜃 (𝛼 )𝑘

+ 𝑏 (𝑥𝑘 )
)
, 𝑘 = 0, 1, . . . , (3.1)

where 𝐴 : X → R𝑑×𝑑 and 𝑏 : X → R𝑑 are fixed functions, and 𝛼 > 0 is a constant stepsize. In what

follows, we omit the superscript in 𝜃
(𝛼 )
𝑘

when the dependence on 𝛼 is clear from the context. The

initial distribution of 𝜃0 is arbitrary and may depend on 𝑥0, as illustrated by the dotted line between

𝑥0 and 𝜃0 in the dependency graph in the right pane of Figure 1. We assume that 𝜃0 is independent

of (𝑥𝑘 )𝑘≥1 given 𝑥0.
The iterative procedure (3.1) is a common approach for approximating the target vector 𝜃 ∗ ∈ R𝑑 ,

defined as the solution to the steady-state equation

E𝜋 [𝐴(𝑥)]𝜃 + E𝜋 [𝑏 (𝑥)] = 0, (3.2)

where E𝜋 [·] denotes the expectation with respect to 𝑥 ∼ 𝜋 , and 𝜋 is the stationary distribution of

the Markov chain (𝑥𝑘 ). Our general goal is to characterize the relationship between the finite-time

iterate 𝜃𝑘 and the target solution 𝜃 ∗.
The stochastic process (𝜃𝑘 )𝑘≥0 of the LSA iterates is not a Markov chain itself. In particular,

given 𝜃𝑘 , the random variables 𝜃𝑘+1 and 𝜃𝑘−1 are correlated through the underlying Markov process

(𝑥0, 𝑥1, . . . , 𝑥𝑘 ). However, it is easy to see that the joint process (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 is a Markov chain on

the state space X × R𝑑 , and this chain is time-homogeneous as the stepsize 𝛼 is independent of 𝑘 .

Moreover, the following independence property holds:

(𝜃0, 𝑥0, 𝜃1, 𝑥1, . . . , 𝜃𝑘 ) ⊥⊥ (𝑥𝑘+1, 𝑥𝑘+2, . . .)
�� 𝑥𝑘 , ∀𝑘 ≥ 1. (3.3)

Consequently, we have 𝜃𝑘 ⊥⊥ 𝑥𝑘+1 | 𝑥𝑘 for all 𝑘 ≥ 1. The above facts, which we use repeatedly in the

sequel, can be proved by direct calculation. Alternatively, one may verify that the joint distribution

of (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 obeys the Markov property with respect to the directed acyclic graph in the right

pane of Figure 1, hence the aforementioned (in)dependence properties follow from standard results

on directed graphical models [CDLS99, Corollary 5.11 and Theorem 5.14].

Part of our analysis makes use of the notion of time reversal of Markov chains. Let 𝑃 = (𝑝𝑖 𝑗 )
denote the probability transition kernel of the Markov chain (𝑥𝑘 )𝑘≥0. If 𝑃 is irreducible, then the

chain (𝑥𝑘 )𝑘≥0 starting from the stationary distribution and running backward in time is also a

Markov chain, whose transition kernel 𝑃 = (𝑝𝑖 𝑗 ) is given by the equation

𝜋 𝑗𝑝 𝑗𝑖 = 𝜋𝑖𝑝𝑖 𝑗 for all 𝑖, 𝑗 .

Moreover, 𝑃 is also irreducible and its stationary distribution is the same as that of 𝑃 [Nor97,

Theorem 1.9.1]. The Markov chain (𝑥𝑘 )𝑘≥0 is called reversible if 𝑃 = 𝑃 .

3.2 Assumptions
Below we state the assumptions needed for our main theorems.

Assumption 1. (𝑥𝑘 )𝑘≥0 is an irreducible and aperiodic Markov chain on a finite state space
X = {1, 2, . . . , 𝑛} with stationary distribution 𝜋 . In addition, the distribution of the initial state 𝑥0 is 𝜋 .

Under the first part of Assumption 1, the Markov chain (𝑥𝑘 )𝑘≥0 is positive recurrent with a

unique stationary distribution 𝜋 , and the chain converges to 𝜋 from any initial distribution of 𝑥0.

Moreover, the chain has a geometric mixing rate [LP17, Theorem 4.9]. That is, there exist constants

𝜌 ∈ [0, 1) and 𝑐 > 0 such that

max

𝑥∈X



(𝑝𝑘𝑥 )⊤ − 𝜋

TV ≤ 𝑐𝜌𝑘 , (3.4)
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where (𝑝𝑘𝑥 )⊤ denotes the 𝑥-th row of the 𝑘-step transition matrix 𝑃𝑘 and ∥ · ∥TV is the total variation

norm.

We impose the additional stationarity assumption 𝑥0 ∼ 𝜋 so as to simplify several mathemat-

ical expressions. This assumption is not essential and can be relaxed by applying our analysis

after the chain (𝑥𝑘 )𝑘≥0 has approximately mixed, which happens quickly owing to the geometric

mixing property (3.4). Note that the same stationarity assumption is also used in several previous

works [BRS21, MPWB21]. We believe the assumption of a finite state space X can also be relaxed

and replaced by an appropriate mixing condition (such as those from [SY19, MPWB21]); we do

not pursue this direction in this paper. The irreducible and aperiodic assumptions are also stan-

dard in the literature (e.g., [SY19, BRS21, CMSS21b]) and ensure a well-defined limiting stationary

distribution, which is the object of focus in this paper.

Our next two assumptions are similar to those used in the work [SY19, DMNS22]. Below we use

∥ · ∥ to denote the Euclidean ℓ2-norm for vectors and the spectral norm for matrices (i.e., the largest

singular value of matrices).

Assumption 2. We assume that

𝐴max := max

𝑥∈X
∥𝐴(𝑥)∥ ≤ 1 and 𝑏max := max

𝑥∈X
∥𝑏 (𝑥)∥ < ∞.

Under Assumptions 1 and 2, we know that the following two limits exist,

lim

𝑘→∞
E[𝐴(𝑥𝑘 )] = 𝐴 := E𝜋 [𝐴(𝑥)],

lim

𝑘→∞
E[𝑏 (𝑥𝑘 )] = ¯𝑏 := E𝜋 [𝑏 (𝑥)],

(3.5)

and there hold the bounds

∥𝐴∥ ≤ 𝐴max ≤ 1 and ∥ ¯𝑏∥ ≤ 𝑏max .

Playing an important role in our analysis is the mixing time of the Markov chain (𝑥𝑘 )𝑘≥0 with
respect to the functions 𝐴(·) and 𝑏 (·), defined as follows.

Definition 3.1. For 𝜖 ∈ (0, 1), define 𝜏𝜖 ≥ 1 to be the 𝜖-mixing time of (𝑥𝑘 )𝑘≥0 in the sense that

E[𝐴(𝑥𝑘 ) |𝑥0 = 𝑥] −𝐴

 ≤ 𝜖 · 𝐴max, ∀𝑥 ∈ X,∀𝑘 ≥ 𝜏𝜖 , (3.6)

E[𝑏 (𝑥𝑘 ) |𝑥0 = 𝑥] − ¯𝑏


 ≤ 𝜖 · 𝑏max, ∀𝑥 ∈ X,∀𝑘 ≥ 𝜏𝜖 . (3.7)

Under Assumptions 1 and 2, the 𝜖-mixing time satisfies 𝜏𝜖 ≤ 𝐾 log
1

𝜖
for all 𝜖 ∈ (0, 1), where the

number 𝐾 ≥ 1 is independent of 𝜖 . This fact can be seen from the following inequality

E[𝑏 (𝑥𝑘 ) |𝑥0 = 𝑥] − ¯𝑏


 = 



∑︁

𝑖∈X
(𝑝𝑘𝑥𝑖 − 𝜋𝑖 )𝑏 (𝑖)





 ≤ 𝑏max ·
(
2max

𝑥∈X
∥𝑝𝑘𝑥 − 𝜋 ∥TV

)
≤ 2𝑐𝑏max · 𝜌𝑘 ,

where the last step follows from the geometric mixing bound (3.4); a similar argument applies to

𝐴(𝑥𝑘 ).
In the sequel, unless specified otherwise, we always choose 𝜖 = 𝛼 and write 𝜏 ≡ 𝜏𝛼 .

Assumption 3. The matrix 𝐴 is Hurwitz, i.e., all eigenvalues have strictly negative real parts.
Therefore, there exists a symmetric positive definite matrix Γ such that

𝐴⊤Γ + Γ𝐴 = −𝐼 , (3.8)

where 𝐼 is the 𝑑-by-𝑑 identity matrix.

, Vol. 1, No. 1, Article . Publication date: June 2023.



8 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

The Hurwitz Assumption 3 is standard in the study of the stability of dynamical systems. Under

this assumption, the matrix 𝐴 is invertible and hence 𝑠min (𝐴) > 0, where 𝑠min (𝐴) denotes the
smallest singular value of 𝐴. Denote by 𝛾min and 𝛾max the minimum and maximum eigenvalues of

the matrix Γ, respectively. By assumption we have 𝛾max ≥ 𝛾min > 0 and

𝛾min∥𝑣 ∥2 ≤ 𝑣⊤Γ𝑣 ≤ 𝛾max∥𝑣 ∥2, ∀𝑣 ∈ R𝑑 . (3.9)

3.3 Notations
In the sequel, we generally adopt the following notational convention. Upper case letters (e.g.,

𝑀) denote matrices and lower case letters (e.g., 𝑢) denote vectors or scalars; these quantities may

be deterministic or random. The lowercase letter 𝑐 and its derivatives 𝑐′, 𝑐0, etc. denote universal
numerical constants, whose values may change from line to line.

Slightly deviating from the above convention, we use 𝐵 ≡ 𝐵(𝐴,𝑏, 𝑃) and its derivatives 𝐵′, 𝐵0,
etc. to denote quantities (vectors or matrices) that depend only on 𝐴,𝑏 and 𝑃 , but independent of

the stepsize 𝛼 and the iteration index 𝑘 . We use 𝐶 ≡ 𝐶 (𝐴,𝑏, 𝜋) to denote a quantity that depends

only on 𝐴,𝑏 and 𝜋 , but is independent of 𝛼, 𝑘 and other properties of 𝑃 (i.e., its mixing time).

While one may overcast 𝐶 (𝐴,𝑏, 𝜋) with 𝐵(𝐴,𝑏, 𝑃), we distinguish these two types of quantities

whenever possible. This distinction allows us to isolate the impact of 𝜋 and its corresponding

Perron-Frobenius eigenvalue 1 from the remaining eigenvalues/vectors of 𝑃 , the transition kernel

of the underlying Markov chain (𝑥𝑘 )𝑘≥0. Note that these remaining eigenvalues/vectors, including

the eigenvalue with the second largest modulus (SLEM), determine the mixing time of 𝑃 . The above

convention plays an important role in our results concerning the relationship to mixing time.

As we are primarily interested in the scaling relationship of various quantities with respect to

the stepsize 𝛼 and the number of iteration 𝑘 , we make use of the following big-O notation: for a

given function 𝑓 of 𝛼 and 𝑘 , we write ℎ = O(𝑓 (𝛼, 𝑘)) if it holds that

∥ℎ∥ ≤ 𝐵(𝐴,𝑏, 𝑃) · 𝑓 (𝛼, 𝑘)

for some 𝐵(𝐴,𝑏, 𝑃) independent of 𝛼 and 𝑘 , where ∥ · ∥ denotes the Euclidean ℓ2-norm for vectors

and the spectral norm for matrices (i.e., the largest singular value). For example, ℎ = O(𝛼/𝑘) means

∥ℎ∥ ≤ 𝐵(𝐴,𝑏, 𝑃) · 𝛼/𝑘 .
For a random variable 𝑧, let L(𝑧) denote the law/distribution of 𝑧. Let P2 (R𝑑 ) be the space

of square-integrable distributions on R𝑑 , and similarly let P2 (X × R𝑑 ) be the set of probability
measures 𝜈 on the product space X × R𝑑 with the property that the marginal of 𝜈 on R𝑑 is square-

integrable. Let 𝐼𝑚 and 1𝑚 denote the𝑚 ×𝑚 identity matrix and the𝑚-dimensional all-one vector,

respectively. We omit the subscript when the dimension𝑚 is clear from the context.

4 MAIN RESULTS
In this section, we present our main results. In Section 4.1, we prove that the LSA iterates (𝑥𝑘 , 𝜃𝑘 )𝑘≥0,
viewed as a time-homogeneous Markov chain, converge to a unique limiting distribution, and we

provide its explicit convergence rates. In Sections 4.2 and 4.3, we further characterize the above

limit and its relationship with the stepsize and mixing time. We explore the implications of these

results for PR tail averaging, RR extrapolation and linear TD(0) Learning in Sections 4.4 and 4.5.

4.1 Convergence to Limit Distribution
Our convergence results are based on the Wasserstein distance of order 2; see [Vil09, Chapter 6]

for an introduction to this topic. The Wasserstein-2 distance between two probability measures 𝜇
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and 𝜈 in P2 (R𝑑 ) is defined as

𝑊2 (𝜇, 𝜈) = inf

𝜉∈Π (𝜇,𝜈 )

( ∫
R𝑑
∥𝑢 − 𝑣 ∥2 d𝜉 (𝑢, 𝑣)

)
1/2

= inf

{ (
E[∥𝜃 − 𝜃 ′∥2]

)
1/2

: L(𝜃 ) = 𝜇, L(𝜃 ′) = 𝜈
}
,

where Π(𝜇, 𝜈) denotes the set of all couplings between 𝜇 and 𝜈 , i.e., the collection of joint distribu-

tions in P2 (R𝑑 ×R𝑑 ) with marginal distributions 𝜇 and 𝜈 . To study the joint process (𝑥𝑘 , 𝜃𝑘 )𝑘≥0, we
extend the above Wasserstein-2 distance to the space P2 (X ×R𝑑 ). Let 𝑑0 : X ×X → R+ denote the
discrete metric on X, that is, 𝑑0 (𝑥, 𝑥 ′) := 1{𝑥 ≠ 𝑥 ′}. Define the following metric

¯𝑑 on the product

space X × R𝑑 :
¯𝑑
(
(𝑥, 𝜃 ), (𝑥 ′, 𝜃 ′)

)
:=

√︁
𝑑0 (𝑥, 𝑥 ′) + ∥𝜃 − 𝜃 ′∥2 .

For a pair of distributions 𝜇 and 𝜈 in P2 (X ×R𝑑 ), we consider the following Wasserstein-2 distance

w.r.t. the metric
¯𝑑 :

𝑊̄2 (𝜇, 𝜈) = inf

{(
E
[
¯𝑑 (𝑧, 𝑧′)2

] )1/2
: L(𝑧) = 𝜇, L(𝑧′) = 𝜈

}
= inf

{(
E
[
𝑑0 (𝑥, 𝑥 ′) + ∥𝜃 − 𝜃 ′∥2

] )1/2
: L

(
(𝑥, 𝜃 )

)
= 𝜇, L

(
(𝑥 ′, 𝜃 ′)

)
= 𝜈

}
.

(4.1)

The simple relationship below follows directly from the definition:

𝑊2

(
L(𝜃 ),L(𝜃 ′)

)
≤ 𝑊̄2

(
L(𝑥, 𝜃 ),L(𝑥 ′, 𝜃 ′)

)
.

Also note that convergence in𝑊2 or 𝑊̄2 implies the usual convergence in distribution plus the

convergence of the first two moments [Vil09, Definition 6.8, Theorem 6.9].

Our first theorem establishes the convergence of the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 in 𝑊̄2 to a unique

stationary distribution and characterizes the convergence rate.

Theorem 4.1. Suppose that Assumptions 1, 2 and 3 hold, and the stepsize 𝛼 satisfies

𝛼𝜏𝛼 <
0.05

95𝛾max

. (4.2)

(1) Under all initial distributions of 𝜃0, the sequence of random variables (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 converges in
𝑊2 to a unique limit (𝑥∞, 𝜃∞) ∼ 𝜇. Moreover, it holds that

Var(𝜃∞) ≤
𝛾max

0.9𝛾min

· 𝛼𝜏𝛼 · 𝜅,

where
𝜅 := 640𝛾max · 𝑠−2min

(𝐴) · 𝑏2
max

. (4.3)

(2) 𝜇 is the unique stationary distribution of the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0.
(3) Let 𝜇 := L(𝜃∞) be the second marginal of 𝜇. For all 𝑘 ≥ 𝜏𝛼 , it holds that

𝑊 2

2
(L(𝜃𝑘 ), 𝜇) ≤ 𝑊̄ 2

2
(L(𝑥𝑘 , 𝜃𝑘 ), 𝜇) ≤ 16

𝛾max

𝛾min

(
E[∥𝜃0∥2] + E[∥𝜃∞∥2]

)
·
(
1 − 0.9𝛼

𝛾max

)𝑘
. (4.4)

We outline the proof of Theorem 4.1 in Section 6.2, deferring the complete proof to Appendix A.2.

Theorem 4.1 states that the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 converges geometrically to a unique limit

(𝑥∞, 𝜃∞) ∼ 𝜇. Note that the limiting distribution 𝜇 is in general not a product distribution of its

marginals 𝜋 and 𝜇. This convergence result is valid under the stepsize condition (4.2), stated as an

upper bound on the product 𝛼𝜏𝛼 . Since 𝜏𝛼 ≤ 𝐾 log
1

𝛼
for some constant 𝐾 ≥ 1 independent of 𝛼

(see Section 3.2), the condition (4.2) is satisfied for sufficiently small 𝛼 .
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We remark on the techniques for proving Theorem 4.1. To establish the convergence of a Markov

chain and the existence of stationary distribution, a standard approach is to show that the chain is

positive recurrent by verifying irreducibility and Lyapunov drift conditions. This approach has

been developed for Markov chains on general state spaces [MT09] and is adopted in the prior

work [YBVE21, BCD
+
21, LM22]. However, it is not clear how to implement this approach for the

LSA iteration (3.1). For example, suppose that the stepsize 𝛼 and the functions 𝐴 and 𝑏 take on

rational values. If the initial 𝜃0 is rational, then 𝜃𝑘 only takes rational values for all 𝑘 ≥ 0. If 𝜃0
is irrational, then 𝜃𝑘 remains irrational. As such, it seems challenging to certify 𝜓 -irreducibility

and recurrence for the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 on the state space X × R𝑑 . Instead, we prove

weak convergence to a limiting distribution through the convergence in the Wasserstein distance,

which can be bounded via coupling arguments. The Wasserstein distance is also used in works

[DDB20, DMN
+
21] to study SGD and LSA under the i.i.d. data assumption; this assumption is

heavily relied upon in their analysis. Moreover, their analysis requires the contraction property

𝑊 2

2
(L(𝜃𝑘+1), 𝜇) <𝑊 2

2
(L(𝜃𝑘 ), 𝜇). Establishing this property in our Markovian setting is difficult

if not impossible. Our proof makes use of alternative and substantially more delicate coupling

arguments.

Convergence of 𝜃𝑘 in the 𝑊̄2 metric implies convergence of the first two moments. Explicit

convergence rates can be deduced from Theorem 4.1, as recorded in the following corollary.

Corollary 4.2. Under the setting of Theorem 4.1, for all 𝑘 ≥ 𝜏𝛼 we have

∥E[𝜃𝑘 ] − E[𝜃∞]∥ ≤ 𝐶 ·
(
1 − 0.9𝛼

𝛾max

)𝑘/2
(4.5)

and 

E [
𝜃𝑘𝜃
⊤
𝑘

]
− E

[
𝜃∞𝜃

⊤
∞
]

 ≤ 𝐶′ · (1 − 0.9𝛼

𝛾max

)𝑘/2
(4.6)

for some 𝐶 ≡ 𝐶 (𝐴,𝑏, 𝜋) and 𝐶′ ≡ 𝐶′ (𝐴,𝑏, 𝜋) that are independent of 𝛼 and 𝑘 .

The proof of Corollary 4.2 is given in Appendix A.3.

Theorem 4.1 and Corollary 4.2 can be contrasted with convergence results for LSA with a

diminishing stepsize sequence, under which the iterates typically converge almost surely to the

true solution 𝜃 ∗, with a sublinear convergence rate [Blu54, BRS21, CMSS21b]. For example, when

using a diminishing stepsize sequence of the form 𝛼𝑘 = 𝑎/(𝑏 + 𝑘)𝑐 with 𝑐 ∈ (0, 1] and appropriate

values of 𝑎, 𝑏, the LSA iterates 𝜃𝑘 converge to 𝜃
∗
in MSE at a rate O(1/𝑘𝑐 ) [CMSS21b, Theorem 2.1].

In comparison, constant-stepsize LSA converges weakly and may have a nonzero bias E𝜃∞ − 𝜃 ∗;
see Theorem 4.3 in the next sub-section. On the other hand, using a constant stepsize leads to

a geometric convergence rate of the form O((1 − 𝜈)𝑘 ) and hence faster initial convergence, as

demonstrated in our numerical experiments in Section 5.

In practice, when using a diminishing stepsize sequence 𝛼𝑘 = 𝑎/(𝑏 + 𝑘)𝑐 , the values of 𝑎, 𝑏 and 𝑐

have a significant impact on the convergence behavior and need to be tuned carefully. For example,

if 𝑐 = 1 and 𝑎 is overly small, then the O(1/𝑘) rate will be lost and the convergence performance

will degrade substantially [CMSS21b]. In comparison, LSA with constant stepsizes has only one

tuning parameter and often enjoys a more robust performance [LS18].

4.2 Bias Expansion

Theorem 4.1 above establishes the convergence of 𝜃
(𝛼 )
𝑘

to a limit 𝜃
(𝛼 )
∞ . Our next theorem provides a

characterization of E[𝜃 (𝛼 )∞ ] − 𝜃 ∗, the asymptotic bias, as a function of the stepsize 𝛼 .
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Theorem 4.3. Suppose that Assumptions 1, 2 and 3 hold, and 𝛼 satisfies equation (4.2). The following
hold for some vectors 𝐵 (𝑖 ) ≡ 𝐵 (𝑖 ) (𝐴,𝑏, 𝑃), 𝑖 = 1, 2, . . . that are independent of 𝛼 .

(1) For each𝑚 = 1, 2, . . ., we have the expansion

E[𝜃 (𝛼 )∞ ] = 𝜃 ∗ +
𝑚∑︁
𝑖=1

𝛼𝑖𝐵 (𝑖 ) + O(𝛼𝑚+1) . (4.7)

(2) For 𝛼 in a neighborhood of 0, we have the infinite series expansion

E[𝜃 (𝛼 )∞ ] = 𝜃 ∗ +
∞∑︁
𝑖=1

𝛼𝑖𝐵 (𝑖 ) . (4.8)

We outline the proof of Theorem 4.3 in Section 6.3, with the complete proof given in Appendix A.4.

Theorem 4.3 is akin to a Taylor series expansion of E[𝜃 (𝛼 )∞ ] with respect to 𝛼 . The existence of

such an expansion is non-trivial: 𝜃
(𝛼 )
∞ is undefined at 𝛼 = 0, and it is not clear a priori whether

E[𝜃 (𝛼 )∞ ] is a differentiable and analytic function of 𝛼 . We emphasize that equations (4.7) and (4.8)

are equalities, hence the bias is non-zero whenever 𝐵 (𝑖 ) ≠ 0. In particular, averaging the LSA

iterates 𝜃𝑘 does not affect this bias and only reduces the variance.

The proof of Theorem 4.3 is based on the following idea. As discussed in Section 1, the asymptotic

bias arises due to the implicit nonlinear dependence of 𝜃𝑘+1 on 𝜃𝑘 as both of them depend on the

state 𝑥𝑘 of the underlying Markov chain. If 𝜃𝑘 were independent of 𝑥𝑘 , the bias would be zero. This

observation suggests that the bias is determined by the strength of dependence between 𝜃𝑘 and 𝑥𝑘 ,

which can be quantified by the variation of the conditional expectation E[𝜃𝑘 |𝑥𝑘 = 𝑖] as a function
of 𝑖 ∈ X. Therefore, our analysis is based on understanding this conditional expectation in steady

state, namely E [𝜃∞ |𝑥∞ = 𝑖]. We characterize this quantity using the Basic Adjoint Relationship

(BAR) [Har85, HW87, DD11] for the steady state with a specific choice of test functions.

Our proof is non-asymptotic in nature. See equation (A.43) for an explicit upper bound on 𝛼

under which part 2 of Thoerem 4.3 holds. If desired, one can read off from the proof an explicit

expression or upper bound for the coefficients 𝐵 (𝑖 ) of the bias expansions; we provide such an

explicit bound for 𝐵 (1) in Section 4.3 for reversible 𝑃 . Importantly, regardless of the functional form

of 𝐵 (𝑖 ) , Richardson-Romberg extrapolation can be used to cancel the lower order terms of 𝛼 in the

expansions (4.7) and (4.8), which reduces the bias to a higher order term of 𝛼 . These results are

formally presented in Section 4.4.

4.3 Bias and Mixing Time
As mentioned, the bias E[𝜃∞] − 𝜃 ∗ arises due to the Markovian correlation in the data (𝑥𝑘 )𝑘≥0. If
the chain (𝑥𝑘 )𝑘≥0 mixes slowly, the correlation is strong and intuitively leads to a large bias. Our

next result formalizes this intuition, quantifying the relationship between the bias and the mixing

time of the chain (𝑥𝑘 )𝑘≥0 when this chain is reversible.

Recall that 𝑃 = (𝑝𝑖 𝑗 ) is the transition probability matrix of the chain (𝑥𝑘 )𝑘≥0. By Perron-Frobenius
Theorem, the eigenvalues of 𝑃 can be ordered in such a way that 1 = 𝜆1 > |𝜆2 | ≥ |𝜆3 | ≥ . . . , where
|𝜆2 | is called the second largest eigenvalue modulus (SLEM). The SLEM |𝜆2 | is closely related to the

𝜖-mixing time 𝜏𝜖 . For example, it holds that

|𝜆2 |
1 − |𝜆2 |

· 𝐾 ′ log(1/𝜖) ≤ 𝜏𝜖 ≤
1

1 − |𝜆2 |
· 𝐾 ′′ log(1/𝜖) (4.9)

for some 𝐾 ′ and 𝐾 ′′ independent of 𝜖 [LP17, Theorem 12.4, Theorem 12.5]. In the extreme case

where the 𝑥𝑘 ’s are i.i.d. with distribution 𝜋 , we have 𝑃 = 1𝜋⊤ and hence 𝜆2 = 0.
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The theorem below provides upper bounds on the coefficients 𝐵 (1) and 𝐵 (2) in the bias expan-

sions (4.7) in terms of |𝜆2 |.

Theorem 4.4. Suppose that Assumptions 1, 2 and 3 hold, 𝛼 satisfies equation (4.2), and the Markov
chain (𝑥𝑘 )𝑘≥0 is reversible. It holds that

E [𝜃∞] − 𝜃 ∗ = 𝛼𝐵 + 𝛼2𝐵′, (4.10)

for some vectors 𝐵 ≡ 𝐵(𝐴,𝑏, 𝑃) and 𝐵′ ≡ 𝐵′ (𝐴,𝑏, 𝑃, 𝛼) that satisfy

∥𝐵∥ ≤ 𝑐 · |𝜆2 |
1 − |𝜆2 |

· 𝑛

𝜋min

· 𝑠−2
min
(𝐴) · 𝑏max and (4.11)

∥𝐵′∥ ≤ 𝑐′ · |𝜆2 |2
(1 − |𝜆2 |)2

· 𝑛3/2

𝜋max𝜋
2

min

· (1 + 𝛾max)2
𝛾min

· 𝑠−2
min
(𝐴) · 𝑏max, (4.12)

where 𝑐 and 𝑐′ are some universal constants.

The salient feature of Theorem 4.4 is that ∥𝐵∥ ≤ 𝐶 |𝜆2 |
1−|𝜆2 | and ∥𝐵

′∥ ≤ 𝐶′
( |𝜆2 |
1−|𝜆2 |

)
2

for some𝐶 and𝐶′

that only depend on𝐴,𝑏 and 𝜋 .2 Consequently, the bias admits the bound ∥E [𝜃∞]−𝜃 ∗∥ ≤ 2𝐶 ·𝛼 |𝜆2 |
1−|𝜆2 |

for sufficiently small stepsize 𝛼 . In light of the relationship (4.9), we see that the bias is small when

the underlying Markov chain (𝑥𝑘 )𝑘≥0 mixes fast.

As a special case of Theorem 4.4, the SLEM |𝜆2 | and the asymptotic bias are zero when the

data (𝑥𝑘 )𝑘≥0 are i.i.d. This zero-bias property is implicit in the results in [LS18, Theorem 1] and

[MLW
+
20, Theorem 1], which are dedicated to LSA in the i.i.d. setting. As such, Theorem 4.4 can

be viewed as a generalization of these results to nonzero values of 𝜆2.

In addition to the bootstrapping technique used in proving Theorem 4.3, the proof of Theorem 4.4

makes use of the eigendecomposition of a reversible transition probability matrix 𝑃 . The detailed

proof can be found in Appendix A.5. Nevertheless, we believe results in Theorem 4.4 can be extended

to the non-reversible setting.

