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ABSTRACT

Most data generated by modern applications is stored in the cloud,
and there is an exponential growth in the volume of jobs to access
these data and perform computations using them. The volume of
data access or computing jobs can be heterogeneous across different
job types and can unpredictably change over time. Cloud service
providers cope with this demand heterogeneity and unpredictability
by over-provisioning the number of servers hosting each job type.
In this paper, we propose the addition of erasure-coded servers that
can flexibly serve multiple job types without additional storage
cost. We analyze the service capacity region and the response time
of such erasure-coded systems and compare them with standard
uncoded replication-based systems currently used in the cloud. We
show that coding expands the service capacity region, thus enabling
the system to handle variability in demand for different data types.
Moreover, we characterize the response time of the coded system
in various arrival rate regimes. This analysis reveals that adding
even a small number of coded servers can significantly reduce the
mean response time, with a drastic reduction in regimes where the
demand is skewed across different job types.
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1 INTRODUCTION

Modern-day cloud computing systems are used for various big-data
applications such as performing machine learning (ML) inference
tasks [9], hosting large files for web services [24], computing the
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PageRank of web graphs [21], and other data-intensive computa-
tions. Since these jobs require access to the specific data stored
on the cloud server(s), each server is dedicated to one job type de-
pending on the availability of data and high-performance hardware
required for it. Therefore, the massive volume of users performing
such cloud computing jobs have to contend for the server(s) storing
data relevant to their job. For example, an ML inference system
may store one trained model on each server, users that need to
perform inference using that model are directed to that server. Or a
cloud storage system hosting files for OTT platforms such as Netflix
might use each server to store one movie, and users requesting that
movie are assigned to that server. Therefore, the massive volume of
users performing different cloud computing jobs have to contend
for the server(s) storing data relevant to their job.

The traffic for different job types can vary due to diurnal varia-
tions or unpredictable demand fluctuations. These traffic variations
often exhibit a negative correlation, i.e., if one job type is experi-
encing high traffic, another job type experiences low traffic. For
e.g., in an ML inference system hosting different specialized mod-
els to process pictures captured by users, the inference traffic for
each model can vary periodically depending on the time zone of
the users accessing them. Such computing and inference jobs are
latency-sensitive. Thus, a larger number of servers needs to be
allocated to job types experiencing high traffic to satisfy the latency
requirements of those users. The ideal solution for such situations
is to enable dynamic allocation of servers where the number of
servers provided to a job type depends on its current traffic. How-
ever, the servers often host large files (for e.g., the size of the Google
Web crawler is over 10 million GB) and have specialized computing
hardware. Dynamically reconfiguring a server for a different job
type would require the movement of large amounts of data and
may not even be possible due to hardware constraints. Hence, there
is a critical need to design multi-access computing systems resilient
to traffic variations that avoid dynamic reconfiguration of servers.

One standard solution to handle traffic variations is to overpro-
vision the number of servers dedicated to various job types to meet
their peak demand. Overprovisioning can be achieved by adding
replicas of servers dedicated to a job type [8, 26] in proportion to the
maximum historical demand for that job type over a large time hori-
zon. While over-provisioning can meet latency requirements under
traffic variations, it comes at the cost of severe underutilization
of expensive computing resources and a massive energy footprint.
Another solution is to supplement job-type-specific servers with
flexible general servers that can serve more than one job type. How-
ever, adding such servers can be expensive because they need access
to data, memory, and computing capabilities relevant to multiple
job types. One such model was studied by Tsitsiklis and Xu in [27]
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which showed that the addition of a small number of flexible servers
could give a dramatic reduction in the queueing delay.

While the solutions mentioned above provide some robustness to
variations in traffic, none of them considers the correlation between
traffic. For negatively correlated arrival rates, the overall traffic in
the system varies slowly over time, even though individual jobs
may experience significant changes. A novel approach that is well-
suited for such skewed traffic patterns was proposed in [1, 2], where
the authors supplement replicas of the servers of each type by a
set of erasure coded servers. When a job is sent to an erasure-coded
server, the output is a linear combination of the outputs of two or
more of the regular servers. For example, in a matrix computation
task where job type 1 (or type 2) seeks to compute the product Ax
(or Bx) of an incoming vector x with the matrix A (or B) stored
at a server, a coded server can store A + B such that its output
is (A + B)x. Thus, a type 1 job can be served and its output Ax
can be obtained using an uncoded server storing B and a coded
server storing A + B. Using this property, erasure-coded servers
can serve multiple job types when combined with regular servers.
Furthermore, unlike the flexible servers proposed in [27], the coded
servers do not require extra resources such as memory. For various
encoding schemes, [1, 2] showed an improvement in the service
capacity region of the system, the set of arrival rates for which
the system is stable. The addition of coded servers significantly
expands the service capacity region, especially in regions where
the traffic for different job types is negatively correlated.

1.1 Main Contributions

While [1, 2] proposed the idea of using coded servers to handle
traffic variations and showed an expansion of the service capacity
region, these works did not analyze the impact of coded servers on
performance metrics such as mean response time or tail latency.
Latency is important as often the request for a service has a deadline,
in which case just ensuring stability of the system might not satisfy
the user requirements. Since a coded server has to be used with
one or more other servers, coding can increase the system load and
result in a higher response time in some traffic regimes. However,
this effect on the mean response time is not yet well-understood.
In this paper, we build upon the model provided in [1, 2] and
generalize it to consider > 2 job types and an arbitrary allocation
of servers to each job type and the coded servers. We compare the
coded system with an uncoded system with the same total number
of servers and corroborate the insight that the coded system signif-
icantly improves the system’s stability by increasing the volume of
the service capacity region. In addition, we characterize the mean
response times of the coded and uncoded systems in several traffic
regimes. We show that for a large number of servers, our coded
system has a comparable or significantly smaller mean response
time in most traffic regimes. The reduction in mean response time
is prominent when the traffic of various job types is heavy and
skewed, i.e., some job types are experiencing significantly higher
traffic than other job types. The only regime where the uncoded
system is better is when all job types simultaneously have high
traffic, which is unlikely to occur in practical applications. Thus,
we show our coded system can better handle heterogeneous traffic
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for different job types, and it improves the stability as well as the
latency of multi-access systems.

