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ABSTRACT

We consider the problem of controlling a mutated diffusion process
with an unknown mutation time. The problem is formulated as
the quickest intervention problem with the mutation modeled by
a change-point, which is a generalization of the quickest change-
point detection (QCD). Our goal is to intervene in the mutated
process as soon as possible while maintaining a low intervention
cost with optimally chosen intervention actions. This model and the
proposed algorithms can be applied to pandemic prevention (such
as Covid-19) or misinformation containment. We formulate the
problem as a partially observed Markov decision process (POMDP)
and convert it to an MDP through the belief state of the change-
point. We first propose a grid-approximation approach to calculate
the optimal intervention policy, whose computational complexity
could be very high when the number of grids is large. In order to
reduce the computational complexity, we further propose a low-
complexity threshold-based policy through the analysis of the first-
order approximation of the value functions in the “local intervention”
regime. Simulation results show the low-complexity algorithm has
a similar performance as the grid-approximation approach and both
perform much better than the QCD-based algorithms.
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1 INTRODUCTION

Mutated diffusion processes such as variants of SARS-Cov-2 (Covid-
19), malicious behaviors in communication networks, and manip-
ulated information on online social networks can create serious
public health issues and severe financial crises, with catastrophic
social and economic consequences. These highly consequential
information and virus “mutations” often occur in subtle and some-
times random ways, which makes it difficult to control/intervene
at their early stages. For example, the Delta variant of Covid-19
has quickly become the dominant strain in many countries since
first detected in March 2021; malicious devices may merely deviate
subtly from allocated protocols at the early stage; and misinforma-
tion is often embedded in real news by manipulating only a few
but not all details of a true news story. The focus of this paper is
to develop both theories and algorithms to understand when and
how to intervene in a diffusion process, which may have mutated, to
control its damage?

In this paper, we consider a model where an agent receives a
sequence of observations assumed to be drawn from a distribution.
Here, an observation may represent the symptom of a Covid-19
patient or whether an online platform user has retweeted the news
after reading it on social media. A mutation that occurs at a time
unknown to the agent changes the observation distribution, while
the sample space remains the same. At each time t, given the se-
quence of observations, the agent decides whether to intervene to
control the mutated diffusion process. If so, how strict the interven-
tion action should be to limit its impact, e.g., whether to suggest or
mandate mask-wearing, and whether to ask voluntary quarantine
or impose a strict lockdown.

We call this problem “quickest intervention” because it is closely
related to quickest change detection (QCD), where the goal is to
quickly detect a change-point based on sequential observations.
The QCD problem was first proposed and studied by Shiryev [14],
where he studied a parameterized observation distribution with a
geometric prior for the change-point and proposed the well-known
Shiryev’s test. Lorden extended Shiryev’s theory with the mini-
max criterion by replacing the geometric prior with any unknown
non-random change-point [7]. He also showed the CuSum test
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from [11] is asymptotically optimal as false alarm requirements
become stricter, while the exact optimality was proved by Mous-
takides [10] and Ritov [13]. Improvements based on CuSum have
been proposed in various works including [12]. Our work is closely
related to the Bayesian regime summarized in Shiryev’s book [15].
However, QCD focuses only on detecting the change-point and
does not consider taking actions that will change the distribution
of the observations. A recent paper [1] did consider intervention
actions in QCD, but the problem was studied mostly via simula-
tions. In terms of applications, [18] studied the quickest detection
of misinformation using the optimal stopping theory, which again
did not consider the intervention.

Since an action changes the underlying diffusion process in
“quickest intervention”, there are fundamental differences between
our problem and pure detection. The problem in fact falls into the
category of partially observed Markov decision process (POMDP)
[4], where an agent makes decisions while receiving sequential
observations and inferring unobserved states (change-point or mu-
tation). It is well-known that solving general POMDPs is extremely
difficult. Only limited structural results and low-complexity solu-
tions with provable performance for general POMDPs were studied.
For example, [8] established the monotonicity of value functions
under the monotone likelihood ratio (MLR) ordering condition. [5]
later improved the result by developing a low-complexity myopic
policy. However, in general, even establishing sufficient conditions
that the optimal policy of a POMDP possesses a threshold structure
is extremely hard. In this paper, we first formulate the quickest in-
tervention problem as a POMDP and then develop low-complexity
algorithms and theoretical results in the “local intervention” regime.

The main contributions of this paper are summarized below:

(1) Problem Formulation: We formulate the quickest interven-
tion problem as a discrete-time process with an unknown change-
point (mutation) and multiple intervention actions that can be used
to control the diffusion process. The objective of the problem is to
identify a policy that minimizes the total propagation and inter-
vention costs. This formulation is analogous to QCD but involves
decision-making that affects the underlying diffusion process.

(2) POMDP Approach: The problem is actually a POMDP where
the hidden state is the change-point. We convert it into a fully ob-
served MDP via belief states. Grid approximation is then proposed
to compute the optimal policy numerically.

(3) “Local Intervention” Regime: To overcome the computa-
tional complexity of grid approximation when the number of grids
is large, the key contribution of this paper is to develop a low-
complexity algorithm based on the first-order approximation of
value functions in the “local intervention” regime. With a derived
approximated Bellman equation, we prove that the action-value
function in the “local intervention” regime is nearly submodular,
and the policy that solves the approximated Bellman equation has
a threshold structure. Furthermore, we derive upper bounds on
the thresholds with closed-form expressions. Based on the upper
bounds, we propose a low-complexity algorithm that increases
the intervention levels when the belief exceeds the corresponding
threshold. Interestingly, our numerical results show that the low-
complexity algorithm is near-optimal even beyond the “local inter-
vention” regime, which demonstrates its effectiveness (near-optimal
performance) and efficiency (low computational complexity).
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2 MOTIVATING EXAMPLES

In this section, we provide motivating examples in the application
domain that fall into our problem formulation.

