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We consider Linear Stochastic Approximation (LSA) with constant stepsize and Markovian data. Viewing the
joint process of the data and LSA iterate as a time-homogeneous Markov chain, we prove its convergence to a
unique limiting and stationary distribution in Wasserstein distance and establish non-asymptotic, geometric
convergence rates. Furthermore, we show that the bias vector of this limit admits an infinite series expansion
with respect to the stepsize. Consequently, the bias is proportional to the stepsize up to higher order terms.
This result stands in contrast with LSA under i.i.d. data, for which the bias vanishes. In the reversible chain
setting, we provide a general characterization of the relationship between the bias and the mixing time of the
Markovian data, establishing that they are roughly proportional to each other.

While Polyak-Ruppert tail-averaging reduces the variance of the LSA iterates, it does not affect the bias. The
above characterization allows us to show that the bias can be reduced using Richardson-Romberg extrapolation
with m > 2 stepsizes, which eliminates the m — 1 leading terms in the bias expansion. This extrapolation
scheme leads to an exponentially smaller bias and an improved mean squared error, both in theory and
empirically. Our results immediately apply to the Temporal Difference learning algorithm with linear function
approximation, Markovian data, and constant stepsizes.
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1 INTRODUCTION

In this paper, we consider the following Linear Stochastic Approximation (LSA) iteration driven by
Markovian noise:

Oks1 = 9k+a(A(xk)9k+b(xk)), k=0,1,2,...,

where (xi)k>o is a Markov chain representing the underlying data stream, A and b are determin-
istic functions, and a > 0 is a constant stepsize. LSA is an iterative data-driven procedure for
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approximating the solution 6* to the linear fixed point equation A0* + b = 0, where A := 3", m;A(i),
b := Y, mb(i), and 7 is the stationary distribution of the chain (x;)xso.

Stochastic Approximation (SA), which uses recursive stochastic updates to solve fixed-point
equations, is a fundamental algorithmic paradigm in many areas, such as stochastic control and
filtering [KY03, Bor08], approximate dynamic programming and reinforcement learning (RL) [Ber19,
SB18]. For example, the celebrated Temporal Difference (TD) learning algorithm [Sut88] in RL,
potentially equipped with linear function approximation, is a special case of LSA and an important
algorithm primitive in RL. Variants of TD algorithm such as TD(4) and Gradient TD, as well as
Stochastic Gradient Descent for linear-quadratic estimation, can also be written as LSA [LS18].

Classical work on SA and LSA focuses on the setting with diminishing stepsizes, which allows for
asymptotic convergence of 0y to 8* [RM51, Blu54, BM00]. Due to its simplicity and fast convergence,
SA with constant stepsizes has attracted attention in a growing line of recent work, which establishes
non-asymptotic results valid for finite values of k [LS18, SY19, CMSS21b, BRS21]. These results
provide upper bounds on the mean-squared error (MSE) E||0x — 6*||%, and such bounds typically
consist of the sum of two terms: a finite-time “bias” term' that decays with k, and a steady-state
MSE upper bound that is independent of k.

In this work, we study LSA with constant stepsizes in the lens of Markov chain theory. We
provide a more precise characterization of the MSE in terms of the decomposition

E|l6 - 0°|1* =< 6 — EOL || +[E6L — 0% || + Var(6y),
—
optimization error asymptotic bias? variance

where the random variable GS’) denotes the limit (as k — o) of the LSA iterate ) with stepsize .
Our main results characterize the behavior of the three terms above.

Convergence and optimization error. With a constant stepsize «, the process (xg, Ok )x>o is a
time-homogeneous Markov chain. We show that under appropriate conditions, the sequence of
(xx, 0x) converges to a unique limiting random variable (X, 9‘50'1) ) in distribution and in W5, the
Wasserstein distance of order 2, regardless of the initial distribution. Moreover, the distribution of
(Xco> Héoa)) corresponds to the unique stationary distribution of the chain (x, 0k )x>o. We further
provide non-asymptotic bounds on the distributional distance between 6; and nga) in W,, which
in turn upper bounds the optimization error ||Ef; — EGS) ||. Both bounds decay exponentially in
k thanks to the use of a constant stepsize. We emphasize that the existence of the limit 6., and
the convergence rate cannot be deduced from the existing upper bound on the MSE E||0x — 6*||%,
which does not vanish as k — oo.

Variance and asymptotic bias. By the law of large numbers, the variance Var(6x) can be
eliminated by averaging the LSA iterates. For example, the Polyak-Ruppert tail-averaged iterate

O = kL/z ';:_kl/z 0, has variance of order O(1/k). Consequently, for large k, the MSE of 6y is

dominated by the asymptotic bias, i.e., E||f — 6,]|2 ~ |[Efw — 6%|% = |[EO'®) — 6*||%. Our second
main result establishes that the asymptotic bias is proportional to the stepsize a (up to a second
order term):

B - 6" = aBY + 0(a?), (1.1)

where B is a vector independent of & and admits an explicit expression in terms of A, b and the
transition kernel P of the data Markov chain (xj)g>o. Crucially, equation (1.1) is an equality rather
than an upper bound. The asymptotic bias is not affected by averaging the LSA iterates.

INot to be confused with the asymptotic bias discussed below.
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Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes 3

Bias expansion and extrapolation. The equality (1.1) implies that bias can be reduced using
a simple and clever technique called Richardson-Romberg (RR) extrapolation: run LSA with two
stepsizes @ and 2a, compute the respective averaged iterates 9_150’) and 9_122“), and output their linear
combination 0~]£a) = 29_15“) - Q_I(CM). Doing so cancels out the leading term in the bias characteriza-

tion (1.1) and results in an order-wise smaller bias Eé:gf) - 0" = 0(a?).
In fact, the bias characterization (1.1) extends to higher orders. We establish that the bias admits
the following infinite series expansion:

E@(Eovf) - 0" = aBW +¢?B@ 4+ o*B®) ... (1.2)

where the B()’s are independent of a. Consequently, RR extrapolation can be executed with any
m > 2 stepsizes to eliminate the m — 1 leading terms in equation (1.2), reducing the asymptotic bias
to a high order term O(a™).

When put together, the above results show that the combination of Constant Stepsize, Averaging,
and Extrapolation allows one to approach the best of three worlds: (a) using a constant stepsize leads
to fast, geometric-in-k convergence for the optimization error, (b) tail-averaging eliminates the
variance at an (optimal) 1/k rate, and (c) RR extrapolation order-wise reduces the asymptotic bias.
We highlight that the m iterate sequences used in RR extrapolation can be computed in parallel,
using the same data stream (xj)r>o. Therefore, compared with standard LSA, the above-combined
procedure is data efficient (in terms of the sample complexity k for achieving a given MSE), does
not require sophisticated tuning of stepsize, and incurs a minimal increase in computational cost.

The results above should be contrasted with the setting of LSA with i.i.d. data, where the x;’s
are sampled independently from the distribution 7. In this setting, it has been shown (sometimes
implicitly) in existing work that the asymptotic bias is zero [LS18, MLW*20]. Such a result should
not be surprising, as similar results are well known in the literature on stochastic gradient descent
(SGD) for optimizing quadratic functions given i.i.d. data, for which the SGD update is linear. It is
perhaps surprising that using Markovian data leads to a non-zero asymptotic bias, even when the
LSA iteration is linear in 6. In Figure 1, we provide the dependency graphs for LSA with i.i.d. data
and Markovian data. In the Markovian setting, the correlation between the x;’s leads to additional
correlation among the iterate ;’s; in particular, the iterate sequence (0x)k>o is no longer a Markov
chain by itself. As such, 0,1 has an implicit, nonlinear dependence on 6 through (xj_1, x). This
non-linearity is the source of the asymptotic bias.

/ //@/ / /“/‘"/

xk+1

Fig. 1. Dependency Graphs of LSA. Left: i.i.d. data. Right: Markovian data.

Bias and mixing time. We generalize and quantify the observations above by relating the
asymptotic bias to the mixing time of the underlying Markov chain (xy ) and the second largest
eigenvalue modulus (SLEM) |13| of the transition kernel. We show that the leading coefficient BV

in the expansion (1.2) has norm upper bounded by O ( 1‘7/1\212\ ), at least in the setting where the chain

(xx)xk>0 is reversible. It is well known that the mixing time of (x)x>o can be tightly upper and
lower bounded by |A,| [LP17]. Consequently, the faster the underlying chain (xj)r>¢ mixes, the
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smaller the asymptotic bias is. As a special case, LSA with i.i.d. data has zero mixing time and |A;|,
hence zero bias.

All our results can be immediately specialized to the TD algorithm in RL with linear function
approximation and Markovian data. For both LSA and TD, we provide numerical results that
corroborate the prediction of our theory and demonstrate the benefit of using constant stepsizes,
tail averaging and RR extrapolation.

Paper Organization: In Section 2, we review existing results related to our work. We formalize
the problem and assumptions in Section 3, and present our main results in Section 4. In Section 5,
we provide numerical results for both LSA and TD. We outline the proofs of the main results in
Section 6. The paper is concluded in Section 7 with a discussion of future directions.

2 RELATED WORK

In this section, we review existing results that are most related to our work.

2.1 Classical Results on Stochastic Approximation

The study of stochastic approximation can be traced back to the work of Robbins and Monro
[RM51]. Under suitable assumptions, Robbins and Monro [RM51] prove that the SA algorithm
asymptotically converges in L?, and Blum [Blu54] shows that the convergence holds almost surely.
Subsequent works [Rup88, Pol90] propose the technique of iterate averaging, now known as the
Polyak-Ruppert (PR) averaging, which improves the convergence rates. A Central Limit Theorem
(CLT) for asymptotic normality of the averaged iterates is established in [PJ92]. Borkar and Meyn
[BM00] introduce the Ordinary Differential Equation (ODE) technique for analyzing SA algorithms,
and they show that under certain conditions, the SA iterates approximate the solution of a suitable
ODE. Utilizing the ODE technique, recent work [BCD*21] establishes a functional CLT for SA
driven by Markovian noise.

The asymptotic theory of SA is well-developed and covered in several excellent textbooks [KY03,
Bor08, BMP12]. Convergence results in classical SA work typically assume that the stepsize oy
at iteration k satisfies: };7°  ax = coand 37, ai < oo, This assumption implies that the stepsize
sequence is diminishing but square-summable. Our work, on the other hand, focuses on the setting
of constant stepsizes, i.e., ax = a for all k > 0.

2.2 SA and SGD with Constant Stepsizes

Using constant stepsizes has been a popular choice in practice due to fast convergence and easy
implementation. Recent years have witnessed a growing body of work on the constant stepsize
setting of SA and the closely related Stochastic Gradient Descent (SGD) algorithm.

A majority of work in this line studies SA and SGD under the i.i.d. noise assumption, and
some provide finite-time bounds. The work in [LS18] analyzes LSA and establishes finite-time
upper and lower bounds on the MSE. The work [MLW*20] provides refined results, establishing
tight bounds with the optimal dependence on problem-specific constants as well as a CLT for the
averaged iterates with a characterization of the exact asymptotic covariance matrix. A line of recent
work makes use of new results on random matrix products to analyze LSA: the work [DMN*21]
establishes tight concentration bounds of LSA, and the paper [DMNS22] extends these bounds to
LSA with iterate averaging.

The work in [DDB20] studies constant stepsize SGD for strongly convex and smooth functions.
By connecting SGD to classical Markov chain analysis, they establish that the iterates converge to a
unique stationary distribution. This result is generalized to non-convex and non-smooth functions
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with quadratic growth in the work [YBVE21]. The paper [YBVE21] establishes asymptotic normality
of the averaged SGD iterates, and subsequent work [CMM22] studies the limit of the stationary
distribution as stepsize goes to zero. These results are established under the i.i.d. noise setting.

More recent work studies constant-stepsize SA under Markovian noise. The work [SY19] provides
finite-time bounds on the MSE of LSA. The work [MPWB21] considers LSA with PR averaging and
establishes instance-dependent MSE upper bounds with tight dimension dependence. Some papers
[SY19, DMNS22] also provide instance-dependent bounds on higher moments of LSA iterates.
Going beyond LSA, the work [CMSS20, CMSS21b] considers general SA with contractive mapping
and provides finite-time convergence results.

A portion of our results are similar in spirit to [DDB20, Proposition 2] and [DMN*21, Theorem
3], in that we both study LSA and SGD with constant stepsizes in the lens of time-homogeneous
Markov chains. A crucial difference is that we consider the Markovian data setting whereas they
consider i.i.d. data. Arising naturally in stochastic control and RL problems, the Markovian setting
leads to non-zero asymptotic bias and new analytical challenges, which are not present in the i.i.d.
setting. Our analysis for the Markovian setting involves more delicate coupling arguments and
builds on the Lyapunov function techniques from [SY19]. Along the way, we obtain a refinement of
the MSE bounds from the work [SY19]. We discuss these analytical challenges and improvements
in greater detail after stating our theorems; see Sections 4 and 6.

2.3 Applications in Reinforcement Learning and TD Learning

Many iterative algorithms in RL aim to solve for the fixed point of Bellman equations and can be
viewed as special cases of SA [SB18, Ber19]. For example, the TD algorithms [Sut88] with linear
function approximation, including TD(0) and more generally TD(A), are LSA procedures. Our results
can be specialized to TD learning and hence are related to existing work in this line.

Classical results on TD Learning, similarly to those on SA, focus on asymptotic convergence
under diminishing stepsizes [Sut88, Day92, DS94, TVR97]. More recent works provide finite-time
results. The work [DSTM18] is among the first to provide MSE and concentration bounds for
linear TD learning in its original form without any centering or projection steps, and their analysis
assumes diminishing stepsize and i.i.d. noise. The work [BRS21] presents finite-time analysis of
TD(0) under both ii.d. and Markovian noise, with both diminishing and constant stepsizes. Their
results require adding a projection step in TD(0) to ensure boundedness. The Lyapunov analysis
in [SY19] on LSA with constant stepsize, when specialized to TD(0), removes this projection step
and proves similar upper bounds on the MSE. The recent work in [CMSS21a, CMSS21b] uses
Lyapunov theory to study the tabular TD and obtains finite sample convergence guarantees. The
paper [KPR*21] provides sharp, instance-dependent £, error bounds for the tabular TD algorithm
with i.i.d. data.

Q-learning [WD?92], a standard algorithm in RL for estimating the optimal action-value function,
can be viewed as a (nonlinear) SA procedure with general contractive mappings. Classical works in
Q-learning [Tsi94, Sze97, EDMB03] establish asymptotic convergence under diminishing stepsizes.
More recent works characterize finite-time convergence rates. The work [CMSS21b] establishes
finite-time MSE bounds for tabular Q-learning with constant stepsizes and Markovian noise. The
work [CBD22] presents high probability bounds for Q-learning with diminishing stepsizes. While
related, results on Q-learning are not directly comparable to ours, as Q-learning involves a nonlinear
update.

3 SET-UP AND ASSUMPTIONS

In this section, we formally set up the problem and the assumptions/notations used in the sequel.
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3.1 Problem Set-up
3Let (xx)k>0 be a Markov chain on the state space X with stationary distribution . Consider the
following linear stochastic approximation iteration

0 =6 + o (A(xk)9,§“> + b(xk)) . k=01,..., (3.1)

where A : X — R4 and b : X — R? are fixed functions, and a > 0 is a constant stepsize. In what
follows, we omit the superscript in Gl(ca) when the dependence on « is clear from the context. The
initial distribution of 6y is arbitrary and may depend on xy, as illustrated by the dotted line between
X and 0y in the dependency graph in the right pane of Figure 1. We assume that 6 is independent
of (xr)k>1 given xo.

The iterative procedure (3.1) is a common approach for approximating the target vector 6* € R,
defined as the solution to the steady-state equation

E;[A(x)]0+E;[b(x)] =0, (3.2)

where E, [-] denotes the expectation with respect to x ~ 7, and « is the stationary distribution of
the Markov chain (xj). Our general goal is to characterize the relationship between the finite-time
iterate 9 and the target solution 6*.

The stochastic process (0 )k>o of the LSA iterates is not a Markov chain itself. In particular,
given Oy, the random variables 6y, and 6y_, are correlated through the underlying Markov process
(x0, x1, . . ., xx). However, it is easy to see that the joint process (xi, 0 )k>0 is a Markov chain on
the state space X X R?, and this chain is time-homogeneous as the stepsize « is independent of k.
Moreover, the following independence property holds:

(B0, x0, 01, X1, + - 5 Ok) AL (Xps1, Xpew2s - - +) | xx, Vk > 1. (3.3)

Consequently, we have 0y AL xj.1 | x for all k > 1. The above facts, which we use repeatedly in the
sequel, can be proved by direct calculation. Alternatively, one may verify that the joint distribution
of (xk, Ok )k>0 obeys the Markov property with respect to the directed acyclic graph in the right
pane of Figure 1, hence the aforementioned (in)dependence properties follow from standard results
on directed graphical models [CDLS99, Corollary 5.11 and Theorem 5.14].

Part of our analysis makes use of the notion of time reversal of Markov chains. Let P = (p;;)
denote the probability transition kernel of the Markov chain (xi)gs. If P is irreducible, then the
chain (xg)r>o starting from the stationary distribution and running backward in time is also a
Markov chain, whose transition kernel P = (§; ;) is given by the equation

ﬂ'J']A)j,' = Tipij for all l,]
Moreover, P is also irreducible and its stationary distribution is the same as that of P [Nor97,
Theorem 1.9.1]. The Markov chain (xi)k>¢ is called reversible if P = P.

3.2 Assumptions
Below we state the assumptions needed for our main theorems.

ASSUMPTION 1. (xi)k>o is an irreducible and aperiodic Markov chain on a finite state space
X ={L1,2,...,n} with stationary distribution . In addition, the distribution of the initial state x is 7.

Under the first part of Assumption 1, the Markov chain (xj)gso is positive recurrent with a
unique stationary distribution 7, and the chain converges to 7 from any initial distribution of xj.
Moreover, the chain has a geometric mixing rate [LP17, Theorem 4.9]. That is, there exist constants
p €[0,1) and ¢ > 0 such that

max||(p})" - 7y < ep, (3.4)
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where (pX)T denotes the x-th row of the k-step transition matrix P¥ and || - ||y is the total variation
norm.

We impose the additional stationarity assumption xy ~ 7 so as to simplify several mathemat-
ical expressions. This assumption is not essential and can be relaxed by applying our analysis
after the chain (x)x>o has approximately mixed, which happens quickly owing to the geometric
mixing property (3.4). Note that the same stationarity assumption is also used in several previous
works [BRS21, MPWB21]. We believe the assumption of a finite state space X can also be relaxed
and replaced by an appropriate mixing condition (such as those from [SY19, MPWB21]); we do
not pursue this direction in this paper. The irreducible and aperiodic assumptions are also stan-
dard in the literature (e.g., [SY19, BRS21, CMSS21b]) and ensure a well-defined limiting stationary
distribution, which is the object of focus in this paper.

Our next two assumptions are similar to those used in the work [SY19, DMNS22]. Below we use
|| - || to denote the Euclidean #£,-norm for vectors and the spectral norm for matrices (i.e., the largest
singular value of matrices).