4.4 Implications for Averaging and Extrapolation
In this subsection, we exploit the results above to study the performance of LSA in conjunction

with Polyak-Ruppert/tail averaging and Richardson-Romberg extrapolation. We focus on exploiting

the convergence rate bounds in Theorem 4.1 and the bias expansion with𝑚 = 1 in Theorem 4.3,

namely

E[𝜃 (𝛼 )∞ ] = 𝜃 ∗ + 𝛼𝐵 (1) + O(𝛼2).

Using Theorems 4.1 and 4.3, we characterize the MSE in terms of its decomposition into the

optimization error, squared bias and variance, and study how these three quantities interplay with

the use of constant stepsizes, averaging and extrapolation.

Our main focus is on the dependence on the stepsize 𝛼 and iteration count 𝑘 , and we follow the

notation convention in Section 3.3. Throughout this sub-section, 𝐵 ≡ 𝐵(𝐴,𝑏, 𝑃) and 𝐵′ ≡ 𝐵′ (𝐴,𝑏, 𝑃)
denote vectors or matrices that are independent of 𝛼 and 𝑘 , and their values may change from line

to line. We also use the big-O notation that hides factors independent of 𝛼 and 𝑘 .

2
Theorem 4.4 provides explicit upper bounds on𝐶 and𝐶′. We do not focus on optimizing these bounds in terms of their

scaling with 𝐴,𝑏, and 𝜋 , and we believe tighter bounds can be obtained by more careful analysis.
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4.4.1 Polyak-Ruppert Averaging. Polyak-Ruppert averaging [Rup88, PJ92] is a classical approach
for reducing the variance and accelerating the convergence of stochastic approximation. Here we

consider the tail-averaging variant of PR averaging [JKK
+
18]. Define the tail-averaged iterates

¯𝜃𝑘0,𝑘 :=
1

𝑘 − 𝑘0

𝑘−1∑︁
𝑡=𝑘0

𝜃𝑡 , 𝑘 = 𝑘0 + 1, 𝑘0 + 2, . . . ,

where 𝑘0 ≥ 0 is a user-specified burn-in period.

The following corollary provides non-asymptotic characterization for the first two moments of

¯𝜃𝑘0,𝑘 . The proof can be found in Appendix A.6.

Corollary 4.5. Under the setting of Theorem 4.1, the tail-averaged iterates satisfy the following
bounds for all 𝑘 > 𝑘0 ≥ 𝜏𝛼 :

E[ ¯𝜃𝑘0,𝑘 ] − 𝜃 ∗ = 𝛼𝐵 + O
(
𝛼2 + 1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

))
and (4.13)

E
[ (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

) (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

)⊤]
= 𝛼2𝐵′ + O

(
𝛼3 +

√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

+ 1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
. (4.14)

To parse the above results, let us fix 𝑘0 = 𝑘/2 and take the trace of both sides of equation (4.14),

which gives the following bound on the MSE:

E
[
∥ ¯𝜃𝑘/2,𝑘 − 𝜃 ∗∥2

]
= 𝛼2𝐵′′ + O(𝛼3)︸           ︷︷           ︸

𝑇1: asymptotic

squared bias

+ O
(√︁
𝜏𝛼/𝛼
𝑘

)
︸        ︷︷        ︸
𝑇2: variance

+ O
(

1

𝛼2𝑘2
exp

(
− 𝛼𝑘

8𝛾max

))
︸                          ︷︷                          ︸

𝑇3: optimization error

. (4.15)

The three terms on the right-hand side above have the following interpretation. The term 𝑇1 =

∥E ¯𝜃∞/2,∞ − 𝜃 ∗∥2 = ∥E𝜃∞ − 𝜃 ∗∥2 is the asymptotic squared bias, which is not affected by averaging.

The term 𝑇2 roughly corresponds to the variance Var( ¯𝜃𝑘/2,𝑘 ), which enjoys a 1/𝑘 decay rate due to

averaging. The term 𝑇3 corresponds to the optimization error ∥E ¯𝜃𝑘/2,𝑘 − ¯𝜃∞/2,∞∥2, which decays

geometrically in𝑘 thanks to using a constant stepsize𝛼 and only averaging the last𝑘/2 iterates. Note
that for large 𝑘 , the squared bias (term 𝑇1) becomes the dominating term in the MSE bound (4.15).

We remark in passing that by setting 𝑘0 = 𝑘 − 1 in Corollary 4.5 and observing that
¯𝜃𝑘−1,𝑘 = 𝜃𝑘−1

(also see Remark 2), we obtain the following characterization for the MSE of the raw LSA iterate 𝜃𝑘 :

E
[
∥𝜃𝑘 − 𝜃 ∗∥2

]
= 𝛼2𝐵′′ + O (𝛼𝜏𝛼 ) + O

(
𝑒−𝛼𝑘/(8𝛾max ) ) .

This result is consistent with existing MSE upper bounds in [SY19, BRS21]. The power of our result

lies in that it is an equality (up to higher order terms) rather than merely an upper bound, and

that it decouples the contributions from the squared bias 𝛼2𝐵′′ and variance. This decoupling is

crucial in understanding the effect of tail-averaging (in Corollary 4.5) and RR extrapolation (in

Corollary 4.6 to follow).

4.4.2 Richardson-Romberg Extrapolation. We next show that one can use the RR extrapolation

technique [SB02] to reduce the bias to a higher order term of 𝛼 . Let ¯𝜃
(𝛼 )
𝑘0,𝑘

and
¯𝜃
(2𝛼 )
𝑘0,𝑘

denote the

tail-averaged iterates computed using two stepsizes 𝛼 and 2𝛼 using the same data stream (𝑥𝑘 )𝑘≥0.
The corresponding RR extrapolated iterates are given by

𝜃
(𝛼 )
𝑘0,𝑘

= 2
¯𝜃
(𝛼 )
𝑘0,𝑘
− ¯𝜃
(2𝛼 )
𝑘0,𝑘

.
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With 𝑘0, 𝑘 →∞, Theorems 4.1 and 4.3 ensure that 𝜃
(𝛼 )
𝑘0,𝑘

converges to 2𝜃
(𝛼 )
∞ − 𝜃 (2𝛼 )∞ , which has bias

2

(
E𝜃
(𝛼 )
∞ − 𝜃 ∗

)
−

(
E𝜃
(2𝛼 )
∞ − 𝜃 ∗

)
= 2

(
𝛼𝐵 (1) + O(𝛼2)

)
−

(
2𝛼𝐵 (1) + O(4𝛼2)

)
= O(𝛼2).

We see that the extrapolation cancels out the first-order term of 𝛼 , hence reducing the bias by a

factor of 𝛼 .

The following corollary formalizes the above argument and provides non-asymptotic characteri-

zation for the first two moments of 𝜃
(𝛼 )
𝑘0,𝑘

. The proof can be found in Appendix A.7.

Corollary 4.6. Under the setting of Theorem 4.1, the RR extrapolated iterates with stepsizes 𝛼 and
2𝛼 satisfy the following bounds for all 𝑘 > 𝑘0 ≥ 𝜏𝛼 :

E
[
𝜃
(𝛼 )
𝑘0,𝑘

]
− 𝜃 ∗ = O(𝛼2) + O

(
1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

))
and

E

[(
𝜃
(𝛼 )
𝑘0,𝑘
− 𝜃 ∗

) (
𝜃
(𝛼 )
𝑘0,𝑘
− 𝜃 ∗

)⊤]
= O

(
𝛼4

)︸ ︷︷ ︸
asymptotic

squared bias

+ O
(√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
︸        ︷︷        ︸

variance

+ O
(

1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
︸                                   ︷︷                                   ︸

optimization error

. (4.16)

Comparing the bound (4.16) with (4.14), we see that RR extrapolation reduces the squared bias

by a factor of 𝛼2 while retaining the 1/𝑘 and exp(−𝑘) convergence rates for the variance and

optimization error, respectively.

Thanks to the infinite series expansion in Theorem 4.3, RR extrapolation can in fact be applied

to more than two stepsizes to further reduce the bias. Let A = {𝛼1, 𝛼2, . . . , 𝛼𝑚} be a set of𝑚 ≥ 2

distinct stepsizes and 𝛼 = max1≤𝑖≤𝑚 𝛼𝑖 . Let (ℎ1, ℎ2, . . . , ℎ𝑚) ∈ R𝑚 be the solution to the following

linear equation system:

𝑚∑︁
𝑖=1

ℎ𝑖 = 1;

𝑚∑︁
𝑖=1

ℎ𝑖𝛼
𝑡
𝑖 = 0, 𝑡 = 1, 2, . . . ,𝑚 − 1. (4.17)

Note that the solution is unique since the coefficient matrix of the system is a Vandermonde matrix.

Then, RR extrapolated iterates with stepsizes in A and the burn-in period 𝑘0 is given by

𝜃A
𝑘0,𝑘

=

𝑚∑︁
𝑖=1

ℎ𝑖 · ¯𝜃 (𝛼𝑖 )𝑘0,𝑘
. (4.18)

This procedure eliminates the first𝑚 − 1 terms in the bias expansion (4.8), thereby reducing the

bias to

E
[
𝜃A
𝑘0,∞

]
− 𝜃 ∗ =

𝑚∑︁
𝑖=1

ℎ𝑖 ·
(
E

[
𝜃
(𝛼𝑖 )
∞

]
− 𝜃 ∗

)
= O(𝛼𝑚).

It is possible to derive non-asymptotic bounds similar to Corollary 4.6 — we omit the details. In

Section 5, we numerically verify the efficacy of this high-order RR extrapolation approach.

4.5 Implications for TD Learning
TD(0) is an iterative algorithm in RL for evaluating a given policy for a Markov Decision Pro-

cess (MDP), or equivalently for computing the value function of a Markov Reward Process

(MRP) [Ber19, SB18]. Potentially equipped with function approximation, TD(0) is a special case of

LSA. Consequently, all the results in the previous sub-sections can be specialized to TD(0), as we

show below.
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Consider an MRP (S, 𝑃S, 𝑟 , 𝛾), where S = {1, . . . , 𝑛S} is a finite state space, 𝑃S = (𝑝S
𝑖 𝑗
) ∈

[0, 1]𝑛S×𝑛S is the transition probability matrix, 𝑟 : S → [−𝑟max, 𝑟max] is a deterministic reward

function, and 𝛾 ∈ [0, 1) is the discount factor. We assume that 𝑃S is irreducible and aperiodic

with a unique stationary distribution 𝜋S . The value function 𝑉 : S → R of this MRP is defined

as 𝑉 (𝑠) = E
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 ) |𝑠0 = 𝑠

]
, where (𝑠𝑘 )𝑘≥0 is a Markov chain on S with 𝑃S as the transition

matrix. When the state space S is large, it is common to assume that the value function can be

approximated by a linear function as 𝑉 (𝑠) ≈ 𝜙 (𝑠)⊤𝜃, where 𝜙 (𝑠) ∈ R𝑑 denotes a known feature

vector for state 𝑠 and 𝜃 is an unknown weight vector. If we view 𝑉 as a vector in R𝑛
S
and let

Φ ∈ R𝑛S×𝑑 be the feature matrix with 𝜙 (𝑠)⊤ as the 𝑠-th row, then the above model can be written

compactly as 𝑉 ≈ Φ𝜃 . As is standard [BRS21, SY19], we assume that 𝑛S ≥ 𝑑 , the matrix Φ has full

column rank, and the feature matrix is re-scaled such that 𝜙max := sup𝑠∈S ∥𝜙 (𝑠)∥ ≤ 1√
1+𝛾 .

Given a single Markovian data stream (𝑠𝑘 )𝑘≥0, the TD(0) algorithm with linear function approxi-

mation is defined by the update rule

𝜃𝑘+1 = 𝜃𝑘 + 𝛼
[
𝑟 (𝑠𝑘 ) + 𝛾𝜙 (𝑠𝑘+1)⊤𝜃𝑘 − 𝜙 (𝑠𝑘 )⊤𝜃𝑘

]
𝜙 (𝑠𝑘 ). (4.19)

We assume that the chain (𝑠𝑘 )𝑘≥0 is initialized at 𝑠0 ∼ 𝜋S . TD(0) aims to approximately solve the

so-called projected Bellman equation, whose solution 𝜃 ∗ is given by 𝜃 ∗ = −
(
Φ⊤𝐷 (𝛾𝑃 − 𝐼 )Φ

)−1
Φ⊤𝐷𝑟,

where 𝐷 = diag(𝜋S) ∈ [0, 1]𝑛S×𝑛S is a diagonal matrix and 𝑟 ∈ R𝑛S is the reward function viewed

as a vector.

Remark 1. A special case of the above setting is when 𝑑 = 𝑛S and the feature vectors are one-hot, i.e.,
𝜙 (𝑠) is the 𝑠-th standard basis vector in R𝑛

S
. In this case, the update (4.19) becomes the (asynchronous)

tabular TD(0) algorithm, and the target solution 𝜃 ∗ is the value function 𝑉 itself.

It is easy to see that the TD(0) update (4.19) is a special case of the LSA update (3.1) with

𝑥𝑘 = (𝑠𝑘 , 𝑠𝑘+1), 𝐴(𝑥𝑘 ) = 𝜙 (𝑠𝑘 )
(
𝛾𝜙 (𝑠𝑘+1) − 𝜙 (𝑠𝑘 )

)⊤
, 𝑏 (𝑥𝑘 ) = 𝑟 (𝑠𝑘 )𝜙 (𝑠𝑘 ),

and X =
{
(𝑖, 𝑗) ∈ S × S : 𝑝S

𝑖 𝑗
> 0

}
. Below we verify that TD(0) satisfies the required assumptions.

• Assumption 1: The irreducibility and aperiodicity of the chain (𝑠𝑘 )𝑘≥0 imply that the aug-

mented chain (𝑥𝑘 )𝑘≥0 = ((𝑠𝑘 , 𝑠𝑘+1))𝑘≥0 also satisfies the same properties. Moreover, by

assumption the chain (𝑠𝑘 )𝑘≥0 starts in the steady state, hence so does the chain (𝑥𝑘 )𝑘≥0.
• Assumption 2: We have

𝐴max = sup

𝑖, 𝑗∈S
∥𝜙 (𝑖) (𝛾𝜙 ( 𝑗) − 𝜙 (𝑖))⊤∥ ≤ (1 + 𝛾)𝜙2

max
and 𝑏max = sup

𝑖∈S
∥𝑟 (𝑖)𝜙 (𝑖)∥ ≤ 𝑟max𝜙max .

Therefore, Assumption 2 holds since the features are assumed normalized as 𝜙max ≤ 1√
1+𝛾 .

• Assumption 3: The unique stationary distribution 𝜋 of the Markov chain (𝑥𝑘 )𝑘≥0 is given by

𝜋𝑥 = 𝜋S𝑖 𝑝
S
𝑖 𝑗 , for 𝑥 = (𝑖, 𝑗) ∈ X (4.20)

By direct calculation we have𝐴 =
∑
𝑥∈X 𝜋𝑥𝐴(𝑥) = Φ⊤𝐷 (𝛾𝑃 − 𝐼 )Φ. It is known that the matrix

𝐴 is negative definite (i.e., 𝑥⊤𝐴𝑥 < 0,∀𝑥 ≠ 0) and hence Hurwitz [TVR97].

Consequently, all the results in Sections 4.1–4.4 apply to TD(0) with linear function approximation,

Markovian data, and constant stepsizes.

We emphasize that the above results hold for TD(0) driven by a single Markovian data stream,

where nonzero asymptotic bias generally exists. In comparison, many existing non-asymptotic
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results on TD(0) consider the i.i.d. data setting; see, e.g., the work in [DSTM18, BRS21, KPR
+
21,

DMN
+
21]. TD(0) under this setting corresponds to the update

𝜃𝑘+1 = 𝜃𝑘 + 𝛼
[
𝑟 (𝑠𝑘 ) + 𝛾𝜙 (𝑠next𝑘

)⊤𝜃𝑘 − 𝜙 (𝑠𝑘 )⊤𝜃𝑘
]
𝜙 (𝑠𝑘 ),

where the data 𝑥𝑘 = (𝑠𝑘 , 𝑠next𝑘
) is independent across 𝑘 and has the distribution P(𝑠𝑘 = 𝑖, 𝑠next

𝑘
=

𝑗) = 𝜋S
𝑖
𝑝S
𝑖 𝑗
; equivalently, we have 𝑥𝑘

i.i.d.∼ 𝜋 , where 𝜋 is given in equation (4.20). In this setting,

Theorem 4.4 implies that TD(0) with a constant stepsize has no asymptotic bias, i.e., E[𝜃∞] = 𝜃 ∗.
We note in passing that the TD(𝜆) algorithm [Sut88, TVR97], a generalization of TD(0), can also

be cast as an LSA procedure; see, e.g., the work in [SY19, MPWB21] for a formal reduction. Our

LSA results can be used to characterize TD(𝜆) as well. We omit the details.

5 NUMERICAL EXPERIMENTS
In this section, we provide numerical experimental results for both the LSA iteration (3.1) and the

TD(0) iteration (4.19) with linear function approximation.

5.1 Experiments for LSA
We consider the LSA update (3.1) in dimension 𝑑 = 4 with 𝑛 = 8 states. We generate transition

probability 𝑃 and the functions 𝐴 and 𝑏 randomly; see Appendix C.1 for the details. Given 𝑃 ,

we generate a single trajectory of the Markov chain (𝑥𝑘 )𝐾𝑘=1 of length 𝐾 = 10
8
, and run the LSA

iteration with initialization 𝜃
(𝛼 )
0

= 0 and stepsizes 𝛼 ∈ {0.2, 0.4, 0.8}.
In Figure 2(a), we plot the error ∥𝜃 (𝛼 )

𝑘
− 𝜃 ∗∥ for the raw LSA iterates 𝜃

(𝛼 )
𝑘

, the error for the tail-

averaged (TA) iterates
¯𝜃
(𝛼 )
𝑘/2,𝑘 , and the error for the RR extrapolated iterates 𝜃

(𝛼 )
𝑘

with stepsizes 𝛼 and

2𝛼 . For comparison, we also include the errors for LSA with a diminishing stepsize 𝛼𝑘 = 0.2/𝑘0.75.
We see that with constant stepsizes, the raw LSA iterates oscillate, consistent with the distribu-

tional convergence result in Theorem 4.1, whereas the tail averaged iterates converge to a limit. We

also observe that the converged error, which corresponds to the asymptotic bias, is smaller when

using a smaller stepsize. In particular, this error can be seen to be proportional to the stepsize (note

the equal spacing in the log scale between the three TA lines), as predicted by Theorem 4.3. Finally,

RR extrapolation with two stepsizes further reduces the bias, as can be seen by comparing, e.g., the

dashed red line (TA with 𝛼 = 0.4) and the solid red line (RR with 𝛼 = 0.4 and 0.8). This observation

is consistent with Corollary 4.6. We also observe that the iterates using a diminishing stepsize

converge with a vanishing error, though its initial convergence is substantially slower than that of

the tail-averaged iterates with constant stepsizes. This agrees with the theoretical prediction of the

sublinear convergence rate of the former and the geometric convergence rate of the latter.

We next investigate the relationship between the error and the mixing time. Given the transition

probability matrix 𝑃 generated above and its stationary distribution 𝜋 , we construct another

transition probability matrix parameterized by 𝛽 ∈ [0, 1] as follows:
𝑃 (𝛽 ) = 𝛽 · 𝑃 + (1 − 𝛽) · 1𝜋⊤ .

Note that 𝑃 (1) = 𝑃 , and that 𝑃 (𝛽 ) has the same stationary distribution 𝜋 as 𝑃 for any 𝛽 . As 𝛽

decreases from 1 to 0, the SLEM |𝜆2 | of 𝑃 (𝛽 ) decreases and approaches 0, and hence the mixing

time decreases as well. For different values of 𝛽 , we run the LSA iteration (3.1) with 𝑃 (𝛽 ) as the
transition probability matrix of the underlying Markov chain (𝑥𝑘 )𝑘≥0. In Figure 2(b), we plot the

corresponding errors of the tail-averaged iterates. We see that a smaller |𝜆2 | leads to a smaller final

error. Moreover, when 𝜆2 = 0, which corresponds to the i.i.d. data setting, it can be observed that

the error is converging to zero, which indicates a zero asymptotic bias. These observations are

consistent with Theorem 4.4 on the relationship between the asymptotic bias and mixing time.
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(a) The errors of the raw LSA iterates, tail-averaged (TA)

iterates and RR extrapolated iterates with different stepsizes

𝛼 .

(b) The errors of the raw LSA iterates and tail-averaged (TA)

iterates under different SLEM |𝜆2 | . The stepsize 𝛼 is fixed at

0.8.

Fig. 2. Experiment results for LSA

Fig. 3. The errors of the raw TD(0), tail-averaged (TA) and RR extrapolated iterates with different stepsizes 𝛼 .

5.2 Experiments for TD(0) with Linear Function Approximation
We perform a similar set of experiments as in the previous sub-section on the TD(0) algorithm.

In particular, we consider the “Problematic MDP” from the classical work [KP00, LP03], and use

TD(0) with linear function approximation to estimate the value function of a given policy. See

Appendix C.2 for the details of the MDP, the policy, and the choice of the feature vectors.

In Figure 3, we plot the errors of the raw TD(0) iterates, tail-averaged iterates and RR extrapolated

iterates with different stepsizes 𝛼 . The results are qualitatively similar to those in Figure 2(a). In
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Fig. 4. Comparison between tail-averaging (TA) and RR extrapolation with𝑚 stepsizes, for𝑚 = 2, . . . , 6. The
setting for each line in the plot is given by its line style (representing the number of stepsizes used in RR) and
line color (representing the smallest stepsize involved). For example, the dash-dotted green line corresponds to
TA with stepsize 𝛼 = 2.1, and the dashed red line corresponds to RR with four stepsizes 𝛼 ∈ {1.9, 2.1, 2.3, 2.5}.

addition, we observe that the TA iterates with a larger stepsize have faster initial convergence.

This observation is consistent with the predicted relationship between the optimization error and

stepsize in Corollary 4.5.

Lastly, we investigate the benefit of RR extrapolation with more than 2 stepsizes, using the scheme

outlined in equations (4.17) and (4.18). Specifically, we compare the errors of the tail-averaged

iterates and the RR extrapolated iterates with𝑚 ∈ {2, 3, . . . , 6} stepsizes. The results are shown
in Figure 4. Note that we use 6 large stepsizes (of similar magnitudes), resulting in fast initial

convergence. We see that increasing the number of stepsizes in RR extrapolation further reduces

the final errors by a significant margin. In particular, the error of RR extrapolation with 6 stepsizes

is smaller by 3 orders of magnitude when compared to TA with the same stepsizes. We emphasize

that this error reduction is obtained almost for free, as we can run the six TD(0) iterations in parallel

using the same data stream.

6 PROOF OUTLINE
In this section, we outline the proofs for Theorem 4.1 (convergence of LSA) and Theorem 4.3 (bias

expansion). The proofs make use of a pilot result Proposition 6.1, stated in Section 6.1, which

serves as the first step of subsequent analysis. The complete proofs of these results and other main

theorems/corollaries are given in the appendix.

6.1 A Pilot Result
We have the following non-asymptotic upper bound on the MSE E[∥𝜃𝑘 − 𝜃 ∗∥2].

Proposition 6.1. Under Assumptions 1, 2 and 3, if 𝛼 satisfies equation (4.2), then the following
bound holds for all 𝑘 ≥ 𝜏 ,

E[∥𝜃𝑘 − 𝜃 ∗∥2] ≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘 (
E[∥𝜃0 − 𝜃 ∗∥2] + 𝑠−2min

(𝐴)𝑏2
max

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏 · 𝜅,

with 𝜅 defined in equation (4.3).
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Proposition 6.1 is a moderate improvement of [SY19, Theorem 7]. When 𝑏max = 0 (which means

𝑏 (𝑥) = 0,∀𝑥 ∈ X), Proposition 6.1 guarantees that 𝜅 = 0, in which case 𝜃𝑘 converges in mean

squared to 𝜃 ∗ as 𝑘 →∞. This fact plays an important role in proving our main Theorem 4.1 in the

setting with a general 𝑏 and nonzero 𝑏max. In particular, the proof of Theorem 4.1 makes use of a

coupling argument that constructs another process with 𝑏max = 0. In comparison, the bound in

[SY19, Theorem 7] gives a non-zero value of 𝜅 even when 𝑏max = 0 and hence is insufficient for

executing the coupling argument. Moreover, the stepsize condition (4.2) required by Proposition 6.1

(and by all our other results) does not involve𝑏max, which correctly reflects the translation invariance

of the LSA update (3.1). The stepsize condition in [SY19, Theorem 7], on the other hand, has a

superfluous dependence on 𝑏max.

The proof of Proposition 6.1 is similar to that of [SY19, Theorem 7] with a more refined analysis.

For completeness, we provide the proof in Appendix A.1. One key refinement in our proof is to

avoid invoking inequalities of the form 2𝑢 ≤ 1 + 𝑢2, and to use instead 2𝑢 ≤ 𝛽2𝑢2 + 1/𝛽2 with a

judicious choice of 𝛽 that respects the translation invariance of the LSA update (3.1).

6.2 Proof Outline of Theorem 4.1
In this sub-section, we sketch the main ideas in the proof of Theorem 4.1. The complete proof can

be found in Appendix A.2.

The proof consists of bounding Wasserstein distances of the form 𝑊̄2 (L(𝑥𝑘 , 𝜃𝑘 ),L(𝑥𝑘+1, 𝜃𝑘+1))
and 𝑊̄2 (L(𝑥𝑡 , 𝜃𝑡 ),L(𝑥∞, 𝜃∞)). Since the Wasserstein distance is defined by the optimal coupling,

it can be upper bounded by constructing a particular coupling. With this strategy in mind, we

consider coupling two Markov chains (𝑥 [1]
𝑘
, 𝜃
[1]
𝑘
)𝑘≥0 and (𝑥 [2]𝑘 , 𝜃

[2]
𝑘
)𝑘≥0, which are two copies of

LSA iteration (3.1). We make use of two types of coupling in the proof.

The first type of coupling is constructed by letting the two Markov chains above share the same

underlying data stream (𝑥𝑘 )𝑘≥0, i.e., letting 𝑥 [1]𝑘 = 𝑥
[2]
𝑘

= 𝑥𝑘 for all 𝑘 ≥ 0. Explicitly, the iterates

𝜃
[1]
𝑘+1 and 𝜃

[2]
𝑘+2 are given by the update

𝜃
[1]
𝑘+1 = 𝜃

[1]
𝑘
+ 𝛼

(
𝐴(𝑥𝑘 )𝜃 [1]𝑘 + 𝑏 (𝑥𝑘 )

)
,

𝜃
[2]
𝑘+1 = 𝜃

[2]
𝑘
+ 𝛼

(
𝐴(𝑥𝑘 )𝜃 [2]𝑘 + 𝑏 (𝑥𝑘 )

)
,

𝑘 = 0, 1, . . .

Taking the difference of the two equations above, we see that the difference 𝜔𝑘 := 𝜃
[1]
𝑘
− 𝜃 [2]

𝑘

satisfies the following recursion

𝜔𝑘+1 =
(
𝐼 + 𝛼𝐴(𝑥𝑘 )

)
· 𝜔𝑘 , 𝑘 = 0, 1, . . .

Our key observation is that the above recursion is a special case of the LSA iteration (3.1) with 𝜔𝑘
as the variable and 𝑏max = sup𝑥∈X ∥𝑏 (𝑥)∥ = 0. Consequently, the pilot result in Proposition 6.1 can

be invoked to obtain the following geometric convergence bound for 𝜔𝑘 :

E[∥𝜔𝑘 ∥2] ≤ 𝐶 (𝐴,𝑏, 𝜋)
(
1 − 0.9𝛼

𝛾max

)𝑘
E[∥𝜔0∥2] .

We then judiciously choose the conditional distribution of 𝜃
[2]
0

given (𝑥𝑘 , 𝜃 [1]0
, 𝜃
[2]
0
) such that

(𝑥𝑘 , 𝜃 [2]𝑘 )
d

= (𝑥𝑘+1, 𝜃 [1]𝑘+1) for all 𝑘 ≥ 0, where

d

= denotes equality in distribution. It follows from the

above geometric convergence bound that

𝑊̄ 2

2
(L(𝑥𝑘 , 𝜃 [1]𝑘 ),L(𝑥𝑘+1, 𝜃

[1]
𝑘+1)) ≤ E

[
∥𝜃 [1]
𝑘
− 𝜃 [2]

𝑘
∥2

]
→ 0 as 𝑘 →∞.

