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ABSTRACT

Smartphone owners often need to run security-critical programs
on the same device as other untrusted and potentially malicious
programs. This requires users to trust hardware and system soft-
ware to correctly sandbox malicious programs, trust that is often
misplaced. Our goal is to minimize the number and complexity
of hardware and software components that a smartphone owner
needs to trust. We present a split-trust hardware design composed
of statically-partitioned, physically-isolated trust domains. We in-
troduce a few simple, formally-verified hardware components to
enable a program to gain provably exclusive and simultaneous ac-
cess to both computation and I/O on a temporary basis. To manage
this hardware, we present OctopOS, an OS composed of mutually
distrustful subsystems. We present a prototype of this machine
(hardware and OS) on a CPU-FPGA board and show that it incurs
a small hardware cost compared to modern smartphone SoCs. For
security-critical programs, we show that this machine significantly
reduces the required trust compared to mainstream TEEs while
achieving usable performance. For normal programs, performance
is similar to a legacy machine.
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1 INTRODUCTION

Because of their ubiquity and portability, modern smartphones are
often used to run security-critical programs along with diverse,
untrusted, and potentially malicious programs. For example, most
of us perform financial tasks, such as banking and payments [1]
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on our smartphones. Many of us also run health-related programs,
e.g., to receive test results and diagnoses from our health providers.
There is also interest in using these devices to perform life-critical
tasks such as controlling an insulin pump [2] or monitoring breath-
ing [3], although security concerns currently pose a roadblock [2].

Realizing this computing paradigm should be straightforward.
The job of an operating system (OS) is to isolate security-critical
programs from other programs running on the same hardware. Yet,
this has proven to be challenging in practice due to vulnerabilities
in system software (e.g., OS, hypervisor, and device drivers) [4-
12] and hardware (e.g., processor, memory, interconnects, and I/O
devices including their firmware) [13-19]. Malicious programs
can exploit these vulnerabilities to take control of the machine
and any program running on it. We must trust that hardware and
system software can effectively sandbox and neutralize malicious
programs, but this trust often proves to be misplaced.

To address this challenge, a new approach has emerged. It uses
Trusted Execution Environments (TEEs) to host security-critical pro-
grams without requiring trust in the OS. Unfortunately, today’s
TEE:s still require us to trust the hardware and the security monitor
implementing the TEE guarantees. This trust has also proven un-
justified. Existing TEEs have fallen victim to various attacks, e.g.,
hardware-based side-channel attacks [16, 20-28], attacks exploit-
ing software vulnerabilities [29-32], and attacks based on design
flaws [33-36].

In this paper, we present a solution to enable smartphones to be
used for both security-critical and non-critical programs. Our goal
is to minimize the Trusted Computing Base (TCB). More specifically,
our goal is to minimize the number and complexity of hardware and
software components that need to be trusted by the smartphone
owner, when executing a security-critical program, to fend off
adversarial inputs.

Our key principle is provably exclusive access to hardware and
software components. That is, we design a solution to enable a
security-critical program to exclusively use complex hardware and
software components and be able to verify the exclusive use. The
exclusive use of a component makes it unreachable to attackers.

More concretely, we present a hardware design for a smart-
phone. Called a split-trust hardware, it comprises multiple trust
domains, one or multiple for TEEs, one for each I/O device, one for
a resource manager, and one for hosting a commodity OS, e.g., An-
droid, and its programs. The trust domains are statically-partitioned
and physically-isolated: they each have their own processor and
memory (and one I/O device in the case of an I/O domain) and do
not share any underlying hardware components; they can only com-
municate by message passing over a hardware mailbox. Moreover,
we introduce a few simple, formally-verified hardware components
that enable a program to gain provably exclusive access to one or
multiple domains.
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We then present OctopOS, an OS to manage this hardware. Un-
like existing OSes, which have a single, trusted-by-all nucleus, i.e.,
the kernel, OctopOS comprises mutually distrustful subsystems: a
TEE runtime for security-critical programs, I/O services, a resource
manager, and a compatibility layer for a commodity, untrusted OS.
The fundamental aspect of OctopOS is that components do not
trust, but verify messages received from other components.

We rigorously evaluate the TCB of our machine. We show that
it significantly reduces the TCB compared to mainstream TEEs and
achieves one close to the lower bound.

We present a complete prototype of our machine (hardware
and OS) on top of a CPU-FPGA board (Xilinx Zynq UltraScale+
MPSoC ZCU102). We use the powerful ARM Cortex A53 CPU to
host the commodity, untrusted OS (PetaLinux) and its programs
with high performance. We use the FPGA to build the other trust
domains: two TEEs, a resource manager, and four I/O domains (an
input domain, an output domain, a storage domain, and a network
domain). We use (weak) microcontrollers for these other domains.

Using our prototype, we build two important security-critical
programs for our machine:! (i) a banking program that can securely
interact with the user, and (ii) an insulin pump program that can
securely execute its algorithm and communicate with an (emulated)
glucose monitor and pump.

Using our prototype, we show that the added hardware cost is

small (i.e., 1-2%) compared to modern SoCs used in smartphones.
Moreover, we show that security-critical program can achieve usable
performance despite the use of weak microcontrollers for all TEE and
I/O domains. We also show that normal programs can achieve the
same compute and I/O performance as on a legacy machine, which is
defined as a machine using the same powerful CPU as our untrusted
domain but with that CPU being in full control of all I/O devices
and main memory.
Secure hardware trend. Our vision of using physical isolation
and exclusive use for security is in line with recent hardware trends
from the smartphone industry. Apple has integrated the Secure
Enclave Processor (SEP) into its products [37] and used it to secure
user’s secret data and to control biometric sensors (i.e., Touch ID
and Face ID) [38]. Similarly, Pixel 6 uses the tensor security core
to host security-critical tasks such as key management and secure
boot [39]. Our work takes this vision further by allowing user-
provided, third-party security-critical programs (including those
that rely on I/O devices) to use dedicated hardware by developing
a model for how that can be safely done.

2 TRUST IN EXISTING SYSTEMS

The TCB in a system comprises the hardware and software com-
ponents that need to be trusted. Historically, the OS has been a
trusted part of the system and hence part of the TCB (Figure 1 (a)).
As commodity OSes have become more complex over the years,
more and more vulnerabilities have been found in them, allowing
malware to exploit them and compromise the OS [4-7, 9-12, 40].
As an example, there have been about 1700 security vulnerabilities
reported in the Linux kernel just since 2016 [5]. Therefore, trust in
commodity OSes is not warranted.

There have been several attempts to build trustworthy OSes.
These include microkernels [41-45], exokernels and library
OSes [46—49], formally verified OSes (and hypervisors) [44, 50-57],
and OSes written in safe languages [58-61]. While effective, these

!We open source our hardware design and formal verification proofs at https://github.
com/trusslab/octopos_hardware, and OctopOS and security-critical programs at https:
//github.com/trusslab/octopos.
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Figure 1: (a) Traditional design where the OS isolates security-
critical programs from normal programs. (b) Use of a TEE to
isolate a security-critical program.

solutions require replacing commodity OSes with a new OS. This
is a challenging task due to the abundance of existing programs,
device drivers, and developers for commodity OSes. More impor-
tantly, using these OSes still requires trust in hardware, which is
not warranted either, as we will discuss.