ASSUMPTION 2. We assume that

Amax = max ||A(x)|| €1 and bpax := max ||b(x)]|| < co.
xeX xeX

Under Assumptions 1 and 2, we know that the following two limits exist,

klim E[A(xx)] = A = E,[A(x)],

‘ ) (3.5)
Jlim B[b(xe)] = b:=Ex[b(x)],

and there hold the bounds
Al < Amax <1 and  [|B]| < byax.

Playing an important role in our analysis is the mixing time of the Markov chain (xx)r>o Wwith
respect to the functions A(-) and b(-), defined as follows.

DEFINITION 3.1. Fore € (0, 1), define t. > 1 to be the e-mixing time of (xx)x>o in the sense that
||E[A(xk)|xo =x] —AH <e€-Apax,. VxeX,Vk =1, (3.6)
[E[bCxi) %0 = x] = B|| < € brmaxs  Vx € X, Vk > .. (3.7)

Under Assumptions 1 and 2, the e-mixing time satisfies 7. < K log % for all € € (0, 1), where the
number K > 1 is independent of €. This fact can be seen from the following inequality

B LBl = x] = Bl| =

Dk = m)b (i)

< bmax . (2 max ”P;I; - 7T||TV) < 2Cbmax : ,Dky
ieX xeX

where the last step follows from the geometric mixing bound (3.4); a similar argument applies to
A(xg).
In the sequel, unless specified otherwise, we always choose € = a and write 7 = 7.

AssumPTION 3. The matrix A is Hurwitz, ie., all eigenvalues have strictly negative real parts.
Therefore, there exists a symmetric positive definite matrix I' such that

AT +TA =], (3.8)

where I is the d-by-d identity matrix.
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The Hurwitz Assumption 3 is standard in the study of the stability of dynamical systems. Under
this assumption, the matrix A is invertible and hence syin(A) > 0, where smin(A) denotes the
smallest singular value of A. Denote by ymin and ymax the minimum and maximum eigenvalues of
the matrix I', respectively. By assumption we have ymax > ymin > 0 and

Yminllol? < 0'T0 < Ymaxll0l’, Vo € RY. (3.9)

3.3 Notations

In the sequel, we generally adopt the following notational convention. Upper case letters (e.g.,
M) denote matrices and lower case letters (e.g., u) denote vectors or scalars; these quantities may
be deterministic or random. The lowercase letter ¢ and its derivatives ¢’, ¢y, etc. denote universal
numerical constants, whose values may change from line to line.

Slightly deviating from the above convention, we use B = B(A, b, P) and its derivatives B’, By,
etc. to denote quantities (vectors or matrices) that depend only on A, b and P, but independent of
the stepsize « and the iteration index k. We use C = C(A, b, 7) to denote a quantity that depends
only on A, b and 7, but is independent of «, k and other properties of P (i.e., its mixing time).
While one may overcast C(A, b, ) with B(A, b, P), we distinguish these two types of quantities
whenever possible. This distinction allows us to isolate the impact of 7 and its corresponding
Perron-Frobenius eigenvalue 1 from the remaining eigenvalues/vectors of P, the transition kernel
of the underlying Markov chain (xx)r>o. Note that these remaining eigenvalues/vectors, including
the eigenvalue with the second largest modulus (SLEM), determine the mixing time of P. The above
convention plays an important role in our results concerning the relationship to mixing time.

As we are primarily interested in the scaling relationship of various quantities with respect to
the stepsize a and the number of iteration k, we make use of the following big-O notation: for a
given function f of @ and k, we write h = O(f(a, k)) if it holds that

for some B(A, b, P) independent of a and k, where || - || denotes the Euclidean £,-norm for vectors
and the spectral norm for matrices (i.e., the largest singular value). For example, h = O(«/k) means
llA|l < B(A,b,P) - a/k.

For a random variable z, let £(z) denote the law/distribution of z. Let P,(R?) be the space
of square-integrable distributions on R?, and similarly let P,(X x R¢) be the set of probability
measures 7 on the product space X x R¢ with the property that the marginal of 7 on R? is square-
integrable. Let I,;, and 1,, denote the m X m identity matrix and the m-dimensional all-one vector,
respectively. We omit the subscript when the dimension m is clear from the context.

4 MAIN RESULTS

In this section, we present our main results. In Section 4.1, we prove that the LSA iterates (xi, Ok )k >0,
viewed as a time-homogeneous Markov chain, converge to a unique limiting distribution, and we
provide its explicit convergence rates. In Sections 4.2 and 4.3, we further characterize the above
limit and its relationship with the stepsize and mixing time. We explore the implications of these
results for PR tail averaging, RR extrapolation and linear TD(0) Learning in Sections 4.4 and 4.5.

4.1 Convergence to Limit Distribution

Our convergence results are based on the Wasserstein distance of order 2; see [Vil09, Chapter 6]
for an introduction to this topic. The Wasserstein-2 distance between two probability measures y
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and v in P,(R?) is defined as

1/2
Wa(uv) = _inf ( /R - ol dé o))

Eell(p,v
=inf { (BlI0- ') £(0) =p L) =7},

where IT(y, v) denotes the set of all couplings between p and v, i.e., the collection of joint distribu-
tions in P, (R? x R?) with marginal distributions p and v. To study the joint process (xk, Ok ) k>0, We
extend the above Wasserstein-2 distance to the space P, (X X Rd). Let dy : X X X — R, denote the
discrete metric on X, that is, do(x, x") := 1{x # x’}. Define the following metric d on the product
space X x R%:

d((x,0), (x',0)) = Vdo(x, x7) + 1|6 — 07|12

For a pair of distributions 7 and 7 in 5 (X x R%), we consider the following Wasserstein-2 distance
w.r.t. the metric d:

_ i} 1/2
W (g, 7) = inf {(E[d(z, z')z]) D L(z)=p L(Z) = v}
12 (4.1)
= inf{(E[do(x, ) 46— 9'||2]) L 0) =g L((x,0)) = 17}.
The simple relationship below follows directly from the definition:
Wo(L(0), L(8')) < Wa(L(x,0), L(x',0")).

Also note that convergence in W, or W, implies the usual convergence in distribution plus the
convergence of the first two moments [Vil09, Definition 6.8, Theorem 6.9].

Our first theorem establishes the convergence of the Markov chain (xx, 0% )x>o in W; to a unique
stationary distribution and characterizes the convergence rate.

THEOREM 4.1. Suppose that Assumptions 1, 2 and 3 hold, and the stepsize a satisfies
0.05
< —
95Ymax

(1) Under all initial distributions of 0y, the sequence of random variables (x, O )x>o converges in
Ws to a unique limit (Xco, O0) ~ jI. Moreover, it holds that

ATy (4.2)

Var(0) < Vmax ATy - K,

0. Ymin
where
K = 640¥max * S (A) + bE - (4.3)

(2) [ is the unique stationary distribution of the Markov chain (xi, Ok )k>o-
(3) Let pp .= L(0) be the second marginal of i. For all k > t,, it holds that

0.9a

k
WE(LO), 1) < WE(L (3w 00, ) < 16 @(EHWOHZHEnwmuﬂ)-(1 ) S

min max
We outline the proof of Theorem 4.1 in Section 6.2, deferring the complete proof to Appendix A.2.
Theorem 4.1 states that the Markov chain (x, Ok )x>0 converges geometrically to a unique limit
(Xc0s O0) ~ fi. Note that the limiting distribution j is in general not a product distribution of its
marginals 7 and p. This convergence result is valid under the stepsize condition (4.2), stated as an
upper bound on the product az,. Since 7, < Klog é for some constant K > 1 independent of «
(see Section 3.2), the condition (4.2) is satisfied for sufficiently small a.
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10 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

We remark on the techniques for proving Theorem 4.1. To establish the convergence of a Markov
chain and the existence of stationary distribution, a standard approach is to show that the chain is
positive recurrent by verifying irreducibility and Lyapunov drift conditions. This approach has
been developed for Markov chains on general state spaces [MT09] and is adopted in the prior
work [YBVE21, BCD*21, LM22]. However, it is not clear how to implement this approach for the
LSA iteration (3.1). For example, suppose that the stepsize @ and the functions A and b take on
rational values. If the initial 6, is rational, then 6y only takes rational values for all k > 0. If 6,
is irrational, then 6 remains irrational. As such, it seems challenging to certify y/-irreducibility
and recurrence for the Markov chain (xi, 0 )0 on the state space X X R4, Instead, we prove
weak convergence to a limiting distribution through the convergence in the Wasserstein distance,
which can be bounded via coupling arguments. The Wasserstein distance is also used in works
[DDB20, DMN*21] to study SGD and LSA under the i.i.d. data assumption; this assumption is
heavily relied upon in their analysis. Moreover, their analysis requires the contraction property
WZ(L(Oks1), 1) < W (L(Ok), p). Establishing this property in our Markovian setting is difficult
if not impossible. Our proof makes use of alternative and substantially more delicate coupling
arguments.

Convergence of 0 in the W, metric implies convergence of the first two moments. Explicit
convergence rates can be deduced from Theorem 4.1, as recorded in the following corollary.

CoROLLARY 4.2. Under the setting of Theorem 4.1, for all k > t, we have

k/2
IE[6] - E[6]]| < C- (1 - 3‘9“) (45)
and y
2
I3 6ce7] -8 ooz < - 1- ) o

for some C = C(A, b, ) and C' = C'(A, b, ) that are independent of @ and k.

The proof of Corollary 4.2 is given in Appendix A.3.

Theorem 4.1 and Corollary 4.2 can be contrasted with convergence results for LSA with a
diminishing stepsize sequence, under which the iterates typically converge almost surely to the
true solution 6%, with a sublinear convergence rate [Blu54, BRS21, CMSS21b]. For example, when
using a diminishing stepsize sequence of the form ay = a/(b + k)¢ with ¢ € (0, 1] and appropriate
values of a, b, the LSA iterates 0 converge to 8* in MSE at a rate O(1/k¢) [CMSS21b, Theorem 2.1].
In comparison, constant-stepsize LSA converges weakly and may have a nonzero bias Ef,, — 6*;
see Theorem 4.3 in the next sub-section. On the other hand, using a constant stepsize leads to
a geometric convergence rate of the form O((1 — v)¥) and hence faster initial convergence, as
demonstrated in our numerical experiments in Section 5.

In practice, when using a diminishing stepsize sequence ax = a/(b + k)¢, the values of a, b and ¢
have a significant impact on the convergence behavior and need to be tuned carefully. For example,
if ¢ = 1 and a is overly small, then the O(1/k) rate will be lost and the convergence performance
will degrade substantially [CMSS21b]. In comparison, LSA with constant stepsizes has only one
tuning parameter and often enjoys a more robust performance [LS18].

4.2 Bias Expansion
Theorem 4.1 above establishes the convergence of Gl(ca) to a limit 9‘5005). Our next theorem provides a

characterization of E[G(an)] — 0%, the asymptotic bias, as a function of the stepsize a.
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Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes 11

THEOREM 4.3. Suppose that Assumptions 1, 2 and 3 hold, and « satisfies equation (4.2). The following
hold for some vectors B() = g (A, b,P),i =1,2,... that are independent of a.

(1) For eachm = 1,2, ..., we have the expansion
E[6*)] = 6" + Z a'BY + O(a™). (4.7)

i=1

(2) For a in a neighborhood of 0, we have the infinite series expansion
E[6] = 6 + Z a'BY, (4.8)

We outline the proof of Theorem 4.3 in Section 6.3, with the complete proof given in Appendix A 4.

Theorem 4.3 is akin to a Taylor series expansion of E[@éoa) ] with respect to a. The existence of
such an expansion is non-trivial: HC(,OQ) is undefined at a = 0, and it is not clear a priori whether
E[Géf,z ) ] is a differentiable and analytic function of «. We emphasize that equations (4.7) and (4.8)
are equalities, hence the bias is non-zero whenever B} # 0. In particular, averaging the LSA
iterates 0y does not affect this bias and only reduces the variance.

The proof of Theorem 4.3 is based on the following idea. As discussed in Section 1, the asymptotic
bias arises due to the implicit nonlinear dependence of 0y; on 0 as both of them depend on the
state xj of the underlying Markov chain. If 6; were independent of xy, the bias would be zero. This
observation suggests that the bias is determined by the strength of dependence between 6y and xk,
which can be quantified by the variation of the conditional expectation E[0y|x; = i] as a function
of i € X. Therefore, our analysis is based on understanding this conditional expectation in steady
state, namely E [0 |xe = i]. We characterize this quantity using the Basic Adjoint Relationship
(BAR) [Har85, HW387, DD11] for the steady state with a specific choice of test functions.

Our proof is non-asymptotic in nature. See equation (A.43) for an explicit upper bound on «
under which part 2 of Thoerem 4.3 holds. If desired, one can read off from the proof an explicit
expression or upper bound for the coefficients B() of the bias expansions; we provide such an
explicit bound for B! in Section 4.3 for reversible P. Importantly, regardless of the functional form
of B{), Richardson-Romberg extrapolation can be used to cancel the lower order terms of « in the
expansions (4.7) and (4.8), which reduces the bias to a higher order term of a. These results are
formally presented in Section 4.4.

4.3 Bias and Mixing Time

As mentioned, the bias E[0] — 0 arises due to the Markovian correlation in the data (xg)gso. If
the chain (xi)x>o mixes slowly, the correlation is strong and intuitively leads to a large bias. Our
next result formalizes this intuition, quantifying the relationship between the bias and the mixing
time of the chain (xy)r>o when this chain is reversible.

Recall that P = (p;;) is the transition probability matrix of the chain (xx ). By Perron-Frobenius
Theorem, the eigenvalues of P can be ordered in such a way that 1 = A; > |A;| > |A3] > ..., where
|A2] is called the second largest eigenvalue modulus (SLEM). The SLEM |A;] is closely related to the
e-mixing time .. For example, it holds that

|A2] 1
1— 2] 1 - |4

for some K’ and K" independent of € [LP17, Theorem 12.4, Theorem 12.5]. In the extreme case
where the x;’s are i.i.d. with distribution s, we have P = 12" and hence 1, = 0.

-K'log(1/€) < 7e <

- K" log(1/¢) (4.9)
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12 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie

The theorem below provides upper bounds on the coefficients B! and B®® in the bias expan-
sions (4.7) in terms of |A,].

THEOREM 4.4. Suppose that Assumptions 1, 2 and 3 hold, « satisfies equation (4.2), and the Markov
chain (xi)r>o is reversible. It holds that

E[6s] — 0* = aB + a’B, (4.10)
for some vectors B = B(A, b, P) and B’ = B'(A, b, P, a) that satisfy

A n
||B||§c-£-—‘s_2

A) - byax and 411
1- |)~2| TTmin ( ) : ( )

|Az|? 2 (14 yma)? -
(1= 2D? Ty *Smin (4) * bmas, (412)

min

1Bl < ¢ -

Ymin

where ¢ and ¢’ are some universal constants.

The salient feature of Theorem 4.4 is that || B|| < C 1'_’}3‘” and ||B’|| < C’ (%)2 for some C and C’
[42]

that only depend on A, b and 7.” Consequently, the bias admits the bound ||E [0e ] -0*|| < 2C-a 72 0
for sufficiently small stepsize a. In light of the relationship (4.9), we see that the bias is small when
the underlying Markov chain (xy)r>¢ mixes fast.

As a special case of Theorem 4.4, the SLEM |A;| and the asymptotic bias are zero when the
data (xg)r>o are i.i.d. This zero-bias property is implicit in the results in [LS18, Theorem 1] and
[MLW*20, Theorem 1], which are dedicated to LSA in the i.i.d. setting. As such, Theorem 4.4 can
be viewed as a generalization of these results to nonzero values of A,.

In addition to the bootstrapping technique used in proving Theorem 4.3, the proof of Theorem 4.4
makes use of the eigendecomposition of a reversible transition probability matrix P. The detailed
proof can be found in Appendix A.5. Nevertheless, we believe results in Theorem 4.4 can be extended
to the non-reversible setting.

4.4 Implications for Averaging and Extrapolation

In this subsection, we exploit the results above to study the performance of LSA in conjunction
with Polyak-Ruppert/tail averaging and Richardson-Romberg extrapolation. We focus on exploiting
the convergence rate bounds in Theorem 4.1 and the bias expansion with m = 1 in Theorem 4.3,
namely

E[0] = 0" +aBY + O(a?).

Using Theorems 4.1 and 4.3, we characterize the MSE in terms of its decomposition into the
optimization error, squared bias and variance, and study how these three quantities interplay with
the use of constant stepsizes, averaging and extrapolation.

Our main focus is on the dependence on the stepsize « and iteration count k, and we follow the
notation convention in Section 3.3. Throughout this sub-section, B = B(A, b, P) and B’ = B’ (A, b, P)
denote vectors or matrices that are independent of @ and k, and their values may change from line
to line. We also use the big-O notation that hides factors independent of & and k.

2Theorem 4.4 provides explicit upper bounds on C and C’. We do not focus on optimizing these bounds in terms of their
scaling with A, b, and 7, and we believe tighter bounds can be obtained by more careful analysis.
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4.4.1  Polyak-Ruppert Averaging. Polyak-Ruppert averaging [Rup88, PJ92] is a classical approach
for reducing the variance and accelerating the convergence of stochastic approximation. Here we
consider the tail-averaging variant of PR averaging [JKK*18]. Define the tail-averaged iterates

k-1

= 1
9k0’k:=k—kot;:409t’ k=k0+1,k0+2,...,

where ky > 0 is a user-specified burn-in period.
_ The following corollary provides non-asymptotic characterization for the first two moments of
Ok, k- The proof can be found in Appendix A.6.

COROLLARY 4.5. Under the setting of Theorem 4.1, the tail-averaged iterates satisfy the following
bounds for allk > ko > 7,:

E[Ok, k] — 0" =aB+0 |a* + _r exp ako and (4.13)
’ a(k — ko)

4Ymax

'T"‘/a+ ! ( ko )) (4.14)

k—k  a?(k—k0)2 P\ 4yma

E [(éko,k - 9*) (éko,k - 9*)T] =a’B +0 (0(3 +

To parse the above results, let us fix kg = k/2 and take the trace of both sides of equation (4.14),
which gives the following bound on the MSE:

— k a2k2
T;: asymptotic ——
squared bias T,: variance

E[||9_k/2,k—9*||2]:azB"+O(a3)+O( T“/“)+0( ! exp(—gfk )) (4.15)

T3: optimization error

The three terms on the right-hand side above have the following interpretation. The term Ty =
(= J2.00 — 0%||* = ||EO — 6%||? is the asymptotic squared bias, which is not affected by averaging.
The term T roughly corresponds to the variance Var(6 k), which enjoys a 1/k decay rate due to
averaging. The term T3 corresponds to the optimization error ||Efj 2k — oo J2.00|1%, which decays
geometrically in k thanks to using a constant stepsize & and only averaging the last k/2 iterates. Note
that for large k, the squared bias (term T;) becomes the dominating term in the MSE bound (4.15).

We remark in passing that by setting ko = k — 1 in Corollary 4.5 and observing that ék—l,k =0k
(also see Remark 2), we obtain the following characterization for the MSE of the raw LSA iterate 6:

E[16 - 0°[°] = a?B” + O (arq) + O (e~ Brm)).