As such, (𝑥𝑘 , 𝜃 [1]𝑘 )𝑘≥0 is a Cauchy sequence and hence converges to a unique limit (𝑥∞, 𝜃∞) with
the limiting distribution 𝜇 := L((𝑥∞, 𝜃∞)). This proves Part 1 of Theorem 4.1.
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We next show that 𝜇 is the invariant distribution of the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0. This invariance
property would follow easily if one could establish the one-step contraction property

𝑊̄2

(
L

(
𝑥
[1]
1
, 𝜃
[1]
1

)
,L

(
𝑥
[2]
1
, 𝜃
[2]
1

) )
≤ 𝜌 · 𝑊̄2

(
L

(
𝑥
[1]
0
, 𝜃
[1]
0

)
,L

(
𝑥
[2]
0
, 𝜃
[2]
0

) )
for some 𝜌 ∈ [0, 1). In fact, this is the approach taken in [DDB20] for analyzing SGD under i.i.d.

noise. For our Markovian data setting, however, establishing one-step contraction is challenging

if not impossible. Thankfully, to prove invariance of 𝜇, it suffices to have the following weaker

property

𝑊̄ 2

2

(
L

(
𝑥
[1]
1
, 𝜃
[1]
1

)
,L

(
𝑥
[2]
1
, 𝜃
[2]
1

) )
≤𝜌1 · 𝑊̄ 2

2

(
L

(
𝑥
[1]
0
, 𝜃
[1]
0

)
,L

(
𝑥
[2]
0
, 𝜃
[2]
0

) )
+

√︂
𝜌2 · 𝑊̄ 2

2

(
L

(
𝑥
[1]
0
, 𝜃
[1]
0

)
,L

(
𝑥
[2]
0
, 𝜃
[2]
0

) )
, (6.1)

where L
(
𝑥
[1]
0
, 𝜃
[1]
0

)
= 𝜇 and the quantities 𝜌1 and 𝜌2 are finite and independent of L(𝑥 [2]

0
, 𝜃
[2]
0
).

We establish the property (6.1) by using a second type of coupling between

(
𝑥
[1]
𝑘
, 𝜃
[1]
𝑘

)
𝑘≥0 and(

𝑥
[2]
𝑘
, 𝜃
[2]
𝑘

)
𝑘≥0, such that

𝑥
[1]
𝑘+1 = 𝑥

[2]
𝑘+1 if 𝑥

[1]
𝑘

= 𝑥
[2]
𝑘
, ∀𝑘 ≥ 0.

That is, the two underlyingMarkov chains (𝑥 [1]
𝑘
)𝑘≥0 and (𝑥 [2]𝑘 )𝑘≥0 evolve separately until they reach

the same state, after which they coalesce and follow the same trajectory. Given the property (6.1),

for any 𝑘 ≥ 0, if we set L(𝑥 [1]
0
, 𝜃
[1]
0
) = L(𝑥0, 𝜃0) = 𝜇 and L(𝑥 [2]

0
, 𝜃
[2]
0
) = L(𝑥𝑘 , 𝜃𝑘 ), then

𝑊̄ 2

2
(L(𝑥1, 𝜃1),L(𝑥𝑘+1, 𝜃𝑘+1)) ≤ 𝜌1 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )) +

√︃
𝜌2 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )).

It follows from the triangle inequality of Wasserstein distance that

𝑊̄2 (L(𝑥1, 𝜃1), 𝜇) ≤ 𝑊̄2 (L(𝑥1, 𝜃1),L(𝑥𝑘+1, 𝜃𝑘+1)) +𝑊2 (L(𝑥𝑘+1, 𝜃𝑘+1), 𝜇)

≤
√︂
𝜌1 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )) +

√︃
𝜌2 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )) +𝑊2 (L(𝑥𝑘+1, 𝜃𝑘+1), 𝜇)

−→ 0 as 𝑘 →∞,

which establishes the invariance of 𝜇 and proves Part 2 of Theorem 4.1.

Finally, the non-asymptotic bound in Part 3 of Theorem 4.1 follows from the non-asymptotic

bound on 𝜔𝑘 and invariance property of 𝜇 established above.

6.3 Proof Outline of Theorem 4.3
In this sub-section, we outline the proof of Theorem 4.3. The complete proof can be found in

Appendix A.4.

As discussed after Theorem 4.3, our proof centers around the condition expectationsE [𝜃∞ |𝑥∞ = 𝑖],
𝑖 ∈ X. To characterize these quantities, we make use of the Basic Adjoint Relationship

E [𝑓 (𝑥∞, 𝜃∞)] = E [𝑓 (𝑥∞+1, 𝜃∞+1)] ,

where the test function 𝑓 is chosen to be 𝑓 (𝑖 ) (𝑥, 𝜃 ) := 𝜃 · 1{𝑥 = 𝑖} for each 𝑖 ∈ X. This choice
allows us to establish the following recursive relationship:

E [𝜃∞ |𝑥∞ = 𝑖] =
(∑︁
𝑠∈X

𝑝𝑖𝑠E [𝜃∞ |𝑥∞ = 𝑠]
)
+𝛼

(∑︁
𝑠∈X

𝑝𝑖𝑠 (𝐴(𝑠)E [𝜃∞ |𝑥∞ = 𝑠] + 𝑏 (𝑠))
)
, ∀𝑖 ∈ X. (6.2)
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By choosing state 1 ∈ X as the reference state and defining 𝛿𝑖 := E [𝜃∞ |𝑥∞ = 𝑖] − E [𝜃∞ |𝑥∞ = 1],
we obtain from (6.2) that

𝛿𝑖 −
(∑︁
𝑠∈X

𝑝𝑖𝑠𝛿𝑠

)
= 𝛼

(∑︁
𝑠∈X

𝑝𝑖𝑠 (𝐴(𝑠)E [𝜃∞ |𝑥∞ = 𝑠] + 𝑏 (𝑠))
)
, ∀𝑖 ∈ X. (6.3)

Equation (6.3), together with the bound E [𝜃∞] = O(1) (which follows from Theorem 4.1), imply

the coarse bound
®𝛿 =

[
𝛿⊤
1
𝛿⊤
2
· · · 𝛿⊤𝑛

]⊤
= O(𝛼).

Moreover, owing to the construction of 𝛿𝑖 , we are able to obtain

E [𝜃∞ |𝑥∞ = 1] = 𝜃 ∗ −𝐴−1
∑︁
𝑠∈X

𝜋𝑠𝐴(𝑠)𝛿𝑠 . (6.4)

Substituting (6.4) into (6.3) and simplifying the expression, we are able to establish the following

self-expressing equation for 𝛿 :

®𝛿 = 𝛼Υ1 + 𝛼Ξ®𝛿, (6.5)

where the vector Υ1 and matrix Ξ are independent of 𝛼 . With the expression (6.5), we can bootstrap

from the coarse bound
®𝛿 = O(𝛼) to obtain

®𝛿 = 𝛼Υ1 + ΞO(𝛼2).
Continuing this bootstrapping argument for𝑚 steps, we derive the expansion

®𝛿 =

𝑚∑︁
𝑖=1

𝛼𝑖Υ𝑖 + Ξ𝑚O(𝛼𝑚+1). (6.6)

Lastly, we convert the expansion (6.6) for
®𝛿 into an expansion for E[𝜃∞]. To this end, we note

that the expression (6.4) implies that

E[𝜃∞] =
∑︁
𝑠∈X

𝜋𝑠 (E [𝜃∞ |𝑥∞ = 1] + 𝛿𝑠 ) = 𝜃 ∗ +
∑︁
𝑠∈X

𝜋𝑠
(
−𝐴−1𝐴(𝑠) + 𝐼

)
𝛿𝑠 ,

Combining the above equation with the expansion (6.6) proves the desired expansion for E[𝜃∞]
given in Theorem 4.3:

E[𝜃∞] = 𝜃 ∗ +
𝑚∑︁
𝑖=1

𝛼𝑖𝐵 (𝑖 ) + O(𝛼𝑚+1) . (6.7)

Moreover, if the stepsize 𝛼 is sufficiently small to ensure that the matrix 𝛼Ξ in equation (6.5) has a

spectral radius less than one, then one can take𝑚 →∞ in the expansions (6.6) and (6.7).

7 CONCLUSION
In this paper, we study linear stochastic approximation with constant stepsizes and Markovian data.

We analyze the convergence rates to a limiting distribution and identify the existence of asymptotic

bias. We characterize the bias as a function of the stepsize and mixing time, and rigorously establish

the benefit of Richardson-Romberg extrapolation. Our results provide a refined characterization of

linear stochastic approximation, identifying the effect of stepsize, averaging, and extrapolation on

the optimization error, variance, and bias.

Based on our work, immediate next steps include tightening the dimension dependence in

our bounds and relaxing the reversibility assumption. Below we remark on two possible further

extensions and the associated challenges.

Infinite State Space. Our current results hold when the underlying Markov chain (𝑥𝑘 )𝑘≥0 is
supported on a finite state space. Extension to (countably or uncountably) infinite state spaces is of
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immediate interest. Such an extension is straightforward for the convergence guarantees in Theo-

rem 4.1, which can be shown to hold under the same assumptions as in [SY19], namely, geometric

mixing of the underlying Markov chain. Generalizing the bias characterization in Theorem 4.3 is

more non-trivial. Recall that a key step in our proof involves the linear equation (6.5). When the

state space is infinite, this equation becomes an infinite-dimensional one, and it requires additional

technical work to establish the solvability of the equation.

Nonlinear Stochastic Approximation. It is interesting to see if our results can be extended to

more general stochastic approximation procedures of the form

𝜃𝑘+1 = 𝜃𝑘 + 𝛼 (𝑓 (𝜃𝑘 , 𝑥𝑘 ) − 𝜃𝑘 ),
where 𝑓 is a nonlinear function of 𝜃𝑘 satisfying certain contractive properties [CMSS20, CMSS21b,

CBD22]. Contractive SA covers many important algorithms in RL, such as the TD algorithm with

neural networks and the Q-learning algorithm. Under appropriate conditions, we expect that similar

weak convergence and bias characterization results hold for contractive SA, where the convergence

rate and bias may depend on the contraction and smoothness parameters. In particular, it may be

possible to extend Theorem 4.1 to contractive SA by leveraging the Lyapunov theory and MSE

bounds in [CMSS21b]. Extending Theorem 4.3 may involve manipulating a nonlinear Basic Adjoint

Relationship, for which certain linearization argument may be useful.

Besides the aforementioned, other interesting future directions include: (a) study higher moments

of the LSA iterates and provide high probability bounds; (b) exploit our results to formulate an

algorithm that guides the choice and scheduling of the stepsize.
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Appendices
A PROOFS
In this section, we provide the proofs for our pilot result in Section 6 and our main results in

Section 4.

Recall that 𝜏 ≡ 𝜏𝛼 is the 𝛼-mixing time defined in Section 3.2. In the sequel, we frequently make

use of the following fact: when the stepsize 𝛼 satisfies the condition (4.2), we have 𝛼𝜏 ≤ 1

4
. This

fact follows from combining the condition (4.2) with the lower bound

𝛾max ≥ 𝛾min

(i)

≥ 1

2𝑠1 (𝐴)
(ii)

≥ 1

2

, (A.1)

where the inequality (i) is given in the paper [Sha74], and the inequality (ii) holds under Assump-

tion 2.
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A.1 Proof of Proposition 6.1
In this sub-section, we prove our pilot result in Proposition 6.1, which provides an upper bound on

the finite-time MSE E[∥𝜃𝑘 − 𝜃 ∗∥2].
We argue that it suffices to prove Proposition 6.1 in the special case where

¯𝑏 in (3.5) is assumed

to be 0. Consider the LSA update rule stated in equation (3.1) with a general
¯𝑏. We can center this

update rule by subtracting 𝜃 ∗ from both sides of (3.1), which gives

𝜃𝑘+1 − 𝜃 ∗ = 𝜃𝑘 − 𝜃 ∗ + 𝛼
[
𝐴(𝑥𝑘 ) (𝜃𝑘 − 𝜃 ∗) + 𝑏 (𝑥𝑘 ) +𝐴(𝑥𝑘 )𝜃 ∗

]
. (A.2)

Setting 𝜃 ′
𝑘
:= 𝜃𝑘 − 𝜃 ∗ and 𝑏′ (𝑥𝑘 ) := 𝑏 (𝑥𝑘 ) +𝐴(𝑥𝑘 )𝜃 ∗, we rewrite equation (A.2) as

𝜃 ′
𝑘+1 = 𝜃

′
𝑘
+ 𝛼

[
𝐴(𝑥𝑘 )𝜃 ′𝑘 + 𝑏

′ (𝑥𝑘 )
]
. (A.3)

Equation (A.3) is an LSA update in the variable (𝜃 ′
𝑘
) and satisfies

¯𝑏′ := lim

𝑘→∞
E[𝑏′ (𝑥𝑘 )]

= lim

𝑘→∞
E[𝑏 (𝑥𝑘 )] + E[𝐴(𝑥𝑘 )]𝜃 ∗

= ¯𝑏 +𝐴𝜃 ∗ = 0,

where the last equality holds since 𝜃 ∗ is defined as the solution to E𝜋 [𝐴(𝑥)]𝜃 + E𝜋 [𝑏 (𝑥)] = 0.

Let 𝑏′
max

:= sup𝑥∈X ∥𝑏′ (𝑥)∥. The convergence rate of the new LSA update (A.3) is given in the

following proposition, which is a centered version of Proposition 6.1.

Proposition A.1. Under Assumptions 1, 2 and 3, if 𝛼 satisfies equation (4.2), then the update (A.3)
with ¯𝑏′ = 0 satisfies for all 𝑘 ≥ 𝜏 ,

E[∥𝜃 ′
𝑘
∥2] ≤ 𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏 (
4E[∥𝜃 ′

0
∥2] + (𝑏′

max
)2

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏
(
160𝛾max (𝑏′max

)2
)
.

We prove the above proposition in Appendix A.1.1. Taking Proposition A.1 as given, we now

complete the proof of the general Proposition 6.1.

Proof of Proposition 6.1. By definition of 𝑏′, we have

∥𝑏′ (𝑥)∥ = ∥𝑏 (𝑥) +𝐴(𝑥)𝜃 ∗∥ ≤ ∥𝑏 (𝑥)∥ + ∥𝐴(𝑥)∥∥𝜃 ∗∥, ∀𝑥 ∈ X,

whence

𝑏′
max
≤ 𝑏max +𝐴max∥𝜃 ∗∥
≤

(
1 +𝐴max/𝑠min (𝐴)

)
𝑏max ≤ 2𝑠−1

min
(𝐴)𝑏max.

Applying Proposition A.1 with 𝜃 ′
𝑘
= 𝜃𝑘 − 𝜃 ∗ and the above bound on 𝑏′

max
, we obtain that for all

𝑘 ≥ 𝜏 ,

E[∥𝜃𝑘 − 𝜃 ∗∥2] ≤ 4

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏 (
E[∥𝜃0 − 𝜃 ∗∥2] + 𝑠−2min

(𝐴)𝑏2
max

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏
(
640𝛾max𝑠

−2
min
(𝐴)𝑏2

max

)
.

We can simplify the above expression using the following simple bound, whose proof is postponed

to the end of this sub-sub-section.

Claim 1. We have
(
1 − 0.9𝛼

𝛾max

)−𝜏
≤ 2.
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Using the bound in Claim 1 and the definition of 𝜅 in equation (4.3), we obtain that for all 𝑘 ≥ 𝜏 ,

E[∥𝜃𝑘 − 𝜃 ∗∥2] ≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘 (
E[∥𝜃0 − 𝜃 ∗∥2] + 𝑠−2min

(𝐴)𝑏2
max

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏 · 𝜅.

As such, we have completed the proof of Proposition 6.1. □

Proof of Claim 1. Observe that

0.9𝛼

𝛾max

(i)

≤ 0.9𝛼𝜏

𝛾max

(ii)

≤ 2𝛼𝜏
(iii)

≤ 1

2

, (A.4)

where step (i) holds since 𝜏 ≥ 1, step (ii) follows from the bound (A.1), and step (iii) holds since

𝛼𝜏 ≤ 1

4
under the stepsize condition (4.2). To proceed, we use the Bernoulli inequality

(1 + 𝑥)𝑡 ≥ 1 + 𝑥𝑡 for 𝑥 ≥ −1, 𝑡 ≥ 1,

which is equivalent to

(1 − 𝑥)−𝑡 ≤ (1 − 𝑥𝑡)−1 for 0 < 𝑥 < 1, 𝑡 ≥ 1.

In light of equation (A.4), the Bernoulli inequality holds with 𝑥 = 0.9𝛼
𝛾max

and 𝑡 = 𝜏 , hence(
1 − 0.9𝛼

𝛾max

)−𝜏
≤ 1

1 − 0.9𝛼𝜏
𝛾max

≤ 2,

where the last step follows from (A.4). We have completed the proof of Claim 1. □

A.1.1 Proof of Proposition A.1. We need the following technical lemmas.

Lemma A.2. Given any 𝑡 ≥ 1, if 𝛼 · 𝑡 ≤ 1

4
, then the following inequalities hold for all 𝑘 ≥ 𝑡 ,

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ ≤ 2𝛼𝑡 ∥𝜃𝑘−𝑡 ∥ + 2𝛼𝑡𝑏max, (A.5)

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ ≤ 4𝛼𝑡 ∥𝜃𝑘 ∥ + 4𝛼𝑡𝑏max, (A.6)

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥2 ≤ 32𝛼2𝑡2∥𝜃𝑘 ∥2 + 32𝛼2𝑡2𝑏2max
. (A.7)

Lemma A.3. The following inequality holds for any 𝑘 ≥ 0,��(𝜃𝑘+1 − 𝜃𝑘 )⊤Γ(𝜃𝑘+1 − 𝜃𝑘 )�� ≤ 2𝛼2𝛾max∥𝜃𝑘 ∥2 + 2𝛼2𝛾max𝑏
2

max
.

Lemma A.4. The following inequality holds for all 𝑘 ≥ 𝜏 , with 𝛼 chosen sufficiently small such that
𝛼𝜏 ≤ 1

4
,

E
[
𝜃⊤
𝑘
Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘

]
≤ 𝜅1E[∥𝜃𝑘 ∥2] + 𝜅2,

where
𝜅1 = 88𝛼𝜏𝛾max and 𝜅2 = 64𝛼𝜏𝛾max𝑏

2

max
.

Lemma A.5. The following inequality holds for all 𝑘 ≥ 𝜏 , with 𝛼 chosen sufficiently small such that
𝛼𝜏 ≤ 1

4
,

E
[
𝜃⊤
𝑘
Γ(𝑏 (𝑥𝑘 ) − ¯𝑏)

]
≤ 𝜅̃1E[∥𝜃𝑘 ∥2] + 𝜅̃2,

where
𝜅̃1 = 5𝛼𝜏𝛾max and 𝜅̃2 = 15𝛼𝜏𝛾max𝑏

2

max
.

The proofs of the technical lemmas above are delayed to Appendix A.1.2. Note that all lemmas

above hold for the LSA update (3.1) with general
¯𝑏. Below we shall apply these lemmas to the

centered LSA update (A.3) for 𝜃 ′
𝑘
with

¯𝑏′ = 0 to prove Proposition A.1.
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Proof of Proposition A.1. Consider the following drift:

E[𝜃 ′
𝑘+1
⊤Γ𝜃 ′

𝑘+1 − 𝜃
′
𝑘
⊤Γ𝜃 ′

𝑘
] = 2E[𝜃 ′

𝑘
⊤Γ(𝜃 ′

𝑘+1 − 𝜃
′
𝑘
)] + E[(𝜃 ′

𝑘+1 − 𝜃
′
𝑘
)⊤Γ(𝜃 ′

𝑘+1 − 𝜃
′
𝑘
)]

= 2𝛼 E[𝜃 ′
𝑘
⊤Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃 ′𝑘 ]︸                        ︷︷                        ︸

𝑇1

+2𝛼 E[𝜃 ′
𝑘
⊤Γ𝑏′ (𝑥𝑘 )]︸             ︷︷             ︸
𝑇2

+2𝛼 E[𝜃 ′
𝑘
⊤Γ𝐴𝜃 ′

𝑘
]︸         ︷︷         ︸

𝑇3

+E[(𝜃 ′
𝑘+1 − 𝜃

′
𝑘
)⊤Γ(𝜃 ′

𝑘+1 − 𝜃
′
𝑘
)]︸                                ︷︷                                ︸

𝑇4

.

We can bound 𝑇1 using Lemma A.4, 𝑇2 using Lemma A.5, and 𝑇4 using Lemma A.3. For 𝑇3, we note

that by the property of the Lyapunov equation in Assumption 3,

2𝛼E[𝜃 ′
𝑘
⊤Γ𝐴𝜃 ′

𝑘
] = 𝛼E[𝜃 ′

𝑘
⊤ (𝐴⊤Γ + Γ𝐴)︸        ︷︷        ︸

=−𝐼

𝜃 ′
𝑘
] = −𝛼E[∥𝜃 ′

𝑘
∥2] .

Combining the above bounds, we derive that

E[𝜃 ′
𝑘+1
⊤Γ𝜃 ′

𝑘+1 − 𝜃
′
𝑘
⊤Γ𝜃 ′

𝑘
]

= 𝑇1 +𝑇2 +𝑇3 +𝑇4
≤ 2𝛼

(
𝜅1E[∥𝜃 ′𝑘 ∥

2] + 𝜅2
)
+ 2𝛼

(
𝜅̃1E[∥𝜃 ′𝑘 ∥

2] + 𝜅̃2
)
− 𝛼E[∥𝜃 ′

𝑘
∥2] +

(
2𝛾max𝛼

2E[∥𝜃 ′
𝑘
∥2] + 2𝛼2𝛾max (𝑏′max

)2
)

= −𝛼 (1 − 2(𝜅1 + 𝜅̃1 + 𝛼𝛾max))E[∥𝜃 ′𝑘 ∥
2] + 2𝛼 (𝜅2 + 𝜅̃2 + 𝛼𝛾max (𝑏′max

)2).

We simplify the above bound by noting that

𝜅1 + 𝜅̃1 + 𝛼𝛾max = 88𝛼𝜏𝛾max + 5𝛼𝜏𝛾max + 𝛼𝛾max

≤ 95𝛼𝜏𝛾max,

and

𝜅2 + 𝜅̃2 + 𝛼𝛾max (𝑏′max
)2

= 64𝛼𝜏𝛾max (𝑏′max
)2 + 15𝛼𝜏𝛾max (𝑏′max

)2 + 𝛼𝛾max (𝑏′max
)2

≤ 80𝛼𝜏𝛾max (𝑏′max
)2.

Furthermore, when 𝛼 is chosen according to (4.2), we obtain that for all 𝑘 ≥ 𝜏 ,

E[𝜃 ′
𝑘+1
⊤Γ𝜃 ′

𝑘+1 − 𝜃
′
𝑘
⊤Γ𝜃 ′

𝑘
] ≤ −0.9𝛼E[∥𝜃 ′

𝑘
∥2] + 160𝛼2𝜏𝛾max (𝑏′max

)2

≤ −0.9𝛼
𝛾max

E[𝜃 ′
𝑘
⊤Γ𝜃 ′

𝑘
] + 160𝛼2𝜏𝛾max (𝑏′max

)2,

or equivalently

E[𝜃 ′
𝑘+1
⊤Γ𝜃 ′

𝑘+1] ≤
(
1 − 0.9𝛼

𝛾max

)
E[𝜃 ′

𝑘
⊤Γ𝜃 ′

𝑘
] + 160𝛼2𝜏𝛾max (𝑏′max

)2.

Next, we recursively apply the above inequality to obtain

E[𝜃 ′
𝑘
⊤Γ𝜃 ′

𝑘
] ≤

(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏
E[𝜃 ′𝜏

⊤Γ𝜃 ′𝜏 ] +
(𝑘−𝜏 )−1∑︁
𝑡=0

(
1 − 0.9𝛼

𝛾max

)𝑡
·
(
160𝛼2𝜏𝛾max (𝑏′max

)2
)

≤
(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏
E[𝜃 ′𝜏

⊤Γ𝜃 ′𝜏 ] +
𝛾max

0.9
·
(
160𝛼𝜏𝛾max (𝑏′max

)2
)
.
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We then apply the properties in (3.9) to the above inequality and obtain the following bounds in

terms of ∥𝜃 ′
𝑘
∥2, for 𝑘 ≥ 𝜏 ,

E[∥𝜃 ′
𝑘
∥2] ≤ 1

𝛾min

E[𝜃 ′
𝑘
⊤Γ𝜃 ′

𝑘
]

≤ 𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏
E[∥𝜃 ′𝜏 ∥2] +

𝛾max

0.9𝛾min

· 𝛼𝜏
(
160𝛾max (𝑏′max

)2
)
.

Lastly, we have

∥𝜃 ′𝜏 ∥22 ≤
(
∥𝜃 ′𝜏 − 𝜃 ′0∥ + ∥𝜃 ′0∥

)
2

(i)

≤
(
(1 + 2𝛼𝜏)∥𝜃 ′

0
∥ + 2𝛼𝜏𝑏′

max

)
2

(ii)

≤ (1.5∥𝜃 ′
0
∥ + 0.5𝑏′

max
)2 ≤ 4∥𝜃 ′

0
∥2 + (𝑏′

max
)2,

where in step (i) we make use of Lemma A.2 to bound ∥𝜃 ′𝜏 − 𝜃 ′0∥ with ∥𝜃 ′0∥, and step (ii) holds for 𝛼

is chosen according to (4.2) such that 𝛼𝜏 < 1

4
. Therefore, we have

E[∥𝜃 ′
𝑘
∥2] ≤ 𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘−𝜏 (
4E[∥𝜃 ′

0
∥2] + (𝑏′

max
)2

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏
(
160𝛾max (𝑏′max

)2
)
.

This concludes the proof for Proposition A.1. □

A.1.2 Proof of Technical Lemmas. We provide the proofs of the technical lemmas stated at the

beginning of the previous sub-sub-section.

Proof of Lemma A.2. We first note the following,

∥𝜃𝑘+1∥ = ∥𝜃𝑘 + 𝛼 (𝐴(𝑥𝑘 )𝜃𝑘 + 𝑏 (𝑥𝑘 )∥
≤ ∥𝐼 + 𝛼𝐴(𝑥𝑘 )∥∥𝜃𝑘 ∥ + 𝛼 ∥𝑏 (𝑥𝑘 )∥
≤ (1 + 𝛼𝐴max)∥𝜃𝑘 ∥ + 𝛼𝑏max ≤ (1 + 𝛼)∥𝜃𝑘 ∥ + 𝛼𝑏max.

As such, for 𝑘 − 𝑡 < 𝑖 ≤ 𝑘 , we have

∥𝜃𝑖 ∥ ≤ (1 + 𝛼)𝑖−(𝑘−𝑡 ) ∥𝜃𝑘−𝑡 ∥ + 𝛼𝑏max

(𝑖−1)−(𝑘−𝑡 )∑︁
𝑗=0

(1 + 𝛼) 𝑗

≤ (1 + 𝛼)𝑡 ∥𝜃𝑘−𝑡 ∥ + 𝛼𝑏max

𝑡−1∑︁
𝑗=0

(1 + 𝛼) 𝑗

= (1 + 𝛼)𝑡 ∥𝜃𝑘−𝑡 ∥ + 𝑏max ((1 + 𝛼)𝑡 − 1)
(i)

≤ (1 + 2𝛼𝑡)∥𝜃𝑘−𝑡 ∥ + 2𝛼𝑡𝑏max, (A.8)

where step (i) holds true as long as 𝛼𝑡 ≤ log 2, and since we have restricted 𝛼𝑡 ≤ 1

4
≤ log 2, the

inequality carries through.
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It follows that

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ =




 𝑘−1∑︁
𝑖=𝑘−𝑡

𝜃𝑖+1 − 𝜃𝑖




 ≤ 𝑘−1∑︁

𝑖=𝑘−𝑡
∥𝜃𝑖+1 − 𝜃𝑖 ∥ = 𝛼

𝑘−1∑︁
𝑖=𝑘−𝑡

∥𝐴(𝑥𝑘 )𝜃𝑖 + 𝑏 (𝑥𝑘 )∥

≤ 𝛼
𝑘−1∑︁
𝑖=𝑘−𝑡

(∥𝐴(𝑥𝑘 )∥∥𝜃𝑖 ∥ + ∥𝑏 (𝑥𝑘 )∥)

≤ 𝛼𝐴max

(
𝑘−1∑︁
𝑖=𝑘−𝑡

∥𝜃𝑖 ∥
)
+ 𝛼𝑡𝑏max by Assumption 2

≤ 𝛼𝐴max

(
𝑘−1∑︁
𝑖=𝑘−𝑡
(1 + 2𝛼𝑡)∥𝜃𝑘−𝑡 ∥ + 2𝛼𝑡𝑏max

)
+ 𝛼𝑡𝑏max by (A.8)

= (1 + 2𝛼𝑡) (𝛼𝑡𝐴max∥𝜃𝑘−𝑡 ∥ + 𝛼𝑡𝑏max)
(ii)

≤ 2𝛼𝑡 (𝐴max∥𝜃𝑘−𝑡 ∥ + 𝑏max) < 2𝛼𝑡 ∥𝜃𝑘−𝑡 ∥ + 2𝛼𝑡𝑏max,

where step (ii) holds since 2𝛼𝑡 < 1. As such, we have established (A.5).

Now that with (A.5), it is easy to see

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ ≤ 2𝛼𝑡 ∥𝜃𝑘−𝑡 ∥ + 2𝛼𝑡𝑏max

≤ 2𝛼𝑡 (∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ + ∥𝜃𝑘 ∥) + 2𝛼𝑡𝑏max.