About two decades ago, a new approach started to gain popular-
ity. The idea is to create an isolated environment, called a TEE, to
host a security-critical program. This allows the use of a commod-
ity OS, but relegates it to be only in charge of untrusted, normal
programs such as games, utility apps, and entertainment platforms.
The TEE enables a security-critical program to ensure its own in-
tegrity and confidentiality, but leaves the OS in charge of resource
management (and hence the availability guarantee). Therefore, one
does not need to trust the OS when running a security-critical
program, reducing the TCB. Figure 1 (b) illustrates this design. It
shows a security monitor is used to isolate a TEE from the OS. The
security monitor can be implemented purely in software (i.e., a hy-
pervisor) [62, 63] or using a combination of hardware and software.
ARM TrustZone and Intel SGX are examples of the latter. Others
include AMD Secure Encrypted Virtualization (SEV), Intel Trusted
Domain Extensions (TDX), ARMv9’s Realms [64], and Keystone
for RISC-V [65].

Despite their success, existing TEE solutions still have a large
TCB including the security monitor and several hardware compo-
nents such as the very complex processor, memory, I/O devices in
some cases, and dynamically-programmable protection hardware
such as address space controllers and MMUs. Unfortunately, all of
these components can be compromised by an adversary. For exam-
ples, hypervisors contain many vulnerabilities [8, 66]. TEE OSes
in TrustZone have also contained vulnerabilities and have been
exploited in the past [29-32]. AMD SEV has also been shown to
contain several vulnerabilities due to design flaws [33-35]. AMD’s
response to these vulnerabilities have been enhanced versions of
SEV, called SEV-ES and SEV-SNP. Unfortunately, these versions
have also fallen to attacks exploiting side channels [28] or addi-
tional design flaws [36].

Hardware components have been exploited as well. Hardware-
based side-channel attacks have recently emerged as a serious
threat to computing systems. For example, SGX enclaves and Trust-
Zone have been compromised using several such attacks [16, 20—
27]. The core reason behind this is that existing machines run the
untrusted OS and TEEs on the same hardware, sharing underlying
microarchitectural features such as cache [20, 23-27] and specula-
tive execution engine [14-16, 21], as well as architectural ones such
as virtual memory [22]. The memory subsystem has also proved
vulnerable to Rowhammer attacks [13, 67-71]. The complexity of
these hardware components ensures that more vulnerabilities are
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likely to be discovered and exploited. For example, researchers
have recently demonstrated a suite of new side channels using the
CPU interconnect [17], the x87 floating-point unit, and Advanced
Vector extensions (AVX) instructions (among others) [18].

3 KEY GOAL AND PRINCIPLE

Trust definitions. We define two types of trust in the TCB: strong
trust and weak trust. We say a component is strongly trusted if
it needs to guard against adversarial inputs. An example is an OS
that is trusted to isolate a program from other malicious programs,
which can issue adversarial syscalls to the OS concurrently to the
protected program. This component must be trusted to prevent
these other programs from exploiting any vulnerabilities in it. This
is challenging as demonstrated by the plethora of reported exploits.

We say that a component is weakly trusted if it just needs to
operate correctly in the absence of adversarial inputs. An example is
an OS that only serves a single program (and assuming application-
level networking). This component must only be trusted to not
exert buggy behavior under normal usage. This can be (more) easily
achieved in practice.

Due to their obvious criticality, in this work, we focus on the
strongly-trusted components in the TCB. For brevity, when talking
about TCB, we mainly refer to these components.

Finally, we note that all components of the TCB need to be

trusted not to have any backdoors implanted by an adversary.
Key goal. Our goal in this work is to minimize both the number and
complexity of (strongly-trusted) components in the TCB. Our ratio-
nale for the former is obvious: the fewer trusted components, the
better. Our rationale for the latter is that it is difficult for complex
hardware or software components to adequately protect them-
selves against attacks; by contrast, simpler components can fend
off attacks through comprehensive testing, analysis, and formal
verification.
Key principle. Our key principle to achieve this goal is provably
exclusive access to hardware and software components. That is,
we design our machine to enable a security-critical program to
exclusively use complex hardware and software components and
be able to verify the exclusive use. More specifically, our goal is
to have most components, especially complex ones such as the
processor and system software, (1) be reset to a clean state before
use, (2) then used exclusively by a security-critical program in a
verifiable fashion through remote and/or local attestation, and (3)
then again reset to a clean state right after use. In this case, such
a component does not need to be (strongly) trusted anymore as it
cannot be reached by an attacker while serving the security-critical
program, nor does it need to worry about residual state from the
security-critical program while serving other, potentially malicious,
programs.

To realize this principle, we introduce a novel split-trust hardware
design (§4). We then introduce an OS for this hardware, called
OctopOS (§5).

4 SPLIT-TRUST HARDWARE

Modern machines leverage hardware with a hierarchical privilege
model. That is, hardware provides multiple privilege levels, each
with more privilege than previous ones, with one all-powerful level
to “rule them all’? This model results inevitably in several complex
components in the TCB such as the processor, protection hardware,

and system software.

2 A reference to Tolkien’s The Lord’s of the Rings.
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In this paper, we demonstrate a novel hardware design, the
split-trust hardware, in which the hardware is split into multiple
isolated trust domains. Each domain is intended for one aspect of
the machine: one or multiple for TEEs, one for each I/O device (i.e.,
anI/O domain), one for a commodity OS and its untrusted programs
(i.e., the untrusted domain), and one for a resource manager, which
is in charge of constrained resource scheduling and access control.
The benefit of the split-trust hardware is that a security-critical
program can exclusively take control of and use its own domain
and exclusively communicate with other domains (§4.2), e.g., for
I/0 and IPC, hence significantly reducing the TCB. Figure 2 shows
a simplified view of this hardware design. Next, we discuss its key
aspects.

4.1 Physical Isolation & Static Partitioning

We follow two important principles in our hardware design. (1)
Domains must be physically isolated (i.e., share no hardware com-
ponents). (2) The isolation boundary between them cannot be pro-
grammatically and dynamically modified as there is no trusted-by-all
hardware or software component to be tasked with that. This implies
that we cannot rely on programmable protection hardware, such as
an MMU, IOMMU, or address space controller, to enforce isolation.
As aresult, our design statically partitions the hardware resources
between domains.

More specifically, each trust domain has its own processor. We
use a powerful CPU for the untrusted domain, which accommo-
dates a commodity OS and its (untrusted) programs, to achieve
high performance. This CPU is similar to the powerful CPU used
in modern smartphone SoCs. We use weaker microcontrollers for
other domains in order to keep the hardware cost small. Each do-
main has its own memory as well and domains do not (and cannot)
share memory.

Each I/O domain also has exclusive control of an I/O device,
which is wired to and only programmable by the processor of
that domain and which directly interrupts that processor. (We will
discuss how DMA is handled in §4.5.)

4.2 Exclusive Inter-Domain Communication
To be able to act as one machine, the domains need to be able
to communicate. We introduce a simple, yet powerful, hardware



mailbox

Default writer

domain commands
(resource mgr.) status mailbox mailbox
register
; €~< messages
multiplexing | " T~=~.__
writer logic -
domain ¥
' ge queue fixed reader

domain

/ .
writer ’ multiplexer H
domain A

Figure 3: Mailbox design.

primitive for this purpose: verifiably delegable hardware mailbox. At
its core, a mailbox is a hardware queue, allowing two domains (i.e.,
the writer and reader) to communicate through message passing.

The key novelty of our mailbox is how it enables exclusive
communication using its delegation model. A mailbox has a fixed
end (reader or writer) and a delegable one. The fixed end is hard-
wired to a specific domain. The delegable one is wired to multiple
domains, but only one can use it at a time, enforced by a hardware
multiplexer within the mailbox. This end is by default (i.e., after a
mailbox reset) under the control of the resource manager domain.
But the resource manager can delegate it to another domain, which
is then able to exclusively communicate with the domain on the
fixed end of the mailbox.

