
Tackling Heterogeneous Tra�ic in Multi-access Systems via
Erasure Coded Servers

Tuhinangshu
Choudhury

Carnegie Mellon University
Pittsburgh, PA

Weina Wang
Carnegie Mellon University

Pittsburgh, PA

Gauri Joshi
Carnegie Mellon University

Pittsburgh, PA

ABSTRACT
Most data generated by modern applications is stored in the cloud,
and there is an exponential growth in the volume of jobs to access
these data and perform computations using them. The volume of
data access or computing jobs can be heterogeneous across di�erent
job types and can unpredictably change over time. Cloud service
providers cope with this demand heterogeneity and unpredictability
by over-provisioning the number of servers hosting each job type.
In this paper, we propose the addition of erasure-coded servers that
can �exibly serve multiple job types without additional storage
cost. We analyze the service capacity region and the response time
of such erasure-coded systems and compare them with standard
uncoded replication-based systems currently used in the cloud. We
show that coding expands the service capacity region, thus enabling
the system to handle variability in demand for di�erent data types.
Moreover, we characterize the response time of the coded system
in various arrival rate regimes. This analysis reveals that adding
even a small number of coded servers can signi�cantly reduce the
mean response time, with a drastic reduction in regimes where the
demand is skewed across di�erent job types.

CCS CONCEPTS
•Mathematics of computing! Queueing theory; Coding the-
ory; • Networks ! Network performance analysis.

KEYWORDS
Erasure coding, coded computation, latency, service capacity region
ACM Reference Format:
Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi. 2022. Tackling
Heterogeneous Tra�c in Multi-access Systems via Erasure Coded Servers.
In The Twenty-third International Symposium on Theory, Algorithmic Foun-
dations, and Protocol Design for Mobile Networks and Mobile Computing
(MobiHoc ’22), October 17–20, 2022, Seoul, Republic of Korea. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3492866.3549713

1 INTRODUCTION
Modern-day cloud computing systems are used for various big-data
applications such as performing machine learning (ML) inference
tasks [9], hosting large files for web services [24], computing the

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9165-8/22/10.
https://doi.org/10.1145/3492866.3549713

PageRank of web graphs [21], and other data-intensive computa-
tions. Since these jobs require access to the speci�c data stored
on the cloud server(s), each server is dedicated to one job type de-
pending on the availability of data and high-performance hardware
required for it. Therefore, the massive volume of users performing
such cloud computing jobs have to contend for the server(s) storing
data relevant to their job. For example, an ML inference system
may store one trained model on each server, users that need to
perform inference using that model are directed to that server. Or a
cloud storage system hosting �les for OTT platforms such as Net�ix
might use each server to store one movie, and users requesting that
movie are assigned to that server. Therefore, the massive volume of
users performing di�erent cloud computing jobs have to contend
for the server(s) storing data relevant to their job.

The tra�c for di�erent job types can vary due to diurnal varia-
tions or unpredictable demand �uctuations. These tra�c variations
often exhibit a negative correlation, i.e., if one job type is experi-
encing high tra�c, another job type experiences low tra�c. For
e.g., in an ML inference system hosting di�erent specialized mod-
els to process pictures captured by users, the inference tra�c for
each model can vary periodically depending on the time zone of
the users accessing them. Such computing and inference jobs are
latency-sensitive. Thus, a larger number of servers needs to be
allocated to job types experiencing high tra�c to satisfy the latency
requirements of those users. The ideal solution for such situations
is to enable dynamic allocation of servers where the number of
servers provided to a job type depends on its current tra�c. How-
ever, the servers often host large �les (for e.g., the size of the Google
Web crawler is over 10million GB) and have specialized computing
hardware. Dynamically recon�guring a server for a di�erent job
type would require the movement of large amounts of data and
may not even be possible due to hardware constraints. Hence, there
is a critical need to design multi-access computing systems resilient
to tra�c variations that avoid dynamic recon�guration of servers.

One standard solution to handle tra�c variations is to overpro-
vision the number of servers dedicated to various job types to meet
their peak demand. Overprovisioning can be achieved by adding
replicas of servers dedicated to a job type [8, 26] in proportion to the
maximum historical demand for that job type over a large time hori-
zon. While over-provisioning can meet latency requirements under
tra�c variations, it comes at the cost of severe underutilization
of expensive computing resources and a massive energy footprint.
Another solution is to supplement job-type-speci�c servers with
�exible general servers that can serve more than one job type. How-
ever, adding such servers can be expensive because they need access
to data, memory, and computing capabilities relevant to multiple
job types. One such model was studied by Tsitsiklis and Xu in [27]

171

5IJT XPSL JT MJDFOTFE VOEFS B $SFBUJWF $PNNPOT "UUSJCVUJPO *OUFSOBUJPOBM ��� -JDFOTF�

https://doi.org/10.1145/3492866.3549713
https://doi.org/10.1145/3492866.3549713
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3492866.3549713&domain=pdf&date_stamp=2022-10-03

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi

which showed that the addition of a small number of �exible servers
could give a dramatic reduction in the queueing delay.

While the solutions mentioned above provide some robustness to
variations in tra�c, none of them considers the correlation between
tra�c. For negatively correlated arrival rates, the overall tra�c in
the system varies slowly over time, even though individual jobs
may experience signi�cant changes. A novel approach that is well-
suited for such skewed tra�c patterns was proposed in [1, 2], where
the authors supplement replicas of the servers of each type by a
set of erasure coded servers. When a job is sent to an erasure-coded
server, the output is a linear combination of the outputs of two or
more of the regular servers. For example, in a matrix computation
task where job type 1 (or type 2) seeks to compute the product Gx
(or Hx) of an incoming vector x with the matrix G (or H) stored
at a server, a coded server can store G + H such that its output
is (G + H)x . Thus, a type 1 job can be served and its output Gx
can be obtained using an uncoded server storing H and a coded
server storing G + H. Using this property, erasure-coded servers
can serve multiple job types when combined with regular servers.
Furthermore, unlike the �exible servers proposed in [27], the coded
servers do not require extra resources such as memory. For various
encoding schemes, [1, 2] showed an improvement in the service
capacity region of the system, the set of arrival rates for which
the system is stable. The addition of coded servers signi�cantly
expands the service capacity region, especially in regions where
the tra�c for di�erent job types is negatively correlated.

1.1 Main Contributions
While [1, 2] proposed the idea of using coded servers to handle
tra�c variations and showed an expansion of the service capacity
region, these works did not analyze the impact of coded servers on
performance metrics such as mean response time or tail latency.
Latency is important as often the request for a service has a deadline,
in which case just ensuring stability of the system might not satisfy
the user requirements. Since a coded server has to be used with
one or more other servers, coding can increase the system load and
result in a higher response time in some tra�c regimes. However,
this e�ect on the mean response time is not yet well-understood.

In this paper, we build upon the model provided in [1, 2] and
generalize it to consider � 2 job types and an arbitrary allocation
of servers to each job type and the coded servers. We compare the
coded system with an uncoded system with the same total number
of servers and corroborate the insight that the coded system signif-
icantly improves the system’s stability by increasing the volume of
the service capacity region. In addition, we characterize the mean
response times of the coded and uncoded systems in several tra�c
regimes. We show that for a large number of servers, our coded
system has a comparable or signi�cantly smaller mean response
time in most tra�c regimes. The reduction in mean response time
is prominent when the tra�c of various job types is heavy and
skewed, i.e., some job types are experiencing signi�cantly higher
tra�c than other job types. The only regime where the uncoded
system is better is when all job types simultaneously have high
tra�c, which is unlikely to occur in practical applications. Thus,
we show our coded system can better handle heterogeneous tra�c

for di�erent job types, and it improves the stability as well as the
latency of multi-access systems.