1.2 Related Work

Improving the latency and service capacity of multi-access cloud
systems has been extensively studied in the literature. In the con-
text of storage systems, it has been studied in the caching literature
[4, 19, 22], where the number and location of replicas are dynam-
ically adjusted based on the traffic. However, in data-intensive
computing and content access jobs, such dynamic reconfiguration
of servers is not feasible. Another approach proposed in [27] is
to add flexible servers that can serve multiple job types, but these
servers will require additional memory and computing capabilities.
Our proposed coding strategy does not require dynamic server
reconfiguration or expensive flexible servers.

The use of erasure coding in distributed storage and computing
systems is not new, in most prior works, the purpose of coding
is straggler mitigation in jobs with parallel computing tasks, or
latency reduction by launching redundant replicas of a job. For
jobs that are divided into many parallel tasks such as MapReduce
workloads, the tail latency of waiting for the slowest task(s) can
be reduced by replication of tasks [3, 10, 14, 16, 28] such that the
completion of only a subset of tasks is sufficient to complete the
job. A generalized form of replication is erasure coding using (n, k)
maximum-distance-separable (MDS) codes, which offers a more
efficient method to mitigate stragglers. In the context of content
download from distributed storage, erasure coded systems divide
a file into k chunks that are coded into n chunks such that down-
loading any k out of n is sufficient to recover the file. The latency
of such distributed systems with redundant requests is analyzed in
[6, 12, 14, 15, 18, 23]. All the above works consider homogeneous
jobs of only one type. In contrast, this paper employs erasure coding
to achieve a different goal of handling skews in the traffic of hetero-
geneous jobs. To the best of our knowledge, this novel application
of coding has only been previously studied in [1, 2], which we build
on by considering a more general system and characterizing the
mean response time in addition to the service capacity region.

2 PROBLEM FORMULATION

We consider a multi-access cloud system consisting of n servers
that are used to provide service to k types of jobs. Jobs of each type i
arrive into the system according to a Poisson process. We assume
that the traffic variation happens at a slower time-scale such that
the system reaches a steady state before the traffic pattern changes.
Therefore, it suffices to consider the setting where type i jobs have a
constant arrival rate A;. The service times of n servers are unit-rate
exponential random variables and are i.i.d. across servers and the
jobs assigned to the server.

Uncoded System. In most current implementations, the n servers
are divided into k disjoint subsets S;,i = 1,2,...,k, each consist-
ing of |S;| = n; = a;n servers for fractions 0 < a; < 1 such that
Z{;l a; = 1. The fraction a; of servers dedicated to type i jobs
is a hyperparameter that can be set by the system designer. For
example, ¢; can be proportional to the long-term average of past
values of the arrival rate ;. Since future arrival rates are not known
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Figure 1: An example of a multi-access computing system
hosting two matrices A and B, and consisting of n unit-rate
servers of which ngy4.q are coded servers. The value written
inside each server shows matrix stored in the server. Tasks
corresponding to A is represented by blue squares, while the
one for B is shown using orange squares. Different line types
represents different ways in which a job can be served.

beforehand or they may vary with time, the number of servers ded-
icated to each job type may not be sufficient to satisfy its arrival
rate. Dynamically re-configuring a server to serve a different job
type is expensive and slow in cloud systems, because it involves
the movement of large amounts of data. Thus, we consider that the
server types are fixed beforehand and cannot be modified on the
fly, that is, type i systematic servers cannot be quickly reconfigured
to serve jobs of type j for j # i.

Coded System. In this paper, we consider a more generalized
setup where out of n servers, we reserve a set S¢oded Of Reoded =
[Scoded| servers to host erasure coded versions of the job types. The
remaining n — neyded Systematic servers are split across the k job-
types such that a;(n — neogeq) servers are the systematic set S; of
job type i, with 0 < a; < 1foralli=1,...,k and Z?:l a; = 1. We
illustrate this server assignment for the k = 2 case in Fig. 1.

Erasure codes [11] were originally developed in communication
systems to add redundancy to transmitted messages in order to
provide resilience against noise in the communication channel. In
this paper, we employ them for a new purpose — to handle skews in
the arrival rate of various job types. When the arrival rate A; of type
i jobs exceeds the cumulative service rate of the type i systematic
servers, the excess arrivals can be served using a combination of the
coded servers and systematic servers of type(s) j # i. To illustrate
the benefit of coded servers, we first give two concrete examples of
erasure coded systems for k = 2 job types. Then we describe the
proposed coded system for general k.

Example 1. (Coded storage system)

Consider an online storage platform with two video files, V;
and V; of equal size, and 3 servers that can host one file each.
Consider that the servers store Vi, V2 and (V7 @ V) respectively,
where (V1 @ V3) is the bit-wise XOR of V; and V;. Note that the
data-size stored on the coded server (V1 @ V3) is the same as the file
size V7 and V. The jobs of type 1 and 2 are download requests for
files V4 and V5. A type 1 job can be served in two ways: 1) it can be
sent to the systematic server storing V3, or 2) it can be sent to the
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systematic server storing V2 and the coded server storing (V3 @ V2),
and after downloading these two files, V; can be recovered by taking
their bit-wise XOR, (V7 @ V,) @ V, = V;. Thus, if the server storing
V1 cannot meet the demand for file Vi, the excess requests can be
served using V7 and (V; @ V3).