Reorganizing the above inequality, we have

(1 − 2𝛼𝑡)∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ ≤ 2𝛼𝑡 ∥𝜃𝑘 ∥ + 2𝛼𝑡𝑏max .

Together with the assumption 𝛼𝑡 ≤ 1

4
, we now obtain (A.6),

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥ ≤ 4𝛼𝑡 ∥𝜃𝑘 ∥ + 4𝛼𝑡𝑏max .

Lastly, we have

∥𝜃𝑘 − 𝜃𝑘−𝑡 ∥2 ≤ (4𝛼𝑡 ∥𝜃𝑘 ∥ + 4𝛼𝑡𝑏max)2

≤ 2(4𝛼𝑡 ∥𝜃𝑘 ∥)2 + 2(4𝛼𝑡𝑏max)2

= 32𝛼2𝑡2∥𝜃𝑘 ∥2 + 32𝛼2𝑡2𝑏2max
,

which establishes (A.7). □

Proof of Lemma A.3. We have��(𝜃𝑘+1 − 𝜃𝑘 )⊤Γ(𝜃𝑘+1 − 𝜃𝑘 )�� ≤ 𝛾max∥𝜃𝑘+1 − 𝜃𝑘 ∥2

= 𝛾max𝛼
2∥𝐴(𝑥𝑘 )𝜃𝑘 + 𝑏 (𝑥𝑘 )∥2

≤ 𝛾max𝛼
2 (∥𝐴(𝑥𝑘 )∥∥𝜃𝑘 ∥ + ∥𝑏 (𝑥𝑘 )∥)2

≤ 𝛾max𝛼
2 (𝐴max∥𝜃𝑘 ∥ + 𝑏max)2

≤ 2𝛾max𝛼
2∥𝜃𝑘 ∥2 + 2𝛼2𝛾max𝑏

2

max
.

This completes the proof of Lemma A.3. □

Proof of Lemma A.4. As explained in Section 3.2, (𝑥𝑘 ) enjoys a geometric mixing rate. Thus, it

holds as claimed that for a sufficiently small 𝛼 ,

𝛼𝜏𝛼 ≤ 𝐾𝛼 log
1

𝛼
≤ 1

4

.
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Let us decompose the quantity of interest as

E
[
𝜃⊤
𝑘
Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘

]
= E

[
(𝜃𝑘 − 𝜃𝑘−𝜏 + 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 + 𝜃𝑘−𝜏 )

]
= E

[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 )

]︸                                                  ︷︷                                                  ︸
𝑇1

+E
[
𝜃⊤
𝑘−𝜏Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘−𝜏

]︸                             ︷︷                             ︸
𝑇2

+ E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘−𝜏

]︸                                         ︷︷                                         ︸
𝑇3

+E
[
𝜃⊤
𝑘−𝜏Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 )

]︸                                       ︷︷                                       ︸
𝑇4

.

We now bound each of the RHS terms respectively.

For 𝑇1, we have

𝑇1 = E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 )

]
(i)

≤ 2𝛾maxE
[
∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥2

]
(ii)

≤ 2𝛾max

(
32𝛼2𝜏2E[∥𝜃𝑘 ∥2] + 32𝛼2𝜏2𝑏2max

)
≤ 64𝛾max𝛼

2𝜏2E[∥𝜃𝑘 ∥2] + 64𝛾max𝛼
2𝜏2𝑏2

max
,

where (i) holds true for both 𝐴(𝑥𝑘 ) and 𝐴 have norm less than 𝐴max (≤ 1) in Assumption 2 and Γ is

symmetric positive definite with 𝛾max as the largest eigenvalue in Assumption 3, and (ii) is obtained

by making use of (A.7) of Lemma A.2.

For 𝑇2, we have

𝑇2 = E
[
𝜃⊤
𝑘−𝜏Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘−𝜏

]
= E

[
E

[
𝜃⊤
𝑘−𝜏Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘−𝜏

��𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ] ]
= E

[
𝜃⊤
𝑘−𝜏ΓE

[
𝐴(𝑥𝑘 ) −𝐴

��𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ] 𝜃𝑘−𝜏 ]
(iii)

= E

[
𝜃⊤
𝑘−𝜏ΓE

[
𝐴(𝑥𝑘 ) −𝐴

��𝑥𝑘−𝜏 ] 𝜃𝑘−𝜏 ] .
where step (iii) holds true due to conditional independence of 𝑥𝑘 ⊥⊥ 𝜃𝑘−𝜏 |𝑥𝑘−𝜏 , as demonstrated

earlier in equation (3.3). Since Γ has largest eigenvalue 𝛾max by Assumption 3 and 𝜏 ≡ 𝜏𝛼 is the

𝛼-mixing time, it follows that

𝑇2 ≤ 𝛼𝛾maxE
[
∥𝜃𝑘−𝜏 ∥2

]
= 𝛼𝛾maxE

[
∥(𝜃𝑘 − 𝜃𝑘−𝜏 ) + 𝜃𝑘 ∥2

]
≤ 𝛼𝛾maxE

[ (
∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥ + ∥𝜃𝑘 ∥

)
2

]
≤ 𝛼𝛾maxE

[ (
4𝛼𝜏 ∥𝜃𝑘 ∥ + 4𝛼𝜏𝑏max + ∥𝜃𝑘 ∥

)
2

]
by (A.6)

(iv)

≤ 𝛼𝛾max · 2
(
(1 + 4𝛼𝜏)2E[∥𝜃𝑘 ∥2] + 16𝛼2𝜏2𝑏2max

)
≤ 8𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 32𝛼3𝜏2𝛾max𝑏

2

max
,

where (iv) follows from the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), and the last step holds since 𝛼𝜏 ≤ 1

4

and 𝜏 ≥ 1.
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For 𝑇3, we have

𝑇3 = E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴)𝜃𝑘−𝜏

]
≤ 2𝛾maxE

[
∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥ · ∥𝜃𝑘−𝜏 ∥

]
≤ 2𝛾maxE

[
∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥ · (∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥ + ∥𝜃𝑘 ∥)

]
≤ 2𝛾maxE

[
(4𝛼𝜏 ∥𝜃𝑘 ∥ + 4𝛼𝜏𝑏max) (4𝛼𝜏 ∥𝜃𝑘 ∥ + 4𝛼𝜏𝑏max + ∥𝜃𝑘 ∥)

]
by (A.6)

= 2𝛾maxE[4𝛼𝜏 (1 + 4𝛼𝜏)∥𝜃𝑘 ∥2 + 4𝛼𝜏𝑏max (1 + 8𝛼𝜏)∥𝜃𝑘 ∥ + 16𝛼2𝜏2𝑏2max
]

= 8𝛼𝜏 (1 + 4𝛼𝜏)𝛾maxE
[
∥𝜃𝑘 ∥2

]
+ 8𝛼𝜏 (1 + 8𝛼𝜏)𝛾max𝑏maxE[∥𝜃𝑘 ∥] + 32𝛼2𝜏2𝛾max𝑏

2

max

(v)

≤ 8𝛼𝜏 (1 + 4𝛼𝜏)𝛾maxE
[
∥𝜃𝑘 ∥2

]
+ 4𝛼𝜏 (1 + 8𝛼𝜏)𝛾max

(
𝑏2
max
+ E[∥𝜃𝑘 ∥2]

)
+ 32𝛼2𝜏2𝛾max𝑏

2

max

= 4𝛼𝜏𝛾max

(
2(1 + 4𝛼𝜏) + (1 + 8𝛼𝜏)

)
E[∥𝜃𝑘 ∥2] + 4𝛼𝜏𝛾max

(
(1 + 8𝛼𝜏) + 8𝛼𝜏

)
𝑏2
max

(vi)

≤ 32𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 20𝛼𝜏𝛾max𝑏
2

max
,

where (v) utilizes the inequality 2𝑏maxE[∥𝜃𝑘 ∥] ≤ 𝑏2max
+ E[∥𝜃𝑘 ∥2], and (vi) holds with 𝛼𝜏 ≤ 1

4
.

Similarly, for 𝑇4, we have for 𝛼𝜏 ≤ 1

4
,

𝑇4 = E
[
𝜃⊤
𝑘−𝜏Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 )

]
≤ 32𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 20𝛼𝜏𝛾max𝑏

2

max
.

Combining the bounds for 𝑇1–𝑇4, we obtain that

E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 + 𝜃𝑘−𝜏 )⊤Γ(𝐴(𝑥𝑘 ) −𝐴) (𝜃𝑘 − 𝜃𝑘−𝜏 + 𝜃𝑘−𝜏 )

]
=𝑇1 +𝑇2 +𝑇3 +𝑇4
≤

(
64𝛾max𝛼

2𝜏2E[∥𝜃𝑘 ∥2] + 64𝛾max𝛼
2𝜏2𝑏2

max

)
+

(
8𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 32𝛼3𝜏2𝛾max𝑏

2

max

)
+ 2

(
32𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 20𝛼𝜏𝛾max𝑏

2

max

)
=

(
64𝛾max𝛼

2𝜏2 + 8𝛼𝜏𝛾max + 64𝛼𝜏𝛾max

)
E[∥𝜃𝑘 ∥2]

+
(
64𝛾max𝛼

2𝜏2𝑏2
max
+ 32𝛼3𝜏2𝛾max𝑏

2

max
+ 40𝛼𝜏𝛾max𝑏

2

max

)
≤88𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 64𝛼𝜏𝛾max𝑏

2

max
,

where the last step holds with 𝛼 ≤ 1 and 𝛼𝜏 ≤ 1

4
.

This completes the proof of Lemma A.4. □

Proof of Lemma A.5. We make use of the following decomposition:

E
[
𝜃⊤
𝑘
Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
=E

[
(𝜃𝑘 − 𝜃𝑘−𝜏 + 𝜃𝑘−𝜏 )⊤Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
=E

[
𝜃⊤
𝑘−𝜏Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]︸                                    ︷︷                                    ︸
𝑇1

+E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]︸                                                ︷︷                                                ︸
𝑇2

.

We separately bound 𝑇1 and 𝑇2.

Starting with 𝑇1, we have

E
[
𝜃⊤
𝑘−𝜏Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
= 𝜃⊤

𝑘−𝜏ΓE
[
(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
≤ 𝛼𝛾max𝑏max∥𝜃𝑘−𝜏 ∥ .

, Vol. 1, No. 1, Article . Publication date: June 2023.



32 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

Next, for 𝑇2, we have

E
[
(𝜃𝑘 − 𝜃𝑘−𝜏 )⊤Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
≤ 2𝑏max𝛾maxE [∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥|𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ]
≤ 2𝑏max𝛾max (2𝛼𝜏 ∥𝜃𝑘−𝜏 ∥ + 2𝛼𝜏𝑏max) ,

where we use (A.5) to obtain the second inequality.

Combining the two terms, we have

E
[
𝜃⊤
𝑘
Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
≤ 𝛼𝛾max𝑏max∥𝜃𝑘−𝜏 ∥ + 2𝑏max𝛾max (2𝛼𝜏 ∥𝜃𝑘−𝜏 ∥ + 2𝛼𝜏𝑏max)
= (𝛼𝛾max𝑏max + 4𝛼𝜏𝛾max𝑏max) ∥𝜃𝑘−𝜏 ∥ + 4𝛼𝜏𝛾max𝑏

2

max

= 𝛼𝛾max𝑏max (1 + 4𝜏)∥𝜃𝑘−𝜏 ∥ + 4𝛼𝜏𝛾max𝑏
2

max

≤ 𝛼𝛾max𝑏max (1 + 4𝜏) (E[∥𝜃𝑘 − 𝜃𝑘−𝜏 ∥|𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ] + E[∥𝜃𝑘 ∥|𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ]) + 4𝛼𝜏𝛾max𝑏
2

max

(i)

≤ 𝛼𝛾max𝑏max (1 + 4𝜏) ((1 + 4𝛼𝜏)E[∥𝜃𝑘 ∥|𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ] + 4𝛼𝜏𝑏max) + 4𝛼𝜏𝛾max𝑏
2

max

≤ 10𝛼𝜏𝛾max𝑏maxE [∥𝜃𝑘 ∥|𝜃𝑘−𝜏 , 𝑥𝑘−𝜏 ] + 9𝛼𝜏𝛾max𝑏
2

max
,

where we use (A.6) to obtain (i), and 𝛼𝜏 ≤ 1

4
, 𝛼 ≤ 1 and 𝜏 ≥ 1 to obtain the last inequality.

Together with the inequality 2𝑏max∥𝜃𝑘 ∥ ≤ 𝑏2max
+ ∥𝜃𝑘 ∥2, the above inequality further simplifies

to

E
[
𝜃⊤
𝑘
Γ(𝑏 (𝑥𝑘 ) − ¯𝑏) |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
≤ 5𝛼𝜏𝛾max (𝑏2max

+ E
[
∥𝜃𝑘 ∥2 |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
) + 9𝛼𝜏𝛾max𝑏

2

max

≤ 5𝛼𝜏𝛾maxE
[
∥𝜃𝑘 ∥2 |𝜃𝑘−𝜏 , 𝑥𝑘−𝜏

]
+ 15𝛼𝜏𝛾max𝑏

2

max
.

Lastly, we take expectations on both sides of the last display equation to obtain

E
[
𝜃⊤
𝑘
Γ(𝑏 (𝑥𝑘 ) − ¯𝑏)

]
≤ 5𝛼𝜏𝛾maxE[∥𝜃𝑘 ∥2] + 15𝛼𝜏𝛾max𝑏

2

max
.

This completes the proof of Lemma A.5.

□

A.2 Proof of Theorem 4.1
In this sub-section, we prove Theorem 4.1 on the convergence of LSA to a limit.

A.2.1 Coupling and Geometric Convergence. Recall that (𝑥𝑘 )𝑘≥0 is the underlying Markov chain

that drives the LSA iteration (3.1). We consider a pair of coupled Markov chains, (𝑥𝑘 , 𝜃 [1]𝑘 )𝑘≥0 and
(𝑥𝑘 , 𝜃 [2]𝑘 )𝑘≥0, defined as

𝜃
[1]
𝑘+1 = 𝜃

[1]
𝑘
+ 𝛼

(
𝐴(𝑥𝑘 )𝜃 [1]𝑘 + 𝑏 (𝑥𝑘 )

)
,

𝜃
[2]
𝑘+1 = 𝜃

[2]
𝑘
+ 𝛼

(
𝐴(𝑥𝑘 )𝜃 [2]𝑘 + 𝑏 (𝑥𝑘 )

)
,

𝑘 = 0, 1, . . . (A.9)

Note that (𝜃 [1]
𝑘
)𝑘≥0 and (𝜃 [2]𝑘 )𝑘≥0 are two sample paths of the LSA iteration (3.1), coupled by sharing

the underlying process (𝑥𝑘 )𝑘≥0. We assume that the initial iterates 𝜃
[1]
0

and 𝜃
[2]
0

may depend on

each other and on 𝑥0, but are independent of (𝑥𝑘 )𝑘≥1 given 𝑥0.
It follows from the definition that

𝜃
[1]
𝑘+1 − 𝜃

[2]
𝑘+1 =

(
𝐼 + 𝛼𝐴(𝑥𝑘 )

)
· (𝜃 [1]

𝑘
− 𝜃 [2]

𝑘
), 𝑘 = 0, 1, . . .

If we define the shorthand 𝜔𝑘 := 𝜃
[1]
𝑘
− 𝜃 [2]

𝑘
, then the above equation becomes

𝜔𝑘+1 =
(
𝐼 + 𝛼𝐴(𝑥𝑘 )

)
· 𝜔𝑘 , 𝑘 = 0, 1, . . . (A.10)
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Our key observation is that equation (A.10) is a special case of the LSA iteration (3.1) with 𝜔𝑘 as the

variable and 𝑏max = sup𝑥∈X ∥𝑏 (𝑥)∥ = 0. Applying Proposition 6.1 to this LSA iteration, we obtain

the following finite-time geometric bound.

Corollary A.6. Suppose that 𝛼 satisfies (4.2). Then, for all 𝑘 ≥ 𝜏 , we have

𝑊 2

2

(
L

(
𝜃
[1]
𝑘

)
,L

(
𝜃
[2]
𝑘

) ) (i)

≤ 𝑊̄ 2

2

(
L

(
𝑥𝑘 , 𝜃

[1]
𝑘

)
,L

(
𝑥𝑘 , 𝜃

[2]
𝑘

) )
(ii)

≤ E
[

𝜃 [1]

𝑘
− 𝜃 [2]

𝑘



2]
(iii)

≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘
E
[

𝜃 [1]

0
− 𝜃 [2]

0



2] .
Proof of Corollary A.6. The inequality (i) follows from the definition of 𝑊2 and 𝑊̄2. The

inequality (ii) holds since the Wasserstein distance is defined by an infimum as in equation (4.1).

Inequality (iii) follows from applying Proposition 6.1 with 𝑏max = 0 to the LSA iteration (A.10). □

With Corollary A.6, we are ready to prove Theorem 4.1 on the convergence of the Markov chain

(𝑥𝑘 , 𝜃𝑘 )𝑘≥0. Theorem 4.1 has three parts, whose proofs are given in the next three sub-sub-sections.

A.2.2 Part 1: Existence of Limiting Distribution. Note that Corollary A.6 is valid under any joint

distribution of initial iterates (𝑥0, 𝜃 [1]
0
, 𝜃
[2]
0
) . Arbitrarily fix the distribution of (𝑥0, 𝜃 [1]

0
). Given

(𝑥0, 𝜃 [1]
0
), we shall judiciously choose the conditional distribution of 𝜃

[2]
0

in a way that ensures

(𝑥𝑘 , 𝜃 [2]𝑘 )
d

= (𝑥𝑘+1, 𝜃 [1]𝑘+1) for all 𝑘 ≥ 0, where

d

= denotes equality in distribution. Specifically, recall

that 𝑃 is the transition probability matrix for the time-reversed Markov chain of (𝑥𝑘 )𝑘≥0 and that

the initial distribution of 𝑥0 is assumed to be the stationary distribution 𝜋 ; see Sections 3.1 and 3.2.

Given 𝑥0, let 𝑥−1 be sampled from 𝑃 (·|𝑥0). Let 𝜃 [2]−1 be a random variable which satisfies 𝜃
[2]
−1

d

= 𝜃
[1]
0

and is independent of (𝑥𝑘 )𝑘≥−1. Finally, set 𝜃 [2]0
as

𝜃
[2]
0

= 𝜃
[2]
−1 + 𝛼

(
𝐴(𝑥−1)𝜃 [2]−1 + 𝑏 (𝑥−1)

)
. (A.11)

We argue that this initialization has the desired property.

Claim 2. Under the initialization (A.11), we have (𝑥𝑘 , 𝜃 [2]𝑘 )
d

= (𝑥𝑘+1, 𝜃 [1]𝑘+1) for all 𝑘 ≥ 0.

Proof of Claim 2. From standard results on time-reversed Markov chains, we have (𝑥𝑘 )𝑘≥−1
d

=

(𝑥𝑘 )𝑘≥0 . Since by construction 𝜃
[2]
−1

d

= 𝜃
[1]
0

and 𝜃
[2]
−1 is independent of (𝑥𝑘 )𝑘≥−1, the claim follows

from comparing the update rules for (𝜃 [1]
𝑘
)𝑘≥0 and (𝜃 [2]𝑘 )𝑘≥−1 given in equations (A.9) and (A.11).

□

Using the above claim, we have for all 𝑘 ≥ 𝜏 ,

𝑊̄ 2

2

(
L

(
𝑥𝑘 , 𝜃

[1]
𝑘

)
,L

(
𝑥𝑘+1, 𝜃

[1]
𝑘+1

) )
= 𝑊̄ 2

2

(
L

(
𝑥𝑘 , 𝜃

[1]
𝑘

)
,L

(
𝑥𝑘 , 𝜃

[2]
𝑘

) )
≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘
E[∥𝜃 [1]

0
− 𝜃 [2]

0
∥2],
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where in the second step above we use Corollary A.6. It follows that

∞∑︁
𝑘=0

𝑊̄ 2

2

(
L

(
𝑥𝑘 , 𝜃

[1]
𝑘

)
,L

(
𝑥𝑘+1, 𝜃

[1]
𝑘+1

) )
≤
𝜏−1∑︁
𝑘=0

𝑊̄ 2

2

(
L

(
𝑥𝑘 , 𝜃

[1]
𝑘

)
,L

(
𝑥𝑘+1, 𝜃

[1]
𝑘+1

) )
+ 8 𝛾max

𝛾min

∞∑︁
𝑘=𝜏

(
1 − 0.9𝛼

𝛾max

)𝑘
E[∥𝜃 [1]

0
− 𝜃 [2]

0
∥2]

<∞,

where the last step holds since
0.9𝛼
𝛾max

∈ (0, 1) under the assumption (4.2). The inequality above means

that

(
L(𝑥𝑘 , 𝜃 [1]𝑘 )

)
𝑘≥0 is a Cauchy sequence in the metric 𝑊̄2. Since the space P2 (X × R𝑑 ) endowed

with 𝑊̄2 is a Polish space [Vil09, Theorem 6.18], every Cauchy sequence converges. Furthermore,

convergence in Wasserstein distance implies weak convergence [Vil09, Theorem 6.9]. We conclude

that the sequence

(
L(𝑥𝑘 , 𝜃 [1]𝑘 )

)
𝑘≥0 converges weakly to a limit 𝜇 ∈ P2 (X × R𝑑 ).

We next show that the limit 𝜇 is independent of the initial distribution of 𝜃
[1]
0

. Suppose that

another sequence

(
𝑥𝑘 ,

˜𝜃
[1]
𝑘

)
𝑘≥0 with a different initial distribution converges to a limit 𝜇̃, then

𝑊̄2 (𝜇, 𝜇̃) ≤ 𝑊̄2

(
𝜇,L(𝑥𝑘 , 𝜃 [1]𝑘 )

)
+𝑊̄2

(
L(𝑥𝑘 , 𝜃 [1]𝑘 ),L(𝑥𝑘 , ˜𝜃

[1]
𝑘
)
)
+𝑊̄2

(
L(𝑥𝑘 , ˜𝜃 [1]𝑘 ), 𝜇̃

)
𝑘→∞−→ 0, (A.12)

where the last step holds since 𝑊̄2

(
L(𝑥𝑘 , 𝜃 [1]𝑘 ),L(𝑥𝑘 , ˜𝜃

[1]
𝑘
)
) 𝑘→∞−→ 0 by Corollary A.6. Therefore, we

have 𝑊̄2 (𝜇, 𝜇̃) = 0 and hence the limit 𝜇 is unique.

Finally, the bound on Var𝜃∞ follows from the lemma below, for which we recall that the number

𝜅 is defined in Proposition 6.1.

Lemma A.7. Under Assumptions 1, 2 and 3, and when 𝛼 is chosen according to (4.2), we have

Var(𝜃∞) ≤ E[∥𝜃∞ − 𝜃 ∗∥2] ≤
𝛾max

0.9𝛾min

· 𝛼𝜏𝜅 (A.13)

and
(E[∥𝜃∞∥])2 ≤ E[∥𝜃∞∥2] ≤ 𝐶 (𝐴,𝑏, 𝜋) (A.14)

for some 𝐶 (𝐴,𝑏, 𝜋) that is independent of 𝛼 .

Proof of Lemma A.7. We have shown that the sequence (𝜃𝑘 )𝑘≥0 converges weakly to 𝜃∞ in

P2 (R𝑑 ). It is known that weak convergence in P2 (R𝑑 ) is equivalent to convergence in distribution

and the convergence of the first two moments [Vil09, Definition 6.8]. Consequently, we have

E[∥𝜃∞ − 𝜃 ∗∥2] = lim

𝑘→∞
E[∥𝜃𝑘 − 𝜃 ∗∥2] . (A.15)

Proposition 6.1 ensures that

E[∥𝜃𝑘 − 𝜃 ∗∥2] ≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘 (
E[∥𝜃0 − 𝜃 ∗∥2] + 𝑠−1min

(𝐴)𝑏max

)
+ 𝛾max

0.9𝛾min

· 𝛼𝜏 · 𝜅.

Taking 𝑘 →∞ and combining with equation (A.15) gives

E[∥𝜃∞ − 𝜃 ∗∥2] ≤
𝛾max

0.9𝛾min

· 𝛼𝜏𝜅
(i)

≤ 𝛾max

0.9𝛾min

· 1
4

𝜅,

where step (i) holds since 𝛼𝜏 ≤ 1

4
. Equation (A.13) follows from the above inequality together with

the fact that 𝜃 ∗ is a deterministic quantity.
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Furthermore, we have

(E[∥𝜃∞∥])2 ≤ E[∥𝜃∞∥2]
≤ E[(∥𝜃∞ − 𝜃 ∗∥ + ∥𝜃 ∗∥)2]

≤ 2E[∥𝜃∞ − 𝜃 ∗∥2] + 2∥𝜃 ∗∥2 ≤
𝛾max

𝛾min

· 𝜅 + 2∥𝜃 ∗∥2. (A.16)

Equation (A.14) then follows from noting that 𝛾max, 𝛾min, 𝜅 and 𝜃 ∗ only depend on 𝐴,𝑏 and 𝜋 . □

We have proved part 1 of Theorem 4.1.

A.2.3 Part 2: Invariance. We next show that 𝜇 is the unique invariant distribution. Suppose that

the initial distribution of (𝑥0, 𝜃0) is 𝜇. By the triangle inequality of Wasserstein distance, we have

𝑊̄2 (L(𝑥1, 𝜃1), 𝜇) ≤ 𝑊̄2 (L(𝑥1, 𝜃1),L(𝑥𝑘+1, 𝜃𝑘+1)) +𝑊2 (L(𝑥𝑘+1, 𝜃𝑘+1), 𝜇). (A.17)

We proceed by noting the following lemma, whose proof is given at the end of this sub-sub-section.

LemmaA.8. Let (𝑥𝑘 , 𝜃𝑘 )≥0 and (𝑥 ′𝑘 , 𝜃
′
𝑘
)𝑘≥0 be two copies of the LSA trajectory (3.1), whereL(𝑥0, 𝜃0) =

𝜇 and L(𝑥 ′
0
, 𝜃 ′

0
) ∈ P2 (X × R𝑑 ) is arbitrary. Under Assumptions 1, 2 and 3, and when 𝛼 is chosen

according to equation (4.2), we have

𝑊̄ 2

2
(L(𝑥1, 𝜃1),L(𝑥 ′1, 𝜃 ′1)) ≤ 𝜌1 · 𝑊̄ 2

2
(L(𝑥0, 𝜃0),L(𝑥 ′0, 𝜃 ′0)) +

√︃
𝜌2 · 𝑊̄ 2

2
(L(𝑥0, 𝜃0),L(𝑥 ′

0
, 𝜃 ′

0
)),
(A.18)

where the quantities 𝜌1 := 1 + 2(1 + 𝛼)2 + 16𝛼2𝑏2
max

< ∞ and 𝜌2 := 16𝛼2 · E𝜃0∼𝜇
[
∥𝜃0∥4

]
< ∞ are

independent of L(𝑥 ′
0
, 𝜃 ′

0
). In particular, for any 𝑘 ≥ 0, if we set L(𝑥 ′

0
, 𝜃 ′

0
) = L(𝑥𝑘 , 𝜃𝑘 ), then

𝑊̄ 2

2
(L(𝑥1, 𝜃1),L(𝑥𝑘+1, 𝜃𝑘+1)) ≤ 𝜌1 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )) +

√︃
𝜌2 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )). (A.19)

Applying Lemma A.8 to bound the first term on the RHS of equation (A.17), we obtain that

𝑊̄2 (L(𝑥1, 𝜃1), 𝜇) ≤
√︂
𝜌1 · 𝑊̄2 (𝜇,L(𝑥𝑘 , 𝜃𝑘 )) +

√︃
𝜌2 · 𝑊̄ 2

2
(𝜇,L(𝑥𝑘 , 𝜃𝑘 )) + 𝑊̄2 (L(𝑥𝑘+1, 𝜃𝑘+1), 𝜇)

𝑘→∞−→ 0,

where the last step follows from the weak convergence result established in the last sub-sub-section.

We therefore conclude that𝑊2 (L(𝑥1, 𝜃1), 𝜇) = 0 and hence 𝜇 is an invariant distribution of the

Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 . The uniqueness of the invariant distribution follows from a similar

argument as in equation (A.12). We have proved part 2 of Theorem 4.1.

Proof of Lemma A.8. We choose a coupling between the two processes (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 and (𝑥 ′𝑘 , 𝜃
′
𝑘
)𝑘≥0

such that

𝑊̄ 2

2
(L(𝑥0, 𝜃0),L(𝑥 ′0, 𝜃 ′0)) = E

[
𝑑0 (𝑥0, 𝑥 ′0) + ∥𝜃0 − 𝜃 ′0∥2

]
and (A.20)

𝑥𝑘+1 = 𝑥
′
𝑘+1 if 𝑥𝑘 = 𝑥 ′

𝑘
, ∀𝑘 ≥ 0. (A.21)

The existence of a coupling satisfying equation (A.20) at step 𝑘 = 0 is a standard result in optimal

transport [Vil09, Theorem 4.1]. We can ensure equation (A.21) by further coupling the two processes

for the subsequent steps 𝑘 ≥ 1, such that the two underlying Markov chains (𝑥𝑘 )𝑘≥0 and (𝑥 ′𝑘 )𝑘≥0
evolve separately (subject to the above coupling at step 𝑘 = 0) until they reach the same state, after

which they coalesce and follow the same trajectory.