1.2 Related Work
Improving the latency and service capacity of multi-access cloud
systems has been extensively studied in the literature. In the con-
text of storage systems, it has been studied in the caching literature
[4, 19, 22], where the number and location of replicas are dynam-
ically adjusted based on the tra�c. However, in data-intensive
computing and content access jobs, such dynamic recon�guration
of servers is not feasible. Another approach proposed in [27] is
to add �exible servers that can serve multiple job types, but these
servers will require additional memory and computing capabilities.
Our proposed coding strategy does not require dynamic server
recon�guration or expensive �exible servers.

The use of erasure coding in distributed storage and computing
systems is not new, in most prior works, the purpose of coding
is straggler mitigation in jobs with parallel computing tasks, or
latency reduction by launching redundant replicas of a job. For
jobs that are divided into many parallel tasks such as MapReduce
workloads, the tail latency of waiting for the slowest task(s) can
be reduced by replication of tasks [3, 10, 14, 16, 28] such that the
completion of only a subset of tasks is su�cient to complete the
job. A generalized form of replication is erasure coding using (=,:)
maximum-distance-separable (MDS) codes, which o�ers a more
e�cient method to mitigate stragglers. In the context of content
download from distributed storage, erasure coded systems divide
a �le into : chunks that are coded into = chunks such that down-
loading any : out of = is su�cient to recover the �le. The latency
of such distributed systems with redundant requests is analyzed in
[6, 12, 14, 15, 18, 23]. All the above works consider homogeneous
jobs of only one type. In contrast, this paper employs erasure coding
to achieve a di�erent goal of handling skews in the tra�c of hetero-
geneous jobs. To the best of our knowledge, this novel application
of coding has only been previously studied in [1, 2], which we build
on by considering a more general system and characterizing the
mean response time in addition to the service capacity region.

2 PROBLEM FORMULATION
We consider a multi-access cloud system consisting of = servers
that are used to provide service to : types of jobs. Jobs of each type 8
arrive into the system according to a Poisson process. We assume
that the tra�c variation happens at a slower time-scale such that
the system reaches a steady state before the tra�c pattern changes.
Therefore, it su�ces to consider the setting where type 8 jobs have a
constant arrival rate _8 . The service times of = servers are unit-rate
exponential random variables and are i.i.d. across servers and the
jobs assigned to the server.

Uncoded System. Inmost current implementations, the= servers
are divided into : disjoint subsets Y8 , 8 = 1, 2, . . . ,:, each consist-
ing of |Y8 | = =8 = U8= servers for fractions 0 < U8 < 1 such thatÕ:
8=1 U8 = 1. The fraction U8 of servers dedicated to type 8 jobs

is a hyperparameter that can be set by the system designer. For
example, U8 can be proportional to the long-term average of past
values of the arrival rate _8 . Since future arrival rates are not known

172

Tackling Heterogeneous Tra�ic in Multi-access Systems via Erasure Coded Servers MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

: Arrival rate of
request of

systematic servers of type 1

: Arrival rate of
request of

systematic servers of type 2coded servers

unit rate
servers

Figure 1: An example of a multi-access computing system
hosting two matrices G and H, and consisting of = unit-rate
servers of which =coded are coded servers. The value written
inside each server shows matrix stored in the server. Tasks
corresponding to� is represented by blue squares, while the
one for ⌫ is shown using orange squares. Di�erent line types
represents di�erent ways in which a job can be served.

beforehand or they may vary with time, the number of servers ded-
icated to each job type may not be su�cient to satisfy its arrival
rate. Dynamically re-con�guring a server to serve a di�erent job
type is expensive and slow in cloud systems, because it involves
the movement of large amounts of data. Thus, we consider that the
server types are �xed beforehand and cannot be modi�ed on the
�y, that is, type 8 systematic servers cannot be quickly recon�gured
to serve jobs of type 9 for 9 < 8 .

Coded System. In this paper, we consider a more generalized
setup where out of = servers, we reserve a set Ycoded of =coded ,
|Ycoded | servers to host erasure coded versions of the job types. The
remaining = � =coded systematic servers are split across the : job-
types such that U8 (= � =coded) servers are the systematic set Y8 of
job type 8 , with 0 < U8 < 1 for all 8 = 1, . . . ,: and

Õ:
8=1 U8 = 1. We

illustrate this server assignment for the : = 2 case in Fig. 1.
Erasure codes [11] were originally developed in communication

systems to add redundancy to transmitted messages in order to
provide resilience against noise in the communication channel. In
this paper, we employ them for a new purpose – to handle skews in
the arrival rate of various job types. When the arrival rate _8 of type
8 jobs exceeds the cumulative service rate of the type 8 systematic
servers, the excess arrivals can be served using a combination of the
coded servers and systematic servers of type(s) 9 < 8 . To illustrate
the bene�t of coded servers, we �rst give two concrete examples of
erasure coded systems for : = 2 job types. Then we describe the
proposed coded system for general : .

Example 1. (Coded storage system)
Consider an online storage platform with two video �les, +1

and +2 of equal size, and 3 servers that can host one �le each.
Consider that the servers store +1,+2 and (+1 � +2) respectively,
where (+1 � +2) is the bit-wise XOR of +1 and +2. Note that the
data-size stored on the coded server (+1 �+2) is the same as the �le
size +1 and +2. The jobs of type 1 and 2 are download requests for
�les +1 and +2. A type 1 job can be served in two ways: 1) it can be
sent to the systematic server storing +1, or 2) it can be sent to the

systematic server storing+2 and the coded server storing (+1 �+2),
and after downloading these two �les,+1 can be recovered by taking
their bit-wise XOR, (+1 � +2) � +2 = +1. Thus, if the server storing
+1 cannot meet the demand for �le +1, the excess requests can be
served using +2 and (+1 � +2).

To design more general coded storage systems with more than
two �les and more than one coded server, the �les can be repre-
sented in a higher alphabet size than bits which will allow more
�exible linear combinations. Such erasure coding of �les is cur-
rently used in commercial cloud storage systems such as RAID [5]
for the purpose of resilience against disk failures.

Besides coded storage systems where the jobs represent down-
load requests, erasure coding can be applied to computing systems,
as illustrated in Example 2 below.
Example 2. (Coded computing system) Consider an online com-
puting system, where a computing job seeks to �nd the product of
an input vector x with the matrix G (or H). Matrix computations
are backbone of ML inference systems and such jobs are common
where the vector x is an inference query and the matrix-vector
product Gx (or Hx) is the predicted output of a linear model. We
assume that the matrices to be of same shapes. For di�erent shapes,
one can pad zeros to the matrices to unify their shapes. Suppose we
have a system consisting of 5 servers, where each server stores one
of two large matrices G and H, or their linear combination. Con-
sider that the 5 servers store G,H, (G + H), (G � H), and (G + 2H),
respectively. Given an input vector x , the server multiplies the vec-
tor with the stored matrix and outputs the matrix-vector product.
A type 1 job that seeks to �nd the product �x can be served in
the following ways: 1) sending the job to the server storing G, 2)
sending the job to any two of the three coded servers (G + H),
(G�H) and (G+2H) and obtainGx by taking a linear combination
of the resulting matrix-vector products, or 3) sending the job to the
systematic server storing H and any one of the three coded servers,
and solving for Gx from the resulting matrix-vector products.