2.1 Covid-19 Pandemic Prevention

As the Covid-19 disease spreads all around the world, prevention
and detection policies are implemented in different countries to re-
lieve the global situation. Specifically, consider a medical institution
that takes care of Covid-19 patients. The manager of this institution
is receiving observations representing the severeness of symptoms
from the patients each day. According to these symptoms, the man-
ager decides whether a more harmful new variant has infected this
institution and whether to take actions such as using heavier masks
and implementing quarantines to stop the spread of new variants.

2.2 Misinformation Intervention on Social
Networks

On social networks such as Twitter and Weibo, millions of fake
news posts are created every day by social bots, which affect the
judgement of real users (people). Consider an administrator who
detects misinformation on its platform. It tries to set up different lev-
els of labels and warnings for potential fake news. Once a piece of
information is retweeted, the administrator receives a new observa-
tion on the features of the retweeting user. Based on these features,
the administrator decides whether the potential misinformation
has contaminated real user communities, and which intervention
action to implement to prevent users from retweeting it.

2.3 Anomaly Detection in Communication
Networks

A communication link is provided and maintained by a service
provider to multiple users or devices for transmitting data packets
with a designated distribution of rates. Some user may become
malicious at certain points and start to send packets with an higher
rate for a long period time. Under such circumstances, the service
provider may want to detect such behaviors and then take multiple
interventions to throttle the data rate for some users.

3 MODEL

In this section, we introduce the notations, the diffusion and in-
tervention models with a change-point representing the mutation,
and the problem formulation.

3.1 Notation

We use 1¢, to denote the indicator function, Pr to denote the
probability measure, and Ex to denote expectation with respect
to random variable X. If the subscript is omitted, the expectation
is taken with respect to all randomness. Vectors and matrices are
written in boldface a and A, with a; or a(i) indicating the i-th entry
of a and A; j indicating the (i, j)-th element of A.

3.2 Sequential Diffusion Model

We consider a discrete-time process as shown in Fig. 1 with a change-
point 7. An agent is observing this process and needs to intervene
after a harmful mutation occurs at the change-point 7. Let t €
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Figure 1: Illustration of the sequential diffusion model. At
each time step, the agent receives an observation z; (blue cir-
cle), and then it makes an intervention a; to affect the obser-
vation z;4; in the next time step.

{1,2,---,T} be the index of time slots, where the time horizon
T is a random variable following a geometric distribution with
parameter 1 — p, i.e.,

Pr(T = k) = pF7' (1 - p). 1)

We assume the agent does not know T a priori, but is aware of
whether the process has terminated or not (e.g. a cure has been
discovered or the disease suddenly disappears). For simplicity, we
use sy = 14> € {0, 1} to indicate whether the process has ended,
ie., sy = 1 means it has ended and s; = 0 means otherwise.

Let ¢ € {1,2,---,T} denote the change-point which is also
unknown to the agent throughout the process. The change-point
7 divides the time horizon into two phases: the pre-change phase
before 7 and the post-change phase after 7. We assume the change-
point 7 follows a geometric prior distribution with parameter A:

@)

For simplicity, we also denote 6; = 1;>, € {0, 1} to be the indicator
whether the change point has happened.

At each time slot t, the agent receives an observation z; €
{1,2,---,Z}, which will be used by the agent to determine whether
the change-point has occurred and how to intervene. We assume
in the absence of any intervention actions, z; follows an i.i.d. dis-
tribution «(z) in the pre-change phase, and follows another i.i.d.
distribution f(z) in the post-change phase:

Pr(r=k) = A(1 - )k 1.

Pr(z; = z|0; = 0) = a(z),
Pr(z; = 2|0; = 1) = fo(2).

(3a)
(3b)

We remark that in this paper, we consider a harmful mutation
occurs at the change-point 7 and turns the original benign process
into a harmful one. The terminal time T represents the time at which
either a cure is discovered or the mutation disappears. Considering
the Covid-19 pandemic, the observations z; could be viewed as the
symptoms of the t-th patient. A higher value of z; represents a
severer symptom. For example, z; = 1 represents an asymptomatic
patient while z; = Z represents hospitalization.
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3.3 Sequential Intervention Model

While receiving observations, the agent needs to decide whether
to intervene and what actions to take. We assume the agent can
take A different actions representing A different intervention levels,
ie, a; € {1,---,A}, or it can choose to idle with a; = 0. We
further assume that the intervention is only effective on the already
mutated diffusion process, i.e., when 6; = 1. The intervention will
shift the original probability distribution fy(z) to a new distribution
Ba(z) according to the action a which the agent chooses. Therefore,
depending on whether the mutation has occurred, the observation
z; is an i.i.d. sample from one of the following distributions:

Va € {0,---,A},
Va e {0, ---,A}.