Figure 3 shows the design of the mailbox with a fixed reader.
For example, consider the serial output domain in our prototype. It
is the fixed reader of a mailbox. Any domain with write access to
the mailbox can (exclusively) send content to the output domain
to be displayed in the terminal.

The delegation model of our mailbox has another important
property: limited yet irrevocable delegation. When the resource
manager delegates the mailbox to a domain, it sets a quota for
the delegation in terms of both the maximum number of allowed
messages and maximum delegation time. As long as the quota has
not expired (i.e., a session), the domain can use the mailbox and
the resource manager cannot revoke its access to the mailbox. The
session expires when either the message limit or the time limit
expires. (The message limit can be set to infinite, but not the time
limit.)

This delegation model enables a limited form of availability,
which we refer to as session availability. That is, a domain with
exclusive communication access to another domain can be sure to
retain its access for a known period of time or number of messages.
This is critical for some security guarantees on smartphones. For
example, a security-critical program can ensure that the User In-
terface (UI) will not be hijacked or covered with overlays when
the program is interacting with the user [72, 73]. Or a security-
critical program that has authenticated to and hence unlocked a
sensitive actuator domain (e.g., insulin pump) can ensure that no
other program can hijack the session and manipulate the actuator.
We leverage session availability in our own apps (§7).

As the resource manager is not trusted by other domains, the
delegation must be verifiable. The mailbox hardware provides a fa-
cility for this verification. As Figure 3 shows, all domains connected
to the mailbox can read a status register from the mailbox hard-
ware. The status register specifies the domain that can read/write to
the mailbox and the remaining quota. The domain with delegated
access can therefore verify its access and quota. (Other domains
will receive a dummy value when reading the status register for
confidentiality.)

Domains transmit both commands and data to each other
through mailboxes. Because commands are typically short but

data messages are typically long, we use two types of mailboxes
to optimize the hardware design, namely control-plane mailboxes
and data-plane mailboxes. These two types of mailboxes share the
same hardware properties, but have different sizes (i.e., message
size and queue size).

4.3 Power Management

Our mailbox primitive cannot, on its own, guarantee session avail-
ability. This is because we need to ensure that during a session, the
domains used by a security-critical program remain powered up
(given adequate energy in the battery).

The Power Management Unit (PMU) normally takes commands
from the resource manager. The resource manager uses this ca-
pability to reset other domains when needed, e.g., reset a TEE
domain before running a new program, or apply Dynamic Voltage
Frequency Scaling (DVFS) to manage the system’s power consump-
tion. (We do not support DVES for the domains in our prototype.
Hence, in the rest of the paper, we mainly focus on the reset inter-
face, although similar principles can be applied to DVFS.)

However, the resource manager is not a trusted component;
hence it may try to reset a domain during a session. Therefore,
we add a simple hardware component, called the reset guard, for
controlling all the reset signals that are local to a domain, which
ensures that as long as the quota on a mailbox has not expired,
the domains on both sides of the mailbox (including the domain’s
mailboxes) cannot be reset, hence ensuring session availability. The
resource manager simply fails to reset a domain if the domain has
an ongoing delegation. Once the quota expires (or if the access
to the delegable end of the mailbox is yielded), the mailbox is
returned back to the resource manager, and the resource manager is
allowed to reset and reuse the domains (assuming no other ongoing
delegations).

4.4 Hardware Root of Trust

A hardware root of trust is needed during remote attestation to
convince the party in charge of a security-critical program of the
authenticity of the hardware and the correctness of the loaded
program. We use a Trusted Platform Module (TPM) to realize the
root of trust for the split-trust hardware.

Why TPM? TPM, as specified by the Trusted Computing Group
(TCG), is a tamper-resistant security co-processor connected to the
main processor over a bus [74]. Traditionally, it provides security
features for the machine as a whole, such as the measurements
of the loaded software. This makes TPM unsuitable for more fine-
grained security features, such as remote attestation of a specific
program. As a result, in-processor TEE solutions, such as SGX,
integrate the root of trust in the processor itself, tightly coupling
it with various features of the processor (such as virtual memory
and cache), further bloating the trusted processor.

Our key insight is that TPM can provide fine-grained security
features for a split-trust machine since different components of
this OS run on separate processors. This allows the machine to
enjoy the security benefits of TPM without suffering from its main
limitation.

To integrate TPM into a split-trust machine, we need a different
set of parameters (i.e., the number of Platform Configuration Reg-
isters (PCRs) and their access permissions, i.e., localities) from the
ones found in existing TPM chips, in order to provide one PCR per
domain and securely extend it with the measurement of software
loaded in the domain. The bootloader of a domain measures the



boot image and extends the corresponding PCR with the measure-
ment, and the PCR values are then used to provide a cryptographic
proof of the software loaded into the domain (§5.1).

4.5 High Performance I/O
By default, the data plane of I/O domains are implemented over
mailboxes. However, this raises a performance concern due to ad-
ditional data copies (to and from mailbox). While the performance
overhead is acceptable for TEE domains, it is not so for the un-
trusted domain. An important hardware primitive that enables
a legacy machine to achieve high I/O performance is DMA. To
safely use DMA in our machine, we introduce domain-bound DMA,
defined with the following two restrictions. (1) The DMA engine
is hard-wired to only read/write to the memory of the untrusted
domain. (2) The DMA engine can stream data in/out of the I/O
device only when the I/O domain is used by the untrusted domain.
We achieve this with a simple hardware component called the
arbiter, which is a switch that decides if the data streams of the I/O
device is connected to a DMA engine or to a simple FIFO queue
accessible to the I/O domain.

4.6 Domain and Mailbox Reset

Domains and their mailboxes need to be reset before and after use
(§3). We reset the mailboxes directly in hardware upon delegation,
yield, and session expiration. We leave the resetting of the domains
to the resource manager, albeit under the limitations enforced
by the reset guard (§4.3). Even though the resource manager is
untrusted, this does not pose a problem since a program can verify,
using local and remote attestation through TPM as well as some
measures provided by the domain runtime that (1) a domain has
been reset, (2) it has not been used since last reset, (3) it will be
reset after use and before use by other domains. We provide more
details on the verification process with an example in §5.1.

5 OCTOPOS

We introduce OctopOS, an OS to manage the split-trust hardware.
Unlike existing OSes, which have an all-powerful trusted-by-all
kernel, OctopOS is composed of mutually-distrustful components.
These components include I/O services for I/O domains, a runtime
for TEE domains, a resource manager, and a compatibility-layer
for the untrusted domain.

5.1 Fundamental Aspect

The fundamental aspect of OctopOS is that components do not trust,
but verify any messages received from other untrusted components.
We illustrate this aspect with one example.

Imagine a security-critical program that needs access to the
input and output domains in order to interact with the user (e.g.,
to ask for username and password). The program, running in a
TEE domain, sends a message to the resource manager and asks for
the two domains to be delegated to it for a certain amount of time,
e.g., one minute. More specifically, the program asks the resource
manager to delegate the mailboxes of the input and output domain
to the TEE domain. The resource manager waits for these domains
to become available (if not at first), resets them, and then performs
the delegation if it deems the request reasonable (e.g., if it is not for
a very long period of time). It then responds to the TEE domain,
confirming the successful delegation.