Since erasure codes are inherently linear, the coded computing
framework described above can be directly applied only to linear
computations such as matrix-vector multiplication. However, some
recent research in coding theory is designing ways to apply erasure
codes to non-linear computations [17, 20] such as kernel meth-
ods and neural networks. The queueing and scheduling insights
presented in this paper can be extended to the non-linear coded
computing frameworks proposed in these works.

Maximum-Distance Separable Codes andRecovery Sets. The
examples shown above considered just 2 types of jobs. More gener-
ally, when there are: types of jobs, we propose a codedmulti-access
system that employs a class of erasure codes called maximum-
distance-separable (MDS) codes [11]. MDS codes are often used in
distributed storage systems to provide resilience against disk fail-
ures. If there are : �les that need to be stored on ; disks, an (;,:)
MDS code constructs ; independent linear combinations of the :
�les such that a �le 8 can be recovered from any set of : coded �les.
A commonly used MDS code is the Reed-Solomon code, which
constructs the linear combinations by evaluating a : � 1-th degree
polynomial at ; points. A special case of an (;,:) MDS code is the
systematic MDS code, where : of the ; combinations are uncoded
copies of the : �les, and the remaining ; � : are other independent

173

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi

linear combinations. In our coded multi-access cloud system, we
consider such a systematic MDS code. We have |Y8 | = U8 (=�=coded)
servers storing uncoded copies of each job type 8 and =coded inde-
pendent linear combinations of the : job types.

In our MDS coded system, we can serve a type 8 job using one of
the following options: 1) one of the systematic servers from set Y8 ,
2) any : coded combinations from the set Ycoded of coded servers,
or 3) :1 coded servers and : � :1 distinct systematic servers from
the sets Y 9 , where 9 2 {1, 2, · · · ,:}\{8} and for some integer :1 such
that 1  :1 < : . We denote the union of all these possible subsets of
servers that can serve a type 8 job by X8 , and refer to it as the set of
recovery sets. The size |X8 | is the number of possible recovery sets for
job type 8 , and X8 9 denotes the set of servers corresponding to the
9-th recovery set, for 9 = 1, . . . , |X8 |. For instance, in Example 1, the
set of recovery sets for the �le +1 is X1 = {{1}, {2, 3}}, consisting
of the two possible combinations that can be used to recover +1.

Queueing model. Next, we describe the queueing model for
our system, which is also illustrated in Fig. 1. We consider a �rst-
come-�rst-served (FCFS) queue at each server. When a type 8 job
arrives, it needs to be assigned to a recovery set in X8 immediately.
Speci�cally, if the chosen set consists of a single systematic server
of type 8 , then the job needs to receive service from that systematic
server, and thus we say that the job consists of one task. If the chosen
set contains (: � :1) systematic servers and :1 coded servers for
some :1 � 0, then the job needs to receive service from all the :
servers, and thus we say that the job consists of : tasks. This service
model induces the following queueing dynamics: when a job arrives,
we send a task to the queue at each server in the chosen set in X8 .
The job is completed when all of its tasks are completed. We call
the policy that determines which recovery set to assign to each
arriving job as the routing policy.

PerformanceMetrics. Since the coded system provides the �ex-
ibility of having multiple ways of serving a job, it improves load
balancing. However, this �exibility comes at the cost of redun-
dancy because to serve a job using a coded combination, we need
responses from : servers. To compare the coded and uncoded sys-
tems in terms of �exibility vs redundancy trade-o�, we use two
performance metrics: (1) the service capacity region, the set of
arrival rate vectors for which the system is stable, and (2) the mean
response time of jobs. We de�ne these metrics formally below.

De�nition 1 (Service Capacity Region). The service capacity region
of a multi-access cloud system, denoted by ⇤, is the region such that
for any arrival rate vector , = (_1, · · · , _:) in the interior of the
region, there exists a routing policy under which

lim
2!1 lim

C!1
P (Number of jobs in the system at time C > 2) = 0. (1)

The service capacity region consists of all supportable through-
put. Therefore, it is a notion independent of policies, and it measures
the fundamental limit of the system.

De�nition 2 (Mean Response time). The response time) of a job is
the total time that a job spends in the system from its arrival until all
its tasks are completed. If the system is stable, then themean response
time of the system, denoted by E [)], is de�ned as follows when the

limit on the right-hand-side exists with probability 1:

E [)] = lim
<!1

1
<

<’
9=1

)9 . (2)

where)9 denotes the response time of the 9-th job that departs from
the system. For an unstable system, we de�ne the mean response time
E [)] to be 1.

The mean response time is a performance metric speci�c to the
routing policy. In this paper, we consider probabilistic job routing
policies. In particular, for any X8 , we �x a probability vector p8 of
length |X8 |, and any incoming job of type 8 is assigned to X8 9 with
probability ?8 9 , the 9-th element of p8 . Then, the total arrival rate
of type-8 job to the set X8 9 is given by _8 9 = _8?8 9 . When comparing
the mean response times of the coded and uncoded systems, we
compare the best achievable performances by considering the opti-
mal probabilistic routing policy that minimizes the mean response
time. For example, for the uncoded system, the optimal routing
policy corresponds to sending a job of type 8 to one of the system-
atic servers of type 8 chosen uniformly at random. Obtaining the
optimal routing policy for the coded system can be di�cult. We
provide some routing policies that perform well, both theoretically
and practically in Section 4 and Section 5.

For the analysis of the mean response time, we assume that the
number of coded servers is =coded = > (=). The case of =coded =
⇥(=) is both feasible and interesting. However, the comparison
of the mean response times of the uncoded and coded systems
becomes intractable in this regime. That is whywe focus on=coded =
> (=) for the response time characterization presented in Section 4.
However, we provide some insights for =coded = ⇥(=) regime in
our simulations in Section 5.

We also assume that _8 = ⇥(=) for all 8 . We believe that this is a
mild assumption because the tra�c experienced by a job is usually
proportional to the servers allocated to the job type.

Organization of the paper. In Section 3, we analyze the service
capacity region of the coded and uncoded system. Section 4 compare
the mean response times of the coded and uncoded system. In
Section 5.1, we present simulation results that corroborate our
theoretical result given in Theorem 2 for a �xed arrival rate vector.
In Section 5.2, we provide simulations with variable arrival rate
vectors and show how negative correlation in tra�c bene�ts the
coded system. Finally, in Section 6 we provide a conclusion and
directions for future work.

3 SERVICE CAPACITY REGION
The service capacity region is the set of job arrival rates for which
the system is stable, that is, the cumulative arrival rate to any server
does not exceed its service rate, as de�ned in De�nition 1. Lemma 1
and Theorem 1 below provide the service capacity regions for the
uncoded and coded multi-access cloud systems. We show that the
service capacity region of the coded system is signi�cantly larger
than that of the uncoded system.