To design more general coded storage systems with more than
two files and more than one coded server, the files can be repre-
sented in a higher alphabet size than bits which will allow more
flexible linear combinations. Such erasure coding of files is cur-
rently used in commercial cloud storage systems such as RAID [5]
for the purpose of resilience against disk failures.

Besides coded storage systems where the jobs represent down-
load requests, erasure coding can be applied to computing systems,
as illustrated in Example 2 below.

Example 2. (Coded computing system) Consider an online com-
puting system, where a computing job seeks to find the product of
an input vector x with the matrix A (or B). Matrix computations
are backbone of ML inference systems and such jobs are common
where the vector x is an inference query and the matrix-vector
product Ax (or Bx) is the predicted output of a linear model. We
assume that the matrices to be of same shapes. For different shapes,
one can pad zeros to the matrices to unify their shapes. Suppose we
have a system consisting of 5 servers, where each server stores one
of two large matrices A and B, or their linear combination. Con-
sider that the 5 servers store A, B, (A + B), (A — B), and (A + 2B),
respectively. Given an input vector x, the server multiplies the vec-
tor with the stored matrix and outputs the matrix-vector product.
A type 1 job that seeks to find the product Ax can be served in
the following ways: 1) sending the job to the server storing A, 2)
sending the job to any two of the three coded servers (A + B),
(A-B) and (A+2B) and obtain Ax by taking a linear combination
of the resulting matrix-vector products, or 3) sending the job to the
systematic server storing B and any one of the three coded servers,
and solving for Ax from the resulting matrix-vector products.

Since erasure codes are inherently linear, the coded computing
framework described above can be directly applied only to linear
computations such as matrix-vector multiplication. However, some
recent research in coding theory is designing ways to apply erasure
codes to non-linear computations [17, 20] such as kernel meth-
ods and neural networks. The queueing and scheduling insights
presented in this paper can be extended to the non-linear coded
computing frameworks proposed in these works.

Maximum-Distance Separable Codes and Recovery Sets. The
examples shown above considered just 2 types of jobs. More gener-
ally, when there are k types of jobs, we propose a coded multi-access
system that employs a class of erasure codes called maximum-
distance-separable (MDS) codes [11]. MDS codes are often used in
distributed storage systems to provide resilience against disk fail-
ures. If there are k files that need to be stored on [ disks, an (, k)
MDS code constructs ! independent linear combinations of the k
files such that a file i can be recovered from any set of k coded files.
A commonly used MDS code is the Reed-Solomon code, which
constructs the linear combinations by evaluating a k — 1-th degree
polynomial at [ points. A special case of an (I, k) MDS code is the
systematic MDS code, where k of the | combinations are uncoded
copies of the k files, and the remaining I — k are other independent
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linear combinations. In our coded multi-access cloud system, we
consider such a systematic MDS code. We have |S;| = a; (n—ncoded)
servers storing uncoded copies of each job type i and ngygeq inde-
pendent linear combinations of the k job types.

In our MDS coded system, we can serve a type i job using one of
the following options: 1) one of the systematic servers from set S;,
2) any k coded combinations from the set Scyqeq of coded servers,
or 3) k1 coded servers and k — k; distinct systematic servers from
the sets S, where j € {1,2,---,k}\{i} and for some integer k1 such
that 1 < k; < k. We denote the union of all these possible subsets of
servers that can serve a type i job by R;, and refer to it as the set of
recovery sets. The size | R;| is the number of possible recovery sets for
job type i, and R;; denotes the set of servers corresponding to the
Jj-th recovery set, for j = 1,...,|R;|. For instance, in Example 1, the
set of recovery sets for the file V; is Ry = {{1}, {2, 3}}, consisting
of the two possible combinations that can be used to recover V;.

Queueing model. Next, we describe the queueing model for
our system, which is also illustrated in Fig. 1. We consider a first-
come-first-served (FCFS) queue at each server. When a type i job
arrives, it needs to be assigned to a recovery set in R; immediately.
Specifically, if the chosen set consists of a single systematic server
of type i, then the job needs to receive service from that systematic
server, and thus we say that the job consists of one task. If the chosen
set contains (k — k1) systematic servers and k; coded servers for
some k1 > 0, then the job needs to receive service from all the k
servers, and thus we say that the job consists of k tasks. This service
model induces the following queueing dynamics: when a job arrives,
we send a task to the queue at each server in the chosen set in R;.
The job is completed when all of its tasks are completed. We call
the policy that determines which recovery set to assign to each
arriving job as the routing policy.

Performance Metrics. Since the coded system provides the flex-
ibility of having multiple ways of serving a job, it improves load
balancing. However, this flexibility comes at the cost of redun-
dancy because to serve a job using a coded combination, we need
responses from k servers. To compare the coded and uncoded sys-
tems in terms of flexibility vs redundancy trade-off, we use two
performance metrics: (1) the service capacity region, the set of
arrival rate vectors for which the system is stable, and (2) the mean
response time of jobs. We define these metrics formally below.

Definition 1 (Service Capacity Region). The service capacity region
of a multi-access cloud system, denoted by A, is the region such that
for any arrival rate vector A = (A1,---,A) in the interior of the
region, there exists a routing policy under which

lim lim P (Number of jobs in the system at timet > ¢) = 0. (1)

Cc—00 [—00

The service capacity region consists of all supportable through-
put. Therefore, it is a notion independent of policies, and it measures
the fundamental limit of the system.

