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Hierarchical Stochastic Block Model for

Community Detection in Multiplex Networks∗

Arash Amini†, Marina Paez‡ and Lizhen Lin§

Abstract. Multiplex networks have become increasingly more prevalent in many
fields, and have emerged as a powerful tool for modeling the complexity of real
networks. There is a critical need for developing inference models for multiplex
networks that can take into account potential dependencies across different layers,
particularly when the aim is community detection. We add to a limited literature
by proposing a novel and efficient Bayesian model for community detection in
multiplex networks. A key feature of our approach is the ability to model vary-
ing communities at different network layers. In contrast, many existing models
assume the same communities for all layers. Moreover, our model automatically
picks up the necessary number of communities at each layer (as validated by real
data examples). This is appealing, since deciding the number of communities is a
challenging aspect of community detection, and especially so in the multiplex set-
ting, if one allows the communities to change across layers. Borrowing ideas from
hierarchical Bayesian modeling, we use a hierarchical Dirichlet prior to model
community labels across layers, allowing dependency in their structure. Given the
community labels, a stochastic block model (SBM) is assumed for each layer. We
develop an efficient slice sampler for sampling the posterior distribution of the
community labels as well as the link probabilities between communities. In doing
so, we address some unique challenges posed by coupling the complex likelihood of
SBM with the hierarchical nature of the prior on the labels. An extensive empirical
validation is performed on simulated and real data, demonstrating the superior
performance of the model over single-layer alternatives, as well as the ability to
uncover interesting structures in real networks.

Keywords: community detection, hierarchical stochastic block model (HSBM),
multiplex networks, hierarchical Dirichlet process, random partition.

1 Introduction

Networks, which are used to model interactions among a set of entities, have emerged
as one of the most powerful tools for modern data analysis. The last few decades have
witnessed explosions in the development of models, theory, and algorithms for network
analysis. Modern network data are often complex and heterogeneous. To model such
heterogeneity, multiplex networks (Boccaletti et al., 2014; Kivelä et al., 2014), which
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also go by various other qualifiers (multiple-layer, multiple-slice, multi-array, multi-
relational), have arisen as a useful representation of complex networks.

A multiplex network typically consists of a fixed set of nodes but multiple types
of edges, often representing heterogeneous relationships as well as the dynamic nature
of the edges. These networks have become increasingly prevalent in many applications.
Typical examples include various types of dynamic networks (Berlingerio et al., 2013;
Majdandzic et al., 2014) including temporal networks, dynamic social networks (Carley
et al., 2009) and dynamic biological networks such as protein networks (Wang et al.,
2014). An example of a multiplex social network is the Twitter network where different
edge information is available such as “mention”, “follow” and “retweet” (Greene and
Cunningham, 2013). Another example is the co-authorship network where the authors
are recorded on relationships such as “co-publishes”, “convenes” and “cites” (Hmimida
and Kanawati, 2015). Many other examples can be found in economics (Poledna et al.,
2015), neuroscience (De Domenico et al., 2016), biology (Didier et al., 2015) and so on.

Due to the ubiquity of multiplex network data, there is a critical need for developing
realistic statistical models that can handle their complex structures. There has already
been growing efforts in extending static (or single-layered) statistical network models to
the multiplex setting (Mucha et al., 2010). Many statistical metrics have already been
extended from basic notions such as degree and node centrality (Bródka et al., 2011;
Battiston et al., 2014) to the clustering coefficient and modularity (Cozzo et al., 2013;
Blondel et al., 2008). Popular latent space models (Raftery et al., 2002) have also been
extended to dynamic (Sarkar and Moore, 2005) and multiplex (Gollini and Murphy,
2016; Salter-Townshend and McCormick, 2017) networks. Based on such models, one
can perform learning tasks such as link probability estimation or link prediction.

Another task that has been extensively studied in single-layer networks is commu-
nity detection, that is, clustering nodes into groups or communities. There have already
been a few works proposing models or algorithms for community detection in multiplex
and multilayer networks (Mucha et al., 2010; Berlingerio et al., 2011; Kuncheva and
Montana, 2015; Wilson et al., 2017; De Bacco et al., 2017; Bhattacharyya and Chatter-
jee, 2018). The general strategy adopted is to either transform a multiplex network into
a single-layer and then apply the existing community detection algorithms, or extend
a model from static networks to the multiplex setting. One of the key shortcomings of
many existing methods is that communities across different layers are assumed to be
the same, which is clearly restrictive and often unrealistic. Instead, there is interest in
monitoring or exploring how the communities vary across different layers. Note that
there is a literature on community detection for dynamic or temporal networks mainly
through developing a dynamic stochastic block model or a dynamic spectral clustering
algorithm, see e.g., Liu et al. (2018), Pensky and Zhang (2019) and Matias and Miele
(2017), which typically require smoothing networks over time thus assuming networks
are observed over a significant number of time points.

We propose a novel Bayesian community detection model, namely, the hierarchical
stochastic block model (HSBM) for multiplex networks that is fundamentally different
from the existing approaches. Specifically, we impose a random partition prior based
on the hierarchical Dirichlet process (Teh et al., 2006) on communities (or partitions)
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across different layers. Given these communities, a stochastic block model is assumed
for each layer. One of the appealing features of our model is allowing the communities
to vary across different layers of the network while being able to incorporate potential
dependency across them. The hierarchical aspect of HSBM allows for effective borrowing
of information or strength across different layers for improved estimation. Our approach
has the added advantage of being able to handle a broad class of networks by allowing
the number of nodes to vary, and not necessarily imposing the nodes to be fixed across
layers. In addition, HSBM inherits the desirable property of hierarchical Dirichlet priors
that allow for automatic and adaptive selection of the number of communities (for each
layer) based on the data.

Our simulation study in Section 4 confirms that HSBM significantly outperforms
a model that assumes independence of layers, especially when it comes to matching
community labels across layers. In particular, the superior performance of our model over
its independent single-layer counterpart is manifested by the significant improvement
in the slicewise or aggregate NMI (Normalized Mutual Information) measures.