Lemma 1 (Uncoded Service Capacity Region). Consider an uncoded
multi-access cloud system consisting of = servers and : job types, with
|Y8 | = U8= servers allocated to job type 8 . Then, the service capacity

174

Tackling Heterogeneous Tra�ic in Multi-access Systems via Erasure Coded Servers MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

a : = 2. b : = 3.
Uncoded Coded

Figure 2: Service Capacity region of our system for : = 2, 3.
The blue region represents the service capacity region for
the coded system, and the orange one shows the service ca-
pacity region for the uncoded system. The service capacity
region of the coded system expands in regimes where the
tra�c is skewed. However, it loses some area when all job
types have similar and high arrival rates.

region is the set

⇤uncoded = {(_1, . . . , _:) : 0  _8  U8=,88 2 {1, . . . ,:}} . (3)

The service capacity region of the uncoded system is the hyper-
cuboid of size : and length of the 8-th side being U8=. This comes
from the fact that the total service capacity of systematic servers of
type 8 is U8=. The orange region in Fig. 2 illustrates the service capac-
ity region of the uncoded system for : = 2, 3. Next, we characterize
the service capacity region of the coded system in Theorem 1. We
�rst characterize the service capacity region of the coded system
using (4). However, for any vector ,, it is di�cult to verify whether
, satis�es (4) or not. Hence, we provide a simpler characterization
via (5) that is a necessary and su�cient condition for stability.

Theorem 1 (Coded Service Capacity Region). Consider a coded
multi-access cloud system consisting of = servers and : job types. Let
X8 9 be the 9-th element of X8 , the set of recovery sets of type 8 . Then,
the service capacity region is the set

⇤coded =
n
(_1, . . . , _:) : 9_8 9 � 0, s.t. _8 =

|X8 |’
9=1

_8 9 ,88 2 {1, . . . ,:},

:’
8=1

’
9 :✓2X8 9

_8 9  1,8✓ 2 {1, . . . ,=}
o

(4)

Let A8 denote the residual capacity for type 8 jobs, given as A8 , U8 (=�
=coded) � _8 . Also de�ne A+8 , max{A8 , 0}, and A�8 , �min{A8 , 0}.
Without loss of generality, assume that A1  A2  · · ·  A: . Then, an
arrival rate vector (_1, . . . , _:) 2 ⇤coded if and only if

min
:02{1,...,: }

(
=coded +

Õ:0
8=1 A

+
8

:0

)
�

:’
8=1

A�8 . (5)

The proof sketch of Theorem 1 is given in Section 3.1 below, and
the complete proof is given in [7].

For the special case of : = 2 and 3, the blue regions in Fig. 2
illustrate the service capacity region of the coded system. The
service capacity region for : = 2 was previously derived in [1, 2].

However, [1, 2] did not consider the general case when the number
of job types : > 2. From Fig. 2a, observe that there is an expansion
in the service capacity region in the top-left and bottom-right areas,
the regions where the tra�c is heavy and skewed. The routing
policy reduces the tra�c in the higher loaded systematic servers by
redirecting some of their load to the coded servers and less loaded
systematic servers. The induced load balancing then allows the
tra�c of a job type to extend beyond the capacity of its systematic
servers, leading to an expansion in the service capacity region.

However, the coded system loses portion of the service capacity
region in the top right corner, where the tra�c is heavy but not
skewed. In this region, the tra�c of all job types is usually greater
than the total capacity of their systematic servers, hence the system-
atic servers are not enough on their own to serve all job types. In
addition, the coded servers add a signi�cant amount of redundancy
which further increases the tra�c, e�ectively making it unstable.

For : = 2, the total area of the regions gained is⇥(==coded) since
the maximum possible arrival rate of a job of type 8 can increase by
⇥(=coded). Likewise, the area of lost region is ⇥((=coded)2) which
makes the total area of service capacity region in the coded sys-
tem to be

�
U1U2=2 + ⇥(==coded) � ⇥((=coded)2)

�
. If the number of

coded servers is small, i.e., =coded = > (=), then there is an e�ective
gain in the service capacity region for the coded system.

3.1 Proof Sketch of Theorem 1
The proof of Theorem 1 contains two parts, the proofs of (4) and
(5), and both follow a similar pattern. We �rst prove that if any
arrival rate vector satis�es the property (the requirement in (4) or
(5)), there is a way to stabilize the system. We then prove that if the
property is not satis�ed, no policy can stabilize the system. Below,
we present the proof sketches of (4) and (5).

Proof of equation (4). We �rst prove that if any arrival rate
vector , satis�es (4), then there exists a way to stabilize the system.
By the de�nition of the set ⇤coded given in Theorem 1, for any
arrival rate vector , 2 ⇤coded, there exists a set of _8 9 ’s that satis�es
(4). One routing policy for this arrival rate vector is to serve a job
of type-8 using servers in the recovery set X8 9 with probability
(_8 9/_8). Under this policy, the total arrival rate to ✓-th server isÕ:
8=1

Õ
9 :✓2X8 9

_8 9 , where the inner sum represents the total arrival
rate of tasks corresponding to the job of type 8 . Equation (4) ensures
that for all ✓ 2 {1, . . . ,=}, the total arrival rate to ✓-th server is less
than 1, the service rate of the ✓-th server, which implies that the
system is stable.

The other direction of the result, i.e., any , outside ⇤coded makes
the system unstable, can be proven using standard techniques in-
volving the Strict separation theorem and the Strong law of large
numbers (see Chapter 4.2 of [25] for an example).

Proof sketch of equation (5). We �rst prove that for any arrival
rate vector satisfying (5), there exists a policy that stabilizes the
system. We use a water-�lling argument where we initially serve
a job only using its systematic servers. We start using the coded
servers when the systematic servers reach their maximum capacity.
Then, the right-hand side of (5) is the total excess service require-
ment after systematic servers are fully utilized. The left-hand side
is the total service capacity available at the coded servers plus the

175

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi

Coded Coded

:Excess service
requirement of job
type

: Excess service capacity of
systematic server of type

After water filling

Figure 3: An illustration of the water �lling method for
: = 3 used in the proof of (5). The water-�lling strategy in-
volves�rst�lling the systematic servers to the brink. The re-
maining service requirement is then served using the coded
servers and the under-utilized systematic servers.

excess service capacity at the underutilized systematic servers. The
system is stable if the excess service capacity exceeds or equals
the excess service requirement. A pictorial representation of the
water-�lling argument is given in Fig. 3.

We then show that every arrival rate vector , 2 ⇤coded satis�es
(5). The key idea is that for any , 2 ⇤coded, there exist _8 9 ’s satis-
fying (4) such that for any 8 either a job of type 8 only use its own
systematic servers or type 8 systematic servers is used to serve only
jobs of type 8 . This decomposition of , ensures that the service
requirement from the coded servers exceeds (

Õ:
8=1 A

�
8). Moreover,

the service capacity available at the coded servers plus the under-
utilized systematic servers is less than (=coded + Õ:0

8=1 A
+
8)/:0 for

any :0 2 {1, . . . ,:}. The proof concludes by using the fact that the
system is stable which implies equation (5) is true.