Definition 2 (Mean Response time). The response time T of a job is
the total time that a job spends in the system from its arrival until all
its tasks are completed. If the system is stable, then the mean response
time of the system, denoted by E [T], is defined as follows when the
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limit on the right-hand-side exists with probability 1:

m
2T
j=1

where Tj denotes the response time of the j-th job that departs from
the system. For an unstable system, we define the mean response time
E [T] to be co.

E[T] = lim —

m—oo m

()

The mean response time is a performance metric specific to the
routing policy. In this paper, we consider probabilistic job routing
policies. In particular, for any R;, we fix a probability vector p; of
length |R;|, and any incoming job of type i is assigned to R;; with
probability p;;, the j-th element of p;. Then, the total arrival rate
of type-i job to the set R;; is given by 4;; = A;p;;. When comparing
the mean response times of the coded and uncoded systems, we
compare the best achievable performances by considering the opti-
mal probabilistic routing policy that minimizes the mean response
time. For example, for the uncoded system, the optimal routing
policy corresponds to sending a job of type i to one of the system-
atic servers of type i chosen uniformly at random. Obtaining the
optimal routing policy for the coded system can be difficult. We
provide some routing policies that perform well, both theoretically
and practically in Section 4 and Section 5.

For the analysis of the mean response time, we assume that the
number of coded servers is n¢ogeq = 0(n). The case of neggeq =
©(n) is both feasible and interesting. However, the comparison
of the mean response times of the uncoded and coded systems
becomes intractable in this regime. That is why we focus on ncygeq =
o(n) for the response time characterization presented in Section 4.
However, we provide some insights for ncygeq = ©(n) regime in
our simulations in Section 5.

We also assume that A; = ©(n) for all i. We believe that this is a
mild assumption because the traffic experienced by a job is usually
proportional to the servers allocated to the job type.

Organization of the paper. In Section 3, we analyze the service
capacity region of the coded and uncoded system. Section 4 compare
the mean response times of the coded and uncoded system. In
Section 5.1, we present simulation results that corroborate our
theoretical result given in Theorem 2 for a fixed arrival rate vector.
In Section 5.2, we provide simulations with variable arrival rate
vectors and show how negative correlation in traffic benefits the
coded system. Finally, in Section 6 we provide a conclusion and
directions for future work.

3 SERVICE CAPACITY REGION

The service capacity region is the set of job arrival rates for which
the system is stable, that is, the cumulative arrival rate to any server
does not exceed its service rate, as defined in Definition 1. Lemma 1
and Theorem 1 below provide the service capacity regions for the
uncoded and coded multi-access cloud systems. We show that the
service capacity region of the coded system is significantly larger
than that of the uncoded system.

Lemma 1 (Uncoded Service Capacity Region). Consider an uncoded
multi-access cloud system consisting of n servers and k job types, with
|Si| = ain servers allocated to job type i. Then, the service capacity
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Figure 2: Service Capacity region of our system for k = 2,3.
The blue region represents the service capacity region for
the coded system, and the orange one shows the service ca-
pacity region for the uncoded system. The service capacity
region of the coded system expands in regimes where the
traffic is skewed. However, it loses some area when all job
types have similar and high arrival rates.

region is the set
Auncoded = {(A1, - (3

The service capacity region of the uncoded system is the hyper-
cuboid of size k and length of the i-th side being a;n. This comes
from the fact that the total service capacity of systematic servers of
type i is ar;n. The orange region in Fig. 2 illustrates the service capac-
ity region of the uncoded system for k = 2, 3. Next, we characterize
the service capacity region of the coded system in Theorem 1. We
first characterize the service capacity region of the coded system
using (4). However, for any vector A, it is difficult to verify whether
A satisfies (4) or not. Hence, we provide a simpler characterization
via (5) that is a necessary and sufficient condition for stability.

A0 A <anVie{l, ... k}}.

Theorem 1 (Coded Service Capacity Region). Consider a coded
multi-access cloud system consisting of n servers and k job types. Let
R;;j be the j-th element of R;, the set of recovery sets of type i. Then,
the service capacity region is the set

[Ri |
Acoded = {(/11,-~-,/1k) 1345 20, st A= Z/lij,\ﬁ e{1,....k},
=
k
Z Z /h‘jSl,Vt’e{l,...,n}} (4)

i=1 jil€R;;
Letr; denote the residual capacity for type i jobs, given asr; = aj(n—
Neoded) — Ai- Also define rf £ max{r;,0}, and r; £ —min{r;, 0}.
Without loss of generality, assume thatry <ry < --- < ri. Then, an
arrival rate vector (A1, ..., Ax) € Acoded if and only if

k
i > -,
kger{rﬁ.r.l.,k}{ } - Z i

The proof sketch of Theorem 1 is given in Section 3.1 below, and
the complete proof is given in [7].

For the special case of k = 2 and 3, the blue regions in Fig. 2
illustrate the service capacity region of the coded system. The
service capacity region for k = 2 was previously derived in [1, 2].

ko .+
Neoded Ziil T

0 ©)
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However, [1, 2] did not consider the general case when the number
of job types k > 2. From Fig. 2a, observe that there is an expansion
in the service capacity region in the top-left and bottom-right areas,
the regions where the traffic is heavy and skewed. The routing
policy reduces the traffic in the higher loaded systematic servers by
redirecting some of their load to the coded servers and less loaded
systematic servers. The induced load balancing then allows the
traffic of a job type to extend beyond the capacity of its systematic
servers, leading to an expansion in the service capacity region.