(4a)
(4b)

Pr(z;|0; = 0,a;-1 = a) = a(zs),
Pr(z:10; = 1,at-1 = a) = Pa(zt),

We remark that larger a; values indicate stricter intervention
levels. Considering controlling Covid-19 pandemic, a; = 1 may
represent voluntary social distancing and a; = A may mean strict
lock-down. Throughout the paper, we assume that with the highest
intervention level, we can suppress the mutated diffusion process
to be as the original one, i.e., B4 = @. Moreover, we assume that
the agent can only gradually increase the intervention level a;
and cannot decrease it. In other words, the intervention cannot be
relaxed until the diffusion ends. We further impose the condition
that the agent can only increase the intervention level by one at each
time step, i.e.,, a;—1 < ar < a;—1 + 1. This is a technical assumption
and does not affect the generality of our solution because we can
choose the duration of each time slot to be sufficiently small so that
the intervention level can go up multiple levels in a short period of
time. We will show in simulations that leveraging this assumption
doesn’t harm our results empirically too much.

When controlling the process, the agent needs to consider the
cost of an intervention action (e.g. the economic cost of lockdown)
and the cost of the diffusion propagation (e.g. treatment of infected
patients). We define cjz, to be the propagation cost of observation z,
which can be viewed as the treatment of a patient with symptom z,
and define ¢{ to be the intervention cost of taking action a at any
time t. We assume that c{ and czz, are monotonically non-decreasing
with a and z respectively, since stricter actions require more re-
sources and severer symptoms require more treatments. Especially,
the intervention cost of idle equals zero, i.e., c? =0.

3.4 Dominance Assumptions

In order to model the strictness of intervention actions, we assume
the distribution vector B, of observations z; follows first order sto-
chastic dominance and monotone likelihood ratio (MLR) ordering
assumptions defined below.

Definition 3.1 (Stochastic Dominance). For two probability mass
functions f(z) and f(z) on the same probability space, we say f
stochastically dominates 8, denoted by > B, if

Z A .
ZmnzZﬂn Vie{12---,2). )

z=] z=]

Definition 3.2 (MLR Ordering). Given two probability mass func-
tions f(z) and f(z) on the same probability space, we say f MLR
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dominates if denoted by 8 >, B if
B(z)  p(z)

The two assumptions f >s f and f >, B both imply that under

distribution f, it is more likely to receive a higher value observation.

Vz <z (6)

Moreover, MLR ordering f >, f is a stronger assumption which
directly implies stochastic dominance f >; B [4]. In this paper,
we assume the distribution of a less strict action dominates the
distribution of a stricter one, i.e.,

Ba(2) <r Pa-1(2), (7)

We also assume that in the post-change phase after time 7, stricter
actions achieve lower overall cost:

E [c;’

Vae {12, A}

+cf110; =1] <E[c} +c 70, =1], Va;21. (8)

3.5 Problem Formulation

The objective of the agent is to minimize the overall cost including
both the propagation and intervention costs, without knowing 7
and T. It requires the agent to detect the change-point 7 as soon as
possible along with selecting the optimal intervention action a;. Let
1 be a policy which maps all past information ¥ to the intervention
action a;. Denote by ITn 4 the set of all non-anticipating policies.
The quickest intervention problem is defined below:

PROBLEM 1 (QUICKEST INTERVENTION).

T-1
min CH =B, ¢ + (cz’ + cq’) . (9a)
uellna H |~ 121 P i
st a1 <ar <min{a;—1 +1,A}, VI<t<T-2. (9b)

4 A POMDP APPROACH TO QUICKEST
INTERVENTION

In this section, we view Problem 1 as a POMDP, and then convert
it into a fully observed MDP by replacing the unobserved change-
point indicator 6; with the belief state ;. With a grid approximation
approach, we solve the optimal policy from the belief MDP.

4.1 Partially Observed MDP Formulation

The quickest intervention Problem 1 can be formulated as a partially
observed MDP M = (8,0, A, P(a),0(a),C(z,a)) with the un-
known indicator 6; of the change-point 7. In particular, the POMDP
is defined as follows:

e State Space: S; = (s, 0;, ;) € {0, 1}2x{0,1,---,A}. Here,
st is the indicator whether the MDP has stopped; 6; is the
indicator whether the change point has happened; and d; is
the current intervention level.

e Observation Space: z; € {1,---,Z,S}. Here, z; is the ob-
servation that the agent receives at time ¢, which helps the
agent decide intervention actions. Notice that z; = S means
the MDP has stopped.

e Action Space: a; € {0,1,---,A}. Action a; is the interven-
tion that the agent takes at time ¢ to control the process.

o State Transition Matrix: At each time step, the change-
point occurs with probability A and the MDP stops with
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probability 1 — p, i.e.,

1- 1-1 A .
P, = [/(; lp],Pat Z[ ],atzapl.

e Observation Model: At each slot ¢, the agent observes
whether the process has ended. If not, it receives an ob-
servation z; following the distribution in Eq. (4).

e One-step Cost: With observation z; and action a;, the agent

. z a
incurs a cost of C(zy, a;) = cp’ +et.

It is well-known in [4] that solving a general POMDP is difficult.
In the next subsection, we replace the unknown state dimension 6;
with its posterior 7; given all past information. Then, we convert
the partially observed MDP into a fully observed MDP which is
also called belief MDP.