4 RESPONSE TIME CHARACTERIZATION
In this section, we compare the minimum mean response times
of the coded and uncoded systems, denoted by E

h
) (=)
coded

i
and

E
h
) (=)
uncoded

i
respectively. For the remainder of the paper, we use

the notation superscript (=) to denote that the quantity depends on
=. To characterize and compare the response times, we consider �ve
tra�c regimes listed and illustrated in Fig. 4. We formally de�ne
these regimes in Section 4.1, and then we compare the response
times in each of these regimes in our main theorem in Section 4.2.

Note that Fig. 4 illustrates the orders of the edges of di�erent areas
as = becomes large. Hence, the slanted edges in Fig. 2a translates to
vertical and horizontal lines in Fig. 4.

4.1 Tra�c Regimes
Recall that jobs of type 8 arrive at the system according to a Poisson
process with rate _ (=)8 . Let V (=)8 , referred to as the slack capacity of
systematic servers of type 8 , be de�ned as

V (=)8 = U8= � _ (=)8 . (6)

We de�ne �ve tra�c regimes based on the orders of the slack
capacities of all job types. For ease of exposition, we �rst describe
the regimes for the case where the system has two job types, i.e.,
: = 2, and then we generalize them to system with any value of : .

Light

Inner-heavy

Outer-heavy

Uncoded-unstable

Coded-unstable

Figure 4: A pictorial representation of the tra�c regimes for
the case : = 2. The star represents a possible value of arrival
rate vector and V (=)8 is represented by it’s distance from the
edge. The response time comparison of the coded and un-
coded system for these regimes is provided in Theorem 2.

Tra�ic regimes for : = 2. Without loss of generality, we assume
that V (=)1  V (=)2 .

Light regime: V (=)8 � 0 for all 8 2 {1, 2}, and

V (=)8 = l

✓q
== (=)coded

◆
, for all 8 2 {1, 2}.

In this regime, the slack capacities are large for both job types.

Inner-heavy regime: V (=)8 � 0 for all 8 2 {1, 2}, and

V (=)1 = >

✓q
== (=)coded

◆
, V (=)1 = ⌦

⇣
= (=)coded

⌘
, V (=)2 = l

⇣
V (=)1

⌘
.

In this regime, type 1 jobs experience heavier tra�c than type 2
jobs do, and thus type 1 jobs can bene�t from a coded system.

Outer-heavy regime: V (=)8 � 0 for all 8 2 {1, 2}, and

V (=)1 = >
⇣
= (=)coded

⌘
, V (=)2 = l

⇣
= (=)coded

⌘
.

Compared to the inner-heavy regime, the outer-heavy regime has
an even heavier tra�c for type 1 jobs, so the tra�c is further skewed.

Uncoded-unstable: In this regime, the uncoded system is unstable
while the coded system is stable.

Coded-unstable: In this regime, the coded system is unstable
while the uncoded system is stable.

Tra�ic regimes for a general : . Without loss of generality, we
assume that V (=)1  . . . V (=)

:
. To generalize the de�nitions of the

�ve tra�c regimes, we divide the : job types into two groups based
on their slack capacities, (1) bene�ciaries, and (2) helpers.

Intuitively speaking, the bene�ciaries are the job types that ex-
perience heavier tra�c, and the helpers are those who experience
lighter tra�c. Therefore, the bene�ciaries can bene�t from sending
jobs to coded servers and systematic servers of the helpers. In con-
trast, the helpers only need their own systematic servers. Formally,
consider the index 8⇤ de�ned as

8⇤ = max

(
9 :

9

9’
8=1

U8

!
< 1

)
. (7)

176

Tackling Heterogeneous Tra�ic in Multi-access Systems via Erasure Coded Servers MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

Then we call job type in {1, 2, . . . , 8⇤} the bene�ciaries, and job types
in {8⇤ + 1, . . . ,:} the helpers. Note that in the special case where
: = 2, the index 8⇤ = 1, and thus job type 1 is the bene�ciary and
job type 2 is the helper. In another special case where U8 = 1/: for
all 8 , the index 8⇤ is around

p
: .

The choice of 8⇤ in (7) has an intuitive explanation based on
the stability of coded servers as follows. For any 9 , if there are 9

bene�ciaries, then their total tra�c is given by
Õ9
8=1

⇣
U8= � V (=)8

⌘
.

We demonstrate in [7] that a good routing policy is as follows.
Each helper assigns its jobs only to its own systematic servers.
Each bene�ciary assigns its jobs to its own systematic servers with
probability (1 � ⇥(= (=)coded/=)), and to a recovery set consisting of
(: � 9) systematic servers from helpers and 9 coded servers with
the rest of the probability. Under this routing policy, the total tra�c
to the coded servers is 9 · ⇥

⇣
= (=)coded/=

⌘ ⇣Õ9
8=1 U8= � V (=)8

⌘
which

is ⇥
⇣
= (=)coded

⇣
9
Õ9
8=1 U8

⌘⌘
. The choice of the index 8⇤ in (7) then

intuitively ensures the stability of coded servers.
Now, to de�ne the tra�c regimes, it is su�cient to look at the

orders of V (=)1 and V (=)8⇤+1. We de�ne the tra�c regimes as follows.

Light regime: V (=)8 � 0 for all 8 2 {1, 2, . . . ,:}, and

V (=)8 = l

✓q
== (=)coded

◆
, for all 8 2 {1, 2, . . .:}.

Inner-heavy regime: V (=)8 � 0, for all 8 2 {1, 2, . . . ,:}, and

V (=)1 = >

✓q
== (=)coded

◆
, V (=)1 = ⌦

⇣
= (=)coded

⌘
, V (=)8⇤+1 = l

⇣
V (=)1

⌘
.

Outer-heavy regime: V (=)8 � 0, for all 8 2 {1, 2, . . . ,:}, and

V (=)1 = >
⇣
= (=)coded

⌘
, V (=)8⇤+1 = l

⇣
= (=)coded

⌘
.

The coded-unstable and uncoded-unstable regimes are de�ned in
the sameway as those given in Section 4.1. Note that the assumption
of = (=)coded = > (=) is necessary for de�ning the light, inner-heavy and
outer-heavy regimes, but it is not required to de�ne the uncoded-
unstable and coded-unstable regimes. A su�cient condition for an
arrival rate vector to lie inside the coded-unstable regime is given
as V (=)8⇤+1 = l (= (=)coded) and V (=)8⇤+1 � 0. Likewise, a su�cient condition
for an arrival rate vector to lie inside the uncoded-unstable regime
is given as |V (=)8⇤ | = >

⇣
= (=)coded

⌘
, V (=)8⇤  0, V (=)8⇤+1 � 0, and V (=)8⇤+1 =

l
⇣
= (=)coded

⌘
. The proof of the su�cient conditions are given in [7].

4.2 Main Result
We state our main result in Theorem 2, which compares the re-
sponse time in a coded system with that in an uncoded system in
the �ve tra�c regimes.

Theorem 2 (Response Time Comparison). Consider a multi-access
cloud system consisting of = servers and : job types. Consider the min-
imum mean response times in a coded system and an uncoded system
over all probabilistic job assigning policies, denoted by E

h
) (=)
coded

i
and

E
h
) (=)
uncoded

i
, respectively. Then we have the following comparison in

the �ve tra�c regimes:

Light regime:
���E h

) (=)
coded

i
� E

h
) (=)
uncoded

i ��� = > (1); (8)

Inner-heavy regime: E
h
) (=)
coded

i
 E

h
) (=)
uncoded

i
� l (1); (9)

Outer-heavy regime: E
h
) (=)
coded

i
= >

⇣
E

h
) (=)
uncoded

i ⌘
; (10)

Uncoded-unstable regime: E
h
) (=)
coded

i
< 1,E

h
) (=)
uncoded

i
= 1;

(11)

Coded-unstable regime: E
h
) (=)
coded

i
= 1,E

h
) (=)
uncoded

i
< 1.