Although a hierarchical Dirichlet process is a natural choice for modeling dependent
partition structures, extending the ideas from simple mixture models to community
structured network models is not that straightforward. In particular, leveraging ideas
from one of our recent work (Amini et al., 2019), we develop a new and efficient slice
sampler for exact sampling of the posterior of HSBM for inference. We will discuss some
of the technical difficulties in Remark 1.

The rest of the paper is organized as follow. Section 2 introduces the HSBM in
details. Section 3 is devoted to describing a novel MCMC algorithm for inference of
HSBM. Simulation study and real data analysis are presented in Sections 4 and 5. The
code for all the experiments is available at Amini et al. (2021). We conclude with a
discussion in Section 6.

2 Hierarchical stochastic block model (HSBM)

Consider a multiplex network with T layers (or T types of edge relations) and nt nodes
with labels in [nt] = {1, . . . , nt} for each layer t = 1, . . . , T . Denote by At the adjacency
matrix of the network at layer t, so that an observed multiplex network consists of the
collection At ∈ {0, 1}nt×nt for t = 1, . . . , T . We let A denote this collection and view it
as a partial (or irregular) adjacency tensor. That is, A = (Atij , t ∈ [T ], i, j ∈ [nt]) and
At = (Atij , i, j ∈ [nt]) where Atij = 1 if nodes i and j in layer t are connected. Our
goal is to estimate the clustering or community structure of the nodes in each layer,
given A.

Specifically, to each node i, at each layer t, we assign a community label, encoded in
a variable Z = (zti) ∈ N

T ×nt , where N = {1, 2, . . . , } is the set of natural numbers. Let

ηt = (ηtxy)x,y ∈ [0, 1]N×N, ηtxy ≡ ηt(x, y), (2.1)

be a matrix of link probabilities between communities, indexed by N
2, for t = 1, . . . , T .

At times, we will use the equivalent notation ηt(x, y) ≡ ηtxy to increase readability.
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For example, we interpret ηt12 = ηt(1, 2) as the probability of an edge being formed
between a node from community 1 and a node from community 2 at layer t. Note that
we have assumed that the total number of community labels is infinite. However, for
a given adjacency matrix At observed at layer t, the number of community labels is
finite, unknown, and will be denoted by Kt.

For each layer t, we model the distribution of the adjacency matrix At ∈ {0, 1}nt×nt

as a stochastic block model (SBM) with membership vector zt = (zti) ∈ N
nt , and edge

probability matrix ηt, that is,

At | zt, ηt, ∼ SBM(zt; ηt) ⇐⇒ Atij
iid
∼ Ber

(
ηt(zti, ztj)

)
, 1 ≤ i < j ≤ nt. (2.2)

In an SBM, the link probability between nodes i and j is uniquely determined
by which communities these nodes belong to. In our notation, at a layer t, the link
probability between nodes i and j is given by ηt(zti, ztj). Note that our SBM notation is
slightly different from the traditional stochastic block model where the set of community
labels is random. In writing SBM(z; η), we assume that z is given and nonrandom.

If there is belief or prior information that the community structure in one layer of
the network is independent of the others, independent stochastic block models (SBM)
could be assumed for the At’s. This assumption is, however, too restrictive when we are
dealing with networks of different kinds of relations but among the same set of nodes;
or with different sets of nodes but similar types of relations. The other extreme is to
assume that all layers in the network share the same partition—meaning that zt = z

for all t and the At’s are conditionally independent given z.

We believe, however, that a model that can incorporate various dependencies be-
tween these two extremes is more appropriate in many applications. In other words,
it may be desirable to allow some change in the partition structure between layers,
but also impose some kind of dependence among them. Here, we propose a model that
achieves this goal by allowing the community structures at various layers to be different
but dependent, using a hierarchical specification for the distribution of the partitions.

2.1 Hierarchical community prior

Before stating the prior on the labels, let us introduce a simplification, namely, that
ηt does not vary by layer. Therefore, we drop index t, and denote the matrix of link
probabilities by η and its elements by ηxy ≡ η(x, y). This assumption is not necessarily
restrictive since, as will become clear shortly, our model allows for an infinite number
of communities. By imposing this restriction, we are simply stating that cluster i at a
certain layer corresponds to the same cluster i at every other layer. We then assume
independent Beta prior distributions for each element of η, given by:

η = (ηxy)
iid
∼ Beta(αη, βη), (2.3)

where Beta stands for the usual Beta distribution.
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Figure 1: Toy example of the nodes of a two-layer network. The numbers are the indices
of the nodes in each layer. The shape of a node represents its group and the letter
symbol inside represents the community it belongs to.

Our key idea is to impose a dependent random partition prior on the membership
labels at different layers, i.e., zt, t ∈ [T ]. We adopt the prior based on a hierarchical
Dirichlet process (HDP).

We assume that the reader is familiar with the HDP and its various interpretations,
and in particular, the Chinese Restaurant Franchise process (CRF); see for example (Teh
et al., 2006). In the CRF interpretation, each layer t of the network corresponds to a
restaurant, and nodes are gathered around tables, or groups, in each restaurant. Let
gti denote the group of node i in restaurant (i.e., layer) t. All the nodes in the same
group g, at the same layer t, share the same dish (i.e., community) which is denoted by
ktg. Thus, given all the groups gt = (gti)i and group-communities kt = (ktg)g, the label
of node i (at layer t) is uniquely determined:

zti | gt, kt = kt,gti
. (2.4)

To help the reader understand the notation of the label part of the model, we present
a simple toy example:

Example 2.1. Consider a two-layer network with n1 = 8 and n2 = 6 nodes. At each
layer (restaurant), the nodes are presented in a line, and are numbered from left to
right, as illustrated in Figure 1. The shape of each node represents the group (table) it
belongs to and the fill, as well as its label ∈ {a, b, c}, represents the community (dish).
For example, in layer 1, nodes 1 and 2 are grouped together, represented by a circle, and
similarly for {3, 4, 5} and {6, 7, 8} represented by square and diamond, respectively. In
this first layer, each group is associated with a different community. In layer 2, we have
the following groups: {1, 4, 5}, {2, 6} and {3}, represented by a pentagon, triangle and
hexagon, respectively. Also, note that the groups represented by a triangle and a hexagon
share the same community (dish). In general, groups in the same layer or in two different
layers can be linked via their group-community assignment, which is encoded by ktg. For
example, the circular group in the first layer shares the same community (dish) with the
triangular and hexagonal groups in the second layer. This information is carried through
the definition of ktg: According to Figure 1,

k1, = k2, = k2, = a.
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This, in turn, implies that all the nodes in these groups (nodes {1, 2} in layer 1 and
nodes {2, 6} ∪ {3} in layer 2) share the same community, that is, we have

z11 = z12 = z22 = z26 = z23 = a.