To prove Lemma A.8, we begin by observing that

𝑊̄ 2

2
(L(𝑥1, 𝜃1),L(𝑥 ′1, 𝜃 ′1)) ≤ E

[
𝑑0 (𝑥1, 𝑥 ′1) + ∥𝜃1 − 𝜃 ′1∥2

]
. (A.22)
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thanks to the definition (4.1) of 𝑊̄2 using an infimum. Recalling the definition of the discrete metric

𝑑0 (𝑥 ′0, 𝑥0) := 1
{
𝑥 ′
0
≠ 𝑥0

}
, we have the identities

𝐴(𝑥0) = 𝐴(𝑥 ′0) + 𝑑0 (𝑥 ′0, 𝑥0) ·
(
𝐴(𝑥0) −𝐴(𝑥 ′0)

)
and

𝑏 (𝑥0) = 𝑏 (𝑥 ′0) + 𝑑0 (𝑥 ′0, 𝑥0) ·
(
𝑏 (𝑥0) − 𝑏 (𝑥 ′0)

)
.

The update rule (3.1) together with the above identities implies that

𝜃1 − 𝜃 ′1 =𝜃0 + 𝛼
(
𝐴(𝑥0)𝜃0 + 𝑏 (𝑥0)

)
− 𝜃 ′

0
− 𝛼

(
𝐴(𝑥 ′

0
)𝜃 ′
𝑘
+ 𝑏 (𝑥 ′

0
)
)

=
(
𝐼 + 𝛼𝐴(𝑥 ′

0
)
)
·
(
𝜃0 − 𝜃 ′𝑘

)
+ 𝛼𝑑0 (𝑥 ′0, 𝑥0) ·

[ (
𝐴(𝑥0) −𝐴(𝑥 ′0)

)
𝜃0 + 𝑏 (𝑥0) − 𝑏 (𝑥 ′0)

]
,

whence

𝜃1 − 𝜃 ′1

 ≤ 

𝐼 + 𝛼𝐴(𝑥 ′
0
)


 · 

𝜃0 − 𝜃 ′0

 + 𝛼𝑑0 (𝑥 ′0, 𝑥0) · 

(𝐴(𝑥0) −𝐴(𝑥 ′0))𝜃0 + 𝑏 (𝑥0) − 𝑏 (𝑥 ′0)



≤ (1 + 𝛼)


𝜃0 − 𝜃 ′𝑘

 + 𝛼𝑑0 (𝑥 ′0, 𝑥0) · 2(∥𝜃0∥ + 𝑏max

)
,

where the last step follows from the boundedness Assumption 2. Also note that 𝑑0 (𝑥1, 𝑥 ′1) ≤
𝑑0 (𝑥0, 𝑥 ′0) thanks to the coupling in equation (A.21). Combining the above inequalities gives

E
[
𝑑0 (𝑥1, 𝑥 ′1) +



𝜃1 − 𝜃 ′1

2]
≤E

[
𝑑0 (𝑥0, 𝑥 ′0)

]
+ 2(1 + 𝛼)2 · E

[

𝜃0 − 𝜃 ′0

2] + 2𝛼2 · E [
𝑑0 (𝑥 ′0, 𝑥0) · 8(∥𝜃0∥2 + 𝑏2max

)
]
. (A.23)

By Cauchy-Schwarz’s inequality, we have

E
[
𝑑0 (𝑥 ′0, 𝑥0) · ∥𝜃0∥2

]
≤

√︃
E

[
𝑑0 (𝑥 ′

0
, 𝑥0)

]√︃
E𝜃0∼𝜇 [∥𝜃0∥4] . (A.24)

Moreover, we claim that

E𝜃0∼𝜇
[
∥𝜃0∥4

]
= E

[
∥𝜃∞∥4

]
< ∞. (A.25)

This claim follows from a moderate tightening of the result in [SY19, Theorem 9], which provides

sufficient conditions for the existence of higher moments of 𝜃∞. In Appendix B, we explain how to

tighten their result to show that the 4th moment exists under our stepsize condition (4.2).

Combining equations (A.23) and (A.24) and recalling the values of 𝜌1 and 𝜌2 given in the statement

of the lemma, we obtain that

E
[
𝑑0 (𝑥1, 𝑥 ′1) +



𝜃1 − 𝜃 ′1

2]
≤𝜌1 · E

[
𝑑0 (𝑥0, 𝑥 ′0) +



𝜃0 − 𝜃 ′𝑘

2] +√︂
𝜌2 · E

[
𝑑0 (𝑥0, 𝑥 ′

0
) +



𝜃0 − 𝜃 ′
0



2]
=𝜌1 · 𝑊̄ 2

2

(
L(𝑥0, 𝜃0),L(𝑥 ′0, 𝜃 ′0)

)
+

√︃
𝜌2 · 𝑊̄ 2

2

(
L(𝑥0, 𝜃0),L(𝑥 ′

0
, 𝜃 ′

0
)
)
, (A.26)

where the last step from our choice of coupling in equation (A.20). Combining equations (A.22)

and (A.26) proves the first equation (A.18) in Lemma A.8. The second equation (A.19) is then

immediate. □

A.2.4 Part 3: Convergence Rate. We have established that the joint sequence

(
L(𝑥𝑘 , 𝜃 [1]𝑘 )

)
𝑘≥0

converges weakly to the invariant distribution 𝜇 ∈ P2 (X × R𝑑 ). Consequently,
(
L(𝜃 [1]

𝑘
)
)
𝑘≥0

converges weakly to 𝜇 ∈ P2 (R𝑑 ), where 𝜇 is the marginal distribution of 𝜇 over R𝑑 . We now

characterize the convergence rate.
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Again consider the coupled processes defined in equation (A.9). Suppose that the initial distribu-

tion of (𝑥0, 𝜃 [2]
0
) is the invariant distribution 𝜇, hence L(𝑥𝑘 , 𝜃 [2]𝑘 ) = 𝜇 and L(𝜃

[2]
𝑘
) = 𝜇 for all 𝑘 ≥ 0.

Applying Corollary A.6, we have for all 𝑘 ≥ 𝜏 ,

𝑊 2

2
(L(𝜃 [1]

𝑘
), 𝜇) =𝑊 2

2
(L(𝜃 [1]

𝑘
),L(𝜃 [2]

𝑘
))

≤ 𝑊̄ 2

2
(L(𝑥𝑘 , 𝜃 [1]𝑘 ),L(𝑥𝑘 , 𝜃

[2]
𝑘
))

≤ 8

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘
E[∥𝜃 [1]

0
− 𝜃 [2]

0
∥2]

≤ 16

𝛾max

𝛾min

(
1 − 0.9𝛼

𝛾max

)𝑘
·
(
E[∥𝜃 [1]

0
∥2] + E[∥𝜃 [1]∞ ∥2]

)
,

where the last step holds since the chain (𝑥𝑘 , 𝜃 [2]𝑘 )𝑘≥0 is at stationarity and hence E∥𝜃 [2]
0
∥2 =

E∥𝜃 [2]∞ ∥2 = E∥𝜃 [1]∞ ∥2. This proves equation (4.4) in part 3 of the theorem.

We have completed the proof of Theorem 4.1.

A.3 Proof of Corollary 4.2
Proof of Corollary 4.2. By Lemma A.7, we have E[∥𝜃∞∥2] = O(1). Combining this bound

with equation (4.4) in Theorem 4.1, we obtain that for 𝑘 ≥ 𝜏 ,

𝑊 2

2
(L(𝜃𝑘 ), 𝜇) ≤ 𝐶 (𝐴,𝑏, 𝜋) ·

(
1 − 0.9𝛼

𝛾max

)𝑘
.

By [Vil09, Theorem 4.1], there exists a coupling between 𝜃𝑘 and 𝜃∞ such that

𝑊 2

2
(L(𝜃𝑘 ), 𝜇) = E[∥𝜃𝑘 − 𝜃∞∥2] .

Utilizing the above bounds and applying Jensen’s inequality twice, we obtain that

∥E[𝜃𝑘 − 𝜃∞] ∥2 ≤
(
E[∥𝜃𝑘 − 𝜃∞∥]

)
2

≤ E
[
∥𝜃𝑘 − 𝜃∞∥2

]
≤ 𝐶 (𝐴,𝑏, 𝜋) ·

(
1 − 0.9𝛼

𝛾max

)𝑘
.

It thus follows that for 𝑘 ≥ 𝜏 ,

∥E[𝜃𝑘 ] − E[𝜃∞] ∥ ≤ E[∥𝜃𝑘 − 𝜃∞∥] ≤ 𝐶 (𝐴,𝑏, 𝜋) ·
(
1 − 0.9𝛼

𝛾max

)𝑘/2
,

which establishes the convergence rate for the first moment in equation (4.5).

Turning to the second moment, we observe that

E [
𝜃𝑘𝜃
⊤
𝑘

]
− E

[
𝜃∞𝜃

⊤
∞
]



=


E [
(𝜃𝑘 − 𝜃∞ + 𝜃∞) (𝜃𝑘 − 𝜃∞ + 𝜃∞)⊤

]
− E

[
𝜃∞𝜃

⊤
∞
]



=


E [
(𝜃𝑘 − 𝜃∞) (𝜃𝑘 − 𝜃∞)⊤

]
+ E

[
𝜃∞ (𝜃𝑘 − 𝜃∞)⊤

]
+ E

[
(𝜃𝑘 − 𝜃∞)𝜃⊤∞

]


≤



E [
(𝜃𝑘 − 𝜃∞) (𝜃𝑘 − 𝜃∞)⊤

]

 + 

E [
𝜃∞ (𝜃𝑘 − 𝜃∞)⊤

]

 + 

E [
(𝜃𝑘 − 𝜃∞)𝜃⊤∞

]


≤ E

[

(𝜃𝑘 − 𝜃∞) (𝜃𝑘 − 𝜃∞)⊤

] + E [

𝜃∞ (𝜃𝑘 − 𝜃∞)⊤

] + E [

(𝜃𝑘 − 𝜃∞)𝜃⊤∞

]
= E

[
∥𝜃𝑘 − 𝜃∞∥2

]
+ 2E

[

𝜃⊤∞ (𝜃𝑘 − 𝜃∞)

]
≤ E

[
∥𝜃𝑘 − 𝜃∞∥2

]
+ 2

(
E

[
∥𝜃𝑘 − 𝜃∞∥2

]
E

[
∥𝜃∞∥2

] )
1/2
, (A.27)

, Vol. 1, No. 1, Article . Publication date: June 2023.



38 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

where the last inequality (A.27) holds true by Cauchy-Schwarz inequality. On the other hand, we

have already established that for 𝑘 ≥ 𝜏 ,

E[∥𝜃𝑘 − 𝜃∞∥2] ≤ 𝐶 (𝐴,𝑏, 𝜋)
(
1 − 0.9𝛼

𝛾max

)𝑘
and E[∥𝜃∞∥2] ≤ 𝐶′ (𝐴,𝑏, 𝜋).

Substituting the above bounds into the right-hand side of inequality (A.27), we obtain

E [
𝜃𝑘𝜃
⊤
𝑘

]
− E

[
𝜃∞𝜃

⊤
∞
]

 ≤ 𝐶 (𝐴,𝑏, 𝜋) · (1 − 0.9𝛼

𝛾max

)𝑘/2
,

thereby completing the proof for equation (4.6) in Corollary 4.2. □

A.4 Proof of Theorem 4.3
In this sub-section, we prove Theorem 4.3 on characterizing the asymptotic bias of LSA. The proof

is divided into four steps, which are given in Appendices A.4.1–A.4.4 to follow.

A.4.1 Step 1: Basic Adjoint Relationship. Following the strategy discussed after Theorem 4.3, we

begin by deriving a recursive relationship for the following quantities

𝑧𝑖 := E [𝜃∞ |𝑥∞ = 𝑖] , 𝑖 ∈ X.

To put our derivation in context, we present it in the language of Basic Adjoint Relationship (BAR).

Recall that (𝑥𝑘 )𝑘≥0 is a time-homogeneous Markov chain with transition kernel 𝑃 = (𝑝𝑖 𝑗 ) and
unique stationary distribution 𝜋 . Theorem 4.1 shows that the Markov chain (𝑥𝑘 , 𝜃𝑘 )𝑘≥0 also has

a unique stationary distribution 𝜇, and (𝑥𝑘 , 𝜃𝑘 ) converges in distribution to a limit (𝑥∞, 𝜃∞) ∼ 𝜇,
where 𝜃∞ ∼ 𝜇 and 𝑥∞ ∼ 𝜋 . Given (𝑥∞, 𝜃∞), let 𝑥∞+1 be the random variable with conditional

distribution P(𝑥∞+1 = 𝑗 |𝑥∞ = 𝑖) = 𝑝𝑖 𝑗 , and 𝜃∞+1 = 𝜃∞ + 𝛼 (𝐴(𝑥∞)𝜃∞ + 𝑏 (𝑥∞)); that is, (𝑥∞+1, 𝜃∞+1)
is the state following (𝑥∞, 𝜃∞).

Denote by 𝑄 the transition kernel of (𝑥𝑘 , 𝜃𝑘 )𝑘≥0. Since 𝜇 is invariant for 𝑄 , it satisfies the BAR:

𝜇 (𝐼 −𝑄) 𝑓 = 0

for any test function 𝑓 : X × R𝑑 → R𝑑 that satisfies ∥ 𝑓 (𝑥, 𝜃 )∥ ≤ 𝐶 (1 + ∥𝜃 ∥2),∀(𝑥, 𝜃 ) for some

𝐶 ∈ R [Vil09, Definition 6.8 and Theorem 6.9]. The above BAR can be written equivalently as

E [𝑓 (𝑥∞, 𝜃∞)] = 𝜇𝑓 = 𝜇𝑄𝑓 = E [𝑓 (𝑥∞+1, 𝜃∞+1)] . (A.28)

It is known that equation (A.28) with a sufficiently large class of test functions 𝑓 completely

characterizes the invariant distribution 𝜇 [Har85, HW87, DD11].

It suffices for our purpose to consider the test functions 𝑓 (𝑖 ) , 𝑖 ∈ X defined as

𝑓 (𝑖 ) (𝑥, 𝜃 ) = 𝜃 · 1{𝑥 = 𝑖}.

Substituting 𝑓 = 𝑓 (𝑖 ) into the BAR (A.28) gives

E [𝜃∞ · 1{𝑥∞ = 𝑖}] = E [𝜃∞+1 · 1{𝑥∞+1 = 𝑖}] . (A.29)

Let us calculate the left and right-hand sides above. Recall that 𝑃 = (𝑝𝑖 𝑗 ) is the transition kernel of

the time-reversal of the Markov chain (𝑥𝑘 )𝑘≥0; see Section 3.1. We have

E [𝜃∞ · 1{𝑥∞ = 𝑖}] = 𝜋𝑖 · E [𝜃∞ |𝑥∞ = 𝑖]
= 𝜋𝑖𝑧𝑖 ,
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and

E [𝜃∞+1 · 1{𝑥∞+1 = 𝑖}] = 𝜋𝑖 · E [𝜃∞+1 |𝑥∞+1 = 𝑖]
= 𝜋𝑖 · E [𝜃∞ + 𝛼 (𝐴(𝑥∞)𝜃∞ + 𝑏 (𝑥∞)) |𝑥∞+1 = 𝑖]

= 𝜋𝑖 ·
∑︁
𝑠∈X

𝑝𝑖𝑠E [𝜃∞ + 𝛼 (𝐴(𝑠)𝜃∞ + 𝑏 (𝑠)) |𝑥∞ = 𝑠, 𝑥∞+1 = 𝑖]

(i)

= 𝜋𝑖 ·
∑︁
𝑠∈X

𝑝𝑖𝑠E [𝜃∞ + 𝛼 (𝐴(𝑠)𝜃∞ + 𝑏 (𝑠)) |𝑥∞ = 𝑠]

= 𝜋𝑖 ·
∑︁
𝑠∈X

𝑝𝑖𝑠 [𝑧𝑠 + 𝛼 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))] ,

where step (i) holds since 𝜃∞ ⊥⊥ 𝑥∞+1 |𝑥∞ as explained in equation (3.3). Plugging back into the

equation (A.29) and noting that 𝜋𝑖 > 0,∀𝑖 ∈ X, we obtain the recursive relationship:

𝑧𝑖 =

(∑︁
𝑠∈X

𝑝𝑖𝑠𝑧𝑠

)
+ 𝛼

(∑︁
𝑠∈X

𝑝𝑖𝑠 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))
)
, ∀𝑖 ∈ X. (A.30)

A.4.2 Step 2: Setting up System of Δ. Define the difference 𝛿𝑖 := 𝑧𝑖 − 𝑧1 for each 𝑖 ∈ X, where we
arbitrarily take state 1 ∈ X as the reference state. Subtracting 𝑧1 from both sides of equation (A.30)

and rearranging terms, we obtain

𝛿𝑖 −
(∑︁
𝑠∈X

𝑝𝑖𝑠𝛿𝑠

)
= 𝛼

(∑︁
𝑠∈X

𝑝𝑖𝑠 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))
)
, ∀𝑖 ∈ X. (A.31)

We consolidate the variables 𝑧𝑖 and 𝛿𝑖 , 𝑖 ∈ X into the matrices 𝑍 and Δ, defined as

𝑍 =


𝑧⊤
1

𝑧⊤
2

...

𝑧⊤𝑛


∈ R𝑛×𝑑 and Δ =


𝛿⊤
1

𝛿⊤
2

...

𝛿⊤𝑛


∈ R𝑛×𝑑 .

Let
®𝛿 := vec(Δ⊤) =

[
𝛿⊤
1

𝛿⊤
2
· · · 𝛿⊤𝑛

]⊤ ∈ R𝑛𝑑 denote the vectorization of Δ, and similarly

®𝑧 := vec(𝑍⊤) ∈ R𝑛𝑑 the vectorization of 𝑍 . With the above notations, equation (A.31) can be

written compactly as (
(𝐼𝑛 − 𝑃) ⊗ 𝐼𝑑

)
®𝛿 = 𝛼 (Ψ®𝑧 +𝜓 ) , (A.32)

for some matrix Ψ ≡ Ψ(𝐴, 𝑃) ∈ R𝑛𝑑×𝑛𝑑 and vector 𝜓 ≡ 𝜓 (𝑏, 𝑃) ∈ R𝑛𝑑 , where ⊗ denotes the

Kronecker product of matrices. Note that the above RHS is a linear function of ®𝑧.
The system (A.32) consists of 𝑛𝑑 equations. Since 𝛿1 = 0 by definition, the first 𝑑 equations are

redundant. The remaining (𝑛 − 1)𝑑 equations is given by(
(𝐼𝑛−1 − 𝑃 (−1) ) ⊗ 𝐼𝑑

)
®𝛿 (−1) = 𝛼

(
Ψ (−1) ®𝑧 +𝜓 (−1)

)
, (A.33)

where 𝑃 (−1) ∈ R(𝑛−1)×(𝑛−1) is obtained from 𝑃 with the first row and column removed, and

®𝛿 (−1) ∈ R(𝑛−1)𝑑 (resp., Ψ (−1) ∈ R(𝑛−1)𝑑×𝑛𝑑 and𝜓 (−1) ∈ R(𝑛−1)𝑑 ) is obtained from ®𝛿 (resp., Ψ and𝜓 )

with the first 𝑑 rows removed. Note that
®𝛿 (−1) =

[
𝛿⊤
2
· · · 𝛿⊤𝑛

]⊤
.

We make the following claim.

Claim 3. The spectral radius of the matrix 𝑃 (−1) , denoted as 𝜌 (𝑃 (−1) ), satisfies 𝜌 (𝑃 (−1) ) < 1.
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Proof of Claim 3. We have the element-wise inequality

𝑃 (−1) :=

[
0 0

0 𝑃 (−1)

]
≤ 𝑃 .

Wielandt’s theorem [Mey00, Chapter 8.3] ensures that 𝜌 (𝑃 (−1) ) ≤ 𝜌 (𝑃) = 1; moreover, if 𝜌 (𝑃 (−1) ) =
𝜌 (𝑃) = 1, then there exists a number 𝜍 and a non-singular diagonal matrix 𝐷 such that 𝑀 =

𝑒𝑖𝜍𝐷𝑃𝐷−1, which implies the first row and column of 𝑃 are zero. This however contradicts the

irreducibility of 𝑃 , a consequence of the irreducibility assumption of 𝑃 . We therefore conclude that

𝜌 (𝑃 (−1) ) < 1, which in turn implies that 𝜌 (𝑃 (−1) ) < 1. □

It follows from the above claim that the matrix 𝐼𝑛−1 − 𝑃 (−1) is invertible. Consequently, equa-
tion (A.33) implies that

®𝛿 (−1) = 𝛼 ·
( (
𝐼𝑛−1 − 𝑃 (−1)

)
⊗ 𝐼𝑑

)−1
·
(
Ψ (−1) ®𝑧 +𝜓 (−1)

)
= 𝛼 ·

( (
𝐼𝑛−1 − 𝑃 (−1)

)−1 ⊗ 𝐼𝑑 ) · (Ψ (−1) ®𝑧 +𝜓 (−1) ) . (A.34)

Equation (A.34) concatenated with 𝛿1 = 0 can be rewritten compactly as

®𝛿 = 𝛼
(
𝐵(𝐴,𝑏, 𝑃) · ®𝑧 + 𝐵′ (𝐴,𝑏, 𝑃)

)
(A.35)

for some matrix 𝐵(𝐴,𝑏, 𝑃) ∈ R𝑛𝑑×𝑛𝑑 and vector 𝐵′ (𝐴,𝑏, 𝑃) ∈ R𝑛𝑑 .

A.4.3 Step 3: Establishing Δ = O(𝛼). It is tempting to think that the right-hand side of equa-

tion (A.35) is linear in 𝛼 . This is however not the case since ®𝑧, which is a function of 𝜃∞, also

depends on 𝛼 . In what follows, we show that
®𝛿 = O(𝛼), which is done by first establishing the

bounds E[∥𝜃∞∥] = O(1) and ®𝑧 = O(1).
The bound E[∥𝜃∞∥] = O(1) is established in equation (A.14) in Lemma A.7. We next show that

𝑍 = O(1). An explicit bound is given in the following lemma.

Lemma A.9. Under Assumptions 1, 2 and 3, and when 𝛼 is chosen according to (4.2), we have

∥𝑧𝑖 ∥2 ≤ 𝐶1 (𝐴,𝑏, 𝜋), ∀𝑖 ∈ [𝑛],

where

𝐶1 (𝐴,𝑏, 𝜋) =
2

𝜋min

· 𝛾max

𝛾min

·
(√
𝜅 + ∥𝜃 ∗∥

)
. (A.36)

Proof of Lemma A.9. By definition, it holds for each 𝑖 ∈ X that

𝑧𝑖 = E [𝜃∞ |𝑥∞ = 𝑖] = E [𝜃∞1{𝑥∞ = 𝑖}]
𝜋𝑖

.

It then follows that

∥𝑧𝑖 ∥ ≤
E[∥𝜃∞∥]

𝜋𝑖
(i)

≤ 1

𝜋min

·
√︂
𝛾max

𝛾min

· 𝜅 + 2∥𝜃 ∗∥2

≤ 2

𝜋min

· 𝛾max

𝛾min

·
(√
𝜅 + ∥𝜃 ∗∥

)
,

where in step (i) we use the bound (A.16) and 𝜋𝑖 > 0,∀𝑖 ∈ X by Assumption 1.

This completes the proof of Lemma A.9. □
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Finally, applying Lemma A.9 to upper bound the RHS of equation (A.35), we conclude that

∥ ®𝛿 ∥ ≤ 𝛼 · 𝐵′′ (𝐴,𝑏, 𝑃) (A.37)

for some number 𝐵′′ (𝐴,𝑏, 𝑃) that is independent of 𝛼 .

A.4.4 Step 4: Bootstrapping. We rewrite equation (A.30) as

−𝑧𝑖 +
(
𝑛∑︁
𝑠=1

𝑝𝑖𝑠𝑧𝑠

)
+ 𝛼

(
𝑛∑︁
𝑠=1

𝑝𝑖𝑠𝐴(𝑠)𝑧𝑠

)
= −𝛼

𝑛∑︁
𝑠=1

𝑝𝑖𝑠𝑏 (𝑠), ∀𝑖 = 1, . . . , 𝑛.

We multiply both sides above by 𝜋𝑖 and sum over 𝑖 = 1, . . . , 𝑛. Simplifying the resulting equation

using the identity

∑
𝑖 𝜋𝑖𝑝𝑖𝑠 = 𝜋𝑠 ,∀𝑠 , we obtain

𝛼

(
𝑛∑︁
𝑠=1

𝜋𝑠𝐴(𝑠)𝑧𝑠

)
= −𝛼

𝑛∑︁
𝑠=1

𝜋𝑠𝑏 (𝑠) = −𝛼 ¯𝑏.

Cancelling 𝛼 > 0 on both sides and substituting 𝑧𝑖 = 𝑧1 + 𝛿𝑖 gives
𝑛∑︁
𝑠=1

𝜋 𝑗𝐴(𝑠) (𝑧1 + 𝛿𝑠 ) = 𝐴𝑧1 +
𝑛∑︁
𝑠=1

𝜋 𝑗𝐴(𝑠)𝛿 𝑗 = −¯𝑏.

Solving the above equation for 𝑧1 and recalling that 𝜃 ∗ = −𝐴−1 ¯𝑏, we obtain

𝑧1 = 𝜃
∗ −𝐴−1

𝑛∑︁
𝑠=1

𝜋𝑠𝐴(𝑠)𝛿𝑠 , (A.38)

and consequently

𝑧𝑖 = 𝑧1 + 𝛿𝑖 = 𝜃 ∗ −𝐴−1
𝑛∑︁
𝑠=1

𝜋𝑠𝐴(𝑠)𝛿𝑠 + 𝛿𝑖 , ∀𝑖 = 1, . . . , 𝑛. (A.39)

The above equation can be written in matrix form as

®𝑧 = 1𝑛 ⊗ 𝜃 ∗ +𝐶 (𝐴,𝑏, 𝜋) ®𝛿 (A.40)

for some matrix 𝐶 (𝐴,𝑏, 𝜋) that is independent 𝛼 .
Note that equation (A.40) expresses ®𝑧 as a linear function of

®𝛿 . On the other hand, equation (A.35)

expresses
®𝛿 as a linear function of ®𝑧. Plugging equation (A.40) into equation (A.35), we obtain the

following self-expressing equation for Δ:

®𝛿 = 𝛼

[
𝐵(𝐴,𝑏, 𝑃) ·

(
1𝑛 ⊗ 𝜃 ∗ +𝐶 (𝐴,𝑏, 𝜋) ®𝛿

)
+ 𝐵′ (𝐴,𝑏, 𝑃)

]
= 𝛼Υ1 + 𝛼Ξ®𝛿, (A.41)

where the quantities

Υ1 ≡ Υ1 (𝐴,𝑏, 𝑃) := 𝐵(𝐴,𝑏, 𝑃) · (1𝑛 ⊗ 𝜃 ∗) + 𝐵′ (𝐴,𝑏, 𝑃) and

Ξ ≡ Ξ(𝐴,𝑏, 𝑃) := 𝐵(𝐴,𝑏, 𝑃)𝐶 (𝐴,𝑏, 𝜋)
are independent of 𝛼 , and we use the fact that 𝜃 ∗ is a function of𝐴,𝑏, 𝜋 . Before proceeding, we record
the following explicit upper bound on the spectral norm of Ξ. The proof is given in Appendix A.4.5.

Lemma A.10. We have
∥Ξ∥ ≤ 2𝑛3/2 · 𝜄 · (𝑝𝜄

min
)−1 · 𝑠−1

min
(𝐴),

where
𝜄 = inf{𝑡 : 𝑝𝑡𝑖 𝑗 > 0, ∀𝑖, 𝑗 = 1, . . . , 𝑛}, 𝑝𝑡

min
= min

𝑖=2,...,𝑛
𝑝𝑘𝑖1,
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and 𝑝𝑡𝑖 𝑗 is the (𝑖, 𝑗)-th entry of matrix 𝑃𝑡 .

Using self-expressing equation (A.41) for
®𝛿 , we can bootstrap from the bound

®𝛿 = O(𝛼) in
equation (A.37) to obtain increasingly precise expansions of

®𝛿 in terms of 𝛼 . We perform this

bootstrapping procedure using induction. Plugging the bound Δ = O(𝛼) into equation (A.41) gives

®𝛿 = 𝛼Υ1 + ΞO(𝛼2),

which establishes our base case. Next, define the vectors Υ𝑖 := Ξ𝑖−1Υ1, 𝑖 = 1, . . . As our induction

hypothesis, suppose that

®𝛿 =

𝑚∑︁
𝑖=1

𝛼𝑖Υ𝑖 + Ξ𝑚O(𝛼𝑚+1), (A.42)

for an integer𝑚 ≥ 1. Plugging the above expression into equation (A.41) gives

®𝛿 = 𝛼Υ1 + 𝛼Ξ
(
𝑚∑︁
𝑖=1

𝛼𝑖Υ𝑖 + Ξ𝑚O(𝛼𝑚+1)
)

(i)

=

𝑚+1∑︁
𝑖=1

𝛼𝑖Υ𝑖 + Ξ𝑚+1O(𝛼𝑚+2),

where step (i) holds since ΞΥ𝑖 = Υ𝑖+1 by definition. The above induction argument establishes that

the expansion (A.42) holds for all integer𝑚 ≥ 1.