4.2 Belief MDP Formulation

To convert a POMDP to an MDP, we replace 0; with belief 7; =
Pr(6; = 1|F;), where ¥; is the o-algebra that contains all past ob-
servations and actions, i.e., ¥; = {ao, z1, a1, - , az—1, 2t }. Suppose
at time ¢, the posterior of §; = 1is ;. Then, at the beginning of time
slot ¢ + 1, before receiving observation z;.1, the posterior changes
to 7441 as follows, due to the geometric prior distribution,

Tp+1 =Pr(0p41 = 1|F7, ar)

Dpr(g, = 1175)Pr(Br41 = 116; = 1,F7)
+Pr(0; = 0|F;)Pr(0+1 = 1|10 = 0, F¢)

@ﬂt +A(1 - ),

(10)

where equality (a) holds because the change-point is independent of
intervention a;, and equality (b) is obtained from that the evolution
of 6; is a time-homogeneous Markov chain with transition matrix
Pg,. Therefore, adding the observation z;+1 and action a; into the
o-algebra, the update of the posterior ;41 is as follows:

me1 =Pr(Oe+1 = 1|Fr41)
(@ Pr(0r+1 = 1Fr, ar)Pr(ze+110e+1 = 1, Fr, ar)
- Pr(zt+1|%2, ar)
_ At+1Pa, (2e41)
Pr(zes1|Frar)’
where equality (a) follows from Bayes’ rule. Note that from the
total probability theorem, we have:
Pr(ze41|Ft, ar) =Pr(0r+1 = 1T, ar)Pr(ze41|0r41 = 1, Fr, ar)
+Pr(0r41 = 0|F2, ar)Pr(ze+110141 = 0, F1, ar)

=41 Pa, (ze+1) + (1 = Tpr1) a(ze41)- (12)

11)

Substituting Eq. (10) and Eq. (12) into Eq. (11), we conclude that the
posterior can be updated iteratively as follows:
741 =Ta, (71, Zt+1)
_ ﬁt+1ﬁa, (Zt+1)
41 Ba, (2e+1) + (1 = Frs1)a(ze41)

(13)

where ;11 = 7 + A(1 — ;). The following theorem shows that
the optimal policy for the quickest intervention problem can be
obtained from studying the fully observed belief MDP.
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THEOREM 4.1. Solving the quickest intervention problem defined
on the POMDP with S; = (sg, 04, a;) and unknown state {0} is
equivalent to solving the problem on a fully observed MDP with S; =
(7t, r, zt) where m; replaces the unknown state 6;. In the optimal
solution, the intervention action a; at slot t depends purely on the
belief state ;.

The proof of Theorem 4.1 can be found in [19]. Based on it, the
quickest intervention problem is converted to an MDP with the
belief state ;. To solve it, we define V(x, d,z) to be the value
function of state S = (r, @, z) at time ¢, i.e.

T

D Clag ()

k=t

Si = (m,d, z)} . (19

Vi(r,4,z) = min E
pellna H

We further define JZ (7, , z) to be the action-value function of choos-
ing a; = a at state S = (7, 4, z) at time t as follows.

Ja(md,2) = C(z1,a)
T

D, Cla plmo))

+ min Ey
U
k=t+1

S =(ma,z),a; = a} . (15)

For simplicity, in the following analysis, we set the value function
V!(x,a, z) to be zero for any state that the MDP has stopped with
stopping state z = S, i.e., V!(, 4 S) = 0 for any z, G and t. Also,
we define o,(7, z) to be the distribution of observation z;4; given
posterior ; and action a; as:

04(m,z) =Pr(z441 = 2|y = 7,0 = a)
=a(z)(1 - 7) + fa(2) 7, (16)

where 7 = 7 + A(1 — ) is the sudo-posterior before receiving the
next observation z;41.

Recall that p is the probability the process continues. Therefore,
the Bellman equation for action-value function Ji(r, 4, z) of the
belief state MDP can be recursively expressed as follows:

Ji(m,d,z) =c + cp+(1- PV (1,a,9)
4
+p ) 0a(m 2 W (Ty(m,2),0.2")

z/=1

4
=c{ +cp+p Z oa(m, 2 YW (Tu(n,2'),a,2"). (17)
z/=1
Note that according to Eq. (9b), the agent can only choose a;
between a; and min{a; + 1, A}. The value function can also be
expressed recursively as:

Vt(n', d,z) = min {]g(n, a, z),]r;in{dﬂ,A}(n, a, z)} . (18)

Since this MDP is a stochastic shortest path problem where the
optimal policy is time-homogeneous and does not depend on time
t [2], we omit the superscript ¢ from now on. Notice that from
Eq. (17), Ja(m, a, z) is independent of 4, and state z is not involved
in deciding the optimal action. We can subtract the propagation
cost clz, in the action-value function, and then remove state z and a
in Ji(r,d,z). More specifically, denote J;(r) = Ji(r, d,2) — c; to
be a modified action-value function, and denote V;(r) to be the
modified value function related to J, (). Since they do not depend

145

MobiHoc °22, October 17-20, 2022, Seoul, Republic of Korea

on z, we will use z to replace z’ in the remaining paper. Therefore,
we can simplify the Bellman equation (17) and (18) as follows:

Z

Ja() :ci“ +p Z oq(m, z) [cf, + Vo (Ty (o, z))] R (19a)
z=1

Va () =min{J; (), Jmin {a+1,4) (7) }. (19b)

By solving the above Bellman equations, the agent obtains an
optimal policy p* () for the quickest intervention problem defined
in Problem 1. In the next subsection, we will prove the concavity
and monotonicity of value functions. These properties will be useful
in deriving a low-complexity algorithm in later sections.