However, the coded system loses portion of the service capacity
region in the top right corner, where the traffic is heavy but not
skewed. In this region, the traffic of all job types is usually greater
than the total capacity of their systematic servers, hence the system-
atic servers are not enough on their own to serve all job types. In
addition, the coded servers add a significant amount of redundancy
which further increases the traffic, effectively making it unstable.

For k = 2, the total area of the regions gained is ©(nncyded) since
the maximum possible arrival rate of a job of type i can increase by
O(Nncoded)- Likewise, the area of lost region is ©((ngogeq)?) Which
makes the total area of service capacity region in the coded sys-
tem to be (a1az n? + O(NNgoded) — ®((ncoded)2))~ If the number of
coded servers is small, i.e., ncogeq = 0(n), then there is an effective
gain in the service capacity region for the coded system.

3.1 Proof Sketch of Theorem 1

The proof of Theorem 1 contains two parts, the proofs of (4) and
(5), and both follow a similar pattern. We first prove that if any
arrival rate vector satisfies the property (the requirement in (4) or
(5)), there is a way to stabilize the system. We then prove that if the
property is not satisfied, no policy can stabilize the system. Below,
we present the proof sketches of (4) and (5).

Proof of equation (4). We first prove that if any arrival rate
vector A satisfies (4), then there exists a way to stabilize the system.
By the definition of the set Acogeq given in Theorem 1, for any
arrival rate vector A € Acoded, there exists a set of A;;’s that satisfies
(4). One routing policy for this arrival rate vector is to serve a job
of type-i using servers in the recovery set R;; with probability
(4ij/A;). Under this policy, the total arrival rate to £-th server is
Z{le 2. j.teR,; Aij, where the inner sum represents the total arrival
rate of tasks corresponding to the job of type i. Equation (4) ensures
that for all £ € {1, ..., n}, the total arrival rate to ¢-th server is less
than 1, the service rate of the ¢-th server, which implies that the
system is stable.

The other direction of the result, i.e., any A outside Aygeq makes
the system unstable, can be proven using standard techniques in-
volving the Strict separation theorem and the Strong law of large
numbers (see Chapter 4.2 of [25] for an example).

Proof sketch of equation (5). We first prove that for any arrival
rate vector satisfying (5), there exists a policy that stabilizes the
system. We use a water-filling argument where we initially serve
a job only using its systematic servers. We start using the coded
servers when the systematic servers reach their maximum capacity.
Then, the right-hand side of (5) is the total excess service require-
ment after systematic servers are fully utilized. The left-hand side
is the total service capacity available at the coded servers plus the
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(rif =)L, 13 Excess service capacity of
_ e > :l, systematic server of type 2
11 :Excess service - Ay
requirement of job /
type 1

After water filling
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3 Coded 3

a1 (N — Neoded)

% i 205 =)

Coded

Figure 3: An illustration of the water filling method for
k = 3 used in the proof of (5). The water-filling strategy in-
volves first filling the systematic servers to the brink. The re-
maining service requirement is then served using the coded
servers and the under-utilized systematic servers.

excess service capacity at the underutilized systematic servers. The
system is stable if the excess service capacity exceeds or equals
the excess service requirement. A pictorial representation of the
water-filling argument is given in Fig. 3.

We then show that every arrival rate vector A € Agded satisfies
(5). The key idea is that for any A € A qged, there exist 4;;’s satis-
fying (4) such that for any i either a job of type i only use its own
systematic servers or type i systematic servers is used to serve only
jobs of type i. This decomposition of A ensures that the service
requirement from the coded servers exceeds (2;11 r7). Moreover,
the service capacity available at the coded servers plus the under-

utilized systematic servers is less than (ncydged + 221 r{) ko for
any ko € {1,...,k}. The proof concludes by using the fact that the
system is stable which implies equation (5) is true.

4 RESPONSE TIME CHARACTERIZATION
In this section, we compare the minimum mean response times

of the coded and uncoded systems, denoted by E [ ("d) d] and

(n)
E [Tuncoded
the notation superscript (n) to denote that the quantity depends on

n. To characterize and compare the response times, we consider five
traffic regimes listed and illustrated in Fig. 4. We formally define
these regimes in Section 4.1, and then we compare the response
times in each of these regimes in our main theorem in Section 4.2.

Note that Fig. 4 illustrates the orders of the edges of different areas
as n becomes large. Hence, the slanted edges in Fig. 2a translates to
vertical and horizontal lines in Fig. 4.

] respectively. For the remainder of the paper, we use

4.1 Traffic Regimes

Recall that jobs of type i arrive at the system according to a Poisson

process with rate Ai(n). Let ﬁi("), referred to as the slack capacity of
systematic servers of type i, be defined as

B = ain = 2. )

We define five traffic regimes based on the orders of the slack
capacities of all job types. For ease of exposition, we first describe
the regimes for the case where the system has two job types, i.e.,
k = 2, and then we generalize them to system with any value of k.
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n
___________________ 0% ™
coded
______________________________ g™
n T
/12 ) Light
Inner-heavy
Outer-heavy
Uncoded-unstable
A(“) Coded-unstable
1

Figure 4: A pictorial representation of the traffic regimes for
the case k = 2. The star represents a possible value of arrival

rate vector and ﬁl.(") is represented by it’s distance from the
edge. The response time comparison of the coded and un-
coded system for these regimes is provided in Theorem 2.

Traffic regimes for k = 2. Without loss of generality, we assume
that g™ < p{".

Light regime: ﬂl.(n) > 0forallie{1,2}, and

ﬁl.(n) =w ( 2031 d)’ foralli € {1,2}.
In this regime, the slack capacities are large for both job types.