If it further holds that

𝛼 <
1

2𝜄
𝑛−

3

2 · 𝑝𝜄
min
𝑠min (𝐴), (A.43)

then in light of LemmaA.10, we have𝛼 < ∥Ξ∥−1, which implies 𝜌 (𝛼Ξ) < 1, and hence ∥Ξ𝑚𝛼𝑚+1∥ →
0 as𝑚 →∞. In this case, taking𝑚 →∞ in equation (A.42) gives the infinite series expansion

®𝛿 =

∞∑︁
𝑖=1

𝛼𝑖Υ𝑖 . (A.44)

Finally, we show that the above expansion for
®𝛿 implies the desired expansion for E[𝜃∞]. By

definition of {𝑧𝑖 } and {𝛿𝑖 }, we have the expression

E[𝜃∞] =
𝑛∑︁
𝑠=1

𝜋𝑠 (𝑧1 + 𝛿𝑠 )

= 𝑧1 +
𝑛∑︁
𝑠=1

𝜋𝑠𝛿𝑠 (A.45)

(i)

= 𝜃 ∗ +
𝑛∑︁
𝑠=1

𝜋𝑠
(
−𝐴−1𝐴(𝑠) + 𝐼

)
𝛿𝑠 ,

where step (i) follows from the expression (A.38) for 𝑧1. The above equation can be written as

E[𝜃∞] = 𝜃 ∗ +𝐶′ (𝐴,𝑏, 𝜋) ®𝛿 (A.46)

for some matrix 𝐶′ (𝐴,𝑏, 𝜋). Combining with the expansion (A.42), we obtain

E[𝜃∞] = 𝜃 ∗ +
𝑚∑︁
𝑖=1

𝛼𝑖𝐵 (𝑖 ) +𝐶′ (𝐴,𝑏, 𝜋)Ξ𝑚O(𝛼𝑚+1),

where we define the vectors 𝐵 (𝑖 ) ≡ 𝐵 (𝑖 ) (𝐴,𝑏, 𝑃) = 𝐶′ (𝐴,𝑏, 𝜋)Υ𝑖 for 𝑖 = 1, 2, . . . Furthermore,

combining equation (A.46) with the infinite series expansion (A.44), which is valid under 𝛼 < ∥Ξ∥−1,
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we have

E[𝜃∞] = 𝜃 ∗ +
∞∑︁
𝑖=1

𝛼𝑖𝐵 (𝑖 ) .

This completes the proof of Theorem 4.3.

A.4.5 Proof of Lemma A.10. In the proof below, we use ∥𝑣 ∥2 to denote the vector ℓ2 norm, making

it clear that it is the norm of a vector, while the spectral norm of a matrix 𝑀 is denoted by ∥𝑀 ∥
without the subscript as stated above.

Proof of Lemma A.10. As Ξ(𝐴,𝑏, 𝑃) = 𝐵(𝐴,𝑏, 𝑃)𝐶 (𝐴,𝑏, 𝜋), by sub-multiplicativity of the matrix

spectral norm, we have

∥Ξ∥ ≤ ∥𝐵(𝐴,𝑏, 𝑃)∥ · ∥𝐶 (𝐴,𝑏, 𝜋)∥ .
Hence, we first try to bound ∥𝐵(𝐴,𝑏, 𝑃)∥ and ∥𝐶 (𝐴,𝑏, 𝜋)∥ respectively.
We start with bounding ∥𝐵(𝐴,𝑏, 𝑃)∥. We first attempt to write out 𝐵(𝐴,𝑏, 𝑃) explicitly. By

observing (A.31) and (A.32), we have
(1 − 𝑝11)𝐼𝑑 −𝑝12𝐼𝑑 · · · −𝑝1𝑛𝐼𝑑
−𝑝21𝐼𝑑 (1 − 𝑝22)𝐼𝑑 · · · −𝑝2𝑛𝐼𝑑
...

−𝑝𝑛1𝐼𝑑 −𝑝𝑛2𝐼𝑑 · · · (1 − 𝑝𝑛𝑛)𝐼𝑑



𝛿1
𝛿2
...

𝛿𝑛


= 𝛼

©­­­­«

𝑝11𝐴(1) 𝑝12𝐴(2) · · · 𝑝1𝑛𝐴(𝑛)
𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)



𝑧1
𝑧2
...

𝑧𝑛


+𝜓

ª®®®®¬
.

Since 𝛿1=0 by construction, and 𝐼 − 𝑃 (−1) is invertible by Claim 3, the above equation becomes
𝛿1
𝛿2
...

𝛿𝑛


= 𝛼

©­­­­«


0(
(𝐼 − 𝑃 (−1) )−1 ⊗ 𝐼𝑑

) 
𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)




𝑧1
𝑧2
...

𝑧𝑛


+


0

𝜓 (−1)


ª®®®®¬
.

As such, by equation (A.35), we are able to write 𝐵(𝐴,𝑏, 𝑃) explicitly as

𝐵(𝐴,𝑏, 𝑃) =


0(

(𝐼 − 𝑃 (−1) )−1 ⊗ 𝐼𝑑
) 
𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)



.

Then, it is easy to see that

∥𝐵(𝐴,𝑏, 𝑃)∥2 =









(
(𝐼 − 𝑃 (−1) )−1 ⊗ 𝐼𝑑

) 
𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)










2

≤



(𝐼 − 𝑃 (−1) )−1 ⊗ 𝐼𝑑


2










𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)










2

(i)

≤



(𝐼 − 𝑃 (−1) )−1


2










𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)










2

, (A.47)
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where (i) holds for


(𝐼 − 𝑃 (−1) )−1 ⊗ 𝐼𝑑


2 = 


(𝐼 − 𝑃 (−1) )−1


2 · ∥𝐼𝑑 ∥2 = 


(𝐼 − 𝑃 (−1) )−1


2 .
Hence, to bound ∥𝐵(𝐴,𝑏, 𝑃)∥, we need to obtain an upper bound for each of the two norms on the

right-hand side of the inequality (A.47).

We start with bounding the operator norm of the second term of (A.47). We note that for any

𝑖 = 2, . . . , 𝑛 and any 𝑣 = [𝑣⊤
1
𝑣⊤
2
· · · 𝑣⊤𝑛 ] ∈ R𝑛𝑑 , we have





 [
𝑝𝑖1𝐴(1) 𝑝𝑖2𝐴(2) · · · 𝑝𝑖𝑛𝐴(𝑛)

] 
𝑣1
𝑣2
...

𝑣𝑛






2
2

=





 𝑛∑︁
𝑗=1

𝑝𝑖 𝑗𝐴( 𝑗)𝑣 𝑗




2
2

(ii)

≤
𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 ∥𝐴( 𝑗)𝑣 𝑗 ∥22 ≤
𝑛∑︁
𝑗=1

𝑝𝑖 𝑗𝐴
2

max
∥𝑣 𝑗 ∥22

(iii)

≤
𝑛∑︁
𝑗=1

∥𝑣 𝑗 ∥22 = ∥𝑣 ∥22,

where we simply apply Jensen’s inequality to obtain (ii), and relax 𝑝𝑖 𝑗 and 𝐴max to 1 to have (iii).

From the above inequalities, we know that



 [
𝑝𝑖1𝐴(1) 𝑝𝑖2𝐴(2) · · · 𝑝𝑖𝑛𝐴(𝑛)

] 



2 ≤ 1.

Hence, we have the following upper bound,








𝑝21𝐴(1) 𝑝22𝐴(2) · · · 𝑝2𝑛𝐴(𝑛)

...

𝑝𝑛1𝐴(1) 𝑝𝑛2𝐴(2) · · · 𝑝𝑛𝑛𝐴(𝑛)










2

≤ (𝑛 − 1)
(
max

𝑖=2,...,𝑛





 [
𝑝𝑖1𝐴(1) 𝑝𝑖2𝐴(2) · · · 𝑝𝑖𝑛𝐴(𝑛)

] 



2)
≤ 𝑛 − 1 (A.48)

We bound the operator norm of the first term of (A.47) with the following claim, whose proof is

postponed to the end of this sub-sub-section.

Claim 4. We have 

(𝐼 − 𝑃 (−1) )−1


2
≤
√
𝑛 · 𝜄 (𝑝𝜄

min
)−1, (A.49)

where 𝜄 ≥ 0 such that 𝑝𝜄𝑖 𝑗 > 0 ∀𝑖, 𝑗 and 𝑝𝑘
min

= min𝑖=2,...,𝑛 𝑝
𝑘
𝑖1.

Combining (A.49) from Claim 4 and (A.48), we obtain

∥𝐵(𝐴,𝑏, 𝑃)∥ ≤
(√
𝑛 · 𝜄 (𝑝𝜄

min
)−1

)
·
√
𝑛 − 1

≤ 𝑛 · 𝜄 (𝑝𝜄
min
)−1 . (A.50)

Next, we proceed to obtain an upper bound for ∥𝐶 (𝐴,𝑏, 𝜋)∥. Taking a similar approach as

bounding ∥𝐵(𝐴,𝑏, 𝑃)∥, we start with giving the explicit formulation of 𝐶 (𝐴,𝑏, 𝜋). From (A.39) and
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(A.40), we have

𝐶 (𝐴,𝑏, 𝜋) = 𝐼𝑛𝑑 −

𝜋1𝐴

−1𝐴(1) 𝜋2𝐴
−1𝐴(2) · · · 𝜋𝑛𝐴

−1𝐴(𝑛)
...

𝜋1𝐴
−1𝐴(1) 𝜋2𝐴

−1𝐴(2) · · · 𝜋𝑛𝐴
−1𝐴(𝑛)


= 𝐼𝑛𝑑 − 1𝑛 ⊗

[
𝜋1𝐴

−1𝐴(1) 𝜋2𝐴
−1𝐴(2) · · · 𝜋𝑛𝐴

−1𝐴(𝑛)
]
.

Then, an application of the triangle inequality gives us the following upper bound,

∥𝐶 (𝐴,𝑏, 𝜋)∥2 =


𝐼𝑛𝑑 − 1𝑛 ⊗ [

𝜋1𝐴
−1𝐴(1) 𝜋2𝐴

−1𝐴(2) · · · 𝜋𝑛𝐴
−1𝐴(𝑛)

]

2
≤

(
∥𝐼𝑛𝑑 ∥ + ∥1𝑛 ∥2 ·





 [
𝜋1𝐴

−1𝐴(1) 𝜋2𝐴
−1𝐴(2) · · · 𝜋𝑛𝐴

−1𝐴(𝑛)
] 



)2. (A.51)

We observe that for any 𝑣 ∈ R𝑛𝑑 ,





 [
𝜋1𝐴

−1𝐴(1) 𝜋2𝐴
−1𝐴(2) · · · 𝜋𝑛𝐴

−1𝐴(𝑛)
] 
𝑣1
𝑣2
...

𝑣𝑛






2
2

=





 𝑛∑︁
𝑖=1

𝜋𝑖𝐴
−1𝐴(𝑖)𝑣𝑖





2
2

(iv)

≤
𝑛∑︁
𝑖=1

𝜋𝑖 ∥𝐴−1∥2∥𝐴(𝑖)∥2∥𝑣𝑖 ∥22

(v)

≤
(
𝑠−2
min
(𝐴)𝐴2

max

) 𝑛∑︁
𝑖=1

∥𝑣𝑖 ∥22

=
(
𝑠−2
min
(𝐴)𝐴2

max

)
∥𝑣 ∥2

2
,

where we apply Jensen’s inequality to obtain (iv), and we simply relax 𝜋𝑖 to 1 to arrive at (v). Hence,

we have the following bound,



 [
𝜋1𝐴

−1𝐴(1) 𝜋2𝐴
−1𝐴(2) · · · 𝜋𝑛𝐴

−1𝐴(𝑛)
] 



 ≤ 𝑠−1min

(𝐴)𝐴max ≤ 𝑠−1min
.

We now substitute the above norm upper bound back into (A.51), and we obtain

∥𝐶 (𝐴,𝑏, 𝜋)∥ ≤ (1 +
√
𝑛𝑠−1

min
(𝐴)) ≤ 2

√
𝑛 · 𝑠−1

min
(𝐴), (A.52)

where the last inequality holds for 𝑛 ≥ 1 and 𝑠min (𝐴) < 1.

Combining (A.50) and (A.52), we are able to conclude with the claimed upper bound for ∥Ξ∥,

∥Ξ∥ ≤ ∥𝐵(𝐴,𝑏, 𝑃)∥∥𝐶 (𝐴,𝑏, 𝜋)∥

≤
(
𝑛 · 𝜄 (𝑝𝜄

min
)−1

)
·
(
2

√
𝑛 · 𝑠−1

min
(𝐴)

)
= 2𝑛3/2𝑠−1

min
(𝐴) · 𝜄 (𝑝𝜄

min
)−1,

thereby completing the proof of Lemma A.10. □

Proof of Claim 4. To bound ∥(𝐼 − 𝑃 (−1) )−1∥, we first recall the definition of 𝑃 (−1) ,

𝑃 (−1) =

[
0 0

0 𝑃 (−1)

]
≤ 𝑃 .
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By non-negativity of transition matrix 𝑃 , it is clear that (𝑃 (−1) )𝑘 ≤ (𝑃)𝑘 for all 𝑘 ≥ 0 and hence,

(𝑃 (−1) )𝑘 =

[
0 0

0 (𝑃 (−1) )𝑘
]
≤ (𝑃)𝑘 .

Given this inequality, it is easy to see that for any 𝑖 = 2, . . . , 𝑛,

𝑛∑︁
𝑗=2

(𝑝 (−1) )𝑘𝑖 𝑗 ≤
𝑛∑︁
𝑗=2

𝑝𝑘𝑖 𝑗 < 1,

where (𝑝 (−1) )𝑘𝑖 𝑗 is the (𝑖, 𝑗)-th entry of matrix (𝑃 (−1) )𝑘 , which corresponds to the (𝑖 − 1, 𝑗 − 1)-th
entry of matrix (𝑃 (−1) )𝑘 , and as defined earlier, 𝑝𝑡𝑖 𝑗 is the (𝑖, 𝑗)-th entry of matrix 𝑃𝑡 .

Next, by the irreducibility and aperiodicity of 𝑃 , there exists some 𝜄 ≥ 0, such that 𝑝𝜄𝑖 𝑗 > 0 for all

𝑖, 𝑗 . Denote 𝑝𝑘
min

= min𝑖=2,...,𝑛 𝑝
𝑘
𝑖1, then for any 𝑖 = 2, . . . , 𝑛, and any 𝑘 ≥ 0, we have

𝑛∑︁
𝑗=2

(𝑝 (−1) )𝑘𝑖 𝑗 ≤ 1 − 𝑝𝑘
min
.

When we set 𝑡 = 𝜄, we therefore obtain

∥(𝑃 (−1) )𝜄 ∥∞ ≤ (1 − 𝑝𝜄min
) < 1.

Then, as previously shown in Claim 3 that 𝜌 (𝑃 (−1) ) < 1, we can apply Neumann series and

obtain 



(𝐼 − 𝑃 (−1) )−1




∞
=





 ∞∑︁
𝑘=0

(𝑃 (−1) )𝑘





∞

≤
∞∑︁
𝑘=0





(𝑃 (−1) )𝑘




∞

=

∞∑︁
𝑚=0

𝜄−1∑︁
𝑙=0





(𝑃 (−1) )𝑚𝜄+𝑙




∞
. (A.53)

By the sub-multiplicative property of the ∥ · ∥∞ norm, we further have



(𝑃 (−1) )𝑚𝜄+𝑙




∞
≤





(𝑃 (−1) )𝜄



𝑚
∞





(𝑃 (−1) )𝑙




∞
≤ (1 − 𝑝𝜄

min
)𝑚 .

We then substitute it back into (A.53), and obtain



(𝐼 − 𝑃 (−1) )−1




∞
≤
∞∑︁
𝑚=0

𝜄 · (1 − 𝑝𝜄
min
)𝑚

= 𝜄 ·
∞∑︁
𝑚=0

(1 − 𝑝𝜄
min
)𝑚 = 𝜄 · (𝑝𝜄

min
)−1 .

Making use of equivalence of norm, we therefore obtain the following bound on the spectral norm,



(𝐼 − 𝑃 (−1) )−1




2

≤
√
𝑛 − 1 ·





(𝐼 − 𝑃 (−1) )−1




∞
≤ 𝜄
√
𝑛 · (𝑝𝜄

min
)−1.

and complete the proof of Claim 4.

□
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A.5 Proof of Theorem 4.4
In this section, we prove Theorem 4.4 on the relationship between the bias and the SLEM of the

underlying reversible Markov chain.

A.5.1 Eigendecomposition for reversibleMarkov chain. Our proofmakes use of the Perron-Frobenius

theory and eigendecomposition of reversible Markov chains. We briefly review this topic, following

[Bré20, Chapter 6, Section 2]. Suppose that the transition kernel 𝑃 = (𝑝𝑖 𝑗 ) ∈ R𝑛×𝑛 is irreducible
and reversible w.r.t. the stationary distribution 𝜋 ∈ R𝑛 , i.e.,

𝜋𝑖𝑝𝑖 𝑗 = 𝜋 𝑗𝑝𝑖 𝑗 , ∀𝑖, 𝑗 ∈ [𝑛], (A.54)

where 𝜋 has strictly positive components. Define the diagonal matrix𝐷 = diag(𝜋) ∈ R𝑛×𝑛 . Let ℓ2 (𝜋)
be the real vector space R𝑛 endowed with the weighted inner product ⟨𝑥,𝑦⟩𝜋 =

∑
𝑖 𝑥𝑖𝑦𝑖𝜋𝑖 = 𝑥

⊤𝐷𝑦

and weighted norm ∥𝑥 ∥𝜋 =
√︁
⟨𝑥, 𝑥⟩𝜋 . Reversibility is equivalent to self-adjointness in ℓ2 (𝜋), i.e.,

⟨𝑃𝑥,𝑦⟩𝜋 = ⟨𝑥, 𝑃𝑦⟩𝜋 ,∀𝑥,𝑦. Similarly define the vector space ℓ2 ( 1
𝜋
).

Under the reversibility condition (A.54), the eigenvalues of 𝑃 are real and can be ordered as

1 = 𝜆1 > |𝜆2 | ≥ . . . ≥ |𝜆𝑛 | . Moreover, the corresponding right and and left eigenvectors (𝑢𝑖 )𝑛𝑖=1
and (𝑣𝑖 )𝑛𝑖=1 can be written as 𝑢𝑖 = 𝐷

− 1

2𝑤𝑖 and 𝑣𝑖 = 𝐷
1

2𝑤𝑖 for some orthonormal vectors𝑤1, . . . ,𝑤𝑛 .

Moreover, 𝑢1 = 1 and 𝑣1 = 𝜋 . These vectors satisfy 𝑣𝑖 = 𝐷𝑢𝑖 and〈
𝑢𝑖 , 𝑣 𝑗

〉
= 𝛿𝑖 𝑗 ,

〈
𝑢𝑖 , 𝑢 𝑗

〉
𝜋
= 𝛿𝑖 𝑗 and

〈
𝑣𝑖 , 𝑣 𝑗

〉
1

𝜋

= 𝛿𝑖 𝑗 , ∀𝑖, 𝑗,

where 𝛿𝑖 𝑗 := 1{𝑖 = 𝑗} is the Dirac delta. Consequently, {𝑢𝑖 } and {𝑣 𝑗 } are, respectively, an
orthonormal basis of the spaces ℓ2 (𝜋) and ℓ2 ( 1

𝜋
). Each vector 𝑦 ∈ R𝑛 can be expressed as

𝑦 =
∑𝑛
𝑖=1 𝛽𝑖𝑢𝑖 =

∑𝑛
𝑗=1 𝛽

′
𝑗𝑣 𝑗 , for some 𝛽 = (𝛽𝑖 ) and 𝛽 ′ = (𝛽 𝑗 ) satisfying ∥𝛽 ∥22 = ∥𝑦∥2𝜋 and

∥𝛽 ′∥2
2
= ∥𝑦∥2

1

𝜋

.

The matrix 𝑃 admits the eigendecomposition

𝑃 = 𝑈Λ𝑉⊤ = 1𝜋⊤ +
𝑛∑︁
𝑖=2

𝜆𝑖𝑢𝑖𝑣
⊤
𝑖 ,

where Λ = diag(𝜆1, . . . , 𝜆𝑛) is a diagonal matrix, and 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑛×𝑛 are matrices with

columns {𝑢𝑖 } and {𝑤𝑖 }, respectively. Moreover, if we let𝑊 ∈ R𝑛×𝑛 be the matrix with columns

{𝑤𝑖 }, then it holds that𝑊𝑊 ⊤ =𝑊 ⊤𝑊 = 𝐼 ,𝑈 = 𝐷−
1

2𝑊 and 𝑉 = 𝐷
1

2𝑊 .

We now proceed with the proof of Theorem 4.4, which is divided into three steps given in the

next three sub-sub-sections. The proof shares the same notations and a similar high-level strategy

as in that of Theorem 4.3. In particular, we characterize the quantities 𝑧𝑖 := E [𝜃∞ |𝑥∞ = 𝑖] ∈ R𝑑 and
𝛿𝑖 := 𝑧𝑖 − 𝑧1 ∈ R𝑑 , and track their dependence on the SLEM 𝜆2. To simplify notation, we assume

below that 𝜆2 ≥ 0 and hence |𝜆2 | = 𝜆2. The proof for the general case of 𝜆2 < 0 is similar.

A.5.2 Step 1: Setting up System of Δ. In the proof of Theorem 4.3, we establish that

𝛿𝑖 =
©­«
∑︁
𝑠∈[𝑛]

𝑝𝑖𝑠𝛿𝑠
ª®¬ + 𝛼 ©­«

∑︁
𝑠∈[𝑛]

𝑝𝑖𝑠 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))
ª®¬ , ∀𝑖 ∈ [𝑛] .

Note that under the reversible Markov chain assumption, we have 𝑃 = 𝑃 . Also, recall that the choice

of state 1 as the reference state is arbitrary, so we may assumeWLOG that 𝜋1 = 𝜋max := max𝑖∈[𝑛] 𝜋𝑖 .
Let 𝐺 := 𝑃 − 1𝜋⊤ ∈ R𝑛×𝑛 denote the gap between the one-step transition kernel and its mixed
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version; explicitly, 𝑔𝑖𝑠 = 𝑝𝑖𝑠 − 𝜋𝑠 . The above equation can be rewritten as

𝛿𝑖 =
©­«
∑︁
𝑠∈[𝑛]

(𝜋𝑠 + 𝑝𝑖𝑠 − 𝜋𝑠 ) 𝛿𝑠ª®¬ + 𝛼 ©­«
∑︁
𝑠∈[𝑛]

(𝜋𝑠 + 𝑝𝑖𝑠 − 𝜋𝑠 ) (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))ª®¬
=

∑︁
𝑠

𝜋𝑠𝛿𝑠 + 𝛼
∑︁
𝑠

𝜋𝑠 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))︸                                       ︷︷                                       ︸
=:𝑇

+
∑︁
𝑠

𝑔𝑖𝑠 (𝛿𝑠 + 𝛼𝐴(𝑠)𝑧𝑠 + 𝛼𝑏 (𝑠)) , ∀𝑖 ∈ [𝑛],

where 𝑇 ∈ R𝑑 is independent of 𝑖 . But 𝛿1 = 0, hence

𝑇 = −
∑︁
𝑠

𝑔1𝑠 (𝛿𝑠 + 𝛼𝐴(𝑠)𝑧𝑠 + 𝛼𝑏 (𝑠)) .

Combining the last two display equations to cancel out 𝜔 and rearranging terms, we obtain

𝛿𝑖 −
∑︁
𝑠

(𝑔𝑖𝑠 − 𝑔1𝑠 ) 𝛿𝑠 =
∑︁
𝑠

(𝑔𝑖𝑠 − 𝑔1𝑠 ) (𝛼𝐴(𝑠)𝑧𝑠 + 𝛼𝑏 (𝑠)) , ∀𝑖 ∈ [𝑛] .

Let 𝑌 ∈ R𝑛×𝑑 be the matrix whose 𝑠-th row is 𝑦⊤𝑠 := 𝛼 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))⊤ ∈ R𝑑 , and recall that

Δ ∈ R𝑛×𝑑 has rows {𝛿⊤𝑖 }. The above equation can be written compactly as[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]
Δ =

(
𝐺 − 1𝑔⊤

)
𝑌, (A.55)

where 𝑔⊤ is the first row of 𝐺 .

A.5.3 Step 2: Establishing Δ = O(𝛼 𝜆2
1−𝜆2 ). We proceed by bounding the two sides of (A.55). Using

the eigendecomposition of 𝑃 , we have

𝐺 = 𝑃 − 1𝜋⊤ =

𝑛∑︁
𝑖=2

𝜆𝑖𝑢𝑖𝑣
⊤
𝑖 ,

1𝑔⊤ =

𝑛∑︁
𝑖=2

𝜆𝑖𝑢𝑖 (1)1𝑣⊤𝑖 .
(A.56)

Let 𝛿 (𝑘) ∈ R𝑛 denote the 𝑘-th column of Δ and 𝑦 (𝑘) denote the 𝑘-th column of 𝑌 . Using the

expressions in (A.56), we establish the following two lemmas, which give a lower bound of the

LHS of (A.55) and an upper bound of its RHS. The proofs of these two lemmas are given in

Appendix A.5.5.

Lemma A.11. We have

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝑥


2
𝜋
≥ (1 − 𝜆2)

2𝜋max

2

∥𝑥 ∥2𝜋 , ∀𝑥 ∈ R𝑛 .

Consequently, for each 𝑘 ∈ [𝑑],

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝛿 (𝑘)



2
𝜋
≥ (1 − 𝜆2)

2𝜋max

2

∥𝛿 (𝑘)∥2𝜋 .

Lemma A.12. For each 𝑘 ∈ [𝑑], we have

(𝐺 − 1𝑔⊤) 𝑦 (𝑘)

2
𝜋
≤ 2𝜆2

2

(
1 + 𝜋−1

max

)
∥𝑦 (𝑘)∥2𝜋 .

Applying these two lemmas to the two sides of (A.55), we obtain that

(1 − 𝜆2)2𝜋max

2

∥𝛿 (𝑘)∥2𝜋 ≤ 2𝜆2
2

(
1 + 𝜋−1

max

)
∥𝑦 (𝑘)∥2𝜋 , ∀𝑘 ∈ [𝑑] . (A.57)
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In the sequel, we use the following equivalence relationship between the ℓ2 and ℓ2 (𝜋) norms:

√
𝜋min ∥𝑥 ∥2 ≤ ∥𝑥 ∥𝜋 ≤

√
𝜋max ∥𝑥 ∥2 ≤ ∥𝑥 ∥2 ,

where 𝜋min := min𝑖∈[𝑁 ] 𝜋𝑖 > 0. With the above convention and relationship, the bound (A.57)

implies that

(1 − 𝜆2)2 ∥𝛿 (𝑘)∥22 ≤ 8𝜋−1
max

𝜆2
2
∥𝑦 (𝑘)∥2

2
, ∀𝑘 ∈ [𝑑],

whence

(1 − 𝜆2)2 ∥Δ∥2𝐹 ≤ 8𝜋−1
max

𝜆2
2
∥𝑌 ∥2𝐹 . (A.58)

Recall that the matrix 𝑌 ∈ R𝑛×𝑑 has rows 𝑦⊤𝑠 = 𝛼 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))⊤, which satisfy

∥𝑦𝑠 ∥2 ≤ 𝛼 (𝐴max ∥𝑧𝑠 ∥2 + 𝑏max) , ∀𝑠 ∈ [𝑛] .