4.3 A Structural Result for the Optimal Policy

We present an important property that the value functions of the
belief MDP possess concavity and monotonicity.

LEMMA 4.2. For any action a and current intervention level 4,
the value function V;(r) and the action-value function J,(x) are
both concave and monotonically non-decreasing in belief state 7.
Furthermore, Vo (1) and Ja () are constant:

zZ
c? +p X (x(z)cjz,
1-p '
The proof of Lemma 4.2 can be found in [19]. However, since &
is continuous, directly solving the Bellman equations is generally
difficult. In the next subsection, we present a grid-approximation

approach to obtain a nearly optimal intervention policy through
value iteration.

Va(m) = Ja(m) = (20)

4.4 Solving Belief MDP through Grid
Approximation

Algorithm 1 Grid Approximation Algorithm for p* (rr)

Require: grids {B;}<j<N,representatives {JTBj }1<j<N,error tol-
erance €.
1: Initialization: k = 0, Vd(o) (7B;) =0, Jéo) (7B,) = 0.
2 while 3B; s.t. [V\* (np,) - V¥ (n5,)] > €, do
3 forj=1:Ndo

4: fora=0:Ado

5 Update the action-value function ]‘ﬁ"“) (7p,) according
to Vd(k) (rrBj) and Eq. (19a).

6: end for

7. end for

g forj=1:Ndo

9: fora=0:Ado

Update the value function Vﬁ(kH)(HB].) and action

(7p;) according to ]ékﬂ) (7p;) and Eq. (19b).
11 end for
end for
13: end while
14: for j=1: N do
15 Set action p(n) for any 7 € Bj to be y(ﬂBj).
16: end for
Ensure: Nealy optimal policy {u(7)}.
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In this section, we provide in Algorithm 1 a grid-approximation
approach to solve the belief MDP [6, 9]. We first divide  into grids
{B1,B2, -+ ,BN}, where N is a proper number. One such design
of grids may be uniform grids. Note that B;’s are non-intersected
sections of real values satisfying Uﬁ\’:lBj = [0, 1]. Then, we select
one element 7p; in each grid B; as its representative. The rest
follows the standard value iteration [2].

Notice that this approach provides nearly optimal policies when
the number of grids is large so that all grids are sufficiently small.
However, since the performance of the obtained policy depends on
the number of grids, the computational complexity is still very high
when N is large. In the next section, we exploit linear approximation
to obtain a low-complexity algorithm which has a nearly optimal
provable guarantee in the “local intervention” regime.

5 A LOW-COMPLEXITY ALGORITHM WITH
NEARLY PROVABLE GUARANTEE

In this section, we address the computational complexity of grid
approximation by providing a heuristic low-complexity algorithm
based on an approximated Bellman equation. We introduce the
“local intervention” regime where the value function can be approxi-
mated accurately with the first-order Taylor’s approximation. In
this regime, we prove the nearly submodularity of the value func-
tion. Then, we design a threshold-based intervention policy, where
the thresholds are easily calculable with closed-form expression.

5.1
To derive the low-complexity algorithm based on the Taylor’s ap-

“Local Intervention” Regime Analysis

proximation, we consider the problem in the “local intervention”

regime where all consecutive intervention levels are close to each
other, and thus also close to the benign distribution. The formal def-
inition of “local intervention” regime is presented in Assumption 1.
The definition says that for a sufficiently small constant § and any
arbitrary discounted factor y € (0, 1), the differences in cumulative
distribution functions of B,’s for any state z are all very small.

AssumPTION 1. (“Local Intervention”) For any action a > 1, the
observation distribution f4(z) follows:

4 4
<D Bar(2)= ) Bala)| <8 Viz2 (D)

z=j z=j
where § is a sufficiently small real value and y € (0,1).

This assumption implies that f;(z) — a(z) = O() for any a. In
later analysis, we will include superscript § on any value that is

related to 8. For the simplicity of notation, we define the following
three values:

z

4523 (bal2) - a5, 22)
z=1
z

Dp = Z(ﬁa(z) - fa-1(2))c5, (23)
z=1

D =cf -7l @

It is obvious to notice that D% = A% — Az_l. According to the “local

intervention” assumption, we have A;l, = 0(d) and Dg =0(5).
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We then analyze the posterior update function Eq. (13) with
Taylor’s expansion evaluated at «(z) when § is small enough:

7Pa(z)
7fa(z) + (1 - 7)a(z)
_ T(a(z) + fa(z) — a(z))
7(a(z) + fa(z) — a(z)) + (1 - T)a(2)
(1-m)7

=t + ———(Pal2) — a(2)) + O(8?),
a(z)

T (n,2) =

(25)
where 7 = 7+ A(1 — 7).

Substituting Eq. (25) into the expression of J, () in Eq. (19a), we
obtain:

4
Jo(m) =cf +p ) [a(z) + #(Ba(2) - (2))]
z=1

¢+ Va (fr+ CZ2 () - ate + 0|
4
D et s p > a(z)cs | + 7oAl + pVali) + O, (26)
z=1

where equality (a) is obtained by Taylor’s expansion of V,(+) eval-
uated at point 7, as well as the definition (22). Also note that the
first-order terms cancels due to Zzzzl a(z) = Zzzzl Ba(z) = 1. Notice
that the first term in bracket of Eq. (26) is independent of 7, and the
second term is linear, so in order to approximate the value function
];5 () linearly, we need to focus on the non-linear terms pV,(7)
and O(8?). Before we proceed, we first present the definitions of
submodular functions and nearly-submodular functions.

Definition 5.1. An action-value function J, () is called submod-
ular in pair (a, 7) if it satisfies

Aq(r) = Jar1(7) — Ja(7)
is non-increasing with belief 7.

From Topkis’ lemma [16, Theorem 4.1], if a function J, () is
submodular, the solution to its “argmin” problem, i.e.,

a*(x) = argmin Jo(n),

is monotonically non-decreasing. Hence, a threshold exists since
the action space is finite.

Next, we check the submodularity of our value function. For a
given action a < A, subtract Eq. (26) for consecutive intervention
actions and we get:

NS (m) =J0,, () = J2(n)

— [cq+1 _

e

4
p Y (Bari(2) - ﬁa<z)>c;]
z=1
+p [V2a (- Vi@ +0(6)
=D#* 4 ipDE 4 p [vf+1(ﬁ) s (ﬁ)] 0. (@)

Recall that in the “local intervention” regime, ng“ =0(J) is
the same order as §. Heuristically as § is small enough, the higher
order term O(52) can be neglected. Therefore, we can accurately
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approximate the difference A3 (rr) in the “local intervention” regime

through an approximated difference Ag(n) defined as follows:
A3(m) = DM + 7pD%H +p [Vj+l(ﬁ) V@], (@9

where V,(rr) and J, () are defined similarly by neglecting the
higher orders in the original expression Eq. (26) as follows:

Z

Ja(m) = cf+p Z a(z)cy | + TpAg + pVa(7), (29a)
z=1

Va(r) =min{Ja (1), Jmin{a+1,4} (1) }- (29b)

Eq. (29) can be interpreted as a mean approximation to the orig-
inal Bellman equation in Eq. (19). Instead of computing the next-
stage belief T, (7, z) and evaluating the corresponding value func-
tion V, (T, (7, z)) for each observation z as in Eq. (19a), we adopt
the expected average belief update 7 and substitute

4
2 0a(r.2)Va (Ta(r.2))
z=1
with
4
Va Z 0aq(m,2)Ty(m, 2) | = Vo (7).
z=1

With the approximated MDP defined in Eq. (29) and similar to
submodularity, we introduce the definition of nearly-submodular
functions in the “local intervention” regime.

Definition 5.2. We define an action-value function ]g () to be
nearly-submodular in pair (g, ) in the “local intervention” regime
with 4, if its approximated difference function

AQ(m) = Jopy (1) = JQ ()
defined in Eq. (28) is monotonically non-decreasing of 7.

From the expression of A‘as(n) above in Eq. (28), we prove the
nearly-submodularity of J¢ () through induction of value iteration
in the following Theorem 5.3.

THEOREM 5.3. The belief MDP and its approximation with pos-
terior &t indicating whether change-point T has occurred possess the
following properties in the “local intervention” regime with §:

o The action-value function ]g(n) is nearly-submodular with
pair (a, ).

o The policy [1*’5(7[) that solves the approximated Bellman equa-
tion (29) is monotonically non-decreasing, and thus possesses a
threshold structure. That is, there exists a set of non-decreasing
thresholds denoted as {7?2’5}19514, such that policy % ()
switches to an action no less than a iff w exceeds threshold 7%;’5.

The proof of Theorem 5.3 can be found in [19]. From intuition,
we expect that in the “local intervention” regime, the optimal policy
159 (1) to the belief MDP behaves like a threshold-based policy
just as ﬁ*’5(n), and the thresholds for the two policies will be very
close to each other. This property will be identified in our numerical
simulations.

Recall that the optimal cost CH" of Problem 1 can be calculated
from value function V;(0) defined in Eq. (19) with state G = 0 and
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T =0, ie., cH = Vo (0). Similarly, we define an approximated
optimal cost C for the approximated MDP in Eq. (29) as follows:

C = Vp(0). (30)

Intuitively, C will also be close to C# . The following corollary
provides a closed-form expression on C.

COROLLARY 5.4. If all the thresholds {ﬁZ’S}ISaSA are strictly
within section [0, 1), the total cost C obtained by solving Bellman
equation (29) is computed as follows:

A
c=>"
a=1
pYZ, a()c
+
1-p

In(1-75%)
“In(1=A)

0 to an action no less than a.

A ta+l
+Z(/1)—p )

a=1

[p(1 - 2)]te*t
Tp-n )

ApAg
+ .
(1=p)[1-p(1=-2)]

P D
1-p !

(1)

where tg = { } is the number of steps switching from action

The proof of Corollary 5.4 can be found in [19]. However, calculat-
ing the thresholds {ﬁZ’a}lgas 4 is still computationally expensive.
Therefore, we provide bounds on these thresholds in Corollary 5.5,
which have close-form expressions.