As an example of how (2.4) is used to determine the node community labels, we have
g26 = and k2, = a, hence z26 = k2,g26

= a.

A prior on zti can be obtained via priors on ktg and gti. To impose dependence
among layers, we assume that group-communities kt, across layers t, are drawn from
the same prior:

ktg | π ∼ π, g ∈ N, (2.5)

gti | γt ∼ γt, i = 1, . . . , nt, (2.6)

where γt, t = 1, . . . , T are categorical distributions with infinite categories, with the
weight of each category representing the fraction of the nodes in layer t that would end
up in group g (eventually).

To complete the prior specification, we impose

π | γ0 ∼ GEM(γ0), π = (πk) (2.7)

γt | α0 ∼ GEM(α0), γt = (γtg), (2.8)

where GEM stands for Griffiths, Engen and McCloskey (Picard and Pitman, 2006); it
is a distribution for a random measure on N which has the well-known stick-breaking
construction (Sethuraman, 1994). Equations (2.7), (2.8), (2.5), (2.6) and (2.4) together
specify our hierarchical label prior on the node labels (zt)

T
t=1.

The hierarchical label prior above, together with prior on η in (2.3) and the SBM
of (2.2) provide the full specification of the HSBM.

Remark. It turns out that the label prior described above is exactly the label prior
implicit in the well-known Hierarchical Dirichlet Process of Teh et al. (2006). Since this
equivalence is not central to the model we present, we do not go into further details
here and refer the interested reader to Amini et al. (2019).

2.2 Joint distribution

The joint density for the label part of HSBM, that is, equations (2.4)–(2.7), can be
expressed as:

p(g, k, γ′, π′) =

T∏

t=1

[
p(gt|γt) p(γ′

t) p(kt|π)
]
p(π′), (2.9)

where p(gt|γt) =
∏nt

i=1 γt,gti
and p(kt|π) =

∏∞
g=1 πktg

. The new variables γ′
t and π′

are related to γt and π via the stick-breaking construction for the GEM distribu-
tion (Sethuraman, 1994; Ishwaran and James, 2001). The idea behind this construction
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is to imagine a stick with length 1, which will be successively broken into smaller pieces.
Let F : [0, 1]N → [0, 1]N be given by

[F (x)]1 := x1, [F (x)]j := xj

j−1∏

ℓ=1

(1 − xℓ), (2.10)

where x = (xj , j ∈ N). Then, [F (x)]j is the length of the piece broken at iteration j
after successive fractions x1, x2, . . . , xj are broken off. Denote

bα,β(x) := xα−1(1 − x)β−1

which is the density for Beta(α, β) up to a normalization constant. Both π and γj above
have stick-breaking representations of this form:

γ′
tg ∼ b1,α0

(·), π′
k ∼ b1,γ0

(·),

γt = F (γ′
t), π = F (π′),

where γ′
t = (γ′

tg) and π′ = (π′
k).

Adding the network part to the label part of the model, we obtain the full joint
density of HSBM:

p(A, η, g, k, γ′, π′) = p(A | g, k, η) · p(g, k, γ′, π′) · p(η)

=

T∏

t=1




∏

1≤i<j≤nt

L
(

η(kt,gti
, kt,gtj

); Atij

) nt∏

i=1

γt,gti

∞∏

g=1

b1,α0
(γ′

tg)

∞∏

g=1

πktg


 ×

∞∏

k=1

b1,γ0
(π′

k)
∏

1≤k≤ℓ<∞

bαη,βη
(ηkℓ),

(2.11)

where
L(p; a) := pa(1 − p)1−a

is the Bernoulli likelihood Note that we have used the alternative notation η(x, y) = ηxy

for readability. In the next section, we derive a novel MCMC algorithm for sampling
the posterior distribution of our model.

3 Slice sampling for HSBM

We propose a slice sampler for HSBM, based on a slice sampling algorithm we recently
developed for HDP (Amini et al., 2019). Recall that in slice sampling from a density
f(x), we introduce the nonnegative variable u, and look at the joint density g(x, u) =
1{0 ≤ u ≤ f(x)} whose marginal over x is f(x). Then, we perform Gibbs sampling on
the joint g. In the end, we only keep samples of x and discard those of u. This idea
has been employed in Kalli et al. (2011) to sample from the classical DP mixture and
extended in Amini et al. (2019) to sample HDPs.
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In order to perform the slice sampling for HSBM, we introduce (independent) vari-
ables u = (uti) and v = (vtg) so that the augmented joint density for (2.9) is

p(g, k, γ′, π′, u, v) = p(g, u | γ) · p(γ′) · p(k, v | π) · p(π′),

where for example

p(g, u | γ) =
T∏

t=1

nt∏

i=1

1{0 ≤ uti ≤ γt,gti
},

and similarly for p(k, v | π). Note that marginalizing out u from p(g, u | γ) gives back
p(g | γ) =

∏
t

∏
i γt,gti

as before. The full augmented joint density is now

p(A, η, g, k, γ′, π′, u, v) = p(A | g, k, η) · p(g, k, γ′, π′, u, v) · p(η)

=

T∏

t=1

(
∏

1≤i<j≤nt

L
(

η(kt,gti
, kt,gtj

); Atij

) nt∏

i=1

1{uti ≤ γt,gti
}×

∞∏

g=1

b1,α0
(γ′

tg)

∞∏

g=1

1{vtg ≤ πktg
}

)
∞∏

k=1

b1,γ0
(π′

k)
∏

1≤k≤ℓ<∞

bαη,βη
(ηkℓ),

(3.1)

with the support understood to be restricted to u ≥ 0 and v ≥ 0. We then perform
block Gibbs sampling on the augmented density. Note that marginalizing variables (ut)
and (vt) out, we get back original joint density (2.11). The idea is to sample (γ′, u)
jointly given the rest of the variables, and similarly for (π′, v). The updates for variables
u, γ′, v and π′ are similar to those in Amini et al. (2019). However, the updates for the
underlying latent groups g and group-communities k require some care due to the
coupling introduced by the SBM likelihood. As can be seen from the derivation below,
these updates will be quite nontrivial in the case of SBM relative to the case where the
data follows a simple mixture model given the partition.