At this point, the security-critical program performs a series of
verifications before it uses these domains. First, it uses the status
register of the delegated mailboxes to verify that (1) its own domain
is given exclusive access to the mailbox and (2) the delegation quota
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is correct (since otherwise the session might end abruptly, allowing
the resource manager to hijack the program’s interaction with the
user). Second, the program needs to ensure that the right software
has been loaded into the input and output domains and that the
domains have been reset (otherwise the resource manager could
install a keylogger/eavesdropper in these domains or simply inject
code into them by exploiting their vulnerabilities). It performs the
verification by checking the PCR value of each of the domains from
the TPM. The PCR value provides a cryptographic proof of all the
software loaded into a domain. Moreover, our I/O services further
extend the PCR of their domain upon handling their first request.
This way, the PCR value proves freshness (or lack thereof), i.e., that
the domain has been reset prior to delegation.

Performing all these verifications on every interaction with
other domains would be a daunting task, if it were to be done by
the developer of a security-critical program. Therefore, OctopOS
provides all of these for the developers in its components in the
form of high-level API. We next discuss each of these components
in more detail.

5.2 Components

5.2.1 1I/O Services. Each I/O domain runs a service to manage it.
The I/O service incorporates the software stack needed to program
and use an I/O device, e.g., device driver. In addition, it provides an
API that can be called (through messages) by any domain that has
exclusive access to the mailboxes of the corresponding I/O domain.

There are two types of I/O devices. The first is non-restricted I/O
devices. These are devices that can be used by a security-critical
program without any restrictions during a session, such as the serial
output and network devices in our prototype. For these devices, we
ensure that the I/O domain is reset before and after use by another
domain.

The second type is restricted I/O devices. These are devices that
cannot be used freely by a security-critical program during a ses-
sion and require the resource manager to enforce restrictions (i.e.,
fine-grained access control). In our prototype, storage is of this
type since it contains data of other programs. Even if the data
are encrypted, they need to be protected if a general availability
guarantee is needed (§8.4). For these devices, we still ensure ex-
clusive access to the domain during the session. We also ensure
reset after use. However, we cannot ensure the domain is reset to
a clean state before use. This is because after reset, the resource
manager needs to communicate with the I/O service to restrict
its usage, e.g., limit the storage domain to using only one parti-
tion allocated for a security-critical program, before delegating the
domain’s mailboxes to a TEE domain.

We have carefully designed an API for such I/O services. The
core of the API revolves around the notion of an I/O resource. For
example, in the case of the storage service, each partition is a
resource. The API allows the manager to allocate resources and
bind them to specific security-critical programs. It also allows the
program to authenticate itself in order to use the resource and to
verify the status of the service. We omit the details of the API due
to space limitation.

Finally, we note that this design adds the storage service to the
TCB when it is used by a security-critical program (§8.4). In contrast,
other I/O services are not directly reachable by the adversary when
used exclusively by a TEE domain and hence are not part of the
TCB.

5.2.2 TEE Runtime. In order to facilitate the development of
security-critical programs, we have developed a runtime for TEEs,



which provides a high-level API. A program may choose to utilize
this runtime (which is part of the TCB), or its own.

We provide several categories of functions in this API: (1) Re-
questing and verifying access to other domains; this category also
helps the program manage the remaining quota of mailboxes by
calling a callback function upon quota updates, so that the program
can decide whether to continue using the mailbox or not. It depends
on the program’s security goals to notify the user that the quota is
about to expire. (2) High-level abstractions for using I/O services
such as socket-based networking and terminal prints. (3) Assis-
tance with the TPM, e.g., to request a remote attestation report. (4)
Support for secure IPC between TEE domains. (5) Security-critical
routines such as cryptographic primitives.

5.2.3 Resource Manager. At a high level, the resource manager
is in charge of resource scheduling, access control, and system-
wide, untrusted I/O functionalities. More specifically, it performs
the following three tasks. First, it makes constrained scheduling
decisions. When a new security-critical program needs to execute,
or when an existing one requests exclusive communication with
another domain (for I/O or IPC), the manager checks the availability
of resources, grants the request, or blocks it until the resource is
available. Compared to schedulers in commodity OSes, scheduling
in OctopOS is more restricted. This is because the resource manager
cannot preempt a domain as long as mailbox quotas have not
expired (§4.2). Second, the resource manager restricts the usage
of some I/O domains to enforce fine-grained access control, as
discussed in §5.2.1. Finally, the manager implements system-wide,
untrusted I/O functionalities. For example, as the manager is the
initial client of the input and output domains, it implements the
shell (i.e., the UI). The UL however, can be delegated to security-
critical programs upon request.

5.2.4 Untrusted Domain’s Compatibility Layer. In OctopOS, a com-
modity OS runs in the untrusted domain, and hence by definition
manages its own processor and memory. (In contrast, OctopOS is
in charge of managing all the domains and their interactions with
each other.) Yet, the commodity OS is not given direct control of
I/O devices as they are managed by separate I/O domains.

We address this issue by developing a compatibility layer for the
untrusted OS. In our prototype, which uses PetaLinux, the com-
patibility layer consists of several kernel modules, each pretending
to be a device driver. Transparent to Linux and its program, they
communicate to the resource manager to get access to the I/O ser-
vices’ mailboxes (or to set up DMA) and then communicate to them.
These Linux drivers can be used to run Android in the untrusted
domain as well.

6 PROTOTYPE

We have built a prototype of the split-trust hardware and OctopOS
on the Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA board. We
use the Cortex A53 ARM processor on the SoC for the untrusted
domain in order to achieve high performance for the commodity
OS (PetaLinux) and its programs. We use the FPGA to synthesize 7
simple Microblaze microcontrollers (i.e., no MMU and no cache):
two TEE domains, the resource manager domain, and four I/O
domains (serial input, serial output, storage, and Gigabit Ethernet).
(Note that we are limited to I/O devices in the development board
and hence could not use more smartphone-specific I/O devices such
as WiFi. However, our principles and approaches apply equally to
these other I/O devices as well.) We leverage the (single-threaded)
Standalone library [75] to program the microcontrollers. We use
the entirety of the main memory for the untrusted domain. For

238

other domains, we use a total of 3.2 MB of on-chip memory includ-
ing some ROM for bootloaders and some RAM. We run the TPM
(emulator) [76] on a separate Raspberry Pi 4 board connected to
the main board through serial ports. We use another Microblaze
microcontroller to mediate the communications of the domains
with the TPM.

In addition, we use the FPGA to synthesize the mailboxes (12
in total), the arbiter for DMA for the network domain (other do-
mains do not support DMA), the reset guard, as well as 11 hardware
queues for permanent domain connections (such as for all domains
to communicate with TPM or for TEE domains to communicate
with the resource manager). The control-plane mailboxes have the
capacity of 4 messages of 64 B each, and the data-plane mailboxes
have the capacity of 4 messages of 512 B each. As a concrete exam-
ple, our storage domain has 4 mailboxes: two for its control plane
(send/receive) and two for its data plane (send/receive).

As mentioned in §4.1, an I/O device is only programmable by its
domain. This includes access to registers and receiving interrupts
from the I/O device. In our prototype, we use I/O interrupts only
for the network device and use polling for the rest. The interrupts
to the network domain’s microcontroller is from the FIFO queue
that holds the packets and are only used when the domain serves
a TEE domain (§4.5). When serving the untrusted domain, the
domain-bound DMA engine directly interrupts the A53 processor
on DMA completion.

We faced two noteworthy limitations in our prototype. First,
while we have strived for our domains to share no hardware, cur-
rently, all our domains share the same clock source and our FPGA-
based domains share the same power domain. Second, the on-board
SD card reader and flash memory are directly programmable by the
A53 processor and hence could not be used for the storage domain.
Our solution was to connect a MicroSD card reader directly to
FPGA through Pmod [77]. This provides physical isolation for the
storage domain, but significantly degrades its performance due to
Pmod’s limited throughput. Therefore, for performance evaluation,
we instead use DRAM as our storage (we partition out a chunk of
DRAM and use it exclusively for the storage domain). This allows
us to stress the performance of the mailboxes of the storage domain
and get an upper bound for our storage performance, which we
cannot do with the Pmod prototype.