This result is consistent with existing MSE upper bounds in [SY19, BRS21]. The power of our result
lies in that it is an equality (up to higher order terms) rather than merely an upper bound, and
that it decouples the contributions from the squared bias #*B” and variance. This decoupling is
crucial in understanding the effect of tail-averaging (in Corollary 4.5) and RR extrapolation (in
Corollary 4.6 to follow).

4.4.2 Richardson-Romberg Extrapolation. We next show that one can use the RR extrapolation
technique [SB02] to reduce the bias to a higher order term of a. Let G_IE?I)( and é,i:jc) denote the
tail-averaged iterates computed using two stepsizes « and 2« using the same data stream (xg)g>o-
The corresponding RR extrapolated iterates are given by

@) _ opla) _ 5a)
ekg,k - zeko,k - eko,k :
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With kg, k — oo, Theorems 4.1 and 4.3 ensure that 972?;( converges to 20‘500[) - 953“), which has bias

2(B0) - 0%) — (BOE™ — 6%) = 2(aBY + O(a?)) — (2aBY + O(4a?)) = O(d?).

We see that the extrapolation cancels out the first-order term of @, hence reducing the bias by a
factor of a.
The following corollary formalizes the above argument and provides non-asymptotic characteri-

zation for the first two moments of 5;:‘])( The proof can be found in Appendix A.7.

COROLLARY 4.6. Under the setting of Theorem 4.1, the RR extrapolated iterates with stepsizes o and
2a satisfy the following bounds for allk > ko > 1,:

na * 1 k
B[ |- =O(az)+0(mexp (— il ))

4Ymax
and
@) g\ (A e\ | _ 4 Vol 1 _ ak
E[(Gko,k 001 - ") }_ 0 (o) +O(k_k0)+0(a2(k_ko)2exp )] @19
asymptotic = “—— —r
squared bias variance optimization error

Comparing the bound (4.16) with (4.14), we see that RR extrapolation reduces the squared bias
by a factor of a? while retaining the 1/k and exp(—k) convergence rates for the variance and
optimization error, respectively.

Thanks to the infinite series expansion in Theorem 4.3, RR extrapolation can in fact be applied
to more than two stepsizes to further reduce the bias. Let A = {ay, @, ..., am} be aset of m > 2
distinct stepsizes and @ = maxj<;<m @;. Let (hy, by, ..., hy) € R™ be the solution to the following
linear equation system:

h; = 1; hial =0, t=1,2,....,m—1. (4.17)

s

1l
—-

s

1l
—-

L

Note that the solution is unique since the coefficient matrix of the system is a Vandermonde matrix.
Then, RR extrapolated iterates with stepsizes in A and the burn-in period kj is given by

m

nA  _ q(ai)

Gko,k = E h; - eko,k . (4.18)
i=1

This procedure eliminates the first m — 1 terms in the bias expansion (4.8), thereby reducing the
bias to

2[5 ] -0 = 3 hi- ([0] - ') = 0™,
i=1

It is possible to derive non-asymptotic bounds similar to Corollary 4.6 — we omit the details. In
Section 5, we numerically verify the efficacy of this high-order RR extrapolation approach.

4.5 Implications for TD Learning

TD(0) is an iterative algorithm in RL for evaluating a given policy for a Markov Decision Pro-
cess (MDP), or equivalently for computing the value function of a Markov Reward Process
(MRP) [Ber19, SB18]. Potentially equipped with function approximation, TD(0) is a special case of
LSA. Consequently, all the results in the previous sub-sections can be specialized to TD(0), as we
show below.
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Consider an MRP (S, PS,r,y), where S = {1,...,n°} is a finite state space, PS = (pg) €

[0, l]"sxns is the transition probability matrix, r : & — [—rmax, 'max] is @ deterministic reward
function, and y € [0,1) is the discount factor. We assume that P is irreducible and aperiodic
with a unique stationary distribution 7. The value function V : 8 — R of this MRP is defined
asV(s) =E [Z‘;‘;O Yir(se)lso = s] , where (sg)kso is a Markov chain on S with PS as the transition
matrix. When the state space § is large, it is common to assume that the value function can be
approximated by a linear function as V(s) ~ ¢(s)76, where ¢(s) € R? denotes a known feature
vector for state s and 0 is an unknown weight vector. If we view V as a vector in R™ and let
@ € R"*d be the feature matrix with ¢(s)T as the s-th row, then the above model can be written
compactly as V ~ ®@. As is standard [BRS21, SY19], we assume that n° > d, the matrix ® has full
column rank, and the feature matrix is re-scaled such that ¢may = sup . s [¢(s)]| < ‘/117

Given a single Markovian data stream (sx )0, the TD(0) algorithm with linear function approxi-
mation is defined by the update rule

Ok = Ok + a[r(sk) + yP(sie1) "0k — P(s6) Ok | P (s).- (4.19)

We assume that the chain (si)gso is initialized at sy ~ 7. TD(0) aims to approximately solve the

so-called projected Bellman equation, whose solution 6* is given by 6* = —(®TD(yP—1)®) “'@TDr,

where D = diag(z°) € [0, 1]"SX”S is a diagonal matrix and r € R™ is the reward function viewed
as a vector.

REMARK 1. A special case of the above setting is when d = nS and the feature vectors are one-hot, i.e.,

¢(s) is the s-th standard basis vector in R™ . In this case, the update (4.19) becomes the (asynchronous)
tabular TD(0) algorithm, and the target solution 0% is the value function'V itself.

It is easy to see that the TD(0) update (4.19) is a special case of the LSA update (3.1) with
Xie = (Skosk1)s ACr) = (si) (¥ (sken) — p(s)) > blxi) = r(si)plse),

and X = {(i, j)eSxS: pg > O}. Below we verify that TD(0) satisfies the required assumptions.

o Assumption 1: The irreducibility and aperiodicity of the chain (si)g>o imply that the aug-
mented chain (xg)k>0 = ((Sk, Sk+1))k>0 also satisfies the same properties. Moreover, by
assumption the chain (si)x>o starts in the steady state, hence so does the chain (xx)g>o.

e Assumption 2: We have

Amax = Sup. gD (yp(J) = NI < (1+y)ppmax  and  bimax = sup Ir (D@D < rmaxPmax-
i,je i€

Therefore, Assumption 2 holds since the features are assumed normalized as @y < ﬁ.
o Assumption 3: The unique stationary distribution 7 of the Markov chain (xx)r» is given by

me=mppy, forx=(ij) € X (4.20)
By direct calculation we have A = 3. x 7, A(x) = ®" D(yP—I)®. It is known that the matrix
A is negative definite (i.e., xTAx < 0,Vx # 0) and hence Hurwitz [TVR97].

Consequently, all the results in Sections 4.1-4.4 apply to TD(0) with linear function approximation,
Markovian data, and constant stepsizes.

We emphasize that the above results hold for TD(0) driven by a single Markovian data stream,
where nonzero asymptotic bias generally exists. In comparison, many existing non-asymptotic
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results on TD(0) consider the i.i.d. data setting; see, e.g., the work in [DSTM18, BRS21, KPR*21,
DMN*21]. TD(0) under this setting corresponds to the update

Ok = Ok + a[r(si) + yP(sp™) Ok — P (si) T Ok | P (s,
where the data x; = (s, s]’;e"t) is independent across k and has the distribution P(sx = i, sl‘c‘e"t =

J) = zrlfs pg. ; equivalently, we have xj Hid- 7, where 7 is given in equation (4.20). In this setting,
Theorem 4.4 implies that TD(0) with a constant stepsize has no asymptotic bias, i.e., E[0.] = 0*.

We note in passing that the TD(A) algorithm [Sut88, TVR97], a generalization of TD(0), can also
be cast as an LSA procedure; see, e.g., the work in [SY19, MPWB21] for a formal reduction. Our
LSA results can be used to characterize TD(A) as well. We omit the details.

5 NUMERICAL EXPERIMENTS

In this section, we provide numerical experimental results for both the LSA iteration (3.1) and the
TD(0) iteration (4.19) with linear function approximation.

5.1 Experiments for LSA

We consider the LSA update (3.1) in dimension d = 4 with n = 8 states. We generate transition
probability P and the functions A and b randomly; see Appendix C.1 for the details. Given P,
we generate a single trajectory of the Markov chain (xk)f=l of length K = 108, and run the LSA

iteration with initialization Gé“) = 0 and stepsizes a € {0.2,0.4,0.8}.
In Figure 2(a), we plot the error ||9]Ea) — 0%|| for the raw LSA iterates Hl(ca), the error for the tail-

averaged (TA) iterates 9_](:72) ,» and the error for the RR extrapolated iterates glia) with stepsizes « and

2a. For comparison, we also include the errors for LSA with a diminishing stepsize ay = 0.2/k%7>.

We see that with constant stepsizes, the raw LSA iterates oscillate, consistent with the distribu-
tional convergence result in Theorem 4.1, whereas the tail averaged iterates converge to a limit. We
also observe that the converged error, which corresponds to the asymptotic bias, is smaller when
using a smaller stepsize. In particular, this error can be seen to be proportional to the stepsize (note
the equal spacing in the log scale between the three TA lines), as predicted by Theorem 4.3. Finally,
RR extrapolation with two stepsizes further reduces the bias, as can be seen by comparing, e.g., the
dashed red line (TA with a = 0.4) and the solid red line (RR with a = 0.4 and 0.8). This observation
is consistent with Corollary 4.6. We also observe that the iterates using a diminishing stepsize
converge with a vanishing error, though its initial convergence is substantially slower than that of
the tail-averaged iterates with constant stepsizes. This agrees with the theoretical prediction of the
sublinear convergence rate of the former and the geometric convergence rate of the latter.

We next investigate the relationship between the error and the mixing time. Given the transition
probability matrix P generated above and its stationary distribution 7, we construct another
transition probability matrix parameterized by § € [0, 1] as follows:

PP =p.P+(1-p) -11".

Note that PV = P, and that P(#) has the same stationary distribution 7 as P for any 8. As f8
decreases from 1 to 0, the SLEM |;| of P%¥) decreases and approaches 0, and hence the mixing
time decreases as well. For different values of f, we run the LSA iteration (3.1) with P'%) as the
transition probability matrix of the underlying Markov chain (x)k»o. In Figure 2(b), we plot the
corresponding errors of the tail-averaged iterates. We see that a smaller |A;| leads to a smaller final
error. Moreover, when A; = 0, which corresponds to the i.i.d. data setting, it can be observed that
the error is converging to zero, which indicates a zero asymptotic bias. These observations are
consistent with Theorem 4.4 on the relationship between the asymptotic bias and mixing time.
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(a) The errors of the raw LSA iterates, tail-averaged (TA) (b) The errors of the raw LSA iterates and tail-averaged (TA)
iterates and RR extrapolated iterates with different stepsizes iterates under different SLEM |A;|. The stepsize « is fixed at

a. 0.8.

Fig. 2. Experiment results for LSA
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Fig. 3. The errors of the raw TD(0), tail-averaged (TA) and RR extrapolated iterates with different stepsizes a.

5.2 Experiments for TD(0) with Linear Function Approximation

We perform a similar set of experiments as in the previous sub-section on the TD(0) algorithm.
In particular, we consider the “Problematic MDP” from the classical work [KP00, LP03], and use
TD(0) with linear function approximation to estimate the value function of a given policy. See

Appendix C.2 for the details of the MDP, the policy, and the choice of the feature vectors.

In Figure 3, we plot the errors of the raw TD(0) iterates, tail-averaged iterates and RR extrapolated
iterates with different stepsizes a. The results are qualitatively similar to those in Figure 2(a). In
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10 10

Iteration

Fig. 4. Comparison between tail-averaging (TA) and RR extrapolation with m stepsizes, form = 2,...,6. The
setting for each line in the plot is given by its line style (representing the number of stepsizes used in RR) and
line color (representing the smallest stepsize involved). For example, the dash-dotted green line corresponds to
TA with stepsize a = 2.1, and the dashed red line corresponds to RR with four stepsizes a € {1.9, 2.1, 2.3, 2.5}.

addition, we observe that the TA iterates with a larger stepsize have faster initial convergence.
This observation is consistent with the predicted relationship between the optimization error and
stepsize in Corollary 4.5.

Lastly, we investigate the benefit of RR extrapolation with more than 2 stepsizes, using the scheme
outlined in equations (4.17) and (4.18). Specifically, we compare the errors of the tail-averaged
iterates and the RR extrapolated iterates with m € {2,3,..., 6} stepsizes. The results are shown
in Figure 4. Note that we use 6 large stepsizes (of similar magnitudes), resulting in fast initial
convergence. We see that increasing the number of stepsizes in RR extrapolation further reduces
the final errors by a significant margin. In particular, the error of RR extrapolation with 6 stepsizes
is smaller by 3 orders of magnitude when compared to TA with the same stepsizes. We emphasize
that this error reduction is obtained almost for free, as we can run the six TD(0) iterations in parallel
using the same data stream.

6 PROOF OUTLINE

In this section, we outline the proofs for Theorem 4.1 (convergence of LSA) and Theorem 4.3 (bias
expansion). The proofs make use of a pilot result Proposition 6.1, stated in Section 6.1, which
serves as the first step of subsequent analysis. The complete proofs of these results and other main
theorems/corollaries are given in the appendix.

6.1 A Pilot Result
We have the following non-asymptotic upper bound on the MSE E[||0 — 6*%].

ProOPOSITION 6.1. Under Assumptions 1, 2 and 3, if a satisfies equation (4.2), then the following
bound holds for all k > ,

k
. ‘max 0.9 " o - max
E[]|6x — 0*°] < g Ymax (1_ ) (E[HGO—Q 1] + 52 (A)bfnax)+ Twax vk

Ymin Ymax min 0. 9Ymin

with k defined in equation (4.3).
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Proposition 6.1 is a moderate improvement of [SY19, Theorem 7]. When by.x = 0 (which means
b(x) = 0,Vx € X), Proposition 6.1 guarantees that x = 0, in which case 6 converges in mean
squared to 8% as k — oo. This fact plays an important role in proving our main Theorem 4.1 in the
setting with a general b and nonzero by,.x. In particular, the proof of Theorem 4.1 makes use of a
coupling argument that constructs another process with by,ax = 0. In comparison, the bound in
[SY19, Theorem 7] gives a non-zero value of k even when by,,x = 0 and hence is insufficient for
executing the coupling argument. Moreover, the stepsize condition (4.2) required by Proposition 6.1
(and by all our other results) does not involve by, Which correctly reflects the translation invariance
of the LSA update (3.1). The stepsize condition in [SY19, Theorem 7], on the other hand, has a
superfluous dependence on by,x.

The proof of Proposition 6.1 is similar to that of [SY19, Theorem 7] with a more refined analysis.
For completeness, we provide the proof in Appendix A.1. One key refinement in our proof is to
avoid invoking inequalities of the form 2u < 1+ %, and to use instead 2u < f*u? + 1/ with a
judicious choice of f that respects the translation invariance of the LSA update (3.1).

6.2 Proof Outline of Theorem 4.1

In this sub-section, we sketch the main ideas in the proof of Theorem 4.1. The complete proof can
be found in Appendix A.2.

The proof consists of bounding Wasserstein distances of the form Wy (L (xx, 0x), £ (xk11, Ox+1))
and W, (L (xt, 01), L(Xeo, 0)). Since the Wasserstein distance is defined by the optimal coupling,
it can be upper bounded by constructing a particular coupling. With this strategy in mind, we
consider coupling two Markov chains (x[l], 9,51]),(20 and (xIEZ], QIEZ])kzo, which are two copies of
LSA iteration (3.1). We make use of two types of coupling in the proof.

The first type of coupling is constructed by letting the two Markov chains above share the same
(1] _ 2]

k

underlying data stream (xg)x»o, i-€., letting x

. = xi, for all kK > 0. Explicitly, the iterates

01£1+]1 and 915]2 are given by the update
ol =0 4 a (A0 +b(xp)), o
2l = 0"+ a(A(xp) ") + b(xp), T
Taking the difference of the two equations above, we see that the difference wy := GIEH - HIEZ]

satisfies the following recursion
Wi41 = (I+ aA(xk)) © Wk k=01,...

Our key observation is that the above recursion is a special case of the LSA iteration (3.1) with wy
as the variable and by« = sup,.c x [|b(x)|| = 0. Consequently, the pilot result in Proposition 6.1 can
be invoked to obtain the following geometric convergence bound for wy:

0.9

k
Blllox 2] < C(A, b,x) (1— ) Elllool?].

max
We then judiciously choose the conditional distribution of 0&2] given (xy, 9(51], G(EZ]) such that

(xx, HILZ]) d (Xpes1, 9,5111) for all k > 0, where 4 denotes equality in distribution. It follows from the

above geometric convergence bound that

W2(L (o 00, L (x4, 0]

Uy <E[16 - 611°] >0 ask — co.

As such, (xg, HIEI])kZO is a Cauchy sequence and hence converges to a unique limit (xc, 8 ) With
the limiting distribution i := £((X, 6)). This proves Part 1 of Theorem 4.1.
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We next show that i is the invariant distribution of the Markov chain (x, 0 )x>o. This invariance
property would follow easily if one could establish the one-step contraction property

W (LG 01, £ 01 < p- o (£, 00, £(x(7, 6

for some p € [0,1). In fact, this is the approach taken in [DDB20] for analyzing SGD under i.i.d.
noise. For our Markovian data setting, however, establishing one-step contraction is challenging
if not impossible. Thankfully, to prove invariance of f, it suffices to have the following weaker

property
W (£t o), 217017

<pr- W} (L(x(gﬂ,Q(Eﬂ),ﬁ(xgﬂ,@(gz])) + \/,02 ST (L(xé”,@é”),li(xéﬂ,G(EZ])), (6.1)

where L(x(gl], 6(51]) = ji and the quantities p; and p; are finite and independent of L(xéz], 90[2]).
We establish the property (6.1) by using a second type of coupling between (x,E”, 9,£1]) and

(x,Ez], QIEZ]) such that

k>0

k>0’

(1 _ x[z] ifx[l] = x[z], Yk > 0.

Xkr1 = Xk k k

That is, the two underlying Markov chains (xIEI] k>0 and (xIEZ] )k>0 evolve separately until they reach
the same state, after which they coalesce and follow the same trajectory. Given the property (6.1),

for any k > 0, if we set L(xgl],egl]) = L(x0,00) = ji and .E(x[zl 9[2]) = L(xx, 0), then

0 70

WF (L(x1,01), L(Xpr1, Or1)) < p1 - Wi (1, Lk, 6)) + \/Pz W (1, L(xx, 6k)).
It follows from the triangle inequality of Wasserstein distance that

W2(£(x1, 91),/3) < Wz(L(xl, 01), L (X1, Osr)) + Wa (L (Xk41, 9k+1),ﬂ)

<\ P WG L 00)) + 2 - WE (£ (3 O0)) + Wal £ (i, O )
— 0 ask — oo,
which establishes the invariance of fi and proves Part 2 of Theorem 4.1.

Finally, the non-asymptotic bound in Part 3 of Theorem 4.1 follows from the non-asymptotic
bound on wy and invariance property of i established above.

6.3 Proof Outline of Theorem 4.3

In this sub-section, we outline the proof of Theorem 4.3. The complete proof can be found in
Appendix A 4.