Inner-heavy regime: ﬁl.(n) > 0forallie {1,2}, and

=0 [Jonizge) A7 =0 (8ha) 7 = 0 (7).

In this regime, type 1 jobs experience heavier traffic than type 2
jobs do, and thus type 1 jobs can benefit from a coded system.

Outer-heavy regime: ﬂ(n) >0forallie {1,2},and

B =0 (neoaea) A2 = (nca)

Compared to the inner-heavy regime, the outer-heavy regime has
an even heavier traffic for type 1 jobs, so the traffic is further skewed.

Uncoded-unstable: In this regime, the uncoded system is unstable
while the coded system is stable.

Coded-unstable: In this regime, the coded system is unstable
while the uncoded system is stable.

Traffic regimes for a general k. Without loss of generality, we
assume that ﬁl(n) <. ,BI(C") . To generalize the definitions of the
five traffic regimes, we divide the k job types into two groups based
on their slack capacities, (1) beneficiaries, and (2) helpers.

Intuitively speaking, the beneficiaries are the job types that ex-
perience heavier traffic, and the helpers are those who experience
lighter traffic. Therefore, the beneficiaries can benefit from sending
jobs to coded servers and systematic servers of the helpers. In con-
trast, the helpers only need their own systematic servers. Formally,
consider the index i* defined as

(Zi) < l}.

i*zmax{j:(jzjl

i=1

™)
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Then we call job type in {1, 2, .. .,i"*} the beneficiaries, and job types
in {i* +1,...,k} the helpers. Note that in the special case where
k = 2, the index i* = 1, and thus job type 1 is the beneficiary and
job type 2 is the helper. In another special case where ; = 1/k for
all i, the index i* is around Vk.

The choice of i* in (7) has an intuitive explanation based on
the stability of coded servers as follows. For any j, if there are j
beneficiaries, then their total traffic is given by Z{zl (ain - ,Bl.(n)).
We demonstrate in [7] that a good routing policy is as follows.
Each helper assigns its jobs only to its own systematic servers.
Each beneficiary assigns its jobs to its own systematic servers with
probability (1-©(n")
(k — j) systematic servers from helpers and j coded servers with
the rest of the probability. Under this routing policy, the total traffic
to the coded servers is j - © ( coded/n) (Z] ain — ﬁ( )) which
is © (nig()ied (j Z{zl a,-)). The choice of the index i* in (7) then

intuitively ensures the stability of coded servers.
Now;, to define the traffic regimes, it is sufficient to look at the

orders of ﬂin) and ﬁl(r:)l We define the traffic regimes as follows.

/n)), and to a recovery set consisting of

Light regime: ﬁl.(n) >0forallie{1,2,...,k},and

ﬂi(") = w( nn(") ) forallie {1,2,...k}.

coded
Inner-heavy regime: ﬁl.(") >0, foralli € {1,2,...,k},and
(n) _ / (n) (n) _ (n) (n) _ (n)
1 _O( coded) _Q( coded) 'Bl'*+l_w( 1 )
Outer-heavy regime: [3.(") >0,forallie€ {1,2,...,k},and

(n) _ ( (n) ) ﬁ(") ( (n) )
1 M coded i*+1 Meoded) -

The coded-unstable and uncoded-unstable regimes are defined in
the same way as those given in Section 4.1. Note that the assumption
of nigée 4 = o(n) is necessary for defining the light, inner-heavy and
outer-heavy regimes, but it is not required to define the uncoded-
unstable and coded-unstable regimes. A sufficient condition for an
arrival rate vector to lie inside the coded-unstable regime is given

as ﬁi(*r-?l = w("igzled) and ﬁt(’:-)l

for an arrival rate vector to lie inside the uncoded-unstable regime
(n) (n) ( ,,) m
Coded) ﬂi* ﬁ > 0, and ﬁ* =

i*+1
). The proof of the sufficient conditions are given in [7].

> 0. Likewise, a sufficient condition

is given as |ﬂi(*n) | = o(

(n)
@ (ncoded

4.2 Main Result

We state our main result in Theorem 2, which compares the re-
sponse time in a coded system with that in an uncoded system in
the five traffic regimes.

Theorem 2 (Response Time Comparison). Consider a multi-access
cloud system consisting of n servers and k job types. Consider the min-
imum mean response times in a coded system and an uncoded system

over all probabilistic job assigning policies, denoted by E [TC((:;)ed] and
E|T™

neode d]’ respectively. Then we have the following comparison in
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the five traffic regimes:

Light regime: ‘E [Tc(orge d] [Tlf::c)o e d” =o0(1); (8)
Inner-heavy regime: E [T(n) ] <E [Ti:c)oded] —o(1); (9)
Outer-heavy regime: E [Tc(or(li)e d] (E [Tu(;lc)o e d]) ; (10)

Uncoded-unstable regime: E [Tc(or;)e d] < oo,E [Tlf:c)o de d] 005
(11)

Coded-unstable regime: E [Tc(or:i)ed] =oo,E [Tlf:c)oded] < oo,
(12)

4.2.1  Proof sketch of Theorem 2. In this subsection, we provide
a proof sketch of Theorem 2. We first analyze the mean response
time of the uncoded system, and then analyze same for the coded
one.