We note that requiring an FPGA board to experiment with our
machine may pose a road block for many researchers. Therefore,
we also develop an emulator for our hardware design. The emulator
runs on a Linux-based host OS such as Ubuntu and is able to fully
boot and run OctopOS.

Overall, we have implemented OctopOS and our hardware emu-
lator in about 39k lines of C code (including 5k of modified drivers
from Xilinx and crypto libraries). We report the LoC for our hard-
ware below.

6.1 Verified Hardware Design

The split-trust hardware has only four simple hardware compo-
nents that are part of the TCB (§8.4): mailbox, DMA arbiter, reset
guard, and ROM (for bootloaders). We have implemented these
components in 1630 lines of Verilog code as well as 800 lines of
Python code.

The simplicity of our trusted hardware components enables us
to formally verify them. We use SymbiYosys to perform formal
verification [78]. SymbiYosys is a front-end for Yosys-based formal
hardware verification flows. We took a pragmatic approach to
infer 20 theorems (some comprising multiple lemmas) from our



Property Proved theorems
Mailb Domains w/o exclusive access to mailbox cannot change which domain has exclusive access, nor the remaining quota.
. :(d:ll soixe If a domain does not yield its exclusive access, its exclusive access is guaranteed as long as the quota has not expired.
xclusiv
access The domain with exclusive access to the mailbox can correctly read or write from/to the queue.
The domains w/o exclusive access to the mailbox cannot read/write to the queue.
Mailbox limited When given exclusive access, a domain cannot use the mailbox more than its delegated quota.
delegation When the quota delegated to a domain expires, the domain loses exclusive access.
Mailbox verifiable | The domain with exclusive access can correctly verify its exclusive access and remaining quota.

excl. access

The domain on fixed end of mailbox can correctly verify domain with excl. access on the other end and remaining quota.

Mailbox default

After reset, the resource manager domain has exclusive access by default.

excl. access

The resource manager domain does not lose its exclusive access unless it delegates it.

When a domain loses excl. access (yield/expiration), the excl. access will be given to the resource manager domain.

Mailbox

Domains w/o excl. access cannot use mailbox’s verif. interface to learn which domain has excl. access and remain. quota.

confidentiality

Upon delegation/yield/expiration, the data in the queue is wiped.

The reset signal does not get forwarded if any other domain is using one of the domain’s mailboxes.

Reset Guard

The reset signal does not get forwarded if the domain is using any of the other domain’s mailboxes.

Arbiter The control interface can change its state between trusted and untrusted.
control Nothing other than the control interface can change the arbiter’s state.
Arbiter When an arbiter is connected to a trusted domain, a mailbox can correctly read or write data.
excl. access When an arbiter is connected to an untrusted domain, a DMA engine can correctly read or write data.
l ROM ‘ A memory can be transformed into read-only access, a change that is irreversible. ‘

Table 1: Theorems we prove for our hardware components. Proving some of these require proving lemmas not listed here.

guarantees. Formal verification ensures that our hardware design
satisfies these theorems and hence our guarantees. Indeed, we have
discovered and fixed a delegation logic error during verification.

We use the SMTBMC engine, which uses k-induction to formally

verify our hardware design against these theorems. Table 1 shows
the list of theorems we prove for our hardware components. Overall,
we developed 3000 lines of SystemVerilog code for our hardware
verification. We describe all the theorems in a separate document,
which can be found in our hardware repository?. Below, we present
one example.
Theorem example. We demonstrate the Verilog code (adjusted
for readability) that we develop for verifying the theorem that
“when the quota delegated to a domain expires, the domain loses
exclusive access” (Table 1 Row 6). As specified by the pseudo-code
below, the SMTBMC engine proves that on the rising edge of a
clock cycle, when either the time limit or quota limit becomes zero,
the new owner is determined to be the resource manager.

In lines 5-6, the “q_expired” register compares the remaining
quota limit with zero, and in lines 7-8, the “t_expired” register com-
pares the remaining time limit with zero. In both cases, the expired
registers are not triggered if the current owner is the resource
manager. Line 9 checks if the time limit or quota limit has expired,
and if so, the new owner must be the resource manager.

1 reg init = 1;

2 always @(posedge clk) begin

3 if (init) assume (!aresetn);

4 if (aresetn) begin

5 q_expired <=

6 (remain_quota == 0) && (owner != ‘ID_RM);
7 t_expired <=

8 (remain_time == 0) && (owner != "ID_RM);
9 if (t_expired || q_expired)

10 assert (owner == ‘ID_RM);

11 end

12 init <= 0;

13  end

3https://github.com/trusslab/octopos_hardware/raw/main/docs/OctopOS-TRM.pdf
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7 SECURITY-CRITICAL PROGRAMS

We discuss two security-critical programs that we have built for
our machine. These programs are simplified yet representative of
real-world applications.

I. Secure banking. Our secure banking program allows a user to
securely log in to their account and view their account balance.
The program leverages several features of our machine. First, it
uses exclusive access to the Ul (i.e., shell) as well as our session
availability guarantee to make sure all inputs come from the user
(and not malware) and that outputs are only displayed to the user.
On legacy machines that do not support session availability, it
has been shown that user’s interaction with a banking app can
be hijacked or covered with overlays [72, 73, 79]. Upon getting
exclusive access to the Ul the program needs to convince the user
that they are interacting securely with the program. It does so by
displaying a secret established a priori between the user and the
bank. Moreover, the program utilizes the runtime APIs to monitor
the quota left for the UI session, and prompts the user to stop
interacting with the program if the quota is low.

Second, the program uses exclusive access to the network do-
main to transfer confidential information. One might wonder why
it is not adequate to use a secure networking protocol, such as
TLS, for this purpose. Such protocols leave open some side-channel
attack vectors [80], which our exclusive network access closes
against on-device attackers; external network side-channel attacks
are still possible. Note that a secure networking protocol is still
needed for protecting the data against adversaries outside our ma-
chine (although we have not incorporated such a protocol in our
prototype yet).

Finally, the program uses remote attestation to enable the bank
server to verify the integrity of the program running on the user’s
device before any sensitive account information is released or any
commands are accepted. Specifically, (1) the server provides the
program with a challenge (i.e., a nonce), and the program passes
the challenge to the TPM, which generates an attestation report.


https://github.com/trusslab/octopos_hardware/raw/main/docs/OctopOS-TRM.pdf

(2) The program sends the report to the server, which verifies it
and then sends the expected PCR values of the I/O services to
the program, (3) which then uses them for local attestation of I/O
domains (including that of the network service).

II. Secure insulin pump. Diabetic patients need to administer
insulin to control the glucose level in their blood. New glucose
monitor and insulin pumps have recently emerged that can be
programmed through a smartphone, although security concerns
currently requires using a dedicated smartphone [2]. (We note
that some patients use an open source, unofficial Android app [81]
to control the pump, albeit at their own risk.) Our machine can
enable the use of user’s own smartphone to securely execute these
life-critical tasks.

We build two versions of this security-critical program in our
OS. The first version allows the user to directly program the insulin
pump (in which case a glucose monitor is not used). The second
version automatically reads the user’s glucose level and uses that
(and previous historical readings) to decide how much insulin to
pump.