3.1 Sampling (u, γ′)

First, we sample (u | γ′, Θ−uγ′), where Θ−uγ′ denotes all variables except u and γ′.
This density factorizes and coordinate posteriors are p(uti | γ′, Θ−uγ′) ∝ 1{uti ≤ γt,gti

},
that is

uti | γ′, Θ−uγ′ ∼ Unif(0, γt,gti
).

Next, we sample from (γ′ | Θ−uγ′). To do this, we first marginalize out u in (3.1) which
gives back (2.11). The corresponding posterior is, thus, proportional to (2.11) viewed
only as a function of γ′. The posterior factorizes over t and g and we have (Amini et al.,
2019, Lemma 1)

γ′
tg | Θ−uγ′ ∼ Beta

(
ng(gt) + 1, n>g(gt) + α0

)
, (3.2)

where ng(gt) = |{i : gti = g}| and n>g(gt) = |{i : gti > g}|.
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3.2 Sampling (v, π′)

First, we sample (v | π′, Θ−vπ′) which factorizes and coordinate posteriors are p(vtg |
π′, Θ−vπ′) ∝ 1{vtg ≤ βktg

}, that is

vtg | π′, Θ−vπ′ ∼ Unif(0, πktg
).

Next, we sample from (π′ | Θ−vπ′). As in the case of γ′, we first marginalize v which
leads to the usual block Gibbs sampler updates: The posterior factorizes over k, and

π′
k | Θ−vπ′ ∼ Beta

(
nk(k) + 1, n>k(k) + γ0

)
, (3.3)

where nk(k) = |{(t, g) : ktg = k}| and similarly for n>k(k).

3.3 Sampling g

This posterior factorizes over t (but not over i). From (3.1), we have

P(gti = g | g−ti, Θ−g) ∝
∏

j∈[nt]\{i}

L
(
η(ktg, kt,gtj

); Atij

)
1{uti ≤ γtg}. (3.4)

Let Gti := sup{g : uti ≤ γtg}. According to the above equation, gti given everything
else will be distributed as

gti | · · · ∼
(

ρti(g)
)

g ∈ [Gti]
,

where, using kt,gtj
= ztj and L(p; a) = pa(1 − p)1−a,

ρti(g) :=
∏

j∈[nt]\{i}

L
(
η(ktg, ztj); Atij

)
=

∏

j∈[nt]\{i}

∏

ℓ

[
L

(
η(ktg, ℓ); Atij

)]1{ztj=ℓ}

=
∏

ℓ

η(ktg, ℓ)τtiℓ [1 − η(ktg, ℓ)]mtiℓ−τtiℓ ,

with

τtiℓ :=
∑

j∈[nt]\{i}

Atij1{ztj = ℓ}, mtiℓ :=
∑

j∈[nt]\{i}

1{ztj = ℓ}. (3.5)

3.4 Sampling k

This posterior also factorizes over t (but not over g). First, note that since we are
conditioning on g, we can simplify as

∏

1≤i<j≤nt

L
(
η(kt,gti

, kt,gtj
); Atij

)
=

∏

1≤i<j≤nt

∞∏

g,g′=1

[
L

(
η(ktg, ktg′); Atij

)]1{gti=g, gtj=g′}

=

∞∏

g,g′=1

htgg′(ktg, ktg′)
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where htgg′(k, ℓ) := η(k, ℓ)ξtgg′ [1 − η(k, ℓ)]Otgg′ −ξtgg′ ,

ξtgg′ :=
∑

i,j

Atij1{gti = g, gtj = g′}, Otgg′ :=
∑

i,j

1{gti = g, gtj = g′}, (3.6)

and the summations are over 1 ≤ i < j ≤ nt. Then, the posterior of k | · · · factorizes
over t, and for any fixed t,

p(kt | k−t, Θ−k) ∝

∞∏

g,g′=1

htgg′(ktg, ktg′)

∞∏

g=1

1{vtg ≤ πktg
}. (3.7)

Note that ξtgg′ is not symmetric in g and g′, because of the condition i < j in the

summation. Letting h̃tgg′(k, ℓ) := htgg′(k, ℓ) htg′g(ℓ, k), it follows that for any fixed t
and g:

P(ktg = k | k−tg, Θ−k) ∝ 1{vtg ≤ πk} htgg(k, k)
∏

g′: g′ �=g

h̃tgg′(k, ktg′). (3.8)

By the symmetry of η(k, ℓ) in its arguments, htgg′(k, ℓ) is also symmetric in (k, ℓ), and

h̃tgg′(k, ℓ) = η(k, ℓ)ξ̃tgg′ [1 − η(k, ℓ)]Õtgg′ −ξ̃tgg′ (3.9)

where ξ̃tgg′ = ξtgg′ + ξtg′g and Õtgg′ = Otgg′ + Otg′g. That is,

ξ̃tgg′ :=
∑

1≤i �=j≤nt

Atij1{gti = g, gtj = g′}, Õtgg′ :=
∑

1≤i �=j≤nt

1{gti = g, gtj = g′}.