As shown in Lemma A.9, that

∥𝑧𝑠 ∥2 ≤ 𝑐 ·𝐶1 (𝐴,𝑏, 𝜋),
so it follows that

∥𝑌 ∥2𝐹 =

𝑛∑︁
𝑖=1

∥𝑦𝑖 ∥22 ≤ 𝑛 · 𝛼2 (𝐴max · 𝑐 ·𝐶1 (𝐴,𝑏, 𝜋) + 𝑏max)2 ,

and

∥𝑌 ∥𝐹 ≤ 𝛼
√
𝑛 · (𝐴max · 𝑐 ·𝐶1 (𝐴,𝑏, 𝜋) + 𝑏max)

Combining with (A.58), we get

∥Δ∥𝐹 ≤
√︃
8𝜋−1

max
· 𝜆2

1 − 𝜆2
∥𝑌 ∥𝐹

≤
(√︃

8𝜋−1
max
· 𝜆2

1 − 𝜆2

)
·
(
𝛼
√
𝑛 · (𝐴max · 𝑐 ·𝐶1 (𝐴,𝑏, 𝜋) + 𝑏max)

)
≤ 𝑐 · 𝛼

√
𝑛 · 1

𝜋max

· 𝜆2

1 − 𝜆2
· (𝐴max ·𝐶1 (𝐴,𝑏, 𝜋) + 𝑏max)

(i)

≤ 𝑐 · 𝛼
√
𝑛 · 1

𝜋max

· 𝜆2

1 − 𝜆2
·
(
𝐴max ·

2

𝜋min

· 𝛾max

𝛾min

· (
√
𝜅 + ∥𝜃 ∗∥) + 𝑏max

)
(ii)

≤ 𝑐 · 𝛼
√
𝑛 · 1

𝜋max

· 𝜆2

1 − 𝜆2
·
(

2

𝜋min

· 𝛾max

𝛾min

· (
√︃
640𝛾max𝑠

−2
min
(𝐴)𝑏2

max
+ 𝑠−1

min
(𝐴)𝑏max) + 𝑏max

)
≤ 𝑐′ · 𝛼

√
𝑛 · 𝜆2

1 − 𝜆2
· 1

𝜋max𝜋min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max, (A.59)

where we substitute the definition of 𝐶1 in (A.36) to obtain (i), and substitute the definition of 𝜅 in

(4.3) to obtain (ii).

As shown in (A.59), we are able to establish that

Δ = O
(
𝛼

𝜆2

1 − 𝜆2

)
.

A.5.4 Step 3: Characterizing the Bias. We can bootstrap from the upper bound (A.59) to obtain

a more precise relationship between Δ, 𝛼 and 𝜆2. This is done in the following lemma, whose

proof is given in Appendix A.5.5. Note that the proof provides explicit formulas for 𝐵3 (𝐴,𝑏, 𝑃) and
𝐵4 (𝐴,𝑏, 𝑃, 𝛼); see equation (A.68).
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Lemma A.13. We have

Δ = 𝛼𝐵3 (𝐴,𝑏, 𝑃) + 𝛼2𝐵4 (𝐴,𝑏, 𝑃, 𝛼), (A.60)

for some vectors 𝐵3 (𝐴,𝑏, 𝑃) and 𝐵4 (𝐴,𝑏, 𝑃, 𝛼) satisfying

∥𝐵3 (𝐴,𝑏, 𝑃)∥2 ≤ 𝑐
√
𝑛 · 𝜆2

1 − 𝜆2
·
(

1

𝜋min

· 𝑠−1
min
(𝐴) · 𝑏max

)
and

∥𝐵4 (𝐴,𝑏, 𝑃, 𝛼)∥2 ≤ 𝑐′𝑛 ·
(
𝜆2

1 − 𝜆2

)
2

·
(

1

𝜋max𝜋
2

min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

)
,

where 𝑐 and 𝑐′ are universal constants.

We first take the above lemma for granted and complete the proof of Theorem 4.4. The key step of

the proof is to relate Δ to the bias E[𝜃∞] −𝜃∗. To see the relationship, we first recall equations (A.38)
and (A.45), restated below:

𝑧1 = 𝜃
∗ −𝐴−1

𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗 ,

E[𝜃⊤∞] = 𝜋⊤𝑍 = 𝜋⊤ (Δ + 1𝑛 · 𝑧⊤1 ) = 𝑧⊤1 + 𝜋⊤Δ.

Therefore, substituting 𝑍1 into the right-hand side of E[𝜃⊤∞], we have

E[𝜃∞] − 𝜃 ∗ = −𝐴−1
𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗 + Δ⊤𝜋

=

𝑛∑︁
𝑗=1

𝜋 𝑗 (𝐼 −𝐴−1𝐴( 𝑗))𝛿 𝑗

=
[
𝜋1 (𝐼 −𝐴−1𝐴(1)) · · · 𝜋𝑛 (𝐼 −𝐴−1𝐴(𝑛))

]
· ®𝛿

(i)

= 𝛼 · 𝐵(𝐴,𝑏, 𝑃) + 𝛼2 · 𝐵′ (𝐴,𝑏, 𝑃, 𝛼),

where step (i) holds for some appropriate vectors 𝐵(𝐴,𝑏, 𝑃) and 𝐵′ (𝐴,𝑏, 𝑃) in light of the expres-

sion (A.60) in Lemma A.13. This proves equation 4.10 in Theorem 4.4.

Moreover, applying the upper bounds in Lemma A.13, we obtain that

∥𝐵(𝐴,𝑏, 𝑃)∥2
(ii)

≤ 𝑐
(
1 + 𝐴max

𝑠min (𝐴)

)
· ∥𝐵3∥𝐹

≤ 𝑐′
(
1 + 𝐴max

𝑠min (𝐴)

)
· 𝑛 · 1

𝜋min

· 𝑠−1
min
(𝐴) · 𝑏max

≤ 𝑐′′ 𝜆2

1 − 𝜆2
· 𝑛

𝜋min

· 𝑠−2
min
(𝐴) · 𝑏max,

where step (ii) follows from a loose bound of the term 𝜋𝑖 (𝐼 −𝐴−1𝐴(𝑖)).
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Similarly, we have

∥𝐵′ (𝐴,𝑏, 𝑃, 𝛼)∥2 ≤ 𝑐
(
1 + 𝐴max

𝑠min (𝐴)

)
· ∥𝐵4∥𝐹

≤ 𝑐′
(
1 + 𝐴max

𝑠min (𝐴)

)
·
(
𝑐′𝑛3/2 ·

(
𝜆2

1 − 𝜆2

)
2

·
(

1

𝜋max𝜋
2

min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

))
≤ 𝑐′

(
1 + 𝐴max

𝑠min (𝐴)

)
·
(
𝑐′𝑛3/2 ·

(
𝜆2

1 − 𝜆2

)
2

·
(

1

𝜋max𝜋
2

min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

))
≤ 𝑐′′ ·

(
𝜆2

1 − 𝜆2

)
2

·
(

𝑛3/2

𝜋max𝜋
2

min

· (1 + 𝛾max)2
𝛾min

· 𝑠−2
min
(𝐴)𝑏max

)
.

We have established the bounds (4.11) and (4.12) in Theorem 4.4 and completed the proof thereof.

A.5.5 Proofs of Technical Lemmas. We first present the following simple upper bound, which is

needed in the proof of Lemma A.11 and A.12.

Lemma A.14. It holds that (
𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 (1)
)
2

≤
𝜆2
2

𝜋max

(
𝑛∑︁
𝑖=2

𝛽2𝑖

)
.

Proof. We have(
𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 (1)
)
2

≤ 𝜆2
2

(
𝑛∑︁
𝑖=2

|𝛽𝑖 | |𝑢𝑖 (1) |
)
2

|𝜆2 | ≥ |𝜆3 | ≥ . . . ≥ |𝜆𝑛 |

≤ 𝜆2
2

(
𝑛∑︁
𝑖=2

𝛽2𝑖

) (
𝑛∑︁
𝑖=2

𝑢𝑖 (1)2
)
. Cauchy-Schwarz

Note that

𝑛∑︁
𝑖=2

𝑢𝑖 (1)2 =
𝑛∑︁
𝑖=2

𝑒⊤
1
𝑢𝑖𝑢
⊤
𝑖 𝑒1

≤
𝑛∑︁
𝑖=1

𝑒⊤
1
𝑢𝑖𝑢
⊤
𝑖 𝑒1

= 𝑒⊤
1
𝑈𝑈 ⊤𝑒1

= 𝑒⊤
1
𝐷−

1

2𝑊𝑊 ⊤𝐷−
1

2 𝑒1 𝑈 = 𝐷−
1

2𝑊

= 𝑒⊤
1
𝐷−1𝑒1 𝑊𝑊 ⊤ = 𝐼

=
1

𝜋1
.

Combining the above bounds and recalling that 𝜋1 = 𝜋max, we complete the proof of Lemma

A.14. □

Proof of Lemma A.11. Fix an arbitrary vector 𝑥 ∈ R𝑛 . Since {𝑢𝑖 } is an orthonormal basis of

ℓ2 (𝜋), we can 𝑥 =
∑𝑛
𝑗=1 𝛽 𝑗𝑢 𝑗 for some 𝛽 ∈ R𝑛 satisfying ∥𝛽 ∥2

2
= ∥𝑥 ∥2𝜋 . Using the expressions of 𝐺
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and 1𝑔⊤ in equation (A.56), we have[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]
𝑥 =

[
𝐼 −

𝑛∑︁
𝑖=2

𝜆𝑖 (𝑢𝑖 − 𝑢𝑖 (1)1) 𝑣⊤𝑖

] (
𝑛∑︁
𝑗=1

𝛽 𝑗𝑢 𝑗

)
=

𝑛∑︁
𝑖=1

𝛽𝑖𝑢 𝑗 −
𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖 (𝑢𝑖 − 𝑢𝑖 (1)1) 𝑣⊤𝑖 𝑢 𝑗 = 𝛿𝑖 𝑗

=

(
𝛽1 −

𝑛∑︁
𝑗=2

𝜆 𝑗𝛽 𝑗𝑢𝑖 (1)
)
1 +

𝑛∑︁
𝑖=2

𝛽𝑖 (1 − 𝜆𝑖 )𝑢𝑖 . 𝑢1 = 1

Since the vectors {1, 𝑢2, . . . , 𝑢𝑛} are orthonormal in ℓ2 (𝜋), we have

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝑥


2
𝜋
=

(
𝛽1 −

𝑛∑︁
𝑗=2

𝜆 𝑗𝛽 𝑗𝑢𝑖 (1)
)
2

+
𝑛∑︁
𝑖=2

𝛽2𝑖 (1 − 𝜆𝑖 )2. (A.61)

Consider two cases:

• If 𝛽2
1
≤ 𝜋−1

max

∑𝑛
𝑖=2 𝛽

2

𝑖 , then ∥𝛽 ∥
2

2
≤ (1 + 𝜋−1

max
)∑𝑛

𝑖=2 𝛽
2

𝑖 . Combining with (A.61) gives

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝑥


2
𝜋
≥ (1 − 𝜆2)2

𝑛∑︁
𝑖=2

𝛽2𝑖 |𝜆2 | ≥ |𝜆3 | ≥ . . . ≥ |𝜆𝑛 |

≥ (1 − 𝜆2)2
1

1 + 𝜋−1
max

∥𝛽 ∥2
2

=
(1 − 𝜆2)2

1 + 𝜋−1
max

∥𝑥 ∥2𝜋 . ∥𝛽 ∥2
2
= ∥𝑥 ∥2𝜋

• If 𝛽2
1
> 𝜋−1

max

∑𝑛
𝑖=2 𝛽

2

𝑖 , then ∥𝛽 ∥
2

2
< 𝛽2

1
+ 𝜋max𝛽

2

1
≤ (1 + 𝜋−1

max
)𝛽2

1
. It follows that�����𝛽1 − 𝑛∑︁

𝑗=2

𝜆 𝑗𝛽 𝑗𝑢𝑖 (1)
����� ≥ |𝛽1 | − 𝜆2

√√
𝜋−1
max

𝑛∑︁
𝑖=2

𝛽2
𝑖

Lemma A.14

> |𝛽1 | − 𝜆2 |𝛽1 |
= (1 − 𝜆2) |𝛽1 |

≥ (1 − 𝜆2) ·
1√︁

1 + 𝜋−1
max

∥𝛽 ∥
2
.

Combining with (A.61) gives

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝑥


2
𝜋
≥ (1 − 𝜆2)

2

1 + 𝜋−1
max

∥𝛽 ∥2
2
=
(1 − 𝜆2)2

1 + 𝜋−1
max

∥𝑥 ∥2𝜋 .

Therefore, in both cases we have

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝑥


2
𝜋
≥ (1 − 𝜆2)

2𝜋max

2

∥𝑥 ∥2𝜋 , .

where we use the fact that 𝜋−1
max
≥ 1. This proves the first part of Lemma A.11.

Taking 𝑥 to be each column of Δ, we obtain that

[𝐼 − (
𝐺 − 1𝑔⊤

) ]
𝛿 (𝑘)



2
𝜋
≥ (1 − 𝜆2)

2𝜋max

2

∥𝛿 (𝑘)∥2𝜋 , ∀𝑘 ∈ [𝑑],

which proves the second part of Lemma A.11. □
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Proof of Lemma A.12. Fix an arbitrary index 𝑘 ∈ [𝑑] and recall that 𝑦 (𝑘) is the 𝑘-th column of

𝑌 . Using the expression of 𝐺 and 1𝑔⊤ in equation (A.56), we have(
𝐺 − 1𝑔⊤

)
𝑦 (𝑘) =

𝑛∑︁
𝑖=2

𝜆𝑖 (𝑢𝑖 − 𝑢𝑖 (1)1) 𝑣⊤𝑖 𝑦 (𝑘). (A.62)

Since {𝑢𝑖 } is an orthogonal basis of ℓ2 (𝜋), we can write𝑦 (𝑘) =
∑𝑛
𝑗=1 𝛽 𝑗𝑢 𝑗 for some 𝛽 ∈ R𝑛 satisfying

∥𝛽 ∥2
2
= ∥𝑦 (𝑘)∥2𝜋 . Plugging into (A.62) and using the property 𝑣⊤𝑖 𝑢 𝑗 = 𝛿𝑖 𝑗 , we obtain(

𝐺 − 1𝑔⊤
)
𝑦𝑘 =

𝑛∑︁
𝑖=2

𝑛∑︁
𝑗=1

𝜆𝑖𝛽 𝑗 (𝑢𝑖 − 𝑢𝑖 (1)1) 𝑣⊤𝑖 𝑢 𝑗

=

𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖 (𝑢𝑖 − 𝑢𝑖 (1)1)

=

𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 −
(
𝑁∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 (1)
)
1.

It follows that

(𝐺 − 1𝑔⊤) 𝑦𝑘

2𝜋 ≤ 2






 𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖






2
𝜋

+ 2
(
𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 (1)
)
2

∥1∥2𝜋 triangle inequality, (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2

= 2

(
𝑛∑︁
𝑖=2

𝜆2𝑖 𝛽
2

𝑖

)
+ 2

(
𝑛∑︁
𝑖=2

𝜆𝑖𝛽𝑖𝑢𝑖 (1)
)
2

ℓ2 (𝜋) orthonormality of {𝑢𝑖 }

≤ 2𝜆2
2

(
𝑛∑︁
𝑖=2

𝛽2𝑖

)
+ 2 ·

𝜆2
2

𝜋max

(
𝑛∑︁
𝑖=2

𝛽2𝑖

)
|𝜆2 | ≥ |𝜆3 | ≥ . . . ≥ |𝜆𝑛 | , Lemma A.14

≤ 2𝜆2
2

(
1 + 𝜋−1

max

)
∥𝑦 (𝑘)∥2𝜋 , ∥𝛽 ∥2

2
= ∥𝑦 (𝑘)∥2𝜋

which completes the proof of Lemma A.12. □

Proof of Lemma A.13. By Lemma A.11, we know that

𝜋max



𝐼 − (𝐺 − 1𝑔⊤)𝑥

2
2
≥



𝐼 − (𝐺 − 1𝑔⊤)𝑥

2
𝜋

≥ (1 − 𝜆2)
2𝜋max

2

∥𝑥 ∥2𝜋

≥ (1 − 𝜆2)
2𝜋max

2

· 𝜋min∥𝑥 ∥22.

Canceling out 𝜋max on both sides, we obtain

𝐼 − (𝐺 − 1𝑔⊤)𝑥

2
2
≥ (1 − 𝜆2)

2𝜋min

2

∥𝑥 ∥2
2
, (A.63)

which implies that 𝑠min (𝐼 − (𝐺 − 1𝑔⊤)) ≥ (1−𝜆2 )
2𝜋min

2
. By Assumption 1, it is clear that 𝜋min > 0 and

|𝜆2 | < 1. Hence, 𝐼 − (𝐺 − 1𝑔⊤) is invertible. As such, we can rewrite (A.55) as

Δ =
[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]−1 (
𝐺 − 1𝑔⊤

)
𝑌 . (A.64)

Then, as 𝑌 ∈ R𝑛×𝑑 has rows 𝑦⊤𝑠 = 𝛼 (𝐴(𝑠)𝑧𝑠 + 𝑏 (𝑠))⊤, we substitute it into (A.64), and obtain

Δ =
[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]−1 (
𝐺 − 1𝑔⊤

)
· 𝛼 (M + b) , (A.65)
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where

M =


(𝐴(1)𝑧1)⊤

...

(𝐴(𝑛)𝑧𝑛)⊤

 , and b =


𝑏⊤
1

...

𝑏⊤𝑛

 .
Next, we recall that shown in Appendix A.4.4 that

𝑧𝑠 = 𝜃
∗ −𝐴−1

𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗 + 𝛿𝑠 = 𝜃 ∗ +𝐶 (𝑠 ) (𝐴,𝑏, 𝜋) ®𝛿,

where

𝐶 (𝑠 ) (𝐴,𝑏, 𝜋) =
[
𝜋1𝐴(1) 𝜋2𝐴(2) · · · 𝜋𝑛𝐴(𝑛)

]
+ 𝑒⊤𝑠 ⊗ 𝐼𝑑 ∈ R𝑑×𝑛𝑑 .

We then substitute the above definition of 𝑧𝑠 intoM and have

M =


(𝐴(1) · (𝜃 ∗ +𝐶 (1) (𝐴,𝑏, 𝜋) ®𝛿))⊤

...

(𝐴(𝑛) · (𝜃 ∗ +𝐶 (𝑛) (𝐴,𝑏, 𝜋) ®𝛿))⊤

 =


(𝐴(1) · 𝜃 ∗)⊤

...

(𝐴(𝑛) · 𝜃 ∗)⊤

 +

(𝐴(1) ·𝐶 (1) (𝐴,𝑏, 𝜋) ®𝛿)⊤

...

(𝐴(𝑛) ·𝐶 (𝑛) (𝐴,𝑏, 𝜋) ®𝛿)⊤

 . (A.66)

We set 𝐵1 (𝐴,𝑏, 𝑃) = [𝐼 − (𝐺 − 1𝑔⊤)]−1 (𝐺 − 1𝑔⊤). Together with (A.66), (A.65) becomes

Δ = 𝛼𝐵1 (𝐴,𝑏, 𝑃)
©­­­«

(𝐴(1) · 𝜃 ∗ + 𝑏1)⊤

...

(𝐴(𝑛) · 𝜃 ∗ + 𝑏𝑛)⊤

 +

(𝐴(1) ·𝐶 (1) (𝐴,𝑏, 𝜋) ®𝛿)⊤

...

(𝐴(𝑛) ·𝐶 (𝑛) (𝐴,𝑏, 𝜋) ®𝛿)⊤


ª®®®¬ . (A.67)

We further denote

𝐶4 (𝐴,𝑏, 𝜋) =

(𝐴(1) · 𝜃 ∗ + 𝑏1)⊤

...

(𝐴(𝑛) · 𝜃 ∗ + 𝑏𝑛)⊤

 , and 𝐵2 (𝐴,𝑏, 𝑃, 𝛼) =

(𝐴(1) ·𝐶 (1) (𝐴,𝑏, 𝜋) ®𝛿)⊤

...

(𝐴(𝑛) ·𝐶 (𝑛) (𝐴,𝑏, 𝜋) ®𝛿)⊤

 ,
and

𝐵3 (𝐴,𝑏, 𝑃) = 𝐵1 (𝐴,𝑏, 𝑃) ·𝐶4 (𝐴,𝑏, 𝜋), and 𝐵4 (𝐴,𝑏, 𝑃, 𝛼) = 𝐵1 (𝐴,𝑏, 𝑃) ·
𝐵2 (𝐴,𝑏, 𝑃, 𝛼)

𝛼
. (A.68)

As such, Δ in (A.67) can be represented as

Δ = 𝛼𝐵3 (𝐴,𝑏, 𝑃) + 𝛼2𝐵4 (𝐴,𝑏, 𝑃, 𝛼).
Therefore, it remains to bound ∥𝐵3 (𝐴,𝑏, 𝑃)∥ and ∥𝐵4 (𝐴,𝑏, 𝑃, 𝛼)∥.
As 𝐵1 is a present in both 𝐵3 and 𝐵4, we start with obtaining an upper bound of ∥𝐵1 (𝐴,𝑏, 𝑃)∥,

∥𝐵1 (𝐴,𝑏, 𝑃)∥2 = ∥
[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]−1 (
𝐺 − 1𝑔⊤

)
∥2

≤ ∥
[
𝐼 −

(
𝐺 − 1𝑔⊤

) ]−1 ∥2∥ (𝐺 − 1𝑔⊤) ∥2 .
By (A.63), we first have 


[𝐼 − (

𝐺 − 1𝑔⊤
) ]−1




2

≤
√︂

2

(1 − 𝜆2)2𝜋min

.

Then we know from Lemma A.12,

𝜋min∥(𝐺 − 1𝑔⊤)𝑦 (𝑘)∥22 ≤ ∥(𝐺 − 1𝑔⊤)𝑦 (𝑘)∥2𝜋
≤ 2𝜆2

2
(1 + 𝜋−1

max
)∥𝑦 (𝑘)∥2𝜋 ≤ 2𝜆2

2
(1 + 𝜋max)∥𝑦 (𝑘)∥22.
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The inequality above implies the following upper bound on the spectral norm of ∥𝐺 − 1𝑔⊤∥2,

∥𝐺 − 1𝑔⊤∥2 ≤

√︄
2𝜆2

2
(1 + 𝜋max)
𝜋min

.

Hence, we obtain the following bound on ∥𝐵1∥,

∥𝐵1 (𝐴,𝑏, 𝑃)∥2 ≤
√︂

2

(1 − 𝜆2)2𝜋min

·

√︄
2𝜆2

2
(1 + 𝜋max)
𝜋min

≤ 4 · 𝜆2

1 − 𝜆2
· 1

𝜋min

. (A.69)

Then, to bound ∥𝐵3∥, we need an upper bound for ∥𝐶4∥. We observe that

∥𝐶4 (𝐴,𝑏, 𝜋)∥22 ≤ ∥𝐶4 (𝐴,𝑏, 𝜋)∥2𝐹 =

𝑛∑︁
𝑖=1

∥𝐴(𝑖)𝜃 ∗ + 𝑏𝑖 ∥2 ≤ 𝑛
(
𝐴max

𝑠min (𝐴)
+ 1

)
2

𝑏2
max

. (A.70)

Therefore, (A.69) and (A.70) together give us the following upper bound on ∥𝐵3∥,

∥𝐵3 (𝐴,𝑏, 𝑃)∥2 ≤ ∥𝐵1 (𝐴,𝑏, 𝑃)∥∥𝐶4 (𝐴,𝑏, 𝜋)∥

≤
(
4 · 𝜆2

1 − 𝜆2
· 1

𝜋min

)
·
(√
𝑛

(
𝐴max

𝑠min (𝐴)
+ 1

)
𝑏max

)
≤ 8

√
𝑛 · 𝜆2

(1 − 𝜆2)𝜋min

· 𝐴max

𝑠min (𝐴)
· 𝑏max

≤ 𝑐
√
𝑛 · 𝜆2

(1 − 𝜆2)
· 1

𝜋min

· 𝑠−1
min
(𝐴) · 𝑏max.

Lastly, we proceed to bound ∥𝐵4 (𝐴,𝑏, 𝑃, 𝛼)∥, and the key is to understand ∥𝐵2 (𝐴,𝑏, 𝑃, 𝛼)∥. We

start with the Frobenius norm of 𝐵2, and we observe

∥𝐵2 (𝐴,𝑏, 𝑃, 𝛼)∥2𝐹 =

𝑛∑︁
𝑖=1

∥𝐴(𝑖) ·𝐶 (𝑖 ) (𝐴,𝑏, 𝜋) vec(Δ⊤)∥2
2
=

𝑛∑︁
𝑖=1






𝐴(𝑖) ( ( 𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗 ) + 𝛿𝑖
) )




2

≤
𝑛∑︁
𝑖=1

𝐴2

max
∥
( 𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗 ) + 𝛿𝑖
)
∥2 ≤ 2

𝑛∑︁
𝑖=1

𝐴2

max

(



 𝑛∑︁
𝑗=1

𝜋 𝑗𝐴( 𝑗)𝛿 𝑗




2 + ∥𝛿𝑖 ∥2)

≤2
𝑛∑︁
𝑖=1

𝐴2

max

(
𝑛∑︁
𝑗=1

𝜋 𝑗 ∥𝐴( 𝑗)𝛿 𝑗 ∥2 + ∥𝛿𝑖 ∥2
)

≤2
𝑛∑︁
𝑖=1

𝐴2

max
(𝐴2

max
+ 1)∥Δ∥2𝐹

(i)

≤2𝑛(𝐴2

max
+ 1)2

(
𝑐 · 𝛼
√
𝑛 · 𝜆2

1 − 𝜆2
· 1

𝜋max𝜋min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

)
2

≤𝑐 · 𝑛2 · 𝛼2 ·
(
𝜆2

1 − 𝜆2
· 1

𝜋max𝜋min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

)
2

,

where we make use of the upper bound of ∥Δ∥2
𝐹
in (A.59) to achieve the inequality (i).
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Therefore, we conclude that

∥𝐵4 (𝐴,𝑏, 𝑃, 𝛼)∥2 ≤
1

𝛼
∥𝐵1 (𝐴,𝑏, 𝑃)∥2∥𝐵2 (𝐴,𝑏, 𝑃, 𝛼)∥2

≤ 1

𝛼
·
(
4 · 𝜆2

1 − 𝜆2
· 1

𝜋min

)
·
(
𝑐 · 𝑛 · 𝛼 ·

(
𝜆2

1 − 𝜆2
· 1

𝜋max𝜋min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

))
≤ 𝑐′𝑛 ·

(
𝜆2

1 − 𝜆2

)
2

·
(

1

𝜋max𝜋
2

min

· 𝛾max

𝛾min

(𝛾max + 1) 𝑠−1min
(𝐴)𝑏max

)
.

As such, we have completed the proof of Lemma A.13. □

A.6 Proof of Corollary 4.5
We prove the first and second moment bounds in Corollary 4.5.

A.6.1 First Moment. We first have

E[ ¯𝜃𝑘0,𝑘 ] − 𝜃 ∗ = (E[𝜃∞] − 𝜃 ∗) +
1

𝑘 − 𝑘0

𝑘−1∑︁
𝑡=𝑘0

E[𝜃𝑡 − 𝜃∞]︸             ︷︷             ︸
𝑇1

.

To bound 𝑇1, we recall (4.5): for 𝑘 ≥ 𝜏 ,

∥E[𝜃𝑘 ] − E[𝜃∞] ∥ ≤ 𝐶 (𝐴,𝑏, 𝜋) ·
(
1 − 0.9𝛼

𝛾max

)𝑘/2
.

As the burn-in period satisfies 𝑘0 ≥ 𝜏 , we have the following bound,

∥𝑇1∥ =




 𝑘−1∑︁
𝑡=𝑘0

E[𝜃𝑡 − 𝜃∞]




 ≤ 𝑘−1∑︁

𝑡=𝑘0

∥E[𝜃𝑡 ] − E[𝜃∞]∥

≤ 𝐶 (𝐴,𝑏, 𝜋)
(
1 − 0.9𝛼

𝛾max

)𝑘0/2 𝛾max

0.9𝛼

≤ 𝐶′ (𝐴,𝑏, 𝜋) · 1
𝛼
· exp

(
− 𝛼𝑘0

4𝛾max

)
. (A.71)

Together with (4.7), we obtain that

E[ ¯𝜃𝑘0,𝑘 ] − 𝜃 ∗ = 𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2) + O
(

1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

))
,

thereby establishing equation (4.13).
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A.6.2 Second Moment. Before we move on to obtain a bound for E
[ (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

) (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

)⊤]
, the

PR-averaged second moment, we first try to understand E
[
( ¯𝜃𝑘0,𝑘 − E[𝜃∞]) ( ¯𝜃𝑘0,𝑘 − E[𝜃∞])⊤

]
,

E
[
( ¯𝜃𝑘0,𝑘 − E[𝜃∞]) ( ¯𝜃𝑘0,𝑘 − E[𝜃∞])⊤

]
=

1

(𝑘 − 𝑘0)2
E


(
𝑘−1∑︁
𝑡=𝑘0

𝜃𝑘0,𝑘 − E[𝜃∞]
) (

𝑘−1∑︁
𝑡=𝑘0

𝜃𝑘0,𝑘 − E[𝜃∞]
)⊤

=
1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

E
[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑡 − E[𝜃∞])⊤

]
︸                                                        ︷︷                                                        ︸

𝑇1

+ 1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

𝑘−1∑︁
𝑙=𝑡+1

(
E

[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑙 − E[𝜃∞])⊤

]
+ E

[
(𝜃𝑙 − E[𝜃∞]) (𝜃𝑡 − E[𝜃∞])⊤

] )
︸                                                                                                                  ︷︷                                                                                                                  ︸

𝑇2

.

Below we control 𝑇1 and 𝑇2 respectively.