Uncoded system. The arrival rate of jobs of type i is Ai("), which
is served using a;n servers. One can prove that the optimal proba-
bilistic routing policy is to serve an incoming job of type i using
one of the systematic server of type i chosen uniformly at random.
Under this optimal policy, all systematic servers of type i behave
like independent M/M /1 queues with arrival rate /1,.(")/ (ajn) and
unit service rate. The mean response time of a type i job is then

an | T (

/1(")
1/(1 -

uncoded system is given by

E [ u(r?c)oded] =

. Therefore, the mean response time of the

k /1(")

2w

=Dy I

ain

"

(13)

Coded system. For the coded system, the routing probability
is the key component deciding the mean response time. To better
understand job routing policies in the coded system, we first give
the Property 1 we observe for any stabilizing policy.

Property 1. Consider any routing policy and let q(") be the total
probability of sending a job of type i to a systematic server of type i.
Then, the policy can stabilize the system only if

(n)

(n) ncoded

= ,for all i.

(14)

Property 1 states that the fraction of traffic that any job type
can divert away from its own systematic servers is limited to a

% (nigc)led

that has to be served by systematic servers, which further leads to a
lower bound on the mean response time. We use this lower bound
in the analysis of the light regime. Moreover, in the heavy regimes
where traffic is more skewed, we need to divert the traffic of heavily
loaded job types as much as we can. In this case, Property 1 also
provides a guideline for choosing a good job routing policy. The
analysis of the individual regimes then proceeds as follows.

/ n) fraction. This provides a lower bound on the traffic

(1) Light regime: To prove (8), it suffices to show a lower bound,

E [T(") (15)

(n)
coded 2B [Tuncoded] +o(1),
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Figure 5: Comparison of the response times of the coded and uncoded systems. The different marker types (circle, triangle,
square) represent arrival rates from different traffic regimes (light, inner-heavy and outer-heavy), as shown in the bottom-
right illustration. The empirical standard error of the plotted points is O(1073). The coded servers significantly improve the
system’s performance in the inner-heavy and outer-heavy regimes. The coded and uncoded systems have similar response

times in the light regime.

and an upper bound given by

Bl

As mentioned earlier, the lower bound is proved using Property 1. To
show the upper bound, note that it suffices to focus on a particular
routing policy and show that its mean response satisfies (16). In the
light regime, the slack capacity for every job type is large enough.
Therefore, we consider the routing policy that assigns every job
to its own systematic server. Computing the corresponding mean
response time verifies (16).
(2) Heavy regimes: The analysis of the inner-heavy and outer-heavy
regimes follow the same structure. In these regimes, the beneficia-
ries experience heavy traffic and have small slack capacities. To
reduce the mean response times, we divert the traffic of beneficia-
ries from their systematic servers to the recovery sets that utilize
coded servers as much as possible.

In fact, we consider the following routing policy. For some ap-
propriate index k* < i*, we choose the routing probability qu ) =1

for all i > k*. For any i < k¥, we use the routing probability

(n) (n) (n) (n)
950 coded/n and qik* code

For any i > k¥, if the routing option is chosen corresponding
to the probability ql(;z*) ,
servers and (k — k*) systematic servers of type k* + 1,...,k re-
spectively is chosen uniformly at random from all recovery sets
satisfying the property. For any i, if the routing option is chosen
corresponding to the probability ql(g ) , then a systematic server of
type i is chosen uniformly at random. Upper-bounding the mean

response time for this policy gives the upper bounds in (9) and (10)

T(”)

uncoded] +o(1). (16)

=1-on =on d/n, for some constant v.

then a recovery set consisting of k* coded
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5 SIMULATION RESULTS

In this section, we present our simulation results to demonstrate the
performance comparison between the uncoded and coded system
under various traffic settings. In Section 5.1, we focus on arrival
rates that are time-invariant. Our main goal is to demonstrate the
performance comparison given in Theorem 2, but we have also
investigated the choice of the nig()ie d
Section 5.2, we consider arrival rates that are time-varying, with a
traffic pattern commonly observed in practical systems.

Before we get into the simulation settings, we first describe the
routing policy we use in the simulations for the coded system.

not covered in Theorem 2. In

Pseudo-optimal routing policy. Each queue behaves like a
M /M/1 queue; hence the response time of each task is an exponen-
tially distributed random variable. However, finding the optimal
routing policy is non-trivial since the response time of a job is the
maximum of the response time of its tasks, and the queues at each
server are not independent. Moreover, the routing policy discussed
in Section 4.2.1 does not perform well empirically for smaller values
of n even though it works well asymptotically.

The difficulty in obtaining the optimal routing policy is the de-
pendence among queues. We derive a policy that we call the pseudo-
optimal routing policy by treating the queues as if they were inde-
pendent. This approximation is based on the commonly observed
phenomenon that queues are asymptotically independent in large
systems [29]. With the independence assumption, one can calculate
a job’s response time as the expectation of maximum of indepen-
dent exponential random variables is known. The pseudo-optimal
routing policy is then the policy that minimizes the approximated
mean response time. In our simulations, we find the pseudo-optimal
routing policy numerically using Scipy Optimization libraries.
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Figure 6: A comparison of the coded and uncoded systems for time-varying traffic in terms of total job in the system. The
leftmost picture shows the search frequency of the words news and movies on Google, demonstrating a real-world example
of negatively correlated traffic. The central figure shows the arrival rate vector as a function of time for a simplified system
with two job types that has a negative correlation in traffic. The rightmost figure shows the number of jobs in the system. The
presence of coded servers helps reduce the load from the heavier loaded systematic servers, making the coded system enjoy a

lesser total job in the system on average.