Let us simplify the last factor in (3.8) further. Using (3.9), we have

∏

g′: g′ �=g

h̃tgg′(k, ktg′) =
∏

ℓ

∏

g′: g′ �=g

[
h̃tgg′(k, ℓ)

]1{ktg′ =ℓ}

=
∏

ℓ

η(k, ℓ)ζtgℓ
[
1 − η(k, ℓ)

]Rtgℓ−ζtgℓ ,

where

ζtgℓ :=
∑

g′: g′ �=g

ξ̃tgg′1{ktg′ = ℓ}, Rtgℓ :=
∑

g′: g′ �=g

Õtgg′1{ktg′ = ℓ}. (3.10)

According to the above, ktg given everything else will be distributed as

ktg | · · · ∼
(
δtg(k)

)
k ∈ [Ktg ]

,

where Ktg := sup{k : vtg ≤ πk} and

δtg(k) = η
ξtgg

kk (1 − ηkk)Otgg−ξtgg

∏

ℓ

η
ζtgℓ

kℓ [1 − ηkℓ]
Rtgℓ−ζtgℓ .
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3.5 Sampling η

Recalling that zti = kt,gti
, the relevant part of (3.1) is

[ T∏

t=1

∏

1≤i<j≤nt

L
(
η(zti, ztj); Atij

)] ∏

1≤k≤ℓ<∞

bαη,βη
(ηkℓ).

Using the fact that η(k, ℓ) = ηkℓ is symmetric in its two arguments (that is, we treat
ηkℓ and ηℓk as the same variable), we have, for k ≤ ℓ,

p(ηkℓ | · · · ) ∝ ηλkℓ

kℓ (1 − ηkℓ)
Nkℓ−λkℓ bαη,βη

(ηkℓ),

where

λkℓ =

T∑

t=1

∑

i,j

Atij1{zti = k, ztj = ℓ}, Nkℓ =

T∑

t=1

∑

i,j

1{zti = k, ztj = ℓ}, (3.11)

and the (i, j) summations are over 1 ≤ i < j ≤ nt for k = ℓ and over 1 ≤ i 
= j ≤ nt for
k 
= ℓ. We conclude that for k ≤ ℓ,

ηkℓ | · · · ∼ Beta
(

λkℓ + αη, Nkℓ − λkℓ + βη

)
.

Remark 1. Comparing with the updates in Amini et al. (2019), we observe that, under
HSBM, the updates for k and g (which is equivalent to t in Amini et al. (2019)) and η

(which is equivalent to parameters of f in Amini et al. (2019)) are much more complex.
For the usual HDP, the data are assumed to follow a simple mixture model where
observations are independent given the labels, and each, only depends on its own label.
This causes the posterior for k, g and the parameters of the mixture components to
factorize over their coordinates. In contrast, the SBM likelihood makes each observation
Atij dependent on two labels zti and ztj . This causes the posterior for k, g and η to
remain coupled under HSBM. Nevertheless, the Gibbs sampling scheme above allows
us to effectively sample from these coupled multivariate posteriors.

3.6 Computational speedup

Let us discuss some ideas that lead to the implementation of a fast sampler. We consider
three ideas: Spare matrix computations, parallel versus sequential label updates and
truncation versus slice sampling.

Many of the key computations for the slice sampler can be sped up for sparse net-
works, using fast sparse matrix-vector operations. Consider for example the computation
of τ t = (τiℓ). This can be done by defining the operator “row-compress(A, z)” that takes
a A ∈ R

n×n and a label vector z ∈ [K]n and compresses each row of matrix A by sum-
ming over entries having the same label according to z, producing an n × K matrix.
Then, we will have

τ t = row-compress(At, zt). (3.12)
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Let Mt be the number of nonzero elements of At ∈ R
nt×nt . The above operator can

be implemented in O(Mt) operation by iterating only over the nonzero entries of At

once. When At is sparse, this allows for a significant computational saving relative to
the naive approach which takes O(n2

t ), since in the sparse case, usually Mt = O(nt).

The operation (3.12) is thus extremely fast if implemented in parallel, i.e., the entire
matrix τ t is computed all at once. To have a valid Gibbs sampler, however, one needs
to perform row compression one row at a time in a sequential manner, since once one
element of zt is updated, the row compression for subsequent rows will be affected. The
sequential row compression can be implemented with the same complexity of O(Mt),
but cannot benefit from parallelism, hence will potentially be slower than the parallel
version. We refer to the two versions of the sampler as HSBM-par and HSBM-seq,
respectively, based on whether the label updates are done in parallel or sequential.

To summarize, HSBM-par is doing an approximation of a valid Gibbs sampler (not
an exact Gibbs sampler). HSBM-seq computes the current row compression, samples
the corresponding label and then uses this new label when computing the compression
for the next row. HSBM-par, however, computes the row compressions all in parallel and
samples the labels all in parallel, using the current snapshot the labels. HSBM-par does
not take into account the effect of sequentially sampling of labels on subsequent row-
compressions. In practice, we have found that HSBM-par performs as good as HSBM-seq
and will be the default implementation used in simulations.

Similarly, computing ξ̃t = (ξ̃tgg′) and λ = (λkℓ) which are the key computations
in updating k and η, can be done extremely fast. To see this, consider the operator
“block-compress(A, z)” that returns the block compression of A according to labels
z, by summing all the entries of A over blocks having the same row-column label
pair. If z ∈ [K]n, the output will be a K × K matrix and it can be computed by

traversing only the nonzero entries of A once. We have ξ̃t = block-compress(At, gt) and
λ =

∑
t block-compress(At, zt), ignoring the minor modifications needed depending on

whether diagonal entries need to be accounted for or not. Both of these calculations can
be done in O(

∑
t Mt) operations.

Truncation sampler Finally, it is possible to speed up the convergence by switching
to a truncation sampler : Instead of introducing auxiliary variables u and v to truncate
the infinite measures automatically, one can truncate them at a fixed sufficiently large
index. That is, we sample the (approximate) joint density

p(g, k, γ′, π′) ≈

T∏

t=1

(
nt∏

i=1

γt,gti

G∏

g=1

b1,α0
(γ′

tg)

G∏

g=1

πktg

)
K∏

k=1

b1,γ0
(π′

k). (3.13)

where K and G are pre-specified large integers. The resulting Gibbs sampler is almost
identical to the slice sampler with minor modifications. In particular, in the g-update,
we need to replace ρti(g) with ρti(g)γt,g and in the k-update, δtg(k) with δtg(k)πk.
Otherwise, everything else remains the same. Empirically, we have found that the trun-
cation sampler mixes faster than the slice sampler, hence will be our default choice in
the simulations.
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Figure 2: The convergence speed of the sampler(s) for the personality-friendship network
with T = 5 layers and nt = 200 nodes per layer. (a) Aggregate NMI relative to the true
labels (b) Average error in estimating the true number of clusters.