(12)

4.2.1 Proof sketch of Theorem 2. In this subsection, we provide
a proof sketch of Theorem 2. We �rst analyze the mean response
time of the uncoded system, and then analyze same for the coded
one.

Uncoded system. The arrival rate of jobs of type 8 is _ (=)8 , which
is served using U8= servers. One can prove that the optimal proba-
bilistic routing policy is to serve an incoming job of type 8 using
one of the systematic server of type 8 chosen uniformly at random.
Under this optimal policy, all systematic servers of type 8 behave
like independent"/"/1 queues with arrival rate _ (=)8 /(U8=) and
unit service rate. The mean response time of a type 8 job is then

1/
✓
1 � _ (=)

8
U8=

◆
= U8=

V (=)
8

. Therefore, the mean response time of the

uncoded system is given by

E
h
) (=)
uncoded

i
=

:’
8=1

_ (=)8Õ:
✓=1 _

(=)
✓

U8=

V (=)8

. (13)

Coded system. For the coded system, the routing probability
is the key component deciding the mean response time. To better
understand job routing policies in the coded system, we �rst give
the Property 1 we observe for any stabilizing policy.

Property 1. Consider any routing policy and let @ (=)80 be the total
probability of sending a job of type 8 to a systematic server of type 8 .
Then, the policy can stabilize the system only if

1 � @ (=)80 = $
©≠
´
= (=)coded
=

™Æ
¨
, for all 8 . (14)

Property 1 states that the fraction of tra�c that any job type
can divert away from its own systematic servers is limited to a
$

⇣
= (=)coded/=

⌘
fraction. This provides a lower bound on the tra�c

that has to be served by systematic servers, which further leads to a
lower bound on the mean response time. We use this lower bound
in the analysis of the light regime. Moreover, in the heavy regimes
where tra�c is more skewed, we need to divert the tra�c of heavily
loaded job types as much as we can. In this case, Property 1 also
provides a guideline for choosing a good job routing policy. The
analysis of the individual regimes then proceeds as follows.
(1) Light regime: To prove (8), it su�ces to show a lower bound,

E
h
) (=)
coded

i
� E

h
) (=)
uncoded

i
+ > (1), (15)

177

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi

�� �� �� �� ��� ���

1XPEHU�RI�VHUYHUV��Q�
����

����

����

����

����

����

����

����

5
HV
SR
QV
H�
WLP
H

�� �� �� �� ��� ���

1XPEHU�RI�VHUYHUV��Q�
�

�

�

�

��

��

��

��

5
HV
SR
QV
H�
WLP
H

�� �� �� �� ��� ���

1XPEHU�RI�VHUYHUV��Q�
�

��

��

��

��

��

��

��

��

5
HV
SR
QV
H�
WLP
H

a Response time comparison between the coded and uncoded system for : = 2.

8QFRGHG�VHWWLQJ��Q�Q�FRGHG �

&RGHG�VHWWLQJ��Q�Q�FRGHG ತQ

&RGHG�VHWWLQJ��Q�Q�FRGHG ̭�Q�

�� �� �� �� ��

1XPEHU�RI�VHUYHUV��Q�
����

����

����

����

����

����

����

����

5
HV
SR
QV
H�
WLP
H

�� �� �� �� ��

1XPEHU�RI�VHUYHUV��Q�
�

�

�

�

�

�

�

��

��

��

5
HV
SR
QV
H�
WLP
H

�� �� �� �� ��

1XPEHU�RI�VHUYHUV��Q�
�

�

��

��

��

��

��

��

5
HV
SR
QV
H�
WLP
H

b Response time comparison between the coded and uncoded system for : = 3.

Inner-heavy regime

Light regime

Outer-heavy regime

Figure 5: Comparison of the response times of the coded and uncoded systems. The di�erent marker types (circle, triangle,
square) represent arrival rates from di�erent tra�c regimes (light, inner-heavy and outer-heavy), as shown in the bottom-
right illustration. The empirical standard error of the plotted points is $ (10�3). The coded servers signi�cantly improve the
system’s performance in the inner-heavy and outer-heavy regimes. The coded and uncoded systems have similar response
times in the light regime.

and an upper bound given by

E
h
) (=)
coded

i
 E

h
) (=)
uncoded

i
+ > (1) . (16)

Asmentioned earlier, the lower bound is proved using Property 1. To
show the upper bound, note that it su�ces to focus on a particular
routing policy and show that its mean response satis�es (16). In the
light regime, the slack capacity for every job type is large enough.
Therefore, we consider the routing policy that assigns every job
to its own systematic server. Computing the corresponding mean
response time veri�es (16).
(2) Heavy regimes: The analysis of the inner-heavy and outer-heavy
regimes follow the same structure. In these regimes, the bene�cia-
ries experience heavy tra�c and have small slack capacities. To
reduce the mean response times, we divert the tra�c of bene�cia-
ries from their systematic servers to the recovery sets that utilize
coded servers as much as possible.

In fact, we consider the following routing policy. For some ap-
propriate index :⇤  8⇤, we choose the routing probability @ (=)80 = 1
for all 8 > :⇤. For any 8  :⇤, we use the routing probability
@ (=)80 = 1 � E= (=)coded/= and @ (=)

8:⇤ = E= (=)coded/=, for some constant E .
For any 8 > :⇤, if the routing option is chosen corresponding

to the probability @ (=)
8:⇤ , then a recovery set consisting of :⇤ coded

servers and (: � :⇤) systematic servers of type :⇤ + 1, . . . ,: re-
spectively is chosen uniformly at random from all recovery sets
satisfying the property. For any 8 , if the routing option is chosen
corresponding to the probability @ (=)80 , then a systematic server of
type 8 is chosen uniformly at random. Upper-bounding the mean
response time for this policy gives the upper bounds in (9) and (10)

5 SIMULATION RESULTS
In this section, we present our simulation results to demonstrate the
performance comparison between the uncoded and coded system
under various tra�c settings. In Section 5.1, we focus on arrival
rates that are time-invariant. Our main goal is to demonstrate the
performance comparison given in Theorem 2, but we have also
investigated the choice of the = (=)coded not covered in Theorem 2. In
Section 5.2, we consider arrival rates that are time-varying, with a
tra�c pattern commonly observed in practical systems.

Before we get into the simulation settings, we �rst describe the
routing policy we use in the simulations for the coded system.

Pseudo-optimal routing policy. Each queue behaves like a
"/"/1 queue; hence the response time of each task is an exponen-
tially distributed random variable. However, �nding the optimal
routing policy is non-trivial since the response time of a job is the
maximum of the response time of its tasks, and the queues at each
server are not independent. Moreover, the routing policy discussed
in Section 4.2.1 does not perform well empirically for smaller values
of = even though it works well asymptotically.