For 𝑇1, we start with the following decomposition,

E

[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑡 − E[𝜃∞])⊤

]
= E

[
𝜃𝑡𝜃
⊤
𝑡 − 𝜃𝑡E[𝜃⊤∞] − E[𝜃∞]𝜃⊤𝑡 + E[𝜃∞]E[𝜃⊤∞]

]
= E[𝜃𝑡𝜃⊤𝑡 ] − E[𝜃𝑡 ]E[𝜃⊤∞] − E[𝜃∞]E[𝜃⊤𝑡 ] + E[𝜃∞]E[𝜃⊤∞]
=

(
E[𝜃𝑡𝜃⊤𝑡 ] − E[𝜃∞𝜃⊤∞]

)
+

(
E[𝜃∞𝜃⊤∞] − E[𝜃∞]E[𝜃⊤∞]

)
−

(
E[𝜃𝑡 ]E[𝜃⊤∞] + E[𝜃∞]E[𝜃⊤𝑡 ] − 2E[𝜃∞]E[𝜃⊤∞]

)
=

(
E[𝜃𝑡𝜃⊤𝑡 ] − E[𝜃∞𝜃⊤∞]

)
+ Var(𝜃∞) − E[𝜃𝑡 − 𝜃∞]E[𝜃⊤∞] − E[𝜃∞]E[(𝜃𝑡 − 𝜃∞)⊤] . (A.72)

By Corollary 4.2 and Lemma A.7, the following bounds hold for 𝑡 ≥ 𝜏 :

E[∥𝜃𝑡 − 𝜃∞∥] ≤ 𝐶 (𝐴,𝑏, 𝜋) ·
(
1 − 0.9𝛼

𝛾max

)𝑡/2
(A.73)

E [

𝜃𝑡𝜃
⊤
𝑡

]
− E

[
𝜃∞𝜃

⊤
∞
]

 ≤ 𝐶′ (𝐴,𝑏, 𝜋) · (1 − 0.9𝛼

𝛾max

)𝑡/2
E[∥𝜃∞∥] ≤ 𝐶′′ (𝐴,𝑏, 𝜋),
Var(𝜃∞) ≤ 𝐶′′′ (𝐴,𝑏, 𝜋) · 𝛼𝜏 . (A.74)

Plugging these bounds into equation (A.72), we obtain that

E

[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑡 − E[𝜃∞])⊤

]
= O

((
1 − 0.9𝛼

𝛾max

)𝑡/2
+ 𝛼𝜏

)
.
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Hence, we have the following bound for 𝑇1,

1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

E

[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑡 − E[𝜃∞])⊤

]
=

1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

O
((
1 − 0.9𝛼

𝛾max

)𝑡/2
+ 𝛼𝜏

)
= O

(
1

(𝑘 − 𝑘0)2
∞∑︁
𝑡=𝑘0

(
1 − 0.9𝛼

𝛾max

)𝑡/2)
+ O

(
𝛼𝜏

𝑘 − 𝑘0

)
= O

(
1

(𝑘 − 𝑘0)2
· 2𝛾max

0.9𝛼
·
(
1 − 0.9𝛼

𝛾max

)𝑘0/2)
+ O

(
𝛼𝜏

𝑘 − 𝑘0

)
= O

(
1

𝛼 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

)
+ 𝛼𝜏

𝑘 − 𝑘0

)
.

For 𝑇2, we observe that for 𝑙 > 𝑡 , we have

E
[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑙 − E[𝜃∞])⊤

]
= E

[
E
[
(𝜃𝑡 − E[𝜃∞]) (𝜃𝑙 − E[𝜃∞])⊤

��𝜃𝑡 ] ]
= E

[
(𝜃𝑡 − E[𝜃∞]) E

[
𝜃𝑙 − E[𝜃∞]

��𝜃𝑡 ]⊤]
= E

[
(𝜃𝑡 − E[𝜃∞])

(
E[𝜃𝑙

��𝜃𝑡 ] − E[𝜃∞])⊤] .
For any 𝑥 ∈ R𝑑 , it holds that



E[𝜃𝑙 ��𝜃𝑡 = 𝑥 ] − E[𝜃∞]



 = 



E[𝜃𝑙−𝑡 ��𝜃0 = 𝑥 ] − E[𝜃∞]



 (ii)

≤ 𝐶 (𝐴,𝑏, 𝜋) ·
(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2
,

where (ii) follows from the first-moment bound in equation (4.5), which is valid for any initial value

𝜃0. Hence, when 𝑙 > 𝑡 , we have the following inequality,

E
[


(𝜃𝑡 − E[𝜃∞]) (E[𝜃𝑙 ��𝜃𝑡 ] − E[𝜃∞])⊤


]

=E

[

𝜃𝑡 − E[𝜃∞]



E[𝜃𝑙 ��𝜃𝑡 ] − E[𝜃∞]

]
≤E

[

𝜃𝑡 − E[𝜃∞]

] · (𝐶 (𝐴,𝑏, 𝜋) · (1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2)
≤
(
E
[
∥𝜃𝑡 − 𝜃∞∥

]
+ 2E

[
∥𝜃∞∥

] )
·
(
𝐶 (𝐴,𝑏, 𝜋) ·

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2)
(iii)

≤
(
𝐶′ (𝐴,𝑏, 𝜋) ·

(
1 − 0.9𝛼

𝛾max

)𝑡/2
+𝐶′′ (𝐴,𝑏, 𝜋) · (𝛼𝜏𝛼 )1/2

)
·
(
𝐶 (𝐴,𝑏, 𝜋) ·

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2)
=𝐶 (𝐴,𝑏, 𝜋)

(
1 − 0.9𝛼

𝛾max

)𝑙/2
+𝐶′ (𝐴,𝑏, 𝜋) · (𝛼𝜏𝛼 )1/2 ·

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2
,

where in step (iii) we use (A.73) to bound E[∥𝜃𝑡 −𝜃∞∥] and (A.74) to bound E[∥𝜃∞∥], for E[∥𝜃∞∥] ≤
(Var(𝜃∞))1/2.
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Therefore, we have

1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

𝑘−1∑︁
𝑙=𝑡+1
O

((
1 − 0.9𝛼

𝛾max

)𝑙/2)
≤ 1

(𝑘 − 𝑘0)2
∞∑︁
𝑡=𝑘0

∞∑︁
𝑙=𝑡+1
O

((
1 − 0.9𝛼

𝛾max

)𝑙/2)
(A.75)

≤ 1

(𝑘 − 𝑘0)2

(
2𝛾max

0.9𝛼

)
2
(
1 − 0.9𝛼

𝛾max

)𝑘0/2
.

and

1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

𝑘−1∑︁
𝑙=𝑡+1
O

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2
≤ 1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

∞∑︁
𝑙=𝑡+1
O

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2
(A.76)

≤ 1

𝑘 − 𝑘0

(
2𝛾max

0.9𝛼

)
. (A.77)

Hence, we obtain the following upper bound for 𝑇2,

𝑇2 =
1

(𝑘 − 𝑘0)2
𝑘−1∑︁
𝑡=𝑘0

𝑘−1∑︁
𝑙=𝑡+1
O

((
1 − 0.9𝛼

𝛾max

)𝑙/2
+ (𝛼𝜏𝛼 )1/2 ·

(
1 − 0.9𝛼

𝛾max

) (𝑙−𝑡 )/2)
= O

((
2𝛾max

0.9𝛼 (𝑘 − 𝑘0)

)
2
(
1 − 0.9𝛼

𝛾max

)𝑘0/2)
+ O

(
(𝛼𝜏𝛼 )1/2 ·

2𝛾max

0.9𝛼 (𝑘 − 𝑘0)

)
= O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

)
+

√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
.

Combining the above bounds for 𝑇1 and 𝑇2, we obtain

E
[
( ¯𝜃𝑘0,𝑘 − E[𝜃∞]) ( ¯𝜃𝑘0,𝑘 − E[𝜃∞])⊤

]
≤O

(
1

𝛼 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

)
+ 𝛼𝜏

𝑘 − 𝑘0

)
+ O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

)
+

√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
≤O

(
𝛼𝜏

𝑘 − 𝑘0
+

√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

+ 1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
. (A.78)

We are now ready to bound the second moment of the tail-averaged iterate. We make use of the

following decomposition:

E
[ (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

) (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

)⊤]
=E

[ (
¯𝜃𝑘0,𝑘 − E[𝜃∞] + E[𝜃∞] − 𝜃 ∗

) (
¯𝜃𝑘0,𝑘 − E[𝜃∞] + E[𝜃∞] − 𝜃 ∗

)⊤]
=E

[ (
¯𝜃𝑘0,𝑘 − E[𝜃∞]

) (
¯𝜃𝑘0,𝑘 − E[𝜃∞]

)⊤] + E [
(E[𝜃∞] − 𝜃 ∗)

(
¯𝜃𝑘0,𝑘 − E[𝜃∞]

)⊤]
+ E

[ (
¯𝜃𝑘0,𝑘 − E[𝜃∞]

)
(E[𝜃∞] − 𝜃 ∗)⊤

]
+ E

[
(E[𝜃∞] − 𝜃 ∗) (E[𝜃∞] − 𝜃 ∗)⊤

]
.
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We can bound the first term on the right-hand side above using equation (A.78). For the other terms

on the RHS above, we have

E
[ (
¯𝜃𝑘0,𝑘 − E[𝜃∞]

)
(E[𝜃∞] − 𝜃 ∗)⊤

]
=

1

𝑘 − 𝑘0

(
𝑘−1∑︁
𝑡=𝑘0

E [𝜃𝑡 − 𝜃∞]
)
(E[𝜃∞] − 𝜃 ∗)⊤

(iv)

= O
(

1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

)) (
𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2)

)
= O

(
1

𝑘 − 𝑘0
exp

(
− 𝛼𝑘0

4𝛾max

))
,

where step (iv) is due to equations (A.71) and (4.7), and

E
[
(E[𝜃∞] − 𝜃 ∗) (E[𝜃∞] − 𝜃 ∗)⊤

]
= (E[𝜃∞] − 𝜃 ∗) (E[𝜃∞] − 𝜃 ∗)⊤

(v)

= (𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2)) (𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2))⊤

= 𝛼2𝐵′ (𝐴,𝑏, 𝑃) + O(𝛼3),

where step (v) holds by equation (4.7).

Combining all the pieces, we obtain

E
[ (
¯𝜃𝑘 − 𝜃 ∗

) (
¯𝜃𝑘 − 𝜃 ∗

)⊤]
=𝛼2𝐵′ (𝐴,𝑏, 𝑃) + O(𝛼3)

+ O
(
𝛼𝜏𝛼

𝑘 − 𝑘0

)
+ O

(√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
+ O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
.

Lastly, we note that
𝛼𝜏𝛼
𝑘−𝑘0 = O

(√
𝜏𝛼 /𝛼
𝑘−𝑘0

)
, as 𝛼 ≤ 𝛼𝜏𝛼 ≤ 1 in light of equations (4.2) and (A.1). As

such, we have established the desired equation (4.14),

E
[ (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

) (
¯𝜃𝑘0,𝑘 − 𝜃 ∗

)⊤]
= 𝛼2𝐵′ + O

(
𝛼3 +

√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

+ 1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
,

and completed the proof of Corollary 4.5.

Remark 2. The above bounds can be improved when 𝑘0 = 𝑘 − 1, which corresponds to the setting
without tail averaging and ¯𝜃𝑘0,𝑘 = 𝜃𝑘−1. In particular, in equation (A.75) and (A.76) above, we upper
bound a finite sum by an infinite sum. One can bypass this step when 𝑘0 = 𝑘 − 1, in which case the
final second moment bound (4.14) can be improved to

E
[
(𝜃𝑘 − 𝜃 ∗) (𝜃𝑘 − 𝜃 ∗)⊤

]
= 𝛼2𝐵′ + O

(
𝛼3 + 𝛼𝜏𝛼 +

1

𝛼2
exp

(
− 𝛼𝑘

4𝛾max

))
= 𝛼2𝐵′′ + O (𝛼𝜏𝛼 ) + O

(
𝑒−𝛼𝑘/(8𝛾max ) ) .

A.7 Proof of Corollary 4.6
We prove the first and second moment bounds in Corollary 4.6.
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A.7.1 First Moment. We have

E[𝜃 (𝛼 )
𝑘0,𝑘
] − 𝜃 ∗ =

(
2
¯𝜃
(𝛼 )
𝑘0,𝑘
− ¯𝜃
(2𝛼 )
𝑘0,𝑘

)
− 𝜃 ∗

= 2

(
¯𝜃
(𝛼 )
𝑘0,𝑘
− 𝜃 ∗

)
−

(
¯𝜃
(2𝛼 )
𝑘0,𝑘
− 𝜃 ∗

)
(i)

= 2

(
𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2) + O

(
1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

)))
−

(
2𝛼𝐵(𝐴,𝑏, 𝑃) + O(𝛼2) + O

(
1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

2𝛾max

)))
= O(𝛼2) + O

(
1

𝛼 (𝑘 − 𝑘0)
exp

(
− 𝛼𝑘0

4𝛾max

))
,

where (i) holds following from equation (4.13).

A.7.2 Second Moment. Introduce the following short hands:

𝑢1 := ¯𝜃
(𝛼 )
𝑘0,𝑘
− E

[
𝜃
(𝛼 )
∞

]
, 𝑢2 := ¯𝜃

(2𝛼 )
𝑘0,𝑘
− E

[
𝜃
(2𝛼 )
∞

]
and 𝑣 := 2E

[
𝜃
(𝛼 )
∞

]
− E

[
𝜃
(2𝛼 )
∞

]
+ 𝜃 ∗.

With these notations, we write 𝜃𝑘0,𝑘 − 𝜃 ∗ = 2𝑢1 − 𝑢2 + 𝑣 and observe the bound



E [(
˜𝜃𝑘0,𝑘 − 𝜃 ∗

) (
˜𝜃𝑘0,𝑘 − 𝜃 ∗

)⊤]



 = 

E [
(2𝑢1 − 𝑢2 + 𝑣) (2𝑢1 − 𝑢2 + 𝑣)⊤

]


≤ E

[
∥2𝑢1 − 𝑢2 + 𝑣 ∥2

]
≤ E ∥2𝑢1∥2 + 3E ∥𝑢2∥2 + 3 ∥𝑣 ∥2 .

By equation (A.78) we have

E ∥𝑢1∥2 = TrE
[
𝑢1𝑢
⊤
1

]
= O

(√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
+ O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
and similarly,

E ∥𝑢2∥2 = O
(√︁
𝜏2𝛼/𝛼
𝑘 − 𝑘0

)
+ O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

2𝛾max

))
.

Furthermore, by equation (4.7) we have ∥𝑣 ∥2 = O(𝛼4).
Combining these bounds and noting that 𝜏2𝛼 ≤ 𝜏𝛼 , we obtain

E

[(
˜𝜃𝑘−𝑘0 − 𝜃 ∗

) (
˜𝜃𝑘−𝑘0 − 𝜃 ∗

)⊤]
= O

(√︁
𝜏𝛼/𝛼
𝑘 − 𝑘0

)
+ O

(
1

𝛼2 (𝑘 − 𝑘0)2
exp

(
− 𝛼𝑘0

4𝛾max

))
+ O

(
𝛼4

)
.

We have completed the proof of Corollary 4.6.

B EXISTENCE OF HIGHER MOMENTS
The result in [SY19, Theorem 9] provides a sufficient condition for the existence of the𝑚-th moment

of the LSA iterates 𝜃𝑘 . Their condition turns out to be more restrictive than necessary. By tightening

several intermediate steps in their proof, we can establish the following Proposition B.1, which

gives a more relaxed condition. In Appendix B.1 to follow, we explain how to modify the proof of

[SY19, Theorem 9] to prove Proposition B.1.

, Vol. 1, No. 1, Article . Publication date: June 2023.



62 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

Proposition B.1. Assume the stepsize 𝛼 satisfies the condition (4.2). Then, for each positive integer
𝑚 obeying

𝑚 · 𝛼𝜏 <
1

4

√
𝛾max

(
1

√
𝛾min

+ 1
)−1

, (B.1)

it holds for all 𝑘 ≥ 𝑘𝑚 that
E[∥𝜃𝑘 ∥2𝑚] ≤ (2𝑚 − 1)!!(𝑐𝛼𝜏)𝑚,

where

𝑘𝑚 =𝑚𝜏 + 𝑐
𝛼

(
log

1

𝛼

) 𝑚∑︁
𝑡=1

1

𝑡
,

and both 𝑐 and 𝑐 are constants independent of 𝛼 and𝑚.

In the proof of Theorem 4.1, we make use of the existence of the 4th moment. Taking𝑚 = 2 in

Proposition B.1, we see that the condition (B.1) becomes

𝛼𝜏 <
1

8

√
𝛾max

(
1

√
𝛾min

+ 1
)−1

.

Recall our stepsize condition (4.2): 𝛼𝜏 ≤ 0.05
95𝛾max

. Using the inequality 𝛾max ≥ 𝛾min ≥ 1

2
established in

equation (A.1), we have

0.05

95𝛾max

=
0.05

95

√
𝛾max

· 1

√
𝛾max

≤ 0.1

95

√
𝛾max

≤ 1

32

√
𝛾max

<
1

8

√
𝛾max

(
1

√
𝛾min

+ 1
)−1

.

Therefore, the condition (4.2) implies that the condition (B.1) holds with 𝑚 = 2, which in turn

ensures the existence of a finite 4th moment and proves the claim in equation (A.25).

B.1 Proof of Proposition B.1
The proof is similar to that of [SY19, Theorem 9]. We only point out the differences. In the proof

of [SY19, Theorem 9], the key constraint on 𝛼𝜏 and𝑚 that ensures a finite𝑚-th moment arises

when bounding E[∥Ψ0∥2𝑚], where Ψ𝑘 = Γ1/2𝜃𝑘+𝑘𝑚−1 ; see [SY19, Appendix D.4]. Below we provide

a refinement of the arguments therein.

We start with the following decomposition

∥Ψ0∥2𝑚 − ∥Ψ𝑘 ∥2𝑚 =

2𝑚−1∑︁
𝑡=0

(
∥Ψ0∥2𝑚 − 𝑡 ∥Ψ𝑘 ∥𝑡 − ∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡+1

)
=

2𝑚−1∑︁
𝑡=0

∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡 (∥Ψ0∥ − ∥Ψ𝑘 ∥) . (B.2)

Note that

∥Ψ0∥ − ∥Ψ𝑘 ∥ ≤ ∥Ψ𝑘 − Ψ0∥
≤ √𝛾max∥𝜃𝑘 − 𝜃0∥
(i)

≤ 2𝛼𝑘
√
𝛾max (∥𝜃0∥ + 𝑏max)

≤ 2𝛼𝑘
√
𝛾max

(
1

√
𝛾min

∥Ψ0∥ + 𝑏max

)
,
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where we make use of Lemma A.2 to obtain the inequality (i). Hence, for the 𝑡-th summand on the

right-hand side of equation (B.2), we have

∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡 (∥Ψ0∥ − ∥Ψ𝑘 ∥)

≤ 2𝛼𝑘
√
𝛾max∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡

(
1

√
𝛾min

∥Ψ0∥ + 𝑏max

)
≤ 2𝛼𝑘

√
𝛾max

(
1

√
𝛾min

∥Ψ0∥2𝑚−𝑡 ∥Ψ𝑘 ∥𝑡 + 𝑏max∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡
)

≤ 2𝛼𝑘
√
𝛾max

(
1

√
𝛾min

(∥Ψ0∥2𝑚 + ∥Ψ𝑘 ∥2𝑚) + 𝑏max (∥Ψ0∥2𝑚−1 + ∥Ψ𝑘 ∥2𝑚−1)
)
.

We further note the following bound:

1

√
𝛾min

∥Ψ0∥2𝑚 + 𝑏max∥Ψ0∥2𝑚−1 = ∥Ψ0∥2(𝑚−1)
(

1

√
𝛾min

∥Ψ0∥2 + 𝑏max∥Ψ0∥
)

≤ ∥Ψ0∥2(𝑚−1)
(

1

√
𝛾min

∥Ψ0∥2 + (𝑏2max
+ ∥Ψ0∥2)

)
= ∥Ψ0∥2(𝑚−1)

((
1

√
𝛾min

+ 1
)
∥Ψ0∥2 + 𝑏2max

)
=

(
1

√
𝛾min

+ 1
)
∥Ψ0∥2𝑚 + 𝑏2max

∥Ψ0∥2(𝑚−1) . (B.3)

Similarly, we have

1

√
𝛾min

∥Ψ𝑘 ∥2𝑚 + 𝑏max∥Ψ𝑘 ∥2𝑚−1 ≤
(

1

√
𝛾min

+ 1
)
∥Ψ𝑘 ∥2𝑚 + 𝑏2max

∥Ψ𝑘 ∥2(𝑚−1) . (B.4)

Combining equations (B.3) and (B.4), the 𝑡-th summand on the right-hand side of (B.2) admits the

following upper bound:

∥Ψ0∥2𝑚−(𝑡+1) ∥Ψ𝑘 ∥𝑡 (∥Ψ0∥ − ∥Ψ𝑘 ∥)

≤2𝛼𝑘√𝛾max

((
1

√
𝛾min

+ 1
)
(∥Ψ0∥2𝑚 + ∥Ψ𝑘 ∥2𝑚) + 𝑏2max

(∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) )
)

≤2𝛼𝑘√𝛾max

((
1

√
𝛾min

+ 1
)
(∥Ψ0∥2𝑚 + ∥Ψ𝑘 ∥2𝑚) + 𝑏2max

(∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) )
)
.

Substituting the above bound back into equation (B.2), we have

∥Ψ0∥2𝑚−∥Ψ𝑘 ∥2𝑚 ≤ 4𝑚𝛼𝑘
√
𝛾max

((
1

√
𝛾min

+ 1
)
(∥Ψ0∥2𝑚 + ∥Ψ𝑘 ∥2𝑚) + 𝑏2max

(∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) )
)
.

Set𝐶 ≡ 𝐶 (𝐴,𝑏, 𝜋) = 4

√
𝛾max

(
1√
𝛾min

+ 1
)
and𝐶′ ≡ 𝐶′ (𝐴,𝑏, 𝜋) = √𝛾max𝑏

2

max
. We have the inequalities

∥Ψ0∥2𝑚 − ∥Ψ𝑘 ∥2𝑚 ≤ 𝑚𝛼𝑘𝐶 (∥Ψ0∥2𝑚 + ∥Ψ𝑘 ∥2𝑚) +𝑚𝛼𝑘𝐶′ (∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) ),
(1 −𝑚𝛼𝑘𝐶)∥Ψ0∥2𝑛 ≤ (1 +𝑚𝛼𝑘𝐶)∥Ψ𝑘 ∥2𝑚 +𝑚𝛼𝑘𝐶′ (∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) ),

∥Ψ0∥2𝑚 ≤
1 +𝑚𝛼𝑘𝐶
1 −𝑚𝛼𝑘𝐶 ∥Ψ𝑘 ∥

2𝑚 + 𝑛𝛼𝑘𝐶′

1 −𝑚𝛼𝑘𝐶 (∥Ψ0∥2(𝑚−1) + ∥Ψ𝑘 ∥2(𝑚−1) ).

Therefore, the constraint on𝑚 arises as we set 𝜏 = 𝑘 and require𝑚𝛼𝜏𝐶 < 1. Hence, to ensure a

finite𝑚-th moment, we require𝑚𝛼𝜏 < 1

𝐶
, which corresponds to the condition (B.1) in the statement

of Proposition B.1.
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C DETAILS FOR NUMERICAL EXPERIMENTS
In this section, we provide the details for the setup of the numerical experiments in Section 5.

C.1 Setup for LSA Experiments
For the experiments on LSA, we generate the transition probability matrix 𝑃 and functions 𝐴 and 𝑏

randomly as follows.

We first illustrate the steps we take to generate the transition matrix 𝑃 . For a given 𝑛 (= |X|), we
start with a random matrix 𝑀 (𝑃 ) ∈ [0, 1]𝑛×𝑛 with entries𝑚

(𝑃 )
𝑖 𝑗

𝑖 .𝑖 .𝑑 .∼ 𝑈 [0, 1], and normalize it to

obtain a stochastic matrix 𝑀̂ (𝑃 ) =
(
𝑚̂
(𝑃 )
𝑖 𝑗

)
with 𝑚̂

(𝑃 )
𝑖 𝑗

=
𝑚
(𝑃 )
𝑖 𝑗∑𝑛

𝑘=1
𝑚
(𝑃 )
𝑖𝑘

. We then examine the period and

reducibility of the stochastic matrix 𝑀̂ (𝑃 ) to ensure that it is aperiodic and irreducible as required

in Assumption 1. If 𝑀̂ (𝑃 ) is not aperiodic or irreducible, we then repeat the above procedure until

we obtain one, and set 𝑃 := 𝑀̂ (𝑃 ) . Now with 𝑃 generated, we compute the stationary distribution 𝜋 .

Next, we proceed to generate𝐴(𝑥) for 𝑥 ∈ X. As we also need𝐴 = E𝜋 [𝐴(𝑥)] Hurwitz as required
in Assumption 3, we start with generating the Hurwitz matrix 𝐴 and then add noise to obtain

the respective 𝐴(𝑥). We first generate a random matrix𝑀 (𝐴) ∈ R𝑑×𝑑 with𝑚
(𝐴)
𝑖 𝑗

𝑖 .𝑖 .𝑑 .∼ N(0, 1), and
examine the eigenvalues 𝜆𝑖 (𝑀 (𝐴) ), as Hurwitz matrix has eigenvalues all with strictly negative

real parts. If Re(𝜆𝑖 (𝑀 (𝐴) )) < 0 for all 𝑖 = 1, . . . , 𝑑 , then𝑀 (𝐴) is Hurwitz and we set it as 𝐴 := 𝑀 (𝐴) .
Otherwise, we adjust𝑀 (𝐴) to obtain a Hurwitz matrix,𝐴 := 𝑀 (𝐴) − 2max(Re(𝜆𝑖 (𝑀 (𝐴) ))) · 𝐼𝑑 . With

𝐴 generated, we add a noise matrix 𝐸 (𝑥) ∈ [−1, 1]𝑑×𝑑 to 𝐴 to obtain 𝐴(𝑥), i.e., 𝐴(𝑥) = 𝐴 + 𝐸 (𝑥).
As E𝜋 [𝐸 (𝑥)] = 0, we only generate 𝐸 (𝑥) with 𝑒 (𝑥)𝑖 𝑗 𝑖 .𝑖 .𝑑.∼ 𝑈 [−1, 1] for 𝑥 = 1, . . . , 𝑛 − 1, and set

𝐴(𝑛) = 𝐴−∑𝑛−1
𝑥=1 𝜋𝑥𝐸 (𝑥). Lastly, to align with our assumption, we normalize𝐴(𝑥) by the following

procedure,

𝐴(𝑥) ← 𝐴(𝑥)/max

𝑥
∥𝐴(𝑥)∥, 𝐴← 𝐴/max

𝑥
∥𝐴(𝑥)∥,

to ensure that 𝐴max := 1.

Lastly, we generate 𝑏 (𝑥) ∈ R𝑑 with 𝑏 (𝑥)𝑖 𝑖 .𝑖 .𝑑.∼ [−1, 1] and obtain
¯𝑏 =

∑
𝑥 𝜋𝑥𝑏 (𝑥) and 𝑏max =

max𝑥 ∥𝑏 (𝑥)∥.

C.2 Setup for TD(0) Experiments
We consider the TD(0) algorithm applied to the so-called “problematic MDP” considered in the

work [KP00, LP03]. This MDP involves 𝑛S = 4 states, S = {1, 2, 3, 4}, arranged from left to right. At

each state, there are two available actions, “Left" (L) and “Right" (R). When the action L is chosen,

with probability 0.9 the state transitions to the left (or stays at the same position if the current state

is the leftmost state 1), and with probability 0.1 the state transitions in the opposite direction (or

stay at the same position if the current state is the rightmost state 4). The dynamics under the action

R is defined symmetrically. The reward function is given by 𝑟 (1) = 0, 𝑟 (2) = 1, 𝑟 (3) = 3, 𝑟 (4) = 0,

with a discount factor 𝛾 = 0.9. We consider evaluating the policy that takes the actions R, R, L, and

L at states 1, 2, 3, 4, respectively (this policy is the optimal policy for this MDP). The induced MRP

is illustrated in Figure 5.
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Fig. 5. The Problematic MDP under “RRLL" Policy.
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We apply TD(0) with linear function approximation to the above MRP. For each state 𝑠 ∈
{1, 2, 3, 4}, the corresponding 𝑑 = 3 dimensional feature vector is given by

𝜙 (𝑠) = (1, 𝑠, 𝑠2)⊤,

which is used in the work [KP00]. We then normalize each row of the feature matrix Φ ∈ R𝑛S×𝑑 to

have unit ℓ2; explicitly, we set

𝜙 (𝑠)𝑖 ←
𝜙 (𝑠)𝑖∑
4

𝑠=1 𝜙 (𝑠)𝑖
, 𝑖 = 1, 2, 3, 4.

Note that one may ensure the condition max𝑠∈S ∥𝜙 (𝑠)∥ ≤ 1√
1+𝛾 required by our theory by further

rescaling the entire matrix Φ. In our experiments, we ignore this rescaling step, as it is equivalent

to simply rescaling the stepsize and iterates.
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