These programs leverage our session availability and exclusive
access to the insulin pump (and the glucose monitor in the second
version of the app), e.g., via Bluetooth or through the headphone
jack. This way, the program can securely authenticate itself to
these devices and not worry that the session may be hijacked.
The program also uses exclusive access to the network domain to
securely communicate with the health provider’s server, which
uses remote attestation to enable the provider’s server to trust the
program, similar to our secure banking program. Finally, the second
version of this program needs to be executed in fixed intervals and
store its sensor readings across sessions. This requires a stronger
availability guarantee, called general availability (as opposed to the
more limited session availability). For this, it trusts the resource
manager and the storage domain, as discussed in §8.4. The first
version does not need the additional trust since it only requires
session availability.

8 TCB & SECURITY ANALYSIS
8.1 TCB Notation

We introduce and use a simple, compact notation for TCB, discussed
here with an abstract example:
G1,G2 G3
Owner TCompA(1), CompB(2) U T1 ,2,CompC(3)

The key operator is the T sign, which resembles a T (as in
Trust). It helps denote the set of (strongly-trusted) components in
the TCB. The elements on top of the T sign, e.g., G1, are the secu-
rity guarantees, e.g., confidentiality and integrity. This allows for
differentiating trust assumptions for different guarantees and com-
bining them using the U sign. The elements in front of the T sign
are the trusted components. For succinctness, we tag a repeating
component with a number in parenthesis on its first appearance
and use the number in other locations.

8.2 Lower Bound of TCB

Assuming that the program communicates with the outside world,
the lower bound can be achieved if the machine is dedicated to
executing a security-critical program:

C,I,A
Owner TProg. ,RoT

where C, I, A stand for Confidentiality, Integrity, and Availability.
This shows that the owner at the very least needs to trust the
(security-critical) program and the Root of Trust (RoT). The trust in
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the program is fundamental: the program needs to protect itself
against adversarial inputs, e.g., malicious network packets. (This
could imply trust in the network interface card. However, we as-
sume that the network interface card is isolated by the program, e.g.,
using an IOMMU). The program in the TCB includes the runtime
used by the program to interact with the hardware.

The trust in the RoT is also fundamental and stems from the fact
that an adversary controlling the machine may try to fool the veri-
fier of remote attestation by attempting to attack and compromise
the RoT. The trust in the RoT includes trust in the bootloader, the
ROM used to store the bootloader, the hardware/firmware used for
remote attestation, e.g., TPM, as well as the hardware vendor that
certifies attestation reports.

Finally, note that we do not consider the processor to be part of
the TCB because the program can sanitize the adversarial inputs
and prevent them from reaching the processor in a meaningful
way.

8.3 TCB of Existing Systems
First, we consider a traditional system that uses an OS to provide
isolation:
C,I,A
Owner TProg. ,0S,Proc. ,Mem.,I/0,interconn.,P.HW,RoT

This shows that the owner needs to trust the hardware including
the processor, memory, I/O devices, protection hardware (P.HW)
such as MMU and IOMMU, and interconnects. Moreover, the OS
is also trusted, including device drivers. In this case, the program
includes the libraries used by the program to interact with the OS
and hardware.

Next, we write the TCB for a popular TEE solution for smart-
phones, TrustZone, in Formula 1. SM is the security monitor (i.e., the
secure world OS and monitor code). We note that TrustZone allows
the secure world to take full control of an I/O device, i.e., secure
I/O (Sec-1/0). Yet, this device and its driver are exposed to multiple
programs in the secure world and hence are trusted. Another note-
worthy issue is that, in general, the OS is trusted when availability
is needed as it is in charge of resource scheduling. However, in
TrustZone, the secure world OS (part of the SM in the formula)
can be configured to handle some of the interrupts and hence can
control the availability of the corresponding resources [82].

8.4 Our TCB

Formula 2 shows the TCB of our machine. As, Ag, SD, and RM stand
for session availability, general availability, storage domain, and
resource manager, respectively. Our system requires trust in a few
cases that were not part of the lower bound. First, for confidential-
ity, integrity, and session availability, the owner needs to trust the
mailboxes used by the program, the arbiter (if domain-bound DMA
is used), and the domain reset guard as these components interact
with untrusted components. As discussed in §6.1, the simple design
of these components allowed us to formally verify them, making
this trust acceptable. Second, if a program needs general availabil-
ity guarantees (e.g., it needs to be executed in fixed intervals) and
needs to store data across sessions, it needs to trust the resource
manager domain and the storage domain. The only way to elimi-
nate the trust in the storage domain for general availability is to
have separate storage devices for each security-critical program.
Unfortunately, this is prohibitively expensive. Note that we assume
that the program protects the confidentiality and integrity of its
stored data using proper cryptographic primitives, although we
have not implemented that in our prototype.



c,I

A

owner | Prog.(1),SM(2),Processor(3),Men. (4),Sec-1/0(5),interconn. (6),P.HN(7),RoT(8) U | 1,2,3,4,5,6,7,8,0S

(1)

C,I,As

Ag

Owner TProg.(1),mailbox(Z),reset-guard(S),arbiter(4),RoT(5) UT1,2,3,4,5,RM,SD

(2)

It is noteworthy that our machine eliminates the need to trust
several complex hardware and software components such as the
processor, memory, I/O devices, the interconnects (since our ma-
chine does not share any buses between trust domains) and system
software (security monitor, OS, and device drivers), compared to
existing TEEs. Overall, the TCB of our machine is significantly
smaller than modern, popular TEEs. Moreover, our TCB is rather
close to the lower bound. Achieving a smaller TCB for a machine
that can host security-critical and untrusted programs concurrently
would be challenging.

8.5 Security Analysis

Threat model. We assume an attacker can run malicious programs
in the machine and tries to exploit any software or hardware vul-
nerabilities. We also assume that adversary can send malicious
packets over the network to the machine. Below, we discuss vari-
ous such attacks and their implications. Physical attacks are out of
scope.

Software vulnerability-based exploits. Vulnerabilities in
trusted software components would lead to attacks. An attacker
that compromises the program can obviously change its behavior.
An attacker that compromises the bootloader (including the code
that cleans up the state in a domain upon reset) can falsify the
remote attestation report or access/impact data from other ses-
sions. An attacker that can compromise the storage service can
delete the program’s data. An attacker that can compromise the
resource manager can starve the program of resources (but cannot
impact the availability of a session once it is granted). An attacker
that manages to compromise other software components, e.g., I/O
services, other security-critical programs, and the untrusted OS,
cannot mount an attack on the program.

Hardware vulnerability-based exploits. In a split-trust ma-
chine, unlike existing TEEs, vulnerabilities in many complex hard-
ware components such as the processor cannot be exploited since
the adversary never shares the underlying hardware with the
security-critical program. Therefore, the attacker cannot leverage
various hardware-based attacks such as cache side-channel attacks,
interconnect side-channel attacks, speculative execution attacks,
and Rowhammer attacks. Only vulnerabilities in the trusted hard-
ware components (i.e., mailbox, arbiter, reset guard, ROM, and
TPM) would lead to attacks. The first four are formally verified
(§6.1) and TPM is a mature and secure technology.

Timing side-channel attacks. All trusted software and hardware
components are vulnerable to timing side-channel attacks. In our
machine, the only components that may expose useful timing chan-
nels are the TPM and the program runtime. Such attacks (and
others) have been demonstrated on TPMs before [83-87]. As TPM
is a mature technology, vulnerabilities get fixed. Indeed, there have
been several works that formally verify various aspects of the TPM
standard [88-90]. We have not analyzed the timing channel of the
runtime we have developed for security-critical programs.
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Power management attacks. These types of attacks can induce
faults in the victim program’s execution by manipulating the fre-
quency or voltage of the processor and have been demonstrated
against TEEs [91-93]. As mentioned in §4.3, our machine does
not allow power management of a domain in a session, and hence
mitigates such attacks.