The di�culty in obtaining the optimal routing policy is the de-
pendence among queues. We derive a policy that we call the pseudo-
optimal routing policy by treating the queues as if they were inde-
pendent. This approximation is based on the commonly observed
phenomenon that queues are asymptotically independent in large
systems [29]. With the independence assumption, one can calculate
a job’s response time as the expectation of maximum of indepen-
dent exponential random variables is known. The pseudo-optimal
routing policy is then the policy that minimizes the approximated
mean response time. In our simulations, we �nd the pseudo-optimal
routing policy numerically using Scipy Optimization libraries.

178

Tackling Heterogeneous Tra�ic in Multi-access Systems via Erasure Coded Servers MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

���� ���� ���� ���� ���� ���� ����
7LPH �H�

���

���

���

���

6H
DU
FK
�IU
HT
XH
QF
\

�H�

1HZV
0RYLHV

a Search frequency on Google

� � � � � � � � �
7LPH �H�

�

�

��

��

��

��

��

��

$U
UL
YD
O�U
DW
H

7\SH���MRE
7\SH���MRE

b Arrival rates used in simulation

���
���
���
���

7R
WD
O �H�

&RGHG
8QFRGHG

���
���
���
���

7\
SH
��

�H�

� � � � � � � � �
7LPH �H�

���
���
���
���
���

7\
SH
��

�H�

c Number of jobs in the system

Figure 6: A comparison of the coded and uncoded systems for time-varying tra�c in terms of total job in the system. The
leftmost picture shows the search frequency of the words news and movies on Google, demonstrating a real-world example
of negatively correlated tra�c. The central �gure shows the arrival rate vector as a function of time for a simpli�ed system
with two job types that has a negative correlation in tra�c. The rightmost �gure shows the number of jobs in the system. The
presence of coded servers helps reduce the load from the heavier loaded systematic servers, making the coded system enjoy a
lesser total job in the system on average.

5.1 Time-invariant Arrival Rates
In this subsection, we experimentally demonstrate the performance
comparison between a coded system and an uncoded system. We
provide simulations for systems with 2 and 3 job types. For these
simulations, apart from using = (=)coded = > (=), we also consider

= (=)coded = ⇥(=) and show the e�ect of large number of coded servers.
We simulate until 108 jobs leave the system and average it over
50 runs to calculate the mean response time. Finally, based on our
simulation results, we provide intuitions on how our main result
would change for the case of = (=)coded = ⇥(=).

Simulation for systems with 2 job types. We consider = = 2<
servers, where we vary< 2 {6, 7, · · · , 11}. For the uncoded system,
we calculate the response time theoretically. For the coded system,
we consider two cases of = (=)coded = > (=) and = (=)coded = ⇥(=).

Fig. 5a shows numerical comparison between mean response
of the coded and uncoded system for : = 2. The results for the
case of = (=)coded = > (=) resembles the theoretical results provided in
Theorem 2. In the light regime, the coded systems with > (=) coded
servers perform similar to the uncoded system with a diminishing
performance gap as= increases. In the inner-heavy and outer-heavy
regimes, the coded system with > (=) servers outperforms the un-
coded system and the gap increases as = increases. Moreover, the
performance gap between the coded and uncoded systems increases
with the skewness in arrival rate, i.e., the coded system performs
signi�cantly better in the outer-heavy regime.

However, as illustrated in Fig. 5a, the results are slightly di�erent
when the number of coded servers increases as = (=)coded = ⇥(=). In
the light regime, the coded systemwith⇥(=) coded server performs
worse than the uncoded system. The redundancy added by ⇥(=)
coded servers worsens the system. However, the performance gap
does not change much as = increases as the tra�c is light enough.
The cost of redundancy is not substantial, and the coded system
is worse only by an ⇥(1) term. Compared to the light regime, the
coded system with ⇥(=) servers performs considerably better than

both uncoded and coded systems with > (=) servers in the inner-
heavy and outer-heavy regimes. Because of the higher skew, the
coded system with ⇥(=) coded servers allows more uniform load
balancing, thus greatly improving the performance.

Simulation for systems with 3 job types. We also perform
experiments for systemwith three types of jobs.We consider= = 3<
servers, where we vary< 2 {4, 5, · · · , 8}.

Fig. 5b shows the response time comparison of the coded and
uncoded system for this simulation setup. For the light and outer-
heavy regime, the trends in Fig. 5b is similar to the simulation
results for the two-job type system and hence follows a similar
reasoning. However, for the inner-heavy regime, the trends are
slightly di�erent. The coded system outperforms the uncoded sys-
tem asymptotically; however, the di�erence is not as signi�cant as
seen in the simulation with two job types. One plausible reason is
that the system has two bene�ciaries and only one helper based
on our arrival rate choice and allocation of servers. Hence, a slight
skew in the arrival rate vector is insu�cient to reduce the bene-
�ciaries’ load. However, there is enough skew in the outer-heavy
region such that the coded system outperforms the uncoded system
regardless of the number of coded servers.

Based on the simulations for systems with two or three job types,
we conjecture that for = (=)coded = ⇥(=), the inner-heavy and outer-
heavy regimes would merge into a single heavy regime where the
coded system would outperform the uncoded system. The light
regime would also change, and instead of > (1), the mean response
time’s of the coded and uncoded system can di�er by ⇥(1).

5.2 Time-Varying Arrival Rates
In practical systems such as Google search, the tra�c of a job type
often varies periodically. For example, as shown in Fig. 6a, search
for news in Google [13] peaks during early hours, while the search
for movies peaks during the night. To simulate such tra�c patterns,
we consider a system with two job types where the arrival rate of
each job type is a square wave, as illustrated in Fig. 6b. The arrival

179

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi

rates of the two job types have a similar period but are negatively
correlated, i.e., if one job experiences higher tra�c, the other job
type should experience lesser tra�c. We consider a total of = = 60
servers. In the coded system, 7 of these servers are coded servers.
The remaining servers are distributed in the same proportion to
the two job types for the coded and uncoded systems.

Fig. 6c shows a comparison between the mean number of jobs
in the coded and uncoded systems. The top plot shows the total
number of jobs in the system as a function of time, while the second
and the third plot shows the number of jobs of type 1 and 2, respec-
tively. When a job type is experiencing low tra�c, the number of
jobs of that type in the uncoded system is slightly less than that in
the coded system. However, when a job type is experiencing heavy
tra�c, the number of jobs in the uncoded system is signi�cantly
higher than the coded system. This is because coding provides a
load balancing e�ect where lightly loaded servers can be used to
serve heavier tra�c for job types.

6 CONCLUSION
This paper proposes the use of erasure-coded servers to handle
tra�c variations in heterogeneous jobs. We show that adding a few
erasure coded servers signi�cantly expands the capacity region of
the coded system thereby improving the stability. We also compare
the latency of the coded and uncoded systems and show that the
coded system is better or at least comparable in most tra�c regimes.
The erasure-coded servers also improve the system’s �exibility
as the system can quickly adapt to changes in tra�c, especially
when the tra�c is negatively correlated. Thus, at a slight cost of
redundancy, our coded solution provides a general framework to
improve the system’s stability and latency.