As discussed after Theorem 4.3, our proof centers around the condition expectations E [0e|Xo = i],
i € X. To characterize these quantities, we make use of the Basic Adjoint Relationship

E [f (%0, 0c0)] = E [f (Xoot1, Boor) ]

where the test function f is chosen to be £V (x,8) := 6 - 1{x = i} for each i € X. This choice
allows us to establish the following recursive relationship:

E [Ooo|xeo = i] = (Z PisE [Ooo Yoo = s])+a (Z Pis (A(S)E [Ouolxe = s] +b(s))|, VieX. (6.2)

seX seX
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By choosing state 1 € X as the reference state and defining §; := E [0 |Xe = i] — E [0c0|x00 = 1],
we obtain from (6.2) that

di = (Z ﬁis&) I (Z Pis(AG)E [O|xeo = 5] +b(s)) |, VieX. (63)
seX seX

Equation (6.3), together with the bound E [6] = O(1) (which follows from Theorem 4.1), imply

the coarse bound § = [8] & - 5I]T =0(a).

Moreover, owing to the construction of §;, we are able to obtain

E [Oeolxeo = 1] = * — A~! Z sA(5) 8. (6.4)
seX
Substituting (6.4) into (6.3) and simplifying the expression, we are able to establish the following
self-expressing equation for &:
5 = aY; +aZ5, (6.5)
where the vector Y; and matrix E are independent of a. With the expression (6.5), we can bootstrap
from the coarse bound § = O(«) to obtain

5 = oY, +E0(a?).

Continuing this bootstrapping argument for m steps, we derive the expansion

5= Z a'Y; + EmO(a™). (6.6)

i=1

Lastly, we convert the expansion (6.6) for § into an expansion for E[6.]. To this end, we note
that the expression (6.4) implies that

E[0.] = Z 75 (B [Ooolxeo = 1] +85) = 6" + Z s (<A A(s) +1) 6,
seX seX
Combining the above equation with the expansion (6.6) proves the desired expansion for E[6.]
given in Theorem 4.3:

m
E[0e] = 6 + Z B +O0(a™). (6.7)
i=1
Moreover, if the stepsize « is sufficiently small to ensure that the matrix @= in equation (6.5) has a
spectral radius less than one, then one can take m — co in the expansions (6.6) and (6.7).

7 CONCLUSION

In this paper, we study linear stochastic approximation with constant stepsizes and Markovian data.
We analyze the convergence rates to a limiting distribution and identify the existence of asymptotic
bias. We characterize the bias as a function of the stepsize and mixing time, and rigorously establish
the benefit of Richardson-Romberg extrapolation. Our results provide a refined characterization of
linear stochastic approximation, identifying the effect of stepsize, averaging, and extrapolation on
the optimization error, variance, and bias.

Based on our work, immediate next steps include tightening the dimension dependence in
our bounds and relaxing the reversibility assumption. Below we remark on two possible further
extensions and the associated challenges.

Infinite State Space. Our current results hold when the underlying Markov chain (xx)g>¢ is
supported on a finite state space. Extension to (countably or uncountably) infinite state spaces is of
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immediate interest. Such an extension is straightforward for the convergence guarantees in Theo-
rem 4.1, which can be shown to hold under the same assumptions as in [SY19], namely, geometric
mixing of the underlying Markov chain. Generalizing the bias characterization in Theorem 4.3 is
more non-trivial. Recall that a key step in our proof involves the linear equation (6.5). When the
state space is infinite, this equation becomes an infinite-dimensional one, and it requires additional
technical work to establish the solvability of the equation.

Nonlinear Stochastic Approximation. It is interesting to see if our results can be extended to
more general stochastic approximation procedures of the form

Oks1 = Ok + a(f (Ok, xx) — k),

where f is a nonlinear function of 6 satisfying certain contractive properties [CMSS20, CMSS21b,
CBD22]. Contractive SA covers many important algorithms in RL, such as the TD algorithm with
neural networks and the Q-learning algorithm. Under appropriate conditions, we expect that similar
weak convergence and bias characterization results hold for contractive SA, where the convergence
rate and bias may depend on the contraction and smoothness parameters. In particular, it may be
possible to extend Theorem 4.1 to contractive SA by leveraging the Lyapunov theory and MSE
bounds in [CMSS21b]. Extending Theorem 4.3 may involve manipulating a nonlinear Basic Adjoint
Relationship, for which certain linearization argument may be useful.

Besides the aforementioned, other interesting future directions include: (a) study higher moments
of the LSA iterates and provide high probability bounds; (b) exploit our results to formulate an
algorithm that guides the choice and scheduling of the stepsize.
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Appendices

A PROOFS

In this section, we provide the proofs for our pilot result in Section 6 and our main results in
Section 4.

Recall that 7 = 7, is the @-mixing time defined in Section 3.2. In the sequel, we frequently make
use of the following fact: when the stepsize « satisfies the condition (4.2), we have ar < i. This
fact follows from combining the condition (4.2) with the lower bound
@ 1 @1
22— 2 -,

2s1(A) 2
where the inequality (i) is given in the paper [Sha74], and the inequality (ii) holds under Assump-
tion 2.

Ymax > Ymin (Al)
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A.1 Proof of Proposition 6.1

In this sub-section, we prove our pilot result in Proposition 6.1, which provides an upper bound on
the finite-time MSE E[||6x — 6*]?].

We argue that it suffices to prove Proposition 6.1 in the special case where b in (3.5) is assumed
to be 0. Consider the LSA update rule stated in equation (3.1) with a general b. We can center this
update rule by subtracting 8" from both sides of (3.1), which gives

Ore1 — 0" =0 — 0" + a[A(xk)(Gk —6") + b(xx) +A(xk)0*]. (A.2)
Setting 0, := 0 — 0" and b’ (xx) := b(xx) + A(xx)0", we rewrite equation (A.2) as
0y =0+ oc[A(xk)G;C + b’(xk)]. (A.3)

Equation (A.3) is an LSA update in the variable (6;) and satisfies

b o= klim E[b’ (xx)]
= klim E[b(xk)] + E[A(xx)]0"
=b+A6* =0,

where the last equality holds since 6* is defined as the solution to E,[A(x)]0 + E,[b(x)] = 0.
Let b, := sup,cx |[b’(x)]|. The convergence rate of the new LSA update (A.3) is given in the
following proposition, which is a centered version of Proposition 6.1.

PROPOSITION A.1. Under Assumptions 1, 2 and 3, if a satisfies equation (4.2), then the update (A.3)
with b’ = 0 satisfies for allk > t,

k-1
2 Ymax _ 0.9a 2 ’ 2 Ymax ) , 2
BIGLIED < 22 (12 S22 (4B + (0?) + G2 {160 ?).

min max 0. min

We prove the above proposition in Appendix A.1.1. Taking Proposition A.1 as given, we now
complete the proof of the general Proposition 6.1.

PRrROOF OF PROPOSITION 6.1. By definition of b’, we have
16" o)l = [1b(x) + A(x) 0" < [[b(0)]| + [JAGO)IIO"]l,  Vx € X,
whence

b, < bmax"'Amax”e*”

max —
< (1 +Amax/smin (A))bmax < zsr;iln(A)bma)v
Applying Proposition A.1 with 0, = 6 — 0" and the above bound on by,,,, we obtain that for all
k>,

0.9a

k-1
E[10, - 67[17] < 4 2 (1 ) (E[lleo AR sr;?n(fi)bimx)

‘min Ymax

, ar(640ymaxs;fn (4) bxznax)'

Ymax

0.9¥min

We can simplify the above expression using the following simple bound, whose proof is postponed
to the end of this sub-sub-section.

-7
CramM 1. We have (1 - M) <2

Ymax
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Using the bound in Claim 1 and the definition of x in equation (4.3), we obtain that for all k > r,

0.9

E[[|6x - 07]|] < 8 L2 (1

min

k
E[[|0 — 60[1] +s=2 (A)b? )+M- K.
)([uo 171+ S (D) + g g - o

As such, we have completed the proof of Proposition 6.1. O

Ymax

Proor or CraiM 1. Observe that

0.9a () 0.9ar (i) (i) 1
< < 2art -
Ymax Ymax

(A4)

= >

where step (i) holds since 7 > 1, step (ii) follows from the bound (A.1), and step (iii) holds since
ar < i under the stepsize condition (4.2). To proceed, we use the Bernoulli inequality

(14x) >14xt forx>-1¢t>1,
which is equivalent to
(1-x)"'<@@-xt)7! foro<x<1,t>1.

In light of equation (A.4), the Bernoulli inequality holds with x = gﬁ

0.9a\7" 1
1- <——x<2
Ymax 1-— 0.9at

Ymax

and t = 7, hence

where the last step follows from (A.4). We have completed the proof of Claim 1. O
A.1.1  Proof of Proposition A.1. We need the following technical lemmas.

LEMMA A.2. Givenanyt > 1,ifa-t < 4—11, then the following inequalities hold for allk > t,

16k = Okl < 2at]|Ok—]| + 2atbmax, (A.5)
16k = Ok—tll < dat||Okll + 4otbmax, (A.6)
16k = Ok—t|I* < 32at2||0k||? + 32a°t° 2 (A7)

max-*

LeEMMA A.3. The following inequality holds for any k > 0,
|1 = 0k) TT (Okar — 01)| < 20 Yimax 10k |I* + 20 Yimaxb oy

LEmMA A.4. The following inequality holds for all k > 7, with a chosen sufficiently small such that
ar < 1
<
E [0/ T(AGxk) = A)0k] < ki E[lI0c]1*] + 2,
where

K1 = 88aTYmax and kz = 64arymaxbr2nax.

LEmMA A5. The following inequality holds for all k > 7, with a chosen sufficiently small such that
at < i,
E [0/ T(b(xx) = b)| < KiE[II0cII*] + %o,
where

K1 =50TYmax and Ky = 15arymaxb,2nax.

The proofs of the technical lemmas above are delayed to Appendix A.1.2. Note that all lemmas
above hold for the LSA update (3.1) with general b. Below we shall apply these lemmas to the
centered LSA update (A.3) for 6, with b” = 0 to prove Proposition A.1.
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ProoF oF PrRoposITION A.1. Consider the following drift:
Elfy1 T64y — 0" TOL] = 2B[6, T (0, - 0] + B0,y = 6) T(6),; — )]

= 20 B0}, T(A(xx) — A)0,] +2¢ E[0] T’ (xi.)] +2 B[6], "TA6L] +E[(6],, — 0,)TT(6],, — 0})].

T T, T3 T,

We can bound T; using Lemma A.4, T; using Lemma A.5, and T, using Lemma A.3. For T3, we note
that by the property of the Lyapunov equation in Assumption 3,

ZaE[HI’CTFAH;C] = a]E[G,’(T (ATT +TA) 6,] = —aE[|16,|I*].
———
=-1
Combining the above bounds, we derive that
B[0;,,"T6L,, - 0,7T6]
=T1+T2+T3+T4
< 2a (I EB[10,11%] + K2) + 2a (REL16,11%] + %2) = €B[116,1%] + (2Vmax@E[110;11°] + 20 Ymax (bfnax)?)
= —a(1 = 2(k1 + &1 + @Yinax) B0 1°] + 26 (k2 + &z + @¥imax (bina)®)-
We simplify the above bound by noting that

K1+ K1 + Q¥max = 88TV max + 5ATYmax + A¥max

< 95aTYmax»

and

Ky + Rz + @Y max (Dlgx )

= 64aTYmaX(b1’nax)2 + lsaTYmaX(brlnax)z + aymax(b;nax)z

< 800 TYmax (Bla) -

Furthermore, when « is chosen according to (4.2), we obtain that for all k > 7,

E[0,,,'T0,,, — 0, T0,] < —0.9aE[||0,|°] + 1600 T¥max (Pimay)®
0.9
< ——2B[0,7T0}] + 1600 Yumax (Blne) >
Ymax
or equivalently
;7T ’ 0.9« r T ’ 2 ’ 2
E[0,,, TO. ] <|1- y E[0, T0,]+160a"Tymax (bja) -

Next, we recursively apply the above inequality to obtain

0.9 (kD)1

k-t t

! ’ 4 4 0.90{ ’

E[6,'T6;] < (1 g ) E[0.T6.] + (1 g ) - (1600 TYmax (bjnax)?)
X =0 X

0.9a\*~"
s(l—’ ) BL0,TT0,] + 15 (160 (b))

Ymax
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We then apply the properties in (3.9) to the above inequality and obtain the following bounds in
terms of |6, ||, for k > 7,

’ 1 / /
E[ll6;11%] < - E[6; 'T6;]
0.9a\* "
< Ymax (1 _ _) E[HG;HZ] + ﬁ - ar (l60}’max(b:nax)2) :
Ymin max 0.9 min

Lastly, we have
2 ’ ’ 711\ 2
0115 < (ll6; — 651l + 1165 1)
@) , , 2
< ((1+2a0) 165 ]| + 2a7b}yyy)
(11) ’ /7 / ’
< (1.5]165] +0.5b7,,,)* < 4l165]1% + (bpa)’s

where in step (i) we make use of Lemma A.2 to bound [|6; — ;| with || ||, and step (ii) holds for
is chosen according to (4.2) such that ar < i. Therefore, we have

0.9a

E[]|6; 7] < Ym (1

min

k-1
) (RO + (Pua)®) + 557 - a7 (160smae (B

max
This concludes the proof for Proposition A.1. O

A.1.2  Proof of Technical Lemmas. We provide the proofs of the technical lemmas stated at the
beginning of the previous sub-sub-section.

Proor oF LEMMA A.2. We first note the following,

10kl = 116k + @ (A(xi) Ok + b(xi) |
< N+ A0l + ellb (x|
<(1+ aAmax)HHkH + abmax < (1 + a)Hek” + abmax-

As such, for k —t < i < k, we have

) (i-1)—(k-1) .
161 < (1+ @) N0l + obmae Y| (1+)
Jj=0

t—1
< (14 @) 10— | + @bmax Y (1+ )/
Jj=0

= (1+ @) |0kt 1l + bnax (1 + )" = 1)

@
< (1+ 2at)||0k—¢|| + 20ttbiay, (A.8)
where step (i) holds true as long as at < log2, and since we have restricted at < ; < log2, the

inequality carries through.
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It follows that
k-1

> 01— 0;
i=k—

k_

k-1

k-1
< ) N0ua =0l = ). I1AGe)0: + blxi) |
i=k—t

i=k—t

10k — Okl

=~

<a (NAG H6:1 + N1 Cer) 1)
i=k—t

k-1

< aApax Z ”91“) + atbmax
i=k—t
k-1

< @Amax (1+2at)[0k_|l + 2(/‘ftbmax) + attbmax
i=k—t

(1+2at) (atAmaxuek—t” + atbmax)

(ii)
< zat(ArnaXHGk—t” + bmax) < ZOCt”Gk_tH + 2atbmax,

where step (ii) holds since 2at < 1. As such, we have established (A.5).
Now that with (A.5), it is easy to see

16k = Ok—tll < 2at||Ok—r|l + 2atbmax
< 2at ([0, = Or—ell + 16kll) + 2atbmax.
Reorganizing the above inequality, we have
(1= 2at)||0k — Okl < 2at||Ok|| + 20t bimax.
Together with the assumption at < %1, we now obtain (A.6),
10k — Ok—t1l < 4at||Ok|| + 4artbmax.
Lastly, we have
16k = O |I* < (4t |0kl + daxtbmay)®
< 2(4at]|0k|)? + 2(4atbmax )
= 320°t%)|Ox || + 32a°t7b2 .

which establishes (A.7).
ProoF oF LEMMA A.3. We have
|(Bks1 = 06) T (ks = 6] < Yimaxl O = Ok’
= Yinax @’ 1A (x1) O + b () ||

< Ymax@” (IAG) 16kl + 116 G 1)

< }’maxoc2 (AmaX”ek” + bmax)z
< 2Ymax052”8k”2 + 20{2Ymaxbr2nax~

This completes the proof of Lemma A.3.

29

by Assumption 2

by (A.8)

]

Proor oF LEMMA A.4. As explained in Section 3.2, (xi) enjoys a geometric mixing rate. Thus, it

holds as claimed that for a sufficiently small «,

aty < Kalog — <

SEE
RN
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Let us decompose the quantity of interest as
E [GIII‘(A(xk) - A)Gk]
=E [(Gk - Hk—r + Gk—T)TF(A(xk) - A)(ek - gk—r + ek—r)]
=E [(0k = Ok—r) "T(ACxx) = A) (6 = O—c) | +E [6,_ T (A(xx) — A)bx— ]

T T,
+E [(6k — k=) "T(A(xx) = A)Op—c | +E [6]_ T (A(xx) — A) (6k — Ok—0) | -

T T

We now bound each of the RHS terms respectively.
For Ty, we have

Ty =E [(6k — Ok—c) 'T(A(xk) — A) (6 — Ok—r) ]
2 2y [ 10k - 66— 1]

(i)
< 2max (320 °E[||0k|1°] + 32a*7°D},

max)
< 64Ymaxa272E[“9k”2] + 64Ymaxa272b2

max’

where (i) holds true for both A(x;) and A have norm less than Apa, (< 1) in Assumption 2 and T is
symmetric positive definite with y,.x as the largest eigenvalue in Assumption 3, and (ii) is obtained
by making use of (A.7) of Lemma A.2.

For T, we have

T, =E[0]_T(A(xk) — A)bk_,|

= E[E [GZ_TF(A(xk) - A)ek—‘[|9k—f> xk—‘r] ]

= E[@ZTFE [A(xk) — A|9k_f, xk_f] Gk_f]

@ E[@{TFE [AGxk) — Al | Gk-f]-

where step (iii) holds true due to conditional independence of x; I 0;_,|xx—,, as demonstrated
earlier in equation (3.3). Since I' has largest eigenvalue yp.x by Assumption 3 and 7 = 7, is the
a-mixing time, it follows that

10k e12] = @Vinax® [11(Ok = Or—c) + O]
164 = Oell + l16c1)*|

4artcl| + by +101)F] by (A6)

T2 < a)’max
(
< @Ymax (

)
< a2 ((1+ 4a7) B[]0 7] + 1622 T2b2, )

max

E|
< AYmaxE [
J

< 8atymaxE[16k]1°] + 32¢° T*Ymax b,

max>

where (iv) follows from the inequality (a + b)? < 2(a? + b?), and the last step holds since at < i
andr > 1.
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For T3, we have
T3 =B [(6k — Ok—r) "T(A(xx) — A) b |
< 2maxB [0k = Okl - 10— |l]
< 2maxB [0k = Okl - (116k = Okl + 116k 1) |
< 2maxB[ (407l Ok || + datbma) (4|0 || + 4atbmax + 16cD] by (A6)
= 2VmaxBl4ar(1 + 4a7) |0k ||* + 4aThmax (1 + 8aT) || Ok || + 16a72b% ]
= 8a7(1+4a7) YmaxE [[16k11*] + 8az(1 + 8a7) Ymaxbmax ELIOk|] + 320”7 Yimaxbipax

)
< 8a7(1+4a7) ymaxE [[10c]12] + 42r(1 + 8a7) Yimax (b + ELIOcN2]) + 3202 T YmabPras
= 44 TYmax (2(1 + 4a7) + (1 + 8a7))E[||0k|1] + 4aTymax ((1 + 8a7) + 8ar)bZ

(vi)
< 32aTYmaxE[”6k”2] + zoafymaxbrznax’
where (v) utilizes the inequality 2bmaE[||0k|[] < bZ,, + E[|I6kI], and (vi) holds with at < 1.
Similarly, for T, we have for ar < ;11,
Ty =B [0]_ T(A(xk) — A) (6 — Ok—r) |
< 32aTYmaxE[”9k”2] + zoaTYmaxblznax~
Combining the bounds for T;-Tj, we obtain that
E [(6k = Ok—r + Ok—r) "T(A(xx) — A) (0 — O—r + O |
=h+L+T3+T1,
< (64Ymaxa272E[”9k”2] + 64Ymaxa2T2b12nax) + (SaTYmaxE[llekHZ] + 320{372}’maxb12nax)
+2 (32arymaxE[||9k||2] + ZOaTymaxbxznaX)
= (64Ymax@* 7 + 8@ TYmax + 640 TYmax) E[|0k|1%]
+ (64Ymax @ T° b2 0y + 320° T YimaxbZa + 40T imaxb’ny )

<88aTYmaxE[|10k]1*] + 64T maxbZae

where the last step holds with & < 1 and at < 1.
This completes the proof of Lemma A.4.