Power management data can also be used as a side channel.
More specifically, an attacker may try to monitor the voltage and
frequency of a domain (which changes according to DVFS) and use
that as a side channel to extract secrets from a domain. We note that
our current prototype is not vulnerable to this side channel since
our TEE domains do not support DVFS. However, our hardware
can support the use of DVFS-capable processors for TEE domains.
In such a case, we will need to close this channel. To do so, we
will need to ensure that the PMU does not leak any information
about a domain to another domain. This can be done rather trivially
within the PMU firmware, which should be formally verified and
hardened.

Hertzbleed [94] turns a power side channel into a timing attack.
We leave it to the program and its runtime to migitate such an
attack.

Remote network attacks. Similar to a legacy machine, a security-
critical program must protect itself against malicious network mes-
sages in our machine. However, our machine provides some pro-
tection against network attacks that target the network stack. This
is because it sandboxes the network device and its device driver in
its own domain. As a result, programs that do not use the network
at the time of a exploit are protected from these attacks. This is in
contrast to a legacy machine in which a single successful exploit
of the kernel-based network stack may result in a full takeover.
Out of scope: physical attacks. We assume that the adversary
does not have physical access to the device. Therefore, we do not
protect against physical attacks. However, if the program does not
use any I/O devices, it can use on-chip computation and memory
encryption to protect its secrets against physical attacks [95-97].
These are orthogonal to our design and hence can simply be added
to our machine. However, we note that if a program uses I/O devices,
no general solution can be used to prevent physical attacks. While
storage and network devices can use encryption (i.e., full-disk
encryption), other devices such as output devices, cameras, sensors,
and actuators cannot be universally protected.

9 EVALUATION
Our FPGA-based hardware implementation serves two purposes.
First, we use it to estimate the hardware cost of our solution in terms
of chip area. Second, it provides a bound on the performance impact
of the solution. A deployed solution would likely replace the FPGA
components with higher-performance non-reprogrammable ASIC
elements, such as an integrated SoC or specialized chiplets [98].
However, despite the use of FPGA and weak microcontrollers for
TEE and I/O domains, we show that security-critical programs can
achieve decent performance, while normal programs can achieve
the same compute and I/O performance as on a legacy machine.



[ FPGA resource [ Count [ Equivalent transistor count

Look-up table 69,999 2,519,964
Flip flop 63,188 1,516,512
Block RAM 27,061,649 (bits) | 162,369,894

Table 2: Extra hardware cost in our machine.

[ Configuration [ Throughput (MB/s) [ Latency (ps) ]
A53-Microblaze 7.07+0 18.2+0
Microblaze-Microblaze | 9.64+0.01 15.26+0.05

Table 3: Mailbox performance.

9.1 Hardware Cost

We calculate an estimate for the number of transistors needed for
our additional hardware components (all the components synthe-
sized on the FPGA in our prototype). We calculate this estimate
by measuring the number of look-up tables, flip flops, and block
RAMs used by our hardware and converting them to transistor
count using the following estimates: 6 NAND gates per look-up
table [99], 6 transistors per NAND gate [100], 24 transistors for
each flip flop [101], and 6 transistor for each bit of on-chip mem-
ory (assuming a conventional 6-transistor SRAM cell [102]). Our
calculation shows that our machine requires about 166.4 M addi-
tional transistors (162 M of which are used for on-chip memory).
Table 2 shows the breakdown. This compares favorably with the
number of transistors used in modern SoCs in smartphones. For
example, Apple A15 Bionic and HiSilicon Kirin 9000 use 15 B tran-
sistors [103, 104]. This means that, if our solution is added to an
SoC or implemented as a chiplet [98], the additional hardware cost
would likely be 1-2%.

9.2 Performance

We measure various performance aspects of our machine. Note
that all domains except the untrusted one use an FPGA with a
100 MHz clock. The Ethernet controller IP uses an external 50
MHz clock. Therefore, our results represent a lower bound on our
machine’s performance; we expect superior performance on ASIC.
We repeat each experiment 5 times and report the average and
standard deviation.

Mailbox performance. We measure the throughput and latency
of communication over our mailbox. For throughput, we measure
the time to send 10,000 messages of 512 B over a data-plane mail-
box. For latency, we measure the round trip time to send a 64
B message and receive an acknowledgment over a control-plane
mailbox. We perform these experiments in two configurations: one
for communication between the hard-wired ARM Cortex A53 (the
untrusted domain) and an FPGA-based Microblaze microcontroller,
and one for communication between two FGPA-based Microblaze
microcontrollers. Table 3 shows the results. One might wonder why
the A53-Microblaze configuration achieves lower performance. We
believe this is because this configuration requires the data to pass
the FPGA boundary, hence passing through voltage level shifters
and isolation blocks [105]. Moreover, the FPGA is in a different
clock domain than A53.

Storage performance. We measure the performance of our stor-
age domain, which uses the mailbox for its data plane (i.e., no
DMA). To do so, we perform 2000 reads/writes of 512 B each. We
evaluate three configurations: a best-case configuration where the
storage domain directly performs reads/writes (hence giving us an
upper bound on the DRAM-based storage performance), and two
configurations where the untrusted domain or a TEE domain uses
the storage service over the domain’s mailboxes. Table 4 shows
the results. They show that our mailbox-based storage domain can
achieve decent performance (as can also be seen from our boot-time
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l Conﬁguration [ Read throughput (MB/s) | Write throughput (MB/s)

Best-case 8.13+0.00 6.10+0.00

Untrusted dom. | 4.17+0.09 4.06+0.00

TEE domain 4.39+0.00 3.93+0.00
Table 4: Storage performance.

[ Configuration [ Throughput (Mbit/s) [ RTT (ms) ]
Baseline 943+0 0.17+0.01
Untrusted domain | 943+0 0.17+0.02
TEE domain 0.567+0.001 23.92+0.02

Table 5: Network performance.

measurements reported below). It also shows that the additional
copies caused by the mailbox add noticeable overhead compared
to the best-case scenario. To further improve this performance for
the untrusted domain, one can use domain-bound DMA for the
storage domain.

Network performance. We measure the performance of our net-
work domain, which uses domain-bound DMA for high perfor-
mance for the untrusted domain (§4.5). We evaluate three configura-
tions, similar to those used for storage experiments. For measuring
the throughput for the baseline and the untrusted configurations,
we use iPerf; for round-trip time (RTT) measurements, we use
Ping. For the TEE configuration, we develop custom programs for
measurements. For all experiments, we connect the board to a PC,
which acts as a server. Table 5 shows the results. They show that
our domain-bound DMA is capable of matching the performance
of a legacy machine. Moreover, the network performance for a TEE
is usable.

We believe, based on some tests that we have conducted, that it is
possible to further improve the TEE network performance by about
10 X. This is because, currently in the network domain, we add an
artificial delay between accessing the mailbox and the network IP,
which limits performance. We do so to prevent data corruption,
which according to our extensive investigation, is caused by a bug
in the Ethernet AXI IP from Xilinx (potentially the bug discussed
in [106]). Since the IP is closed source, we are not able to fix the
bug.