Figure 2 illustrates the convergence speed of the sampler following these implemen-
tation choices. Figure 2(a) shows the aggregate NMI (Section 4.4) versus iteration for 15
realizations of the HSBM-par and HSBM-seq chains. The underlying network is a multi-
layer personality-friendship network (Section 4.1) with T = 5 layers and nt = 200 nodes
per layer. Figure 2(a) is the absolute deviation between the estimated total number
of communities and the truth (i.e., 3 communities), averaged over the 15 realizations.
Both plots indicate fast mixing, with convergence achieved under 50 iterations for most
realizations. We refer to Section 4 for more details on the simulation setup. The code
for the sampler(s) is available at Amini et al. (2021).

4 Simulation study

We consider networks generated from a multilayer SBM with a single connectivity ma-
trix, but potentially varying labels across layers. We start with an example to illustrate
how such assumptions naturally arise in some applications.

4.1 Multilayer personality-friendship network

Consider, as an illustration, the group of young women who run, every year, for the
Miss World title. Each country holds a preliminary competition to choose their delegate
to the main race. After meeting each other in the competition, some of the girls tend to
bond and become friends at a social networking website. Suppose that we are interested
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Extrovert Ambivert Introvert
Extrovert 90% 75% 50%
Ambivert 75% 60% 25%
Introvert 50% 25% 10%

Table 1: Hypothetical probability of friendship between personality types.

in identifying groups of competitors by their personalty types: extrovert, introvert or
ambivert (a balance between the former two). Let us also suppose that around 40% of the
female population can be classed as extrovert, 35% introvert, and 25% is in the ambivert
group. Assume that the distribution of personality types among the contestants in the
Miss World competition is similar to that of the general population.

It is natural to assume that extroverts have a higher chance than introverts to form
bonds with other contestants. For this experiment, we consider the probabilities of
friendship between and within groups listed in Table 1. We consider each year of the
competition as a layer and the competitors represent the nodes. Alternatively, since each
country is represented by a single competitor, we can consider nodes as representing
different countries. The membership group of each node (i.e., its personality type) varies
from layer to layer since the same country is represented by different girls in different
years. However, the connection probability, i.e., the η matrix in our notation, remains
the same across layers, assuming that there is a fundamental pattern of connections
among personality types rooted in human nature and invariant across years. This ex-
ample thus naturally conforms to our setup of fixed η and potentially variable zt over
t = 1, . . . , T .

4.2 Markovian labels and random connectivity

In order the systematically study the performance of HSBM and its competitors, we
introduce additional degrees of freedom in generating simulated networks:

1. In addition to the η introduced in Table 1, we also consider a random symmet-
ric connectivity matrix with entries on and above diagonal generated i.i.d. from
Unif(0.1, 0.9). In the experiments where the random connectivity matrix is used,
all layers share the same η, however, different replications of the experiment use
different randomly generated η. Note that we do not restrict η to be assortative
and the resulting random ensemble captures the full complexity possible in an
SBM connectivity matrix.

2. We generate the labels zt = (zti), t = 1, . . . , T based on the following Markovian
process: For simplicity, we assume that all layers have the same number of nodes
n. The elements of z1 are generated i.i.d. from a Categorical distribution with
probability vector π0, that is, z1i ∼ Cat(π0), i = 1, . . . , n. Subsequent labels are
held fixed at previous layer value with probability 1 − τ or randomly generated
from Cat(π0), that is,

zti ∼ (1 − τ)δzt−1,i
+ τ Cat(π0)
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for t = 2, . . . , T and i = 1, . . . , n, where δx is the point-mass measure at x. We
refer to τ as the transition probability.

3. We vary the number of layers, T , say from 2 to 12.

4.3 Competing methods

We compare the performance of HSBM with a wide variety of methods. The first natural
competitor is to apply DP-SBM separately to each layer. Here, DP-SBM is a SBM with
a DP prior on its labels. It can be thought of as HSBM with a single layer and with w1

set equal to π. This model is essentially the same as the one considered in Mørup and
Schmidt (2012).

We also compare with various spectral approaches: SC-sliced that applies spectral
clustering separately to each slice; SC-avg that applies spectral clustering to the average
adjacency matrix Ā = 1

T

∑T
t=1 At; SC-ba, the debiased spectral approach of Lei and

Lin (2020); SC-omni, the omnibus spectral approach of Levin et al. (2017). In addition,
we consider two versions of the PisCES algorithm (Liu et al., 2018) that solves an
optimization problem that smooths out spectral projection matrices across time. PisCES
implements the version described in Liu et al. (2018). PisCES-sh is a modification we
made where we use the same initialization to start the k-means clustering algorithm
across different layers. Without the shared initialization, there is no guarantee of a
matching between clusters obtained by k-means applied to the spectral representation
of different layers.

HSBM, DP-SBM, SC-sliced, SC-omni and PisCES naturally produce labels for all
layers. SC-avg and SC-ba are designed to produce a single set of labels for all layers;
their underlying assumption is that the labels remain the same across layers. For these
two methods, we repeat the estimated label vector for all layers to obtain a multilayer
label estimate.

4.4 Measuring performance

We measure the accuracy of the estimated cluster labels using the normalized mutual
information (NMI), a well-known measure of similarity between two cluster assignments.
NMI takes values in [0, 1] where 1 corresponds to a perfect match. A random assignment
against the truth is guaranteed to map to NMI ≈ 0. The NMI penalizes mismatch quite
aggressively. In our setting, an NMI ≈ 0.5 corresponds to a roughly 90% match.

In the multilayer setting, we can compute at least two NMIs: (1) The slicewise
NMI where one takes the average of NMIs computed separately for each layer, and
(2) the aggregate NMI where we consider the labels for all the layers together and
compute a single NMI between competing label assignments. Here, we focus mostly on
the aggregate NMI, since achieving a high aggregate NMI is more challenging, requiring
consistency both within and across layers.