There are substantial directions for future work. While our pro-
posed coded system to handle : job types and its analysis holds
for any : , in practice, a large : would be impractical because the
decoding cost scales as $ (:3). To handle large : , we could divide
the servers into A subsystems with :/A job types in each subsystem.
A large A will save the decoding cost, but it loses some �exibility
o�ered by coding. In future work, we can determine the optimal
choice of A and strategies to group the : job types into the A sub-
systems. Another future direction is to consider redundant replicas
of a job that are sent to multiple recovery sets. A job is served
when any one of the requests is served. Finally, we also plan to
analyze our system for queue-length-based routing policies instead
of probabilistic policies considered in this paper. Then the technical
challenges in comparing the latency involve proving a complicated
state-space collapse and lower bounding the mean response time.

ACKNOWLEDGMENTS
This work was supported in part by the NSF CCF #2007834 and
#2045694, NSF CNS #2007733 and #2112471, NSF ECCS #2145713,
and a Carnegie Bosch Institute Research Award. We thank Mor
Harchol-Balter and Isaac Grosof for helpful discussions.

REFERENCES
[1] Mehmet Aktaş, Sarah E. Anderson, Ann Johnston, Gauri Joshi, Swanand Kadhe,

Gretchen L. Matthews, Carolyn Mayer, and Emina Soljanin. 2017. On the service
capacity region of accessing erasure coded content. In Proc. Ann. Allerton Conf.
Communication, Control and Computing. Monticello, IL, USA, 17–24.

[2] Mehmet Aktaş, Gauri Joshi, Swanand Kadhe, Fatemeh Kazemi, and Emina Sol-
janin. 2021. Service Rate Region: A New Aspect of Coded Distributed System
Design. IEEE Trans. Inf. Theory 67, 12 (Oct. 2021), 7940–7963.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
E�ective Straggler Mitigation: Attack of the Clones. In USENIX Symp. Networked
Systems Design and Implem. (NSDI). USENIX Association, Lombard, IL, 185–198.

[4] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web
caching and Zipf-like distributions: evidence and implications. In Proc. IEEE
Int. Conf. Computer Communications (INFOCOM), Vol. 1. New York, NY, USA,
126–134.

[5] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.
Patterson. 1994. RAID: high-performance, reliable secondary storage. ACM
Comput. Surv. 26 (1994), 145–185.

[6] Shengbo Chen, Yin Sun, Ulaş C. Kozat, Longbo Huang, Prasun Sinha, Guanfeng
Liang, Xin Liu, and Ness B. Shro�. 2014. When queueing meets coding: Optimal-
latency data retrieving scheme in storage clouds. In Proc. IEEE Int. Conf. Computer
Communications (INFOCOM). 1042–1050.

[7] Tuhinangshu Choudhury, Weina Wang, and Gauri Joshi. 2022. Tackling Het-
erogeneous Tra�c in Multi-access Systems via Erasure Coded Servers. https:
//arxiv.org/abs/2207.03983

[8] Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Luís Fabrício W. Góes,
and William Voorsluys. 2007. On the e�cacy, e�ciency and emergent behavior
of task replication in large distributed systems. Parallel Comput. 33, 3 (2007),
213–234.

[9] William Dally. 2015. High-performance Hardware for Machine Learning. NIPS
Tutorial (July 2015).

[10] Je�rey Dean and Luiz André Barroso. 2013. The Tail at Scale. ACM Commun. 56,
2 (Feb. 2013), 74–80.

[11] Elwyn Berkelamp. 1968. Algebraic coding theory. McGraw-Hill, New York, USA.
[12] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, Mark Velednitsky, and

Samuel Zbarsky. 2017. Redundancy-d: The Power of d Choices for Redundancy.
Oper. Res. 65, 4 (Aug. 2017), 1078–1094.

[13] Google. 2022. Google Trends. https://trends.google.com/trends
[14] Gauri Joshi and Dhruva Kaushal. 2021. Synergy via Redundancy: Adaptive

Replication Policies and Fundamental Limits. IEEE/ACM Trans. Netw. 29, 02
(March 2021), 737–749.

[15] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2017. E�cient Redundancy
Techniques for Latency Reduction in Cloud Systems. ACM Trans. Model. Perform.
Eval. Comput. Syst. 2, 2 (April 2017), 30.

[16] Yasaman Keshtkarjahromi, Yuxuan Xing, and Hulya Seferoglu. 2018. Dynamic
Heterogeneity-Aware Coded Cooperative Computation at the Edge. In Proc. IEEE
Int. Conf. Network Protocols (ICNP). 23–33.

[17] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. 2019. Parity Models:
Erasure-Coded Resilience for Prediction Serving Systems. In Proc. ACM Symp.
Operating Systems Principles (SOSP) (Huntsville, Ontario, Canada). 30–46.

[18] Bin Li, Aditya Ramamoorthy, and R. Srikant. 2018. Mean-Field Analysis of Coding
Versus Replication in Large Data Storage Systems. ACM SIGMETRICS Perform.
Evaluation Rev. 3, 1, Article 3 (Feb. 2018), 28 pages.

[19] Mohammad Ali Maddah-Ali and Urs Niesen. 2016. Coding for caching: funda-
mental limits and practical challenges. IEEE Communications Magazine 54, 8
(Aug. 2016), 23–29.

[20] Ankur Mallick, Sophie Smith, and Gauri Joshi. 2021. Rateless Codes for Dis-
tributed Non-linear Computations. In IEEE Int. Symp. Topics in Coding (ISTC).
1–5.

[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing order to the Web. Technical Report. Stanford
InfoLab.

[22] Michael Rabinovich and Oliver Spatscheck. 2002. Web caching and replication.
Vol. 67. Addison-Wesley Boston, USA.

[23] Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran. 2016. When Do
Redundant Requests Reduce Latency? IEEE Trans. Commun. 64, 2 (2016), 715–
722.

[24] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In IEEE Symp. Mass Storage Systems and
Technologies (MSST). IEEE Computer Society, USA, 1–10.

[25] R. Srikant and Lei Ying. 2014. Communication Networks: An Optimization, Control
and Stochastic Networks Perspective. Cambridge University Press, USA.

[26] Yin Sun, C. Emre Koksal, and Ness B. Shro�. 2017. On Delay-Optimal Scheduling
in Queueing Systems with Replications. arXiv:1603.07322 [cs.PF] (March 2017).

[27] John N. Tsitsiklis and Kuang Xu. 2017. Flexible Queueing Architectures. Opera-
tions Research 65, 5 (July 2017), 1398–1413.

[28] Da Wang, Gauri Joshi, and Gregory W. Wornell. 2019. E�cient Straggler Replica-
tion in Large-Scale Parallel Computing. ACM Trans. Model. Perform. Eval. Comput.
Syst. 4, 2, Article 7 (April 2019), 23 pages.

[29] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and R.
Srikant. 2019. Delay asymptotics and bounds for multitask parallel jobs. Queueing
Syst. 91, 3-4 (April 2019), 207–239.

180

https://arxiv.org/abs/2207.03983
https://arxiv.org/abs/2207.03983
https://trends.google.com/trends

	Abstract
	1 Introduction
	1.1 Main Contributions
	1.2 Related Work

	2 Problem Formulation
	3 Service Capacity Region
	3.1 Proof Sketch of Theorem 1

	4 Response time characterization
	4.1 Traffic Regimes
	4.2 Main Result

	5 Simulation Results
	5.1 Time-invariant Arrival Rates
	5.2 Time-Varying Arrival Rates

	6 Conclusion
	References