Boot time and breakdown. We measure the boot time of our ma-
chine. All the boot images are transferred from the storage domain
to their corresponding domains over mailboxes. Due to presence of
multiple domains, booting OctopOS from a partition in the storage
service is a carefully choreographed dance, requiring steps taken
by bootloaders in each domain and the resource manager. Due to
space limitations, we do not provide the details of the boot process,
but measure and report it. Our measurements show that it takes
4.03+0.00 s to boot all domains excluding the untrusted domain,
which takes an additional 8.65+0.01 s to boot.

Untrusted program performance. We use the network file sys-
tem to evaluate the performance of an untrusted program. Our
benchmark reads 100 files each containing 10,000 random numbers
from a network file system, sorts them, and writes them back to the
same file system. We choose this benchmark since it stresses CPU,
memory, and network (for which we have domain-bound DMA).
Our evaluation shows the benchmark takes the same amount of
time (3.86+0.03 s) on our machine as on a legacy machine with the
same A53 processor, RAM, and Gigabit Ethernet (3.84+0.04 s).
Security-critical program performance. We measure the exe-
cution time of two security-critical programs. In our experiments,
we assume that no other domain needs and hence competes for the
I/O domains. This allows for simple optimizations, e.g., proactively
resetting the network domain.



The first program is secure banking (§7). We measure the time it
takes to launch, including time needed to acquire keyboard, serial,
and network, to perform attestation, and finally, to display prompts
for user credentials. Our measurements show the overall execution
time is 2.38+0.42 s.

We also develop and evaluate a more performance-intensive
security-critical program. It reads a 1 MB file from the storage
domain, computes its hash, and sends the hash over the network to
a server. The overall execution time is 1.75+0.00 s. Looking at the
breakdown, it takes 0.30+0.00 s to launch (including time needed
to acquire exclusive access to storage and network, excluding local
attestation through TPM), 0.22+0.00 s to read the file from storage,
1.21+0.00 s to compute the hash, and 0.01+0.00 s to send the hash
over the network. To better assess this execution time, we write a
normal program to perform similar tasks on a legacy machine with
the A53 processor, RAM-FS, and Gigabit Ethernet. This program
takes 0.23+0.00 s to execute.

If an I/O domain is in use when we run the security-critical

program, there will be two types of additional delay. First, our
security-critical program needs to wait for the I/O domain to be-
come available. Second, in the case of the network, the program
needs to wait for the network domain to perform ICMP route
discovery and other network protocols, which can take around
4.12+0.96 s in our current prototype (without any optimizations).
But note the app can mitigate part of these delays by overlapping
them with other parts of its execution.
Programming effort. We evaluate the programming effort for
both types of developers. We report the programming effort re-
quired to develop a security-critical program on top of OctopOS.
Currently, the runtime provides 49 APIs for the application devel-
opers to use. The secure banking program presented in §7 has 482
lines of code, which includes 58 lines for the main logic, 107 lines
for the user interface, 207 lines for network communication (in-
cluding attestation), and 93 lines for managing delegated resources.
The secure insulin pump program (second version) has 563 lines
of code, which includes 217 lines for the main logic, 200 lines for
network communication (including attestation), and 128 lines for
managing delegated resources.

The network domain has 7217 lines of code (including modified
drivers from Xilinx). The storage, keyboard, and serial domain
have 1091, 154, and 165 lines of code, respectively. These numbers
exclude the domains’ bootloaders and lower-level OctopOS code
for hardware support, such as our mailbox driver, which an I/O
service developer can reuse.

Impact of exclusive I/O use. We evaluate the impact of execut-
ing a security-critical program that uses storage on the storage
performance of the untrusted domain. More specifically, we launch
a security-critical program in a TEE that exclusively reads/writes 1
MB from/to storage, while the untrusted domain is reading a 100
MB file data (which normally takes 24.26+0.31 s to finish). Our
measurements show that the security-critical program causes a
2.58+0.03 s gap where the untrusted domain cannot access storage.

9.3 Energy Consumption
We estimate the energy consumption of running security-critical
programs on our hardware. We measure the actual execution time
of each domain, and multiply the time by the per-domain power
estimation. The estimation is obtained by running the power report
program on our hardware design using the Xilinx Vivado software.
Our measurements show the energy consumption of all the
domains involved in launching the banking program (including
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booting, initialization, requesting resources, and performing attes-
tation) is 3.21+0.64 Joules.

We also measure the energy consumption of the other security-
critical program that reads a 1 MB file, hashes it, and sends the hash
over network. The energy consumption of all the domains that
are involved is 2.03+0.42 Joules. In comparison, we measure the
estimated energy consumption of the 1 MB file hashing experiment
on the legacy machine. Xilinx Vivado software estimate the runtime
energy of the A53 processor on the SoC of our FPGA board to be to
be 2.74 watts (with no DVFS). We calculate the energy consumption
of the program running on the legacy machine to be 0.63+0.00
Joules.

To provide a frame of reference, note that the overall amount
of energy in a fully charged battery in a modern smartphone (i.e.,
Google Pixel 7) is 60517 Joules.

10 RELATED WORK

Physical isolation & static partitioning. Notary [107] safe-
guards approval transactions by running its agent on a separate
SoC from the ones running the kernel and the communication
stack. Our work shares the idea of using physically-isolated trust
domains and also resets the domains before and after use by other
programs. In contrast, we show how to safely mediate access to
shared I/O devices for a workload of concurrent security-critical
and untrusted programs.

Likewise, I/O-Devices-as-a-Service (IDaaS) suggests that I/O
devices should have their own separate microcontrollers (and ob-
serves that they often do) and advocates for hardening their in-
terfaces against potentially malicious kernel behavior [108]. Our
approach also uses separate I/O microcontrollers but does not re-
quire trust in the microcontroller software, by resetting the I/O
domain between uses.

Exclusive use. Flicker [109] uses the late launch feature of Intel
Trusted Execution Technology (TXT) [110], to exclusively run a
program on the processor. The exclusive use of the hardware results
in minimizing the trusted components. However, Flicker’s design
requires stopping all other programs (including untrusted ones)
when running a security-critical program. Our approach can run
untrusted programs and security-critical programs concurrently
(albeit with the limitation that I/O domains cannot be shared).
Consider our secure insulin pump program (§7), which might need
to be run frequently while the user is actively doing other, less
security-critical, tasks on the main processor. Realizing this in
Flicker can result in significant disruptions to other programs and
to the user as a result.

Secure I/0 for TEEs. SGXIO uses a hypervisor and a TPM to cre-
ate a trusted path for an SGX enclave to access an I/O device [111].
The solution requires the enclave program not only to trust SGX’s
firmware and hardware, but also the hypervisor. CUure [112] adds
a few hardware primitives in order to allow the security monitor
to assign a peripheral (i.e., access to MMIO registers and DMA
target addresses) to an enclave. These primitives are designed to
be programmed by a trusted-by-all security monitor (unlike our
work).

Time protection. Ge et al. add time protection to seL4, which
closes many of the available side channels in commodity proces-
sors [113]. As the paper mentions, some processors do not provide
mechanisms needed to close channels. Moreover, channels using
busses could not be closed, and they have recently been shown to
be effectively exploitable [17]. Our approach of using completely
separate hardware for security-critical programs addresses these



concerns for these programs. We do, however, note that our ap-
proach (as it stands) does not scale to support all (normal) pro-
grams, which may have their own security needs. Therefore, we
believe that time protection remains an important abstraction to
be explored for when the same processor is asked to host multiple
programs.

Physical isolation & dynamic partitioning. IRONHIDE intro-
duces dynamic spatial partitioning of processor cores and their
communication channels to form isolated enclaves [114]. Non-
virtualized composable microprocessor [115] proposes a new server
architecture that dynamically partitions CPU cores, memory, and
accelerators. In contrast, we statically partition the hardware re-