For the HSBM and DP-SBM the estimated labels used in the NMI calculations will
be the MAP estimates, calculated as detailed below.
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Figure 3: The performance of various methods for multilayer SBM networks with varying
transition probability. (a) Personality network connectivity. (b) Random connectivity.

MAP estimate For HSBM, we compute the maximum a posteriori (MAP) label as-
signment by finding, for each node, the label which is most likely according to the
posterior: argmaxk P(zti = k | · · · ). Associated with the MAP estimate, there is a confi-
dence which is the value of the posterior probability. To compute the MAP estimate we

use the posterior estimate given by 1
N−N0

∑N

j=N0+1 1(ẑ
(j)
ti = k) where ẑ(j) = (ẑ

(j)
it ) is

the label assignment at MCMC iteration j, N is the total number of iterations and N0

the length of the burn-in. Here, we ignore the potential mismatch between ẑ(j) and ẑ(j′)

due to the potential label-switching. In practice, all labels after MCMC convergence are
coming from a single mode of the posterior as can be verified by computing the NMI
between consecutive samples z(j) and z(j+1).

4.5 Results

We ran the HSBM and DP-SBM samplers for N = 100 iterations with a burn-in of
N0 = N/2. We consider two main settings, one where we fix the number of layers at
T = 5 and change the label transition probability τ , and one where we fix the transition
probability at τ = 0.25 and vary the number of layers T . In both cases, there are nt = 200
nodes in each layer. The results are shown in Figures 3 and 4 respectively. In each case,
the expected aggregate NMI is computed by averaging over 500 replications. For each of
the two settings, we have considered both a fixed η, namely the personality-friendship
connectivity of Table 1, and a random η generated as discussed in Section 4.2. Table 2
provides numerical values for the mean and the standard deviation of the aggregate and
slicewise NMIs in a typical setting.
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Figure 4: The performance of various methods for multilayer SBM networks with varying
number of layers. (a) Personality network connectivity. (b) Random connectivity.

Method
Agg. NMI Slice. NMI Runtime (s)

mean s.d. mean s.d. mean s.d.

HSBM 0.68 0.26 0.87 0.21 0.39 0.13

DP-SBM 0.22 0.07 0.83 0.17 1.15 0.34

SC-omni 0.18 0.09 0.33 0.11 0.28 0.14

PisCES-sh 0.14 0.15 0.56 0.28 0.18 0.08

PisCES 0.08 0.07 0.59 0.29 0.19 0.08

SC-sliced 0.08 0.08 0.56 0.30 0.10 0.05

SC-avg 0.07 0.03 0.11 0.04 0.05 0.02

SC-ba 0.06 0.02 0.12 0.03 0.15 0.06

Table 2: Mean and standard deviation for aggregate and slicewise NMIs as well as
runtimes for a typical experiment. The setting is that of random η with Markov labels
having transition probability τ ≈ 0.57 and T = 5 layers, corresponding to roughly the
midpoint of the horizontal axis in Figure 3.

The results clearly show the superior performance of HSBM relative to the competing
methods. In particular, Figure 3 shows that the performance of HSBM remains almost
constant as one varies the transition probability (τ). Most spectral methods in contrast
deteriorate as τ is increased. Note that at τ = 1, the labels across layers are completely
independent. Nevertheless the aggregate NMI for HSBM remains high even in this
case. What allows HSBM to match the clusters correctly across layers is the shared
connectivity matrix η. The personality-friendship connectivity (Figure 3(a)) is especially
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challenging for spectral methods, mainly due to the fact the connectivity matrix is nearly
rank-deficient and non-assortative. In contrast, HSBM performs almost perfectly in this
case, due to the very different connectivity patterns across clusters.

A similar qualitative behavior is observed as one varies T in Figure 4. The perfor-
mance of most methods deteriorates as T is increased while that of HSBM remains
roughly the same. Interestingly, in both experiments, SC-omni is overall the most per-
formant among the spectral methods.

Remark. Note that aggregate NMI is used as a measure of performance in most of
our figures. For a method to have a high aggregate NMI, it has to also properly match
the communities across layers. This is the main reason why most of the SC methods
fail when looking at the aggregate NMI. For example, the SC-sliced method, which is
applied to each layer separately, does not have any such capability.

SC-ba method is designed for the same nodes having exactly the same communities
across all layers (with only the connectivity matrix changing across layers). Thus, it fails
to have high aggregate NMI in multiplex networks with varying community structures
over time.

SC-omni and PiCES allow for variable community across layers and the SC-omni is
doing quite well in terms of the aggregate NMI if the transition probability is not quite
high. See for example Figure 3(b).

If we only want to measure how the method performs in each layer separately,
slicewise NMI is a more appropriate measure. This measure for example is reported
in Table 2 and one can verify that it is quite high for SC-sliced. On the other hand,
slicewise NMI ignores the multiplex nature of the network, and that is why we focused on
aggregate NMI which is a much more natural measure if one believes shared communities
exist across layers.

5 Real data analysis: FAO Trade Network

In this section, we illustrate the performance of our model and algorithm on one real data
example. We consider the multilayer FAO trade network provided by De Domenico et al.
(2015). The data contains trade connections between 214 countries, treated as nodes,
across 314 product categories considered as layers. We sorted the layers according to
their total edge count, and chose the 20 most dense layers. Figure 5(b) shows the
distribution of the edge counts, suggesting there is a natural cut-off at about 20 layers.
We then selected the nodes that had a degree greater than 20 in the sum network,
obtained by summing all the adjacency matrices. After filtering, we were left with a
multilayer network on n = 172 nodes and 20 layers.

We then ran the HSBM sampler for 2500 iterations with a burn-in of 1250 and
obtained the MAP labels. Figure 5(a) shows the sequential NMI plot for the sampler,
obtained by computing the aggregate NMI between consecutive labels across the it-
erations of the chain. The plot suggests that by iteration 1000 the chain is already
well-mixed.
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Figure 5: (a) Convergence on FAO network: Sequential Aggregate NMI versus iteration.
(b) Edge count distribution for layers of FAO network.

The estimated labels uncover a rich community structure. Figure 6 shows the com-
munity assignment across some of the layers. The nodes are laid out using a force-
directed algorithm that puts highly connected nodes closer together. That the com-
munities inferred by HSBM align with the physical proximity in these layouts is an
indication of the quality of the inferred communities.

There are a total of 15 estimated communities. Figure 7 shows the (MAP) estimated
connectivity matrix η and Figure 8 shows the distribution of the 15 communities across
the 20 layers. Community 9 which is the most frequent across a majority of the layers
corresponds to countries that sparsely trade, as evidenced by the corresponding row
(and column) in η.

The connectivity matrix is not assortative–as evidenced, for example, by the near
loop in Figure 7 among communities 10–14. This figure also suggests that communities
8 and 10 are rather interesting. Figure 9 shows the full community assignment for all
the countries that are assigned communities 8 or 10 in at least one layer. The figure
shows the complex nature of the inferred communities, with countries allowed to change
communities across layers. Nevertheless, the countries that belong to group 10 across the
majority of layers tend to form the tightly knit group {Germany, USA, Netherlands,
UK, Italy, France, China, China (mainland)}. This is a reasonable group since these
countries are known to have extensive trade relationships with each other. Interestingly,
some of these countries behave like group 8 countries in some layers. Spain also has an
interesting position, with equal assignments to group 10 and 8, respectively. Looking
at the layers, group 8 seem to have something to do with the pattern of trade in crude
materials and group 5 to the pattern of trade in green coffee. Perhaps the best way
to interpret the inferred groups (or communities) is to note that they correspond to
patterns of trade, hence a country can exhibit multiple of these patterns across different
product.
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Figure 6: FAO trade network: Examples of the community assignments. Layers shown
are (from top left): Food perp. nes., Crude materials, Pastry, Suger confectionery, Fruit
perp. nes., Chocolate products nes. The layouts are generated by the Fruchterman–
Reingold (FR) algorithm, applied separately to each layer. FR positions the nodes
according to forces exerted along the edges, resulting in spatial proximity being corre-
lated with network connectivity. The size of a node reflects its degree. More precisely,
si ∝ log(di + 3) where si and di are the size and degree of node i, respectively.

Since under HSBM, the same country can be assigned a different label for each layer,

to visualize the community assignments better, we consider the following reduction: For

each label, we collect all the nodes that have that label across at least 8 out of 20 layers.

Figure 10 shows the word cloud of major groups obtained by this procedure. The size

and color of a country indicate the frequency of the label across layers. For example, in

Group 6, Canada has been assigned label 6 for 13 out of 20 layers, more than any other

country in that group. Switzerland, Australia and Belgium were all assigned label 6 in

11 layers. In addition to the groups shown in the figure, we have three singleton groups:

Chile, UAE and “unspecified”.

The groups in Figure 10 make intuitive sense for the most part, with some of the

groups roughly corresponding to geographical regions. The analysis, however, reveals

many unintuitive connections, with seemingly unrelated countries grouped together.

Examples include: Macao and Rwanda, Iraq and Guinea, Guam and Grenada, Fiji and

Uganda, Bahrain and Mauritius, and so on.
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Figure 7: FAO network: The estimated connectivity matrix.

Figure 8: FAO network: The distribution of the 15 estimated communities across layers.

To verify these connections and the overall quality of clustering, we consider the

following quantitative evaluation metric: For each pair of nodes, we compute the nor-

malized Hamming distance for their corresponding rows in the adjacency matrices, and
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Figure 9: FAO network: Community assignments across layers for the countries that are
assigned to one of the communities 8 or 10 in at least one layer.

then take the average over layers. That is, we consider the following distance

d(i, j) =
1

T

T∑

t=1

1

nt

H(Ati∗, Atj∗),

with H(·, ·) denoting the Hamming distance. We refer to d(i, j) as the Average Normal-
ized Hamming (ANH) distance and note that it measures how dissimilar the connection
patterns of two nodes are across layers. We expect nodes that are grouped together to
have a lower value of d(i, j) relative to a randomly selected pair.

Figure 11(a) shows plots of the distributions of d(i, j) when the pairs are selected
randomly within the groups versus the case were they are selected completely at random.
The figure shows clearly that the ANH is much lower on average for within-group pairs
relative to random pairs. This confirms that HSBM has uncovered groups based on
trading patterns. The median for “Within” and “Random” distributions are 0.027 and
0.21, respectively. The unintuitive pairs mentioned earlier have ANH much lower than
the average for random pairs. For example, the ANH for Macao–Rwanda, Iraq–Guinea
and Guam–Grenada, Fiji–Uganda and Bahrain–Mauritius pairs are 0.074, 0.019, 0.0088,
0.14 and 0.14 respectively. This shows that these seemingly unrelated countries have
similar trading pattern across multiple food product categories.

In Figure 11(a) the ANH is computed in-sample, that is, using the same 20 most
dense layers used for fitting the HSBM. Figure 11(b) shows the corresponding plot
when ANH is computed out-of-sample, using the remaining 344 layers. These layers are
generally sparser, as reflected in the absolute value of ANH, but the plot shows a similar
separation among the two distributions.
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Figure 10: FAO trade network: Word cloud of groups based on frequency of assignment
across layers.

Figure 11: FAO trade network: Average Normalized Hamming (ANH) distance between
pairs of nodes. The two distributions correspond to random selection of pairs, versus
(random) selection within estimated groups. (a) Calculated based on the in-sample
layers. (b) Calculated based on out-of-sample layers.
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6 Discussion

In this work, we proposed a novel Bayesian model for community detection in multi-
plex networks by adopting the well-known HDP as a prior distribution for community
assignments. Under the random partition prior, a block model is assumed. This model
facilitates flexible modeling of community structure as well as link probabilities with its
ability of incorporating potential dependency and borrowing strength among networks
from different layers. For posterior inference of HSBM, we develop an efficient slicer
sampler. The principles behind the slice sampler can be applied to developing sampling
algorithms for many other models. Future work will be focused on developing models for
community detection in networks with covariates, and for inference of network-valued
objects.
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