Proor oF LEMMA A.5. We make use of the following decomposition:
E [er(b(xk) - I;)lek—r: xk—r]

=E [ (0k — Ok—r + O—r) "T(b(x) = b)|Ok—r, Xp—c |
=E [0]_,T(b(xx) = b)|6k—r, Xp—r | + B [(6k — Ok—r) T (b(xk) — b)|Op—r, Xk~ -

T T;

We separately bound T; and T5.
Starting with T, we have

E 6] T(b(xk) — b)|6k—r. xk—| = 0, TE [(b(xk) — b)|Ok—r, Xk
< a)’maxbmax||9k—rl|-
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Next, for T;, we have
E [(Gk - ek—r)Tr(b(xk) - E)lgk—r’ xk—r] < meameaxE [Hek - Gk—rulek—r, xk—z’]
< meax)/max (2at||Ok || + 20Tbmax) ,

where we use (A.5) to obtain the second inequality.
Combining the two terms, we have

E [0 T (b(xk) — B) |0, xi ]

< aymaxbmaxnek—r” + meax}/max (20(T||9k_T|| + zafbmax)

= (a)/maxbmax + 4aTYmaxbmax) ”0k71'“ + 4aTYmaxb12nax

2
< a}/maxbmax(l + 47') (E[”ek - 9k—r”|6k—r; xk—r] +E[“6k|”9k—n xk—r]) + 4aTYmaxbrznax

(M)
< a}’maxbmax(l + 47) ((1 + 40{T)E[”0k” |9k—r»xk—r] + 4arbmax) + 4aTYmaxbrznax

= aYmaxbmax(l + 4T)||9k—1'” + 4aTYmaXb

< 100”—)/maxbmax]E [Hek” |0k—ra Xp—r] + 95“Ymaxb2

max’
where we use (A.6) to obtain (i), and at < ;11, a < 1and 7 > 1 to obtain the last inequality.
Together with the inequality 2byax ||k || < b2, + ||0k||?, the above inequality further simplifies

max
to

E [Hl;rr(b(xk) - B)lek—rs xk—r] < 5aTYmax(b12nax +E [||9k||2|9k—rs xk—r]) + 9af)/maxbxznax

2
max"*

< 5a7¥maxE [Hekllzwk—r: xk—r] + 15Ty maxb
Lastly, we take expectations on both sides of the last display equation to obtain

E [07T(b(xk) = B)] < 5a7ymaxEL10k]I*] + 15a7ymaxb?

max*

This completes the proof of Lemma A.5.

A.2 Proof of Theorem 4.1

In this sub-section, we prove Theorem 4.1 on the convergence of LSA to a limit.

A.2.1 Coupling and Geometric Convergence. Recall that (xi)x> is the underlying Markov chain
that drives the LSA iteration (3.1). We consider a pair of coupled Markov chains, (xi, OIEI]);CZQ and
(xks OIEZ])kZO, defined as

1

ol =0l 4 o (A6 +b(x1)), o o)
o2 = 011 + a(A(x) 0 + b(x1)), o '

Note that (9,£1] k>0 and (0,52] k>0 are two sample paths of the LSA iteration (3.1), coupled by sharing

the underlying process (xi)k>o. We assume that the initial iterates Hélj and G(EZJ may depend on
each other and on xy, but are independent of (xy)x>1 given x;.
It follows from the definition that

ol 0% = (1+aA(x) - (0 - 0%, k=01,...

If we define the shorthand wy := 9]£1] —pl?l

s then the above equation becomes

k1 = (I + aA(xx)) - wk, k=0,1,... (A.10)
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Our key observation is that equation (A.10) is a special case of the LSA iteration (3.1) with wy as the
variable and bpmax = sup,.c x |[6(x)|| = 0. Applying Proposition 6.1 to this LSA iteration, we obtain
the following finite-time geometric bound.

COROLLARY A.6. Suppose that a satisfies (4.2). Then, for allk > t, we have

i _
W00, £007) = WE £ o 001, £ 5017

) g Ymax (1 - @)kE[He‘E” - G(E”HZ}
Ymax

PrOOF OF COROLLARY A.6. The inequality (i) follows from the definition of W, and W,. The
inequality (ii) holds since the Wasserstein distance is defined by an infimum as in equation (4.1).
Inequality (iii) follows from applying Proposition 6.1 with by« = 0 to the LSA iteration (A.10). O

With Corollary A.6, we are ready to prove Theorem 4.1 on the convergence of the Markov chain
(xk, Ok )k>0- Theorem 4.1 has three parts, whose proofs are given in the next three sub-sub-sections.

A.2.2  Part 1: Existence of Limiting Distribution. Note that Corollary A.6 is valid under any joint
distribution of initial iterates (x, H(El], 90[2]). Arbitrarily fix the distribution of (x, O(EI]). Given
(x0, 9(5”), we shall judiciously choose the conditional distribution of 9(52] in a way that ensures
(xx, 9,52]) 4 (%41, 9,5]1) for all k > 0, where 4 denotes equality in distribution. Specifically, recall
that P is the transition probability matrix for the time-reversed Markov chain of (xx)r>0 and that

the initial distribution of x; is assumed to be the stationary distribution 7; see Sections 3.1 and 3.2.

(1]

Given xo, let x_; be sampled from P (+|xo). Let 9[21] be a random variable which satisfies 9[21] d 0,

and is independent of (xj)x> 1. Finally, set 952] as
012 = 1% 4 (A(x_1)9£21] + b(x_l)) . (A11)
We argue that this initialization has the desired property.

Cram 2. Under the initialization (A.11), we have (x, HIEZ]) 4 (Xks1 9,51]1) forallk > 0.

[1§=5

Proor oF CrAIM 2. From standard results on time-reversed Markov chains, we have (xx)g>—1
(xk)k>0- Since by construction 0£21] 4 6(51] and 9£21] is independent of (xj)r>-1, the claim follows

from comparing the update rules for (QIEH);QO and (GIEZ])kZ_l given in equations (A.9) and (A.11).
]

Using the above claim, we have for all k > 7,

W;(_g(xk, 011), £ (i, 011 )) = W2 (J:(xk, 011, £ (x, 9,&“))

k+1
0.9 \*
< g fmax (1 - '—) E[16}" - 671|121,

Ymin Ymax
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where in the second step above we use Corollary A.6. It follows that

Ms

W2 (L e 0')), £ (xter, 012)))

k+1
k=0
T— (o) k
i [1] (1] Yimax 0.9a 1 _ pl2ly2
< WL (o, OM), L (01, 011 ) +8—Z 1-—=| E[6!" -6l
=0 Ymin =r Ymax
<00

>

0.9a

where the last step holds since =% Vo € (0, 1) under the assumption (4.2). The inequality above means

that (L (x, GIE ) k>0 15 @ Cauchy sequence in the metric Wj. Since the space P»(X x RY) endowed
with W, is a Polish space [Vil09, Theorem 6.18], every Cauchy sequence converges. Furthermore,
convergence in Wasserstein distance implies weak convergence [Vil09, Theorem 6.9]. We conclude
that the sequence (£ (x, QIEl]))kZO converges weakly to a limit i € Py(X x RY).

We next show that the limit 7 is independent of the initial distribution of 6(51]. Suppose that

another sequence (x, 5151]) with a different initial distribution converges to a limit /i, then

k>0

Wa ) < W (£ 0xe 01 + 2 (Lo 001, L3 81D+ W2 (£ L), 5) =0, (a12)

where the last step holds since W, (L (xk, 9,E1]), L(xg, é,El])) i 0 by Corollary A.6. Therefore, we
have W; (3, fi) = 0 and hence the limit /i is unique.

Finally, the bound on Var 6, follows from the lemma below, for which we recall that the number
k is defined in Proposition 6.1.

LEMMA A.7. Under Assumptions 1, 2 and 3, and when « is chosen according to (4.2), we have

Var(8e) < E[[10e — 0°]17] < 12 gk (A.13)
0-9Ymin
and
(E[110111)* < E[l10]1*] < C(A, b, ) (A.14)

for some C(A, b, ) that is independent of a.

Proor oF LEMMA A.7. We have shown that the sequence (6x)r>¢ converges weakly to 6. in
P, (R?). It is known that weak convergence in P;(R?) is equivalent to convergence in distribution
and the convergence of the first two moments [Vil09, Definition 6.8]. Consequently, we have

E[l6 — 6"[I°] = Jim B[]0 — 0" II°]. (A.15)

Proposition 6.1 ensures that

E[uek—e*nZ]ss@(l—@) (B8 - 0°12] + 578, (Dbnay) + —2 -z -

min max 0. 9Ymin

Taking k — oo and combining with equation (A.15) gives

(6] 1
B[00 — 0°[7] < T2 . gppe < max_ . Z
0.9Ymin 0.9min 4

where step (i) holds since ar < Equatlon (A.13) follows from the above inequality together with
the fact that 6 is a determlmstlc quantity.
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Furthermore, we have
(E[11611D)? < E[[I611%]
< E[(I16e0 — 0°[1 + 116711)%]
< 2E[[16e — 07|12 + 2/10°|I2 < i‘“— x4+ 20167117 (A.16)

min

Equation (A.14) then follows from noting that ymax, Ymin, K and 8 only depend on A,b and 7. O
We have proved part 1 of Theorem 4.1.

A.2.3  Part 2: Invariance. We next show that i is the unique invariant distribution. Suppose that
the initial distribution of (xo, 6) is 7. By the triangle inequality of Wasserstein distance, we have

WZ(-E(-X], 91)’ ,L—l) < WZ("E(xb 01)’ L(xk+l> 0k+1)) + VVZ(L(xk+1; 6k+1)> ﬁ) (A17)
We proceed by noting the following lemma, whose proof is given at the end of this sub-sub-section.
LEMMA A.8. Let (xk, Ok) >0 and (x;, 0; )k>o be two copies of the LSA trajectory (3.1), where L(xo, 6o) =

i and L(x},0)) € P2(X X R%) is arbitrary. Under Assumptions 1, 2 and 3, and when a is chosen
according to equation (4.2), we have

W5 (L(x1,01), L(x1,07)) < pr - Wi (L(x0,00), L(x,65)) + \/,02 - W2 (L(x0,60), L(x),67)),
(A.18)
where the quantities py := 1+ 2(1+ a)? + 16a?b%, < o0 and p; := 16a* - Eg,,, [160]I*] < oo are
independent of L(xg, 0;). In particular, for any k > 0, if we set L(x, 0;) = L(xx, Ok), then

I/I/v,?,z(~£(x1: 91)’ ~E(xk+1= 9k+1)) < pP1 - V_VZZ(/'_IS L(xk: ek)) + \/Pz : W22(ﬂ’ 'E(xk’ Qk)) (A19)

Applying Lemma A.8 to bound the first term on the RHS of equation (A.17), we obtain that

VVZ(L(xb 91)’ ﬁ) < P1 VVZ(IJ’ ‘L(xk’ ek)) + \/pZ : sz (ﬁa L(Xk, Qk)) + WZ(-E(xk+1, 8k+1)s ﬁ)

k—oo
— 0

s

where the last step follows from the weak convergence result established in the last sub-sub-section.
We therefore conclude that W, (L(x3, 61), i) = 0 and hence j is an invariant distribution of the
Markov chain (x, 0k )r>0. The uniqueness of the invariant distribution follows from a similar
argument as in equation (A.12). We have proved part 2 of Theorem 4.1.

ProoF oF LEMMA A.8. We choose a coupling between the two processes (x, Ok k>0 and (x, 0} )k>0
such that

W5 (L(x0,00), L(x5,05)) = E [do(x0,x5) + 1100 — 65]I*] and (A.20)

Xpy = Xp,, ifxe=x;, Vk>0. (A.21)

The existence of a coupling satisfying equation (A.20) at step k = 0 is a standard result in optimal
transport [Vil09, Theorem 4.1]. We can ensure equation (A.21) by further coupling the two processes
for the subsequent steps k > 1, such that the two underlying Markov chains (xx)x>0 and (x; k>0
evolve separately (subject to the above coupling at step k = 0) until they reach the same state, after

which they coalesce and follow the same trajectory.
To prove Lemma A.8, we begin by observing that

Wy (L(x1,601), L(x1,67)) < E [do(x1,x7) + 1161 - 611] - (A.22)
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thanks to the definition (4.1) of W, using an infimum. Recalling the definition of the discrete metric
do(x5,x0) =1 {x(’) * xo}, we have the identities
A(x) = A(xg) + do(xg, x0) -+ (A(x0) — A(xg)) and
b(x0) = b(xg) + do (x5, x0) - (b(x0) — b(xp)).
The update rule (3.1) together with the above identities implies that
01 — 07 =00 + ar(A(x0) 0 + b(x0)) — 05 — a(A(x)) 0 + b(xg))
=(I+aA(xp)) - (6o — 6;) + ado(x), x0) - [ (A(x0) — A(x5)) 00 + b(x0) — b(xp)],
whence
6 = 6] < [l + cAG)| - (|60 — 65| + erdo (x5, x0) - [|(A(x0) = A(x5)) o + b(x0) = b(x;)|
< (1+a) |60 — 04| + ado(xf, x0) - 2(1100]| + brmax),

where the last step follows from the boundedness Assumption 2. Also note that dy(x;,x]) <
dy(xo, x;) thanks to the coupling in equation (A.21). Combining the above inequalities gives

E [do(xl,xi) + ”‘91 - 9;“2]
<E [do(x0, xg)] +2(1 + a)* - E [“90 - 96“2] +20* - B [do(xg,x0) - 8([100]|® + bZ) | - (A.23)

By Cauchy-Schwarz’s inequality, we have

B [do e x0) -+ 106112] < /2 [doCxf ) By L6011, (A24)

Moreover, we claim that
Egyp [116011*] = E [1160l*] < oo (A.25)

This claim follows from a moderate tightening of the result in [SY19, Theorem 9], which provides
sufficient conditions for the existence of higher moments of 6. In Appendix B, we explain how to
tighten their result to show that the 4th moment exists under our stepsize condition (4.2).

Combining equations (A.23) and (A.24) and recalling the values of p; and p; given in the statement
of the lemma, we obtain that

E [do(xl,x{) +le, - 9;||2]

<pi -E [do(xo, x}) + |60 - 9,@||2] + \/pz ‘E [do(xo,x(’)) +160 - 9(;||2]

=p1 - Wy (L(x0, 60), L(x;, 67)) + \/Pz - W5 (L (x0, 00), L (x5, 67)), (A.26)

where the last step from our choice of coupling in equation (A.20). Combining equations (A.22)
and (A.26) proves the first equation (A.18) in Lemma A.8. The second equation (A.19) is then
immediate. O

A.2.4  Part 3: Convergence Rate. We have established that the joint sequence (L (x, 9,&”)) k>0

converges weakly to the invariant distribution i € P,(X x R?). Consequently, (L(HIEI])) k0
converges weakly to y € P,(R?), where y is the marginal distribution of ji over R%. We now

characterize the convergence rate.

, Vol. 1, No. 1, Article . Publication date: June 2023.



Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes 37

Again consider the coupled processes defined in equation (A.9). Suppose that the initial distribu-
tion of (x, 952]) is the invariant distribution f, hence £ (x, 8152]) = g and L(QIEZ]) =pforallk > 0.
Applying Corollary A.6, we have for all k > 7,

W2(L(6). ) = WA(LOM), £(6)
< W (Lo 01, L, 0))

k
x 0.9
< g Yma (1 _ a) E[f61 - 6212

Ymin Ymax

0.9
316@(1— ¢

Ymin

k
) - (mel 1+ 2ol ).

max

where the last step holds since the chain (x, GIEZ]);QO is at stationarity and hence E||9(£Z] 1?2 =
E||0£02] |12 = ]E||9L}] ||2. This proves equation (4.4) in part 3 of the theorem.
We have completed the proof of Theorem 4.1.

A.3 Proof of Corollary 4.2

PrOOF OF COROLLARY 4.2. By Lemma A.7, we have E[||0||?] = O(1). Combining this bound
with equation (4.4) in Theorem 4.1, we obtain that for k > ,

0.9a)k

Ymax

Wy (L(6k), p) < C(Ab,7) - (1 -
By [Vil09, Theorem 4.1], there exists a coupling between 6 and 6 such that
Wy (L(6k), 1) = El160k — 0l1%].
Utilizing the above bounds and applying Jensen’s inequality twice, we obtain that

[0k — 6o]11* < (ELNI6k — 6111)*

< B [0k - 0l?]
k
< C(Ab,7) - (1 - 0'9“) .
Ymax
It thus follows that for k > r,
k/2
0.9

IE[6k] — E[0c] |l < E[l|0k — Oll] < C(A, b, 7) - (1 7 ) ,

which establishes the convergence rate for the first moment in equation (4.5).
Turning to the second moment, we observe that

I (6067 ] - & [6.61] |
= ||B [(0k = 0o + 00) (O — B0 + 00) | — E [006L ]|

=|[E [(0k = 0c0) (Bk — 0o0) | + B [0 (O — 00) 7] +E [(6k — 00) 0L ]|

< 1B [0k - 0065~ 6) ]|+ [[2 [0 8k — 6) 7]+ [E [(8 - 0|

< B[]0k = 0 (0 = 0.)7][] + 2 [[]0 (0 = 0) T[] + B ]| 0k — )03

= E [116k — 6.ol*] + 2E [||6 (6 — 6]

< E (110 - 0l1] + 2(E [0 — 0 IP] E [10117]) %, (A.27)
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where the last inequality (A.27) holds true by Cauchy-Schwarz inequality. On the other hand, we
have already established that for k > ,

0.9

k
E[]16x — 0l|°] < C(A, b, 1) (1 - ) and  E[||0w|l*] < C'(A,b, 7).

Ymax

Substituting the above bounds into the right-hand side of inequality (A.27), we obtain

0.905)’“/2

max

B [6x6; | — E [0 ]|| < C(A, b, 7) - (1 -
thereby completing the proof for equation (4.6) in Corollary 4.2. O

A.4 Proof of Theorem 4.3

In this sub-section, we prove Theorem 4.3 on characterizing the asymptotic bias of LSA. The proof
is divided into four steps, which are given in Appendices A.4.1-A.4.4 to follow.

A.4.1 Step 1: Basic Adjoint Relationship. Following the strategy discussed after Theorem 4.3, we
begin by deriving a recursive relationship for the following quantities

zi =B [Oc|xeo = 1], i€X.

To put our derivation in context, we present it in the language of Basic Adjoint Relationship (BAR).

Recall that (xi)x>0 is a time-homogeneous Markov chain with transition kernel P = (p;;) and
unique stationary distribution 7. Theorem 4.1 shows that the Markov chain (xg, 0 )r>o also has
a unique stationary distribution j, and (xy, 6x) converges in distribution to a limit (xe, 00) ~ f,
where 0., ~ p and xeo ~ 7. Given (Xeo, 00), let X041 be the random variable with conditional
distribution P(xco41 = j|Xeo = i) = pij, and Ooos1 = oo + @ (A(Xe0) b0 + b(x0)); that is, (Xeor1, Goor1)
is the state following (X, 0co)-

Denote by Q the transition kernel of (xg, O)x>o- Since [ is invariant for Q, it satisfies the BAR:

AI-Q)f =0

for any test function f : X x R? — R? that satisfies ||f(x, 0)| < C(1 + ||0]|),V(x, 8) for some
C € R [Vil09, Definition 6.8 and Theorem 6.9]. The above BAR can be written equivalently as

E [f (X0, o) = if = BQf = E [f (Xoot1, Ooor1)] - (A.28)

It is known that equation (A.28) with a sufficiently large class of test functions f completely
characterizes the invariant distribution g [Har85, HW87, DD11].
It suffices for our purpose to consider the test functions f(*),i € X defined as

FD(x,0)=0-1{x =1i}.
Substituting f = £ into the BAR (A.28) gives
E [0 - 1{xco = i}] = E [Ooot1 - L{Xeos1 = i}]. (A.29)

Let us calculate the left and right-hand sides above. Recall that P= (pi) is the transition kernel of
the time-reversal of the Markov chain (xg)g>0; see Section 3.1. We have

E [0 - 1{xeo = i}] = 7; - E [Oco|Xe0 = i]

= TizZi,
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and

E [6eos1 - T{xoor1 = i}] = i - E [Boos|[Xoors = 1]
= i - B[00 + & (A(Xe0) O + b(xc0)) |Xeos1 = i]
= 3 PisE [0 + & (A(5)0co + b(5)) [0 = 5. Xeosn = ]
seX
QY BB [0 + @ (A()00 + b(5)) [ = 5]
seX

=i+ Y Pis [z + @ (A(5)zs +b(s))],

seX

where step (i) holds since 0o 1L Xcot1|Xeo as explained in equation (3.3). Plugging back into the
equation (A.29) and noting that 7; > 0,Vi € X, we obtain the recursive relationship:

z = (Z ﬁiszs) +a (Z Bis (A(s)zs + b(s))) , VieX. (A.30)
seX seX

A.4.2 Step 2: Setting up System of A. Define the difference J; := z; — z; for each i € X, where we

arbitrarily take state 1 € X as the reference state. Subtracting z; from both sides of equation (A.30)

and rearranging terms, we obtain

8 — (Z [),.555) =a (Z Pis(A(s)zs + b(s))), VieX. (A31)
seX seX
We consolidate the variables z; and §;,i € X into the matrices Z and A, defined as
2] o7
z, 2
Z=||eR™ and A=||eR™9
z, Sn
Let § := vec(AT) = [67 & - 5I]T € R™ denote the vectorization of A, and similarly

Z := vec(ZT) € R™ the vectorization of Z. With the above notations, equation (A.31) can be
written compactly as

((In “Pe Id) S=a(¥ity), (A.32)

for some matrix ¥ = ¥(A,P) € R">" and vector y = (b, P) € R™, where ® denotes the
Kronecker product of matrices. Note that the above RHS is a linear function of Z.

The system (A.32) consists of nd equations. Since §; = 0 by definition, the first d equations are
redundant. The remaining (n — 1)d equations is given by

(s = P 014) 5 =a (#1740 0), 4)

where P(-1) € R(-DX(n-1) i5 ohtained from P with the first row and column removed, and
5D e R=14 (regp, @(-1) ¢ R(r=1dxnd a4 4 (-1 ¢ R("=1d) js obtained from & (resp., ¥ and 1))
with the first d rows removed. Note that 5 = [6; - &7] i

We make the following claim.

CraM 3. The spectral radius of the matrix PV, denoted as p(P(-V), satisfies p(P"1) < 1.
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Proor oF CraiM 3. We have the element-wise inequality

~ 0 0 ~
(=1 .-
P = [0 p(_l):| < P

Wielandt’s theorem [Mey00, Chapter 8.3] ensures that p(P(~1) < p(P) = 1; moreover, if p(P(~1)) =
p(P) = 1, then there exists a number ¢ and a non-singular diagonal matrix D such that M =
eigDPD_l, which implies the first row and column of P are zero. This however contradicts the
irreducibility of P, a consequence of the irreducibility assumption of P. We therefore conclude that
p(f’(_l)) < 1, which in turn implies that p(ﬁ(_l)) <1 O

It follows from the above claim that the matrix I,,_; — P(-1) is invertible. Consequently, equa-
tion (A.33) implies that

e ((In_1 _ptn) ®Id)71 . (\p(—l)g_,_ ¢<—1>)
—a. ((In_1 —P) e l) - (¥Vz ). (A34)
Equation (A.34) concatenated with §; = 0 can be rewritten compactly as
5 =a(B(A b,P)-Z+B (AD,P)) (A.35)
for some matrix B(A, b, P) € R">" and vector B’ (A, b, P) € R".

A.4.3 Step 3: Establishing A = O(«a). It is tempting to think that the right-hand side of equa-
tion (A.35) is linear in a. This is however not the case since Z, which is a function of 6., also
depends on «a. In what follows, we show that 5= O(a), which is done by first establishing the
bounds E[]|0]|]] = O(1) and Z = O(1).

The bound E[||0]|]] = O(1) is established in equation (A.14) in Lemma A.7. We next show that
Z = 0(1). An explicit bound is given in the following lemma.

LEMMA A.9. Under Assumptions 1, 2 and 3, and when « is chosen according to (4.2), we have
llzills < C1(A b, ), Vie[n],

where

C(A b, 1) = —2 -Vm‘f"‘.(\/z+||9*||). (A.36)

Mmin ~ Ymin
Proor oF LEMMA A.9. By definition, it holds for each i € X that

21 = B [Ouleo = i] = W-

T
It then follows that
E[||0]l]
22l < ==l

13
H 1
e AL
Tlmin Ymin

2
< =B (o),
TTmin min

where in step (i) we use the bound (A.16) and 7; > 0,Vi € X by Assumption 1.
This completes the proof of Lemma A.9. O
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Finally, applying Lemma A.9 to upper bound the RHS of equation (A.35), we conclude that
161 < o B"(A.b. P) (A.37)
for some number B” (A, b, P) that is independent of a.
A.4.4 Step 4: Bootstrapping. We rewrite equation (A.30) as

~zi + (zn: ﬁiszs) +a (zn: PisA(s)zs

s=1 s=1

= —aZﬁiSb(s), Vi=1,...,n.
s=1

We multiply both sides above by 7z; and sum over i = 1,..., n. Simplifying the resulting equation
using the identity Y; m;pis = 7, Vs, we obtain

a (Zn: s A(s)zs

Cancelling a > 0 on both sides and substituting z; = z; + §; gives

n
= —az 7sb(s) = —ab.
s=1

D miA(s) (21 +8) = Azi + ) mA(s)8; = —b.
s=1 s=1

Solving the above equation for z; and recalling that §* = —A~'b, we obtain

n
2 =0 — A Z 75A(5) 8, (A.38)
s=1
and consequently
=z +8;=0"—A! Z TA(S)Ss + 0, Yi=1,....n. (A.39)
s=1

The above equation can be written in matrix form as
7=1,® 0" +C(A b, 7)d (A.40)

for some matrix C(A, b, rr) that is independent a.

Note that equation (A.40) expresses Z as a linear function of 5. On the other hand, equation (A.35)
expresses § as a linear function of . Plugging equation (A.40) into equation (A.35), we obtain the
following self-expressing equation for A:

5= a[B(A, b,P) - (1, ® 0" + C(A, b, 7)8) + B/ (A, b, P)]

= oY + a5, (A41)
where the quantities
Y; =Y1(A b,P) :=B(A,b,P) - (1,®0%) + B'(A,b,P) and
E=ZE(ADb,P):=B(ADbP)C(A D, )
are independent of «, and we use the fact that 6 is a function of A, b, 7. Before proceeding, we record

the following explicit upper bound on the spectral norm of Z. The proof is given in Appendix A.4.5.

LEMMA A.10. We have
- 3/2 AloN-1 —1 (7
IZN < 27%2 -1+ (Plog) ™" - sain (A),
where
1 = inf{¢ :ﬁfj >0,Vi,j=1,...,n}, pL. = .rglin o~
i=2,...,n
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and p;; is the (i, j)-th entry of matrix Pt

Using self-expressing equation (A.41) for 5, we can bootstrap from the bound § = O(a) in

equation (A.37) to obtain increasingly precise expansions of § in terms of a. We perform this
bootstrapping procedure using induction. Plugging the bound A = O(«) into equation (A.41) gives

5 = aY; +E0(a?),

which establishes our base case. Next, define the vectors Y; := Z71Y;,i = 1,... As our induction
hypothesis, suppose that

5= oY+ EmO0(a™), (A.42)

M

1l
—

L
for an integer m > 1. Plugging the above expression into equation (A.41) gives
R m 0 m+1
§=al; +a= Z oYy + EmO (0™ | 2 Z &Yy + 2O (M),
i=1 i=1
where step (i) holds since ZY; = Yj;; by definition. The above induction argument establishes that

the expansion (A.42) holds for all integer m > 1.
If it further holds that

1 _
a< —n
21

then in light of Lemma A.10, we have a < ||Z|| ™!, which implies p(aZ) < 1, and hence ||[E™a™"!|| —
0 as m — oo. In this case, taking m — oo in equation (A.42) gives the infinite series expansion

3. _
2Pl Smin(A), (A.43)

5= ;. (A.44)

™M

I
-

Finally, we show that the above expansion for 5 implies the desired expansion for E[0]. By
definition of {z;} and {§;}, we have the expression

E[0] = Z 75 (21 + Os)
s=1
=z + Z 7505 (A.45)

Q6 4 > m (-4 A(s) +1) 8,

where step (i) follows from the expression (A.38) for z;. The above equation can be written as
E[6w] = 0" + C'(A, b, 7)8 (A.46)
for some matrix C’ (A, b, 7). Combining with the expansion (A.42), we obtain
m
E[0s] =07+ ) a'BY + C'(A,b,m)E™O(a™"),
i=1
where we define the vectors B#) = B® (A,b,P) = C'(Ab,n)Y; for i = 1,2,... Furthermore,

combining equation (A.46) with the infinite series expansion (A.44), which is valid under & < ||Z|| 7},
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we have
E[0e] = 6 + Z B,
i=1

This completes the proof of Theorem 4.3.

A.4.5  Proof of Lemma A.10. In the proof below, we use ||v]|, to denote the vector £, norm, making
it clear that it is the norm of a vector, while the spectral norm of a matrix M is denoted by ||M]|
without the subscript as stated above.

Proor oF LEMMA A.10. As Z(A, b, P) = B(A, b, P)C(A, b, rr), by sub-multiplicativity of the matrix
spectral norm, we have
IEIl < IB(A, b, P)]| - [|C(A, b, m)]|.
Hence, we first try to bound ||B(A, b, P)|| and ||C(A, b, 7)|| respectively.

We start with bounding ||B(A, b, P)||. We first attempt to write out B(A, b, P) explicitly. By
observing (A.31) and (A.32), we have

(1-p1)ly —p12la e —pinla &1 P1A(1)  p12A(2) -+ prA(n)| |z
—parly (1—=p2)lg --- —panly 1o P2nA(1)  pA2) -+ pPanA(n)| |2z
. | =a ) NEXAR
_ﬁnlld _ﬁnZId e (1 - pnn)Id 6n ﬁnlA(l) ﬁnZA(z) o ﬁnnA(n) Zn
Since 8;=0 by construction, and I — P(-1) is invertible by Claim 3, the above equation becomes
51 0 21
Oy P21A(1)  Pp2A(2) - paAm) || |2
| T ((1—15“”)*1 ®Id) : ey
On ﬁnlA(l) ﬁnzA(Z) T ﬁnnA(”) Zn
As such, by equation (A.35), we are able to write B(A, b, P) explicitly as
0
b P21A(1)  p2A(2) -+ panA(n)
B(Aa ’P)_ ((1_13(71))71®Id) :
ﬁnlA(l) ﬁnZA(z) T ﬁnnA(”) ]
Then, it is easy to see that
[p2nA(1)  prA2) - paAM]|
IBAb P =||(1- P o L) |
_ﬁnlA(l) Pn2A(2) - ﬁnnA(n)_
, P21A(1)  PA(2) -+ panA(n)
< H(I—P(‘l))‘l ®IdH :
ﬁnlA(l) ﬁnZA(z) T ﬁnnA(n)
o , P21A(1)  PnA(2) -+ panA(n)
< H(I—P“”)—l” : , (A.47)
ﬁnlA(l) f’nzA(z) T f’nnA(n)

, Vol. 1, No. 1, Article . Publication date: June 2023.



44 Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie
where (i) holds for
A 2 N 2 . 2
|a-pn e = |a- 2o e = |- 20y
Hence, to bound ||B(A, b, P)||, we need to obtain an upper bound for each of the two norms on the

right-hand side of the inequality (A.47).
We start with bounding the operator norm of the second term of (A.47). We note that for any

i=2...,nandanyo = [0 v, --- 0] € R™ we have
01
vy 2 n 2
H [pnAQ1) pA2) - pwmAM)] | . ZﬁijA(j)Uj
. 2 j=1 2
Un
(i) &
< > pullAG)o; I3 < sz, B3
j=1
(i) &
< > oIl = lloll3,
=1

where we simply apply Jensen’s inequality to obtain (ii), and relax p;; and Apax to 1 to have (iii).
From the above inequalities, we know that

2

H [pnA(1)  piA(2) -+ pinA(n)]

Hence, we have the following upper bound,

A PrAR) - paAM]|

IA

(n-1) (leaxn [pnA(1) pAR) - pinAn)]

2)

<n-1 (A.48)

fsnlA(l) ﬁnzA(z) ﬁrmA(”)

We bound the operator norm of the first term of (A.47) with the following claim, whose proof is
postponed to the end of this sub-sub-section.

CrLAIM 4. We have
(I-PUNY Y < V- u(pl )7 (A.49)
2 pmm

where 1 > 0 such that p;; > 0 Vi, j andﬁ]’;in =minj—__n pk.
Combining (A.49) from Claim 4 and (A.48), we obtain
1B(Ab, P < (VA t(hy) ™) - Vi =1
< tBn) (A.50)

Next, we proceed to obtain an upper bound for ||C(A, b, x)||. Taking a similar approach as
bounding ||B(A, b, P)||, we start with giving the explicit formulation of C(A, b, ). From (A.39) and
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(A.40), we have

mATIA(1) mATIAQ2) - mAT'A(n)
C(Ab, 1) = Ly — :
mATIA(1) mATIA2) -+ mAT'A(n)
=lg-1,® [ﬂlA_lA(l) mATIA(2) - irnA_lA(n)] .

Then, an application of the triangle inequality gives us the following upper bound,

IC(A, b, )||* = ||I,,d -1,® [mA_lA(l) mATIA(2) - 77,114_1A(n)]||2
2
< (IIIndll +1allz - || [mATTA() mATIA(R) - mATMA()] ) . (A5
We observe that for any o € R™,

01

- — - Z) n 2

[mATAQ1) mAT'A2) - mAT'A(n)] = Z AT AG);

i=1 2

Un

(i) ¢ _ _
< ZmllA PIAG I eill

() _
= rmzn(A)Amax ZHlez

( mln(A)Amax) ||0||2a

where we apply Jensen’s inequality to obtain (iv), and we simply relax 7; to 1 to arrive at (v). Hence,
we have the following bound,

< S (A)Amax < Sm

= “min = “min"

[ﬂlA_lA(l) mATIA(2) - ﬂnA_lA(n)]

We now substitute the above norm upper bound back into (A.51), and we obtain

IC(A bl < (14 Vasyh (A) < 29k - 5,1, (A, (A52)

where the last inequality holds for n > 1 and syin(A) < 1.
Combining (A.50) and (A.52), we are able to conclude with the claimed upper bound for ||Z||,

IZ]l < [IB(A, b, P)IIIC(A, b, )|
< (n- 1(Ble) ™) - (290 s (D)
= 25 (A) 1 (Bpin) ™
thereby completing the proof of Lemma A.10. O

PROOF OF CLAIM 4. To bound ||(I — P(-D)~1||, we first recall the definition of P(-1),

~ 0 o0
(-1) _
P= [ p-1)

< b
0 <P
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By non-negativity of transition matrix P, it is clear that (P(~1)* < (P) for all k > 0 and hence,
=~ 0 0 -
-1)\k k
(PUDYk = [0 (p(—l))k] < (P)~.

Given this inequality, it is easy to see that for any i = 2,...,n,

n n

~(=1)\k Ak
§ (' 1))1‘]’ = E pij <1,
= =

where (ﬁ(_l))l’?j is the (i, j)-th entry of matrix (PCD)* which corresponds to the (i — 1, j — 1)-th
entry of matrix (P and as defined earlier, P ;s the (i, j)-th entry of matrix Pt
Next, by the irreducibility and aperiodicity of P, there exists some ¢ > 0, such that ﬁ:] > 0 for all

i, j. Denote [)r’;m =minj—_ _n ﬁfl, then for any i = 2,...,n, and any k > 0, we have
n
~(-1)\k k
Z(P( ))ij < 1_pmin'
j=2

When we set t = 1, we therefore obtain
TP oo < (1 = Phygn) < 1.

Then, as previously shown in Claim 3 that p(P(") < 1, we can apply Neumann series and

obtain
(=P =l Y P
Jo-rei e,
< Y[
k=0 ©
co 1—1
— Z (P(—l))ml+l (A53)
m=0 [=0 ©
By the sub-multiplicative property of the || - || norm, we further have
m
(P(—l))m1+l < (P(—l))l (P(—l))l < (1 _ﬁ:nm)m.
We then substitute it back into (A.53), and obtain
Wz-ﬁ““y4 < (= )™
© m=0
=0 ) (= )" = 1 (Bl)
m=0

Making use of equivalence of norm, we therefore obtain the following bound on the spectral norm,

=P Y <Vn—1-||(7-PCD)!

< n- (pr) 7

2
and complete the proof of Claim 4.
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A.5 Proof of Theorem 4.4

In this section, we prove Theorem 4.4 on the relationship between the bias and the SLEM of the
underlying reversible Markov chain.

A.5.1  Eigendecomposition for reversible Markov chain. Our proof makes use of the Perron-Frobenius
theory and eigendecomposition of reversible Markov chains. We briefly review this topic, following
[Bré20, Chapter 6, Section 2]. Suppose that the transition kernel P = (p;;) € R™*" is irreducible
and reversible w.r.t. the stationary distribution 7 € R", i.e.,

TiPij = TjPijs Vi, j € [n], (A.54)
where 7 has strictly positive components. Define the diagonal matrix D = diag(r) € R™ ", Let £2(r)
be the real vector space R"” endowed with the weighted inner product (x,y), = X; x;yim; = x' Dy
and weighted norm |[|x||, = v/(x, x) ;. Reversibility is equivalent to self-adjointness in ¢£*(x), i.e.,
(Px,y), = {x,Py) ., Vx,y. Similarly define the vector space {’2(%).

Under the reversibility condition (A.54), the eigenvalues of P are real and can be ordered as
1= > |A4:] 2 ... 2 |[A4n]|. Moreover, the corresponding right and and left eigenvectors (u;)1,

. _1 1
and (v;)]", can be written as u; = D™ 2w; and v; = Dz w; for some orthonormal vectors wy, ..., w.
Moreover, u; = 1 and v; = 7. These vectors satisfy v; = Du; and

(uisvj) =8y, (wuj), =6, and (Uis%');: i Vi

where §;; := 1{i = j} is the Dirac delta. Consequently, {1;} and {v;} are, respectively, an
orthonormal basis of the spaces £?(r) and [2(7—1{). Each vector y € R”" can be expressed as
y = Xy fiwi = X Pjvj, for some f = (f;) and p° = (f;) satisfying 1815 = llyll> and
181 = NIl

The matrix P admits the eigendecomposition

n
P=UAVT =177+ > o],
i=2
where A = diag(4y,...,4,) is a diagonal matrix, and U € R™*" and V € R™" are matrices with
columns {u;} and {w;}, respectively. Moreover, if we let W € R™ " be the matrix with columns
{w;}, then it holds that WWT = WTW =, U =D":W and V = D W.

We now proceed with the proof of Theorem 4.4, which is divided into three steps given in the
next three sub-sub-sections. The proof shares the same notations and a similar high-level strategy
as in that of Theorem 4.3. In particular, we characterize the quantities z; := E [fe|Xoo = i] € R and
8; = z; — z; € R?, and track their dependence on the SLEM 4;. To simplify notation, we assume
below that A, > 0 and hence |A;| = A2. The proof for the general case of A; < 0 is similar.

A.5.2  Step 1: Setting up System of A. In the proof of Theorem 4.3, we establish that

51’ = Z pisas +a Z Pis (A(3)23+b(s)) , Vi e [n]
]

s€ln s€[n]

Note that under the reversible Markov chain assumption, we have P=P. Also, recall that the choice
of state 1 as the reference state is arbitrary, so we may assume WLOG that 7y = mnax = maX;e[n] 7Ti.
Let G := P — 1x" € R™" denote the gap between the one-step transition kernel and its mixed
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version; explicitly, g;s = pis — 5. The above equation can be rewritten as

bi Z (7s + pis — TTs) 53) + O(( Z (s + pis — 7s) (A(s)zs + b(s))

s€[n] s€[n]

Db+ a Y m (A(s)zs +b(5)) + D gis (O + aA(s)zs + ab(s)), Vi€ [n],

=T

where T € R? is independent of i . But §; = 0, hence

T == gis (8 +@A(s)zs + ab(s)).

Combining the last two display equations to cancel out w and rearranging terms, we obtain

8i= Y (Gis = 915) 85 = ) (gis = 91) (@A(s)zs + ab(s)), Vi€ [n],

Let Y € R™ be the matrix whose s-th row is y] := a (A(s)zs + b(s))" € R?, and recall that
A € R™ has rows {6/ }. The above equation can be written compactly as

[I-(G-19")|A=(G-19")Y, (A.55)
where g7 is the first row of G.

the eigendecomposition of P, we have

n
G=P-171" = Z Aiuil);—,

= Z/liu,-(l)lviT.
i=2

Let §(k) € R" denote the k-th column of A and y(k) denote the k-th column of Y. Using the
expressions in (A.56), we establish the following two lemmas, which give a lower bound of the
LHS of (A.55) and an upper bound of its RHS. The proofs of these two lemmas are given in
Appendix A.5.5.

(A.56)

LEMMA A.11. We have

/1 max n
I[[1-( —1g]||22%”” Vx € R",

Consequently, for each k € [d],

(1 - Az)zﬂmax

1= (G-19")] 8| = I5(R)II% .

LEMMA A.12. Foreachk € [d], we have
(G = 197) y(0)II, < 225 (1 + 7is) ly (OIS -

Applying these two lemmas to the two sides of (A.55), we obtain that

(1- /12)277:max

5 N6R)IE < 225 (1 + 7)) lly(K)1I1%,  VEk € [d]. (A.57)

max
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In the sequel, we use the following equivalence relationship between the £? and £%(r) norms:

Vtmin 11z < x|z < Vmax Ixll; < x5,
where Tyin := min;en) 7; > 0. With the above convention and relationship, the bound (A.57)
implies that
(1= 22 16(K)I3 < 87maxds ly(R)5, ¥k € [d],
whence
(1= 22)* Al < 873 Y117 (A.58)

max

Recall that the matrix Y € R™? has rows y] = a (A(s)zs + b(s)) ", which satisfy

”ysnz < a (Amax [1Zsl; + bmax) » Vs € [n].

As shown in Lemma A.9, that
llzsll2 < ¢ - Ci(A, b, 7),
so it follows that
Y1 = D"yl < 1 @ (Amax - € Co(A, b, 7) + bma)
i=1

and

”Y”F < O(\/E : (Amax e Gy (A» b, ”) + bmax)
Combining with (A.58), we get

A
1Al < N8 - 725 1Yl
[ A
< ( Sﬂr;léx : 1 —2).2) : ((X\/ﬁ : (Amax cC- Cl(Aa ba ”) + bmax))

1 A
<c-: (X\/ﬁ' — 2. (Amax - C1(A, b, ) + biax)
TTmax 1_12
(i) 1 A 2
< C'a\/ﬁ' —_ —2 : (Amax' - @ : (\/E"'”e*”)"'bmax)
Tmax 1= 22 Tlmin ‘min
(i) 1 A 2 Ymax \/ 5 . x _ _
<c- . . . I (4640yimaxs 22 (A) by + st (A)bimax) + b
i B I (A 5 ) +
’ AZ 1 Ymax -1 -
<dayn 2L Y1) s (A) b (A.59)

1- AZ TTmaxTmin  ¥Ymin
where we substitute the definition of C; in (A.36) to obtain (i), and substitute the definition of k in
(4.3) to obtain (ii).

As shown in (A.59), we are able to establish that

— Az
A_O(al—)tz)'

A.5.4 Step 3: Characterizing the Bias. We can bootstrap from the upper bound (A.59) to obtain
a more precise relationship between A, ¢ and A;. This is done in the following lemma, whose
proof is given in Appendix A.5.5. Note that the proof provides explicit formulas for Bs(A, b, P) and
B4 (A, b, P, ); see equation (A.68).
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LEMMA A.13. We have
A = aBs(A,b,P) + a’B4(A, b, P, ), (A.60)
for some vectors Bs(A, b, P) and B4(A, b, P, &) satisfying

Az

[IB3(A, b, P)|l; < cVn -
1-2

1 _
. ( . sr;iln (A) - bmax and

Tlmin

, A 2 1 ‘max - T
||B4(A’ b’ P, 05)”2 <cn- ( 2 ) : 2 : i (Ymax + 1) Smiln(A)bmax >
1- /12 ﬂmaxﬂmin Ymin

where ¢ and ¢’ are universal constants.

We first take the above lemma for granted and complete the proof of Theorem 4.4. The key step of
the proof is to relate A to the bias E[6.] — 0%. To see the relationship, we first recall equations (A.38)
and (A.45), restated below:

=0 — A Z mAG)S;,
j=1
El0L]=n"Z=n"(A+1,-2]) =z +71'A.

Therefore, substituting Z; into the right-hand side of E[6], we have

E[0s] - 07 = —A"' »" mA()S;+ATx
j=1

=" w1 = ATA())S;
j=1

[m(I-A7A(L) - m(I-AT'An)] -6

—

i)

a-B(A b P)+a*-B (A DbP,a),

where step (i) holds for some appropriate vectors B(A, b, P) and B’ (A, b, P) in light of the expres-
sion (A.60) in Lemma A.13. This proves equation 4.10 in Theorem 4.4.
Moreover, applying the upper bounds in Lemma A.13, we obtain that

AmaX
Smin (A)
Amax 1 1,z
<c |1+ —|-n- -5 (A)-b
( Smin (A) ) Tlmin mm( )+ bmax

. A no o,
: : smizn (A) ' bmax,

(ii)
IB(A b, P2 & ¢ (1 . ) sy

1- AZ ' Tlmin
where step (ii) follows from a loose bound of the term 7; (I — A71A(i)).
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Similarly, we have

Amax
Smin (A)

<c (1 + AL“_) .
smin(A)

< (1 + ﬂ) :
Smin(A)

B (A, b, Pa)ll2 < ¢ (1 + ) “|1BallF

|
|

’3/2 Aa 2 1 Ymax -1,z
cn’ : . ()’max + 1) Smin (A)bmax

2 .
1- Az ﬂmaxﬂmin len

r 3/2 Aa ? 1 Ymax -1,z
cno ’ : (Ymax + 1) Smin (A)bmax

_ 2 .
1-4 TmaxT;,  Ymin

-s=2 (A)b .
1- /12 ﬂmax”rznin mln( ) e

Ymin

We have established the bounds (4.11) and (4.12) in Theorem 4.4 and completed the proof thereof.

A.5.5 Proofs of Technical Lemmas. We first present the following simple upper bound, which is
needed in the proof of Lemma A.11 and A.12.

LeEMMA A.14. It holds that

A

n 2
(Z/liﬁiu,-(l)) < o
i=2

2
2
max

)

Proor. We have
2

n 2 n
(Zaiﬁiuiu)) <2 (Z 5] |ui<1)|) Mol = 2] 2 ... 2 |2
i=2 i=2

<A (Z ﬁ,z) (Z ui(l)z) . Cauchy-Schwarz
i=2

i=2

Note that

i=2 i=2
n
< ) eluiu e
i=1
=e/UU e
T4 TN—1 1
=e, DWW D 2¢g U=D":W
=e D7l WWT =1
1
m

Combining the above bounds and recalling that 7y = .y, We complete the proof of Lemma
A.14. O

Proor oF LEMMA A.11. Fix an arbitrary vector x € R". Since {u;} is an orthonormal basis of
£2(7), we can x = Z;’Zl Bju;j for some f € R" satisfying IBl12 = ||x||% . Using the expressions of G
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and 1¢g" in equation (A.56), we have

[I-(G-19")]x= [I— Zﬂi (ui - Ui(l)l)UiTl (Zﬁj”j)
i=2 J=1

=Zﬁiuj—z/1iﬁi (ui —u;(1)1) v uj = i
i=1 i=2
= (ﬂl—Z/Ijﬂjui(l))1+Z/3i(1—/1,~)u,~. up =1
j=2 i=2
Since the vectors {1, uy, ..., u,} are orthonormal in £2(r), we have
9 n 2 n
I[I-(G-19")] | = (ﬁ1 - Z Ajﬁjui(l)) + Zﬁf(l - )% (A.61)
j=2 i=2

Consider two cases:
o If f2 <l S, B2, then ||BIl5 < (1+ mk) S, B2 Combining with (A.61) gives

1= (G- 197« = (1-22)? Zﬁ ol = 25] > ... > Al
2(1—Az)21 — 118113
_ (-4 /1)
= 1 185 = lIxI%
hd Ifﬂz T ?=2ﬁ then ||ﬂ||z < ,32 +ﬂmaxﬁ1 <(1+m mx)ﬁ1 It follows that

> | — A2y ﬂmaxZﬁz Lemma A.14

= AiBjui(1)
j=2

> |1l = A2 |B1]
= (1-42) |l
> (1-23)  —Ipll,-

V1+ erax
Combining with (A.61) gives
1= (G =197 = —
Therefore, in both cases we have
- (G-19")] 4, = 1%,

where we use the fact that 7,1 > 1. This proves the first part of Lemma A.11.
Taking x to be each column of A, we obtain that

(1-2)° Az)
=y 85 = - lIx11% -

a ma

(1 /12) TTmax

> (1- AZ)zﬂmax

I[1-(G-14T)] 8RS =

which proves the second part of Lemma A.11. O

I8GIZ. Ve [d],
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ProoF oF LEMMA A.12. Fix an arbitrary index k € [d] and recall that y(k) is the k-th column of
Y. Using the expression of G and 1¢" in equation (A.56), we have

(G-1g7) (M—wa,mumvmm (A.62)

Since {u;} is an orthogonal basis of £2(r), we can write y(k) = 2=1 Bjuj for some B € R" satisfying

||ﬁ||§ = ||y(k)||fr. Plugging into (A.62) and using the property v, u; = §;;, we obtain

(G-19") yk_ZZAﬁ,(u, u(1)1) 0] u;

i=2 j=1

= ZA Bi (i — wi(1)1)

= > Aifiu; - (Z Aiﬂiui(l)) 1.
= i=2

S

It follows that
2

2
+2 (Z Aiﬁiui(l)) 112 triangle inequality, (a + b)? < 2a* + 2b*

n
2
G~ 197) well, < 2| > Aupius
i=2 ”
n n 2
=2 (Z )leﬂlz) +2 (Z Aiﬁiui(l)) £%(7) orthonormality of {u;}
i=2 i=
n
< 2M (Zﬁf) +2- — (;ﬁ ) |[A2] = |A3] = ... > |Ay], Lemma A.14
< 205 (1+ 7 lly (O I1BIIZ = ly (k)11
which completes the proof of Lemma A.12. O

Proor oF LEMMA A.13. By Lemma A.11, we know that
Tomax I = (G = 1g)x|[% = |1 - (G - 19"

(1 /‘{ ) ﬂmax
z———4L———n|F

(1- /12) T
> Sl
Canceling out 7mp,x on both sides, we obtain
AZ) Tlmin

- (G - 1gT)a]f = & Ix13 (A.63)

which implies that sy, (I — (G —1g")) > % By Assumption 1, it is clear that m,;, > 0 and
|A2] < 1. Hence, I — (G - lgT) is invertible. As such, we can rewrite (A.55) as
=[1-(G-197)] " (G-1g") Y. (A.64)
Then, as Y € R™ has rows yd = a (A(s)zs + b(s)) T, we substitute it into (A.64), and obtain

A=[1-(G-19")] " (G-197) - a(M+b), (A.65)
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where
(A(1)zy) " b{
M= , and b=]:
(A(n)z,) T by

Next, we recall that shown in Appendix A.4.4 that

%:W—Aﬂipwﬂn@+@:m+c@@&aw&
j=1
where
C (A b 1) = [mA() mAR2) - mAn)]+el ®; € RN,
We then substitute the above definition of zg into M and have
(A1) - (0" +CO (A Db, m)8NT]  [(A)-69T] [(AQ1)-CD (A b, 7)8)T
M= : = g + : . (A.66)
(A(n) - (0" +C™ (A, b, m)d)T|  [(A() -0)T|  [(A(n) - C™ (A, b, 7)8)T
We set By(A,b,P) = [I — (G- 1¢97)] "' (G — 1¢7). Together with (A.66), (A.65) becomes
(A1) - 0*+b)T] [(AQ1) - COD (A, b, 7)8)T
A = aBi(A, b, P) : + : . (A.67)
(A(n) - 0" +b)" | [(A(n) - C™ (A, b, 7)8)T
We further denote
(A(1) - 0" + b)) T (A(1) - CV (A, b, m)8)T
Cy(A b, ) = , and By(A b,P,a) = ,
(A(n) - 0" +by)" (A(n) - C™ (A, b, 1)8)T

and

By(A,b, P,
By(A,b,P) = By(A b,P)-Ca(A,bx), and Ba(AbP,a) = By(Ab,P) - 2P D
o

(A.68)
As such, A in (A.67) can be represented as
A = aBs(A,b,P) + a’B4(A, b, P, a).

Therefore, it remains to bound ||B3(A, b, P)|| and ||B4s(A, b, P, ) ||.
As By is a present in both Bs and By, we start with obtaining an upper bound of ||B1 (A, b, P)||,

IBU(AbP)z =1 [T~ (G-19")] " (G~14") Il
<N I1-(G-19")] " 12l (G~ 197) llo.
Jlr-(6-1901"

<4 , —2 .
2 (1 - /12)27rmin
Then we know from Lemma A.12,

il (G = 19Dy (B3 < 1(G = 19Ty (R)II7
< 225(1+ e ) Iy (O 15 < 2245(1 + T ly (K 15

By (A.63), we first have

, Vol. 1, No. 1, Article . Publication date: June 2023.



Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes 55

The inequality above implies the following upper bound on the spectral norm of |G — 1g" |2,

225(1 + Timax
IG - 1g7l, < | 22 o)

Hence, we obtain the following bound on ||By||,

2 222(1 + may) A 1
Bi(A b, P, < 4/ 4/ & <4. - . A.69
” 1( )”2 (1 - AZ)Zﬂmin Tlmin 1- /12 Tlmin ( )

Then, to bound ||Bs||, we need an upper bound for ||C4||. We observe that

n . A 2
IC4(A, b, m)l5 < IC4 (A, b, )17 = Z IAMDE" +b:l* < n (m + 1) Dnax- (A.70)
i— min

Therefore, (A.69) and (A.70) together give us the following upper bound on ||Bs||,

[1B3(A, b, P)||2 < [|B1(A, b, P)|[[|C4(A, b, )|

do 1 Amex ) )

R L —— S 4 1] bynax

( 1= ”min) (\/ﬁ(smin(A) e
/12 Amax

S8\/5' : = 'bmax

(1 - AZ)”min Smin (A)

Lastly, we proceed to bound ||B4(A, b, P, @)||, and the key is to understand ||B2(A, b, P, a)||. We
start with the Frobenius norm of B,, and we observe

2

A(o( ZHJAU)(S ) +6))

n
IB2(A b, P )} = Y IIAG) - €V (A b 7) vee(AT)I; = Z
i=1

i=1

<ZAmaX Z”;A(1)5)+5 ||2<22Amax Zn,-AU)aj +||6,-||2)
j=1
<22Am ZmnAo)a I+ 116; ||2)
<2ZAmax A+ DAL
Qon(a? + 12 e avi. 2 L Hmaxc 0y 1 (A :
max 1- /12 TTmax Tmin len Ymax min e

A 1 ¥ 9
<c.-nl. 2. 2 4t Ymax o+l Abmax
e ( 1-22 ZmaxTmin~ Ymin X ) Smm( ) >

where we make use of the upper bound of ||A||12D in (A.59) to achieve the inequality (i).
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Therefore, we conclude that

A

||B4(As b’Pa Gt’)”z =

(o ) e (2 I s b )|

1- /12 TTmin 1- /12 TTmaxTmin ~ Ymin

2 ,
Tmax Ty, ¥min

A\ 1 Y _
) . ( REEL (Ymax + 1) sr;iln (A)bax | -

As such, we have completed the proof of Lemma A.13.

A.6 Proof of Corollary 4.5
We prove the first and second moment bounds in Corollary 4.5.

A.6.1 First Moment. We first have

k-1
_ 1
E[Ok, k] — 0" = (E[0] — 6" E[0; - 0] .
[6i] = 07 = (B[0ec] )+k_k0;k[t |
N e’
T

To bound Ti, we recall (4.5): for k > r,

0.9a)k/2

Ymax

IE[0k] — E[0]ll < C(A b, 7) - (1 -

As the burn-in period satisfies kg > 7, we have the following bound,

k-1
< > IIE[6:] — B[0.]

t=ko

0.9a)k°/2 Vimax

k-1
D E[6; - 0.]

t=ko

T3]l =

< C(A,Db, 1-
= C( ”)( 0.9

Ymax

1 k
<C'(Abm)-—-exp|- . (A.71)
a 4Ymax

Together with (4.7), we obtain that

) k
E[0k,x] — 0" = aB(A,b,P) + O(a*) + O (mexp (_ ako ))

4Ymax

thereby establishing equation (4.13).
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A.6.2  Second Moment. Before we move on to obtain a bound for E [(éko,k = 0%) (O — 9*)T], the
PR-averaged second moment, we first try to understand E [(éko,k - E[@m])(éko,k - E[@m])T],

i

E [(Okok — El00]) (Oo ke — E[0]) "]

k-1
(Z Ok, E[Gw]) (Z Ok« — E[6

t=ko t=ko

(k ko)2

k-1
- (k_—lko)z 2, EL(6: ~E[6.]) (6, ~E[05])]
t=koy

T
k-1 k-1

s k)ZZZ( [(6: ~E[0]) (6~ E[0])T] +E (6~ E[0]) (6, ~ E[0])]

t=ko I=t+1

Tz

Below we control T; and T; respectively.
For T, we start with the following decomposition,

E[ (0 = E[0w]) (6: —~E[0]) " ]

_ E[@,H,T _ OE[0T] - E[0]07 + E[GM]E[Q;]]

=E[0,60; ] - E[0,]E[05] — E[0]E[6; ] +E[0w]E[6]
= (E[0:0/] — E[000]) + (E[00] — E[0o]E[05]) = (E[0:]E[05] + E[0]E[0, ] - 2E[0w]E[0])
= (E[6:6] ] — E[60L]) + Var(8e) — E[6; — 0o ]E[0L] — E[w]E[(6; — 60) 1. (A72)

By Corollary 4.2 and Lemma A.7, the following bounds hold for ¢ > 7:

0.9\
0.9a\"/?
[ f6r67] -2 06zl < ¢ (abm) - 1- 22
E[ll0xl] < C”(A, b, 1),
Var(0s) < C"'(A,b, ) - art. (A.74)

Plugging these bounds into equation (A.72), we obtain that

t/2
E (Gt—E[Gw])(Bt—E[Gw])T} =O((l—w) +ar).

Ymax
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Hence, we have the following bound for T3,

k-1 1 k-1 0.9a t/2
= ko)z ZE[(G, E[6.]) (6, — w])T] = FThT O((l— " ) +ar)
=Ko =Ko max

1 = 0.9 1/ art
_O((k_ko)zz(l_)/max) )+O(k_k0)
t=ko
ko/2
1 2Ymax 0.9« art
O((k—ko)z 0.9 (1 ) ymax) )+O(k—ko)

_0 1 _ako . ar
ek = k)2 TP\t ) Tk —ko )

For T,, we observe that for [ > t, we have

E[(6; - E[6]) (6 - B[6])T] = E [B[ (6 - B[0]) (6, — E[0])T |6]]
=], —E[emDE[el - B[01l0:] "]
=B [(6, - El0]) (EI61]0:] - Bl6w) |

For any x € R4, it holds that

0.9a)(”)/2

Ymax

(i)
< C(A b, ) - (1 -

HE[eziet = x] ~ E[0.]|| = HE[@:AGO = x] ~ E[0]

where (ii) follows from the first-moment bound in equation (4.5), which is valid for any initial value
0y. Hence, when [ > t, we have the following inequality,

]

E [H(@, —E[6.]) (E[6]0:] - E[6])”

IA

-5/ Jo. - El0. | |todo.] - Ei0. |

(I-t)/2
C(Ab,7) - (1 - 0'9"’) )

Ymax

5|l -1

(I-t)/2
QAh@.@_%&) )

Ymax
(I-t)/2
0.9
: C(A,b,;r)~(1— “) )

< 8116, - 0] + 21011 -

max Ymax

(ii) 0.9a'\ "/
< |C'(Ab,x)- (1 - _a) +C"(A b, 1) - (O(T,,,)l/2

0.9

>

1/2 (I-t)/2
0.9
) +C (A b, 7) - (ary)V? - (1 - —"‘)

max

=C(A, b, 7) (1 -

max

where in step (iii) we use (A.73) to bound E[||0; — 0 ||] and (A.74) to bound E[||0||], for E[ |0 ||] <
(Var(0s)) /2.
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Therefore, we have

= WZIE (( M)/) o 2.0 (( ij“)lm) (a75)

t=ko I=t+1 Ymax t=ko I=t+1

ko/2
< 1 2)/maX 1 0.9a .
(k - k0)2 0.9a Ymax

and

k-1 k-1 (I-t)/2 k-1 o (I-t)/2
= ko)z Z Z ( 0.90{) < = k0)2 Z Z ( 0.90{) (A76)

t=ko I=t+1 Ymax t=ko I=t+1 Ymax

! (zyﬂ) . (A.77)

<
k- k() 0.9

Hence, we obtain the following upper bound for T3,

k-1 k-1 0.90\!/2 ” 0.9¢\ -/
T, = = k0)2 Z Z (( ) + (aty) .(1— ) )

t=ko I=t+1 Vmax Ymax
2¥max 2 0.9¢ | Fo/? 1/2 2¥max
= —_— 1—-— — « _
o ((0.9a(k _ ko)) ( ymax) +O\le) - o %)
1 ak() V Ta/a
=0 exp - + .
aZ(k - kO)z 4Ymax k - kO

Combining the above bounds for T; and T,, we obtain

E [ (Okok = El0c]) (B — E[60]) |

1 aky art 1 aky VTa/a
SO(a(k—ko)z e"p( 4ymax)+k—ko)+0(a2(k—ko)2 e"p( 4ymax)+k—ko

k ko k — ko 0(2 (k — ko)z 4}/rnax

<0 ( o, Tal@ + ! exp (_a_ko)) . (A.78)

We are now ready to bound the second moment of the tail-averaged iterate. We make use of the
following decomposition:

B | (O~ 0°) (Bl 0|

(O, — Bl6w] +El0es] = 6°) (O, ~ El0oa] +E[6] ~ 0")|

-E [(eko,k ~ E[6.]) (éko,k ~B[0.])"| +E (B0 - 0") (0, ~ BI6]) ]
E [ (6o — Bl0w]) (E[0e] = 09)7] + B [(B[0c] = 6°) (B[6] = 0)7] .

=E

r—w
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We can bound the first term on the right-hand side above using equation (A.78). For the other terms
on the RHS above, we have

k-1
B [(fhs - B10]) (21601 - 0] = (Z £16, - em]) (Bl6.] 07
t=ko

iv, 1 k
W o (a(k ) exp (—4?;:)()) (aB(A,b,P) + O((xz))

1 ako
=0 exp [— ,
(k_ko p( 4YmaX))

where step (iv) is due to equations (A.71) and (4.7), and

E [(E[0s] = 0") (E[0] = 6") "] = (E[0w] = 07) (E[0e] = 07)7
v (aB(A,b,P) + O(a?))(aB(A,b,P) + O(a*))"
= a’B (A, b,P) + O(a),

where step (v) holds by equation (4.7).
Combining all the pieces, we obtain

B[(6c-0) (6 - 0) | =a*B'(A.b.P) + O()

+0(afa)+0(m)+0( Lo (- )

k —ko k—ko a?(k —ko)? 4Ymax

Lastly, we note that ka—TZg =0 ( 3 T_”k/ﬂ a), as a < ar, < 1in light of equations (4.2) and (A.1). As

such, we have established the desired equation (4.14),

E [(éko,k - 9*) (éko,k - 9*)T] =a’B' +0 (a3 + Ta/@ + ! exp ( ko )),

k—ko  a?(k—ko)? ©\ 4Ymax
and completed the proof of Corollary 4.5.

REMARK 2. The above bounds can be improved when ko = k — 1, which corresponds to the setting
without tail averaging and Oy, . = Ox_1. In particular, in equation (A.75) and (A.76) above, we upper
bound a finite sum by an infinite sum. One can bypass this step when ko = k — 1, in which case the
final second moment bound (4.14) can be improved to

* N\NT1 _ 21/ 3 1 ak
E[(Gk—G)(Gk—G) ]_aB +0 |« +aT“+¥6Xp(_4ymax))

= a’B" + O (ary) + O (e™k/ Brma)y

A.7 Proof of Corollary 4.6

We prove the first and second moment bounds in Corollary 4.6.
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A.7.1 First Moment. We have
pla) x _ (o) _ p2a) *
E[6.)] -6 = (zeko’k - o ) )
_ h(a) i« q(2a) *
=2 (%k —0 ) - (%k —0 )

0 SR
- (“B<As b.P) +0(a*) + O (a(k “ko) exp( 4Ymax)))

k
- (2aB(A,b,P)+O(a2)+O(a(kl_ko) exp (_ ako )))

2Ymax
— O(d IS S N
_O(a)+0(a(k_k0) exp( 4Ymax))’

where (i) holds following from equation (4.13).

A.7.2  Second Moment. Introduce the following short hands:

B[0)], w0 5[0

u = HIEZ/)C -
and v:=2E [9&,’1)] -E [68“)] +0".

With these notations, we write gko,k — 0" = 2u; — uy + v and observe the bound

HE“%k_mH@M_my”

= ||E [(2u1 —uy+0) 2uy —up + v)T]”

<E [||2u1 — Uy +v||2]
< B |2 ||* + 3B [luz||* + 3 [lo]|*.

By equation (A.78) we have

Eljui]|* = TrE [wy] | =O(m)+o( 1 ( ako ))

k- kO az(k - kO)2 P _4Ymax

and similarly,

Eflusll? = O (m) +0 (; exp (— ko )) .

k—ko a? (k- kO)z 2Ymax

Furthermore, by equation (4.7) we have ||o||* = O(a*).
Combining these bounds and noting that 7, < 7,, we obtain

. N [ AT m 1 ak
E[(ek_ko—e)(ek_ko—e) ]:O(k—ko +O(mexp(—ﬂ/72x))+0(a4).

We have completed the proof of Corollary 4.6.

B EXISTENCE OF HIGHER MOMENTS

The result in [SY19, Theorem 9] provides a sufficient condition for the existence of the m-th moment
of the LSA iterates 0. Their condition turns out to be more restrictive than necessary. By tightening
several intermediate steps in their proof, we can establish the following Proposition B.1, which
gives a more relaxed condition. In Appendix B.1 to follow, we explain how to modify the proof of
[SY19, Theorem 9] to prove Proposition B.1.
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ProrosITION B.1. Assume the stepsize a satisfies the condition (4.2). Then, for each positive integer

m obeying
-1
1
( +1) , (B.1)
V¥ min

1
m-ar <
4V}/max
it holds for all k > ky, that
E[101*™] < (2m = 1)!!(car)™,

2] 5

t=1

where

R | o

km =mt+

and both ¢ and ¢ are constants independent of @ and m.

In the proof of Theorem 4.1, we make use of the existence of the 4th moment. Taking m = 2 in
Proposition B.1, we see that the condition (B.1) becomes

=)
at < +1 .
8+/Ymax Ymin

0.05

T Using the inequality ymax > Ymin = 1 established in

2

Recall our stepsize condition (4.2): at <
equation (A.1), we have

0.05 _ 0.05 101 11 (1 +1)‘1
95Ymax 95 VYmax  VYmax 95 V¥ max T 32 V¥ max 8\/}/max VY min

Therefore, the condition (4.2) implies that the condition (B.1) holds with m = 2, which in turn
ensures the existence of a finite 4th moment and proves the claim in equation (A.25).

B.1 Proof of Proposition B.1

The proof is similar to that of [SY19, Theorem 9]. We only point out the differences. In the proof
of [SY19, Theorem 9], the key constraint on ar and m that ensures a finite m-th moment arises
when bounding E[[|%||*™], where ¥y = /20,1, ; see [SY19, Appendix D.4]. Below we provide
a refinement of the arguments therein.

We start with the following decomposition

2m-1

I%0l12™ = Bl = > (Il = elell = Bl 1
t=0
2m-—1

DN DRl AN A R AN (B.2)
t=0

Note that
I¥oll = ¥kl < ¥ — Foll

< VYmax|l0k — 6ol
@
< 20k VYmax(”QOH + bmax)

1
< Zak\/)/max _”\IIO”"'bmaX >
F

min
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where we make use of Lemma A.2 to obtain the inequality (i). Hence, for the ¢-th summand on the
right-hand side of equation (B.2), we have

R R R AR AR R A )

< 20K\ 1ol 7~ |

9 + bmax)

min

< 20tk /Ymax (

- ”\I/O |2m t”\Pk”t"'bmax”\PO”zm (t+1)||lek||t)
V¥min
(Pl + TP + b 17 127

1
< Zockvymax (\/?
min

We further note the following bound:

[ 1™ + Duax [ o™ = [T |21 ( [[%ol|* + bmax“%”)
Ymin ‘min

< [1¥l[2m=Y (

1
= || %, [|2(mY) ((
V¥ min
1
= + 1) [ |17 + b2 [ W21, (B.3)
=)

max
Ymin

¥ l1% + (bfa + II%IIZ))

min

+ 1) [1%o12 +b12nax)

Similarly, we have

[ |21, (B.4)

NP + B [ W |12 < ( + 1) [P + b

1
VY min
Combining equations (B.3) and (B.4), the t-th summand on the right-hand side of (B.2) admits the
following upper bound:

AR AR AR R A )

<ok

min

1
1) ORI+ ) + B (197 4 1))
V¥min ) 0 a 0

' 1) (INl™ + NEEll?™) + B (1l + ||\Ifk||2<’"‘”>) .

max(l

<2ak+Ymax ((
VYmin

Substituting the above bound back into equation (B.2), we have

[ 1P =1k [I™ < 4mak/Ymax (( + 1) CIFOIP™ + ™) + b (1P + II‘I’kIIZ('”_”)) :

1
VY min
Set C = C(A, b, ) = 41/Vmax (\/y_lmﬁ + 1) and C’ = C'(A, b, 1) = \[Ymaxb?,.x- We have the inequalities

I¥ol*™ = 1W< makC(I[%olI*™ + [ ¥l*™) + makC’ (%>~ + 271,
(1= makC) %o ||™" < (1+makC)|[Wel*™ + makC’ (|[%[*" 7V + |21,

1+ makC nakC
2 2
[[¥ol|*™ < o Hell™ +
1 —mak 1 -
Therefore, the constraint on m arlses aswesett =k and require marC < 1. Hence, to ensure a
finite m-th moment, we require mar < = Wthh corresponds to the condition (B.1) in the statement

of Proposition B.1.

(II‘I’oIIZ(”‘ D ([P,
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C DETAILS FOR NUMERICAL EXPERIMENTS

In this section, we provide the details for the setup of the numerical experiments in Section 5.

C.1 Setup for LSA Experiments

For the experiments on LSA, we generate the transition probability matrix P and functions A and b
randomly as follows.

We first illustrate the steps we take to generate the transition matrix P. For a given n (= |X]), we

start with a random matrix MP) € [0, 1]"*" with entries m(JP) iid.

(P)

obtain a stochastic matrix MF) = (r?ll(]P)) with m(P) = i 7y - We then examine the period and
k=1 "k

reducibility of the stochastic matrix M®) to ensure that it is aperiodic and irreducible as required
in Assumption 1. If MP) is not aperiodic or irreducible, we then repeat the above procedure until
we obtain one, and set P := MP). Now with P generated, we compute the stationary distribution 7.

Next, we proceed to generate A(x) for x € X. As we also need A = E; [A(x)] Hurwitz as required
in Assumption 3, we start with generating the Hurwitz matrix A and then add noise to obtain
@) iid- N(0,1), and
examine the eigenvalues A;(M4)), as Hurwitz matrix has eigenvalues all Wlth strictly negative
real parts. IfRe(/li(M(A))) <0foralli=1,...,d, then M4 is Hurwitz and we set it as A := M4,
Otherwise, we adjust M(4) to obtain a Hurwitz matrix, A := M) — 2 max(Re(4;(M4)))) - I;. With
A generated, we add a noise matrix E(x) € [~1,1]%*¢ to A to obtain A(x), i.e., A(x) = A+ E(x).
AsE,[E(x)] = 0 we only generate E(x) with e(x);; iid. U[-1,1] for x = 1,. — 1, and set
An)=A-y"] ! 71.E(x). Lastly, to align with our assumption, we normalize A(x) by the following
procedure,

U|[0, 1], and normalize it to

the respective A(x). We first generate a random matrix M(4) € R¥9 with m;;

A(x) — A(x)/max A, A — A/max||A(x)]

to ensure that A,y = 1.
iid.

Lastly, we generate b(x) € R? with b(x); [-1,1] and obtain b = ¥ 7w, b(x) and bpay =

max, ||b(x)].

C.2 Setup for TD(0) Experiments

We consider the TD(0) algorithm applied to the so-called “problematic MDP” considered in the
work [KP00, LP03]. This MDP involves nS = 4 states, S = {1,2,3,4}, arranged from left to right. At
each state, there are two available actions, “Left" (L) and “Right" (R). When the action L is chosen,
with probability 0.9 the state transitions to the left (or stays at the same position if the current state
is the leftmost state 1), and with probability 0.1 the state transitions in the opposite direction (or
stay at the same position if the current state is the rightmost state 4). The dynamics under the action
R is defined symmetrically. The reward function is given by r(1) = 0,7(2) = 1,r(3) = 3,r(4) =0,
with a discount factor y = 0.9. We consider evaluating the policy that takes the actions R, R, L, and
L at states 1, 2, 3, 4, respectively (this policy is the optimal policy for this MDP). The induced MRP
is illustrated in Figure 5.

0.9 0.9 0.1
—_—
Zag)umm §) nn Q) mm G wit
L
0.1 0.9 0.9

Fig. 5. The Problematic MDP under “RRLL" Policy.
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We apply TD(0) with linear function approximation to the above MRP. For each state s €
{1, 2,3, 4}, the corresponding d = 3 dimensional feature vector is given by

¢(s) = (15,577,

which is used in the work [KP00]. We then normalize each row of the feature matrix ® € RPxd
have unit 4; explicitly, we set

P(s)i
;1:1 ¢(3)i,
1

Note that one may ensure the condition maxge s |[¢(s)]| < i required by our theory by further

P(s)i

i=1,2734.

rescaling the entire matrix @. In our experiments, we ignore this rescaling step, as it is equivalent
to simply rescaling the stepsize and iterates.
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