COROLLARY 5.5. The thresholds {ﬁ2’5}15asA can be upper and
lower bounded with closed-form expressions. Specifically, for a single
threshold 7?2’5 that ﬂ*"s(n) switches from a — 1 to a, the following
holds:

A j— J J
a1 P° (Di +pr)

Y
< Ta, 32
Ta —(l—l)ng S g Tla (32)
where the upper bound threshold 7, is
D4 A
Tq = — : - . 33
TS T A )pDE T 12 (33)

The proof of Corollary 5.5 can be found in [19]. Heuristically,
from Corollary 5.5, if the optimal policy () also possesses a
threshold 7%2’5, it is highly likely that 7%2’5 lies in the same section
or its O(5) neighborhood when § is small. On the other hand, the
upper bound 7, serves as an approximated threshold which is
easily calculable. In the next section, we present a low-complexity
threshold-structured policy based on the upper bounds {74 }1<a<A-

5.2 Low-complexity Policy based on Upper
Bounds

Algorithm 2 Low-complexity Policy

1: Initialize the thresholds to be 7447 ¢ 1 and 7, «

. Dy A -
min {—m -3 ﬂa+1} fora < A.
2: while MDP doesn’t stop do
3:  Obtain observation z;.
4 Update belief 7; = T(74-1, a1, 2¢)-
5: Implement action a; = a, s.t. Tg < 7 < Tg41.
6: end while
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In this section, we propose our low-complexity policy f. The
policy and its implementation are summarized in Algorithm 2. The
intuition is simple: since the upper bound 7, is very close to the
original threshold 7%2’5, choosing 7, to be the threshold is actually
a conservative policy. In Sec 6, we show from the numerical sim-
ulations that the low-complexity policy’s performance is nearly
the same as the optimal one even beyond the “local intervention”
regime.

6 SIMULATIONS

In this section, we first provide a lower bound on the total cost cH
along with the definition of cost regret. These concepts are very
important in our simulations. Then, we will proceed to present the
numerical simulation results.

6.1 Lower Bound and Regret

Consider an oracle that knows the time horizon T and the change-
point 7 in advance. Then after relaxing the incremental constraint
in Eq. (9b), the oracle can minimize the overall cost with a very
simple oracle policy po: choose a; = Awhenr <t < T —1and
a; = 0 otherwise. The “stricter is better” assumption in Eq. (8)
ensures its optimality. We derive the cost of the oracle policy in the
following Theorem 6.1.

THEOREM 6.1. If the change point T and horizon T is known ahead
of time, then the optimal oracle action a; is as follows:
e When0 <t <r7-2,a;=0.
e Whent—1<t<T-2,a; =A.
e Whent=T—-1,a; =0.

The expected cost performance of oracle policy p, is

pYlia@e [ p  p1-4)

= =+ Ci — . (34)
1-p 1-p 1-p(1-2)

The proof of Theorem 6.1 can be found in [19]. CHe is the lower
bound on the expected total cost, which only relates to system pa-
rameters such as p, A, and a. To better understand the performance
of our proposed policy, we study the cost regret for a given policy
1t defined as follows:

CHo

Definition 6.2. The cost regret R¥ of a given policy p is defined as
the difference between its expected total cost C# and the expected
cost CHe of the oracle policy p,, i.e.,

RH = CH — CHo, (35)

In the next subsection, we study the cost regret R¥ of our pro-
posed low-complexity policy and the cost regret RH" of the optimal
policy along with other benchmarks such as two-step detect-then-
intervene policies modified from QCD [17].

6.2 Numerical Simulations

We compare the cost regret R¥ of the following four intervention
policies, including our proposed low-complexity policy, optimal
policy through grid approximation, and policies modified from
quickest change detection algorithms [17]. These intervention poli-
cies are summarized as follows:
o Low-complexity: The low-complexity policy is proposed
in Algorithm 2, which uses {7} as thresholds.
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Figure 2: Illustration of intervention policies: (a) pro-
posed low-complexity policy, (b) optimal policy, (c) quickest
change detection policy, and (d) direct quickest change de-
tection policy.

e Optimal: The optimal policy is by grid-approximation in
Algorithm 1 with uniform and sufficiently small grids.

e QCD: The quickest change detection policy is a two-step
intervention policy. It first detects the change point 7 with
Shiryaev’s test [17] under an optimal chosen probability
of false alarm (PFA). Then, it incrementally increases the
intervention level to its maximum satisfying Eq. (9b).

e Direct QCD: The direct quickest change detection policy is
also a two-step policy similar to QCD. The only difference
is that it violates constraint Eq. (9b) and immediately imple-
ments the highest intervention level A once it claims the
change-point has occurred.

Note that to verify the accuracy of approximations in the “local
intervention” regime, we also compare the regret for approximated
cost C computed from Corollary 5.4.

We simulated the diffusion process with five observation states
zr € {1,2,3,4,5}, where larger z; represents a severer situation. The
propagation costs associated with observations z; are [0, 1,2, 3, 4],
where z; = 1 indicates a normal state where no propagation cost
occurs. The actions which the agent can choose is a; € {0, 1,2, 3},
where a; = 0 represents idling and a; = 3 indicates perfect in-
tervention. The intervention costs are [0,0.02,0.06,0.2]. As for
the distribution of observations, we set the distribution before the
change-point & and that under the perfect intervention 5 to be
a = f3=1[0.2,0.2,0.2,0.2,0.2]". For distributions under other inter-
vention actions, we set §; = [0.2— (6 —2i)5,0.2—(3-1)5,0.3,0.2+
(3-1)8,0.2 + (6 — 2i)5], Vi € {0,1,2,3}.

We first studied the threshold structure of these policies and
the results are summarized in Fig. 2. Recall that p is the geometric
parameter that defines the distribution of horizon T, and A is the
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Figure 3: Cost regret performance as a function of time hori-
zon parameter 1 — p.

parameter that defines the geometric distribution of change-point
7. Here, we set p = 0.99 and A = 0.03. We further chose § = 0.02.
We see that the optimal policy possesses a threshold structure as
we conjectured according to the results in the “local intervention™
regime. Low-complexity also has a threshold very close to Optimal.

We then studied the performance of the four policies under
different parameter p, the geometric parameter that defines horizon
T. Larger 1 — p indicates the diffusion process stops more quickly.
Here, we set A = 0.1, § = 0.02 and thenlet 1 — p € [10_4, 1]. The
cost regret is depicted in Fig. 3. It shows that as p becomes smaller,
the MDP stops with larger probability. Therefore, the probability
that the agent needs to intervene also decreases. Low-complexity
achieves a near-optimal regret performance under different p, and
has much lower regret than the two QCD-based algorithms.

Next, we studied the performance of four policies under different
A, the parameter that defines the geometric distribution of change-
point. Here, we set p = 0.95 and § = 0.2, and then let A € [107%,1].
From Fig. 4, we can see that our proposed low-complexity policy
achieves nearly optimal performance when A is relatively large, but
has a slightly larger regret than Optimal when A is small. This is
because under such a regime, the upper bound 77, becomes loose.
With A achieving 1, the change-point is more likely to happen at
time 1. Since policy Direct QCD immediately switches to action
A, violating the incremental increasing constraint in Eq. (9b), it
achieves the best performance even better than Optimal.

Finally, we studied the cost performance of the four policies
under different §. Since § is viewed as the distance between con-
secutive intervention action distributions, it can be replaced by
the KL divergence of a and B, for better understanding. Here,
we set p = 0.95,1 = 0.1, and let § € [10_4, 0.03]. The KL diver-
gence D(a, fo) lies within [107°, 1]. It shows that Low-complexity
achieves nearly optimal performance under different §. As a matter
of fact, when the distributions are closer to each other, i.e., in the
“local intervention” regime, the improvement of our low-complexity
policy compared to QCD based policies becomes larger. The regret
decreases by 22% when the KL divergence is as small as O(107°).
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Figure 4: Cost regret performance as a function of change-
point parameter 1. Note that DQCD performs even better
than Optimal when 1 — 1 because it violates the constraint
in Eq. (9b).
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Figure 5: Cost regret performance as a function of KL diver-
gence D(a, B).

Throughout the simulations, our approximated cost value C is
very close to the cost CH' of the optimal policy. From Fig. 5, we see
that the approximated cost regret only deviates from the regret of
Optimal when the KL divergence D(«a, fy) deviates significantly
from the “local intervention” regime, i.e., when D(a, fy) =~ 0.5.
Otherwise, the approximation is very accurate.

6.3 Application to Anomaly Detection

In this subsection, we apply our low-complexity policy in algo-
rithm 2 to a simple anomaly detection problem. Consider a scenario
where a communication link is provided by a service provider to
users for packets transmission. For simplicity, we assume at each
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Figure 6: Total cost performance as a function of change-
point parameter A.

time t, a normal user chooses among five different service rates (de-
noted as z; € {1,2,3,4,5} from low speed to high speed) to transmit
these packets, equally likely (this assumption can be easily general-
ized). The user may become malicious after some change-points 7
and start to send with an unusually high rate for a long period of
time. The service provider monitors the user’s transmission rate
and charge the user accordingly. Based on the observations, the
provider needs to decide whether the user has become malicious. If
so, it may take intervention actions to throttle the data rate. The sce-
nario described above can be viewed as a simplification of general
MAC layer anomaly detection [3]. We assume that the service costs
associated with different speeds, from low to high, are {0, 1, 2, 3,4}
and the provider has four actions (a; € {0, 1, 2,3} where 0 repre-
sents idle) to choose from, which increasingly limit the high-speed
transmission rate with intervention costs {0, 0.02,0.06,0.2}. The
probability distributions of the service rate under different inter-
vention actions are the same as in Sec. 6.2 with § = 0.02. However,
we assume a fixed time horizon T = 50 in this simulation, and
the service provider can choose any action at any time with no
restriction such as Eq. (9b). In order to compute the low-complexity
policy, we set p = 0.98. We simulated this system 20, 000 times and
compared the performance of our low-complexity policy with the
following baselines: (1) optimal policy computed through dynamic
programming; (2) QCD policy with fixed PFA; (3) QCD policy with
adaptively chosen optimal PFA. The total cost performance under
different change-point parameter A is shown in Fig. 6. It turns out
that the total cost performance of our proposed low-complexity
policy is nearly optimal, in the sense that its mean is close to the
optimal policy and their confidence intervals are intersecting one
another. A significant performance gap can be observed between
the best QCD policy and the low-complexity policy, which demon-
strates the superiority of our proposed policy. This result also shows
that leveraging the assumptions such as Eq. (9b) in our technical
sections will not harm the total cost performance of our proposed
low-complexity policy too much, even though it is designed based
on such assumptions.
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7 CONCLUSION

We studied the problem of controlling a diffusion process with
mutation. We formulated a POMDP and converted it into a fully ob-
served MDP with belief states. We proposed a grid-approximation
algorithm to compute the optimal intervention policy. To reduce
its complexity, we considered the “local intervention” regime and
approximated the value functions through first-order Taylor’s ex-
pansion. We then proposed a low-complexity policy based on the
upper bounds of belief thresholds derived from the approximation.
Simulation results verify the performance of the proposed policies,
which showed the low-complexity algorithm has a similar regret
as the optimal policy even beyond the “local intervention” regime.
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