5.1 Time-invariant Arrival Rates

In this subsection, we experimentally demonstrate the performance
comparison between a coded system and an uncoded system. We

provide simulations for systems with 2 and 3 job types. For these
(n)
coded

= ©(n) and show the effect of large number of coded servers.

simulations, apart from using n = o(n), we also consider

(n)
coded
We simulate until 10 jobs leave the system and average it over

50 runs to calculate the mean response time. Finally, based on our
simulation results, we provide intuitions on how our main result

igf)ied = @(n)

n

would change for the case of n

Simulation for systems with 2 job types. We consider n = 2™

servers, where we vary m € {6,7,-- -, 11}. For the uncoded system,
we calculate the response time theoretically. For the coded system,
(n) (n) _

we consider two cases of n_ 4, =o(n)andn_, ,=0(n).

Fig. 5a shows numerical comparison between mean response
of the coded and uncoded system for k = 2. The results for the
ég()le q= o(n) resembles the theoretical results provided in
Theorem 2. In the light regime, the coded systems with o(n) coded
servers perform similar to the uncoded system with a diminishing
performance gap as n increases. In the inner-heavy and outer-heavy
regimes, the coded system with o(n) servers outperforms the un-
coded system and the gap increases as n increases. Moreover, the
performance gap between the coded and uncoded systems increases
with the skewness in arrival rate, i.e., the coded system performs
significantly better in the outer-heavy regime.

However, as illustrated in Fig. 5a, the results are slightly different
when the number of coded servers increases as n'™) 4 =9©().In
the light regime, the coded system with ©(n) coded server performs
worse than the uncoded system. The redundancy added by ©(n)
coded servers worsens the system. However, the performance gap
does not change much as n increases as the traffic is light enough.
The cost of redundancy is not substantial, and the coded system
is worse only by an ©(1) term. Compared to the light regime, the
coded system with ©(n) servers performs considerably better than

case of n
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both uncoded and coded systems with o(n) servers in the inner-
heavy and outer-heavy regimes. Because of the higher skew, the
coded system with ©(n) coded servers allows more uniform load
balancing, thus greatly improving the performance.

Simulation for systems with 3 job types. We also perform
experiments for system with three types of jobs. We consider n = 3™
servers, where we vary m € {4,5,-- -, 8}.

Fig. 5b shows the response time comparison of the coded and
uncoded system for this simulation setup. For the light and outer-
heavy regime, the trends in Fig. 5b is similar to the simulation
results for the two-job type system and hence follows a similar
reasoning. However, for the inner-heavy regime, the trends are
slightly different. The coded system outperforms the uncoded sys-
tem asymptotically; however, the difference is not as significant as
seen in the simulation with two job types. One plausible reason is
that the system has two beneficiaries and only one helper based
on our arrival rate choice and allocation of servers. Hence, a slight
skew in the arrival rate vector is insufficient to reduce the bene-
ficiaries’ load. However, there is enough skew in the outer-heavy
region such that the coded system outperforms the uncoded system
regardless of the number of coded servers.

Based on the simulations for systems with two or three job types,
we conjecture that for négzle 4 = ©(n), the inner-heavy and outer-
heavy regimes would merge into a single heavy regime where the
coded system would outperform the uncoded system. The light
regime would also change, and instead of 0(1), the mean response
time’s of the coded and uncoded system can differ by ©(1).

5.2 Time-Varying Arrival Rates

In practical systems such as Google search, the traffic of a job type
often varies periodically. For example, as shown in Fig. 6a, search
for news in Google [13] peaks during early hours, while the search
for movies peaks during the night. To simulate such traffic patterns,
we consider a system with two job types where the arrival rate of
each job type is a square wave, as illustrated in Fig. 6b. The arrival
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rates of the two job types have a similar period but are negatively
correlated, i.e., if one job experiences higher traffic, the other job
type should experience lesser traffic. We consider a total of n = 60
servers. In the coded system, 7 of these servers are coded servers.
The remaining servers are distributed in the same proportion to
the two job types for the coded and uncoded systems.

Fig. 6¢c shows a comparison between the mean number of jobs
in the coded and uncoded systems. The top plot shows the total
number of jobs in the system as a function of time, while the second
and the third plot shows the number of jobs of type 1 and 2, respec-
tively. When a job type is experiencing low traffic, the number of
jobs of that type in the uncoded system is slightly less than that in
the coded system. However, when a job type is experiencing heavy
traffic, the number of jobs in the uncoded system is significantly
higher than the coded system. This is because coding provides a
load balancing effect where lightly loaded servers can be used to
serve heavier traffic for job types.

6 CONCLUSION

This paper proposes the use of erasure-coded servers to handle
traffic variations in heterogeneous jobs. We show that adding a few
erasure coded servers significantly expands the capacity region of
the coded system thereby improving the stability. We also compare
the latency of the coded and uncoded systems and show that the
coded system is better or at least comparable in most traffic regimes.
The erasure-coded servers also improve the system’s flexibility
as the system can quickly adapt to changes in traffic, especially
when the traffic is negatively correlated. Thus, at a slight cost of
redundancy, our coded solution provides a general framework to
improve the system’s stability and latency.

There are substantial directions for future work. While our pro-
posed coded system to handle k job types and its analysis holds
for any k, in practice, a large k would be impractical because the
decoding cost scales as O(k?). To handle large k, we could divide
the servers into r subsystems with k/r job types in each subsystem.
A large r will save the decoding cost, but it loses some flexibility
offered by coding. In future work, we can determine the optimal
choice of r and strategies to group the k job types into the r sub-
systems. Another future direction is to consider redundant replicas
of a job that are sent to multiple recovery sets. A job is served
when any one of the requests is served. Finally, we also plan to
analyze our system for queue-length-based routing policies instead
of probabilistic policies considered in this paper. Then the technical
challenges in comparing the latency involve proving a complicated
state-space collapse and lower bounding the mean response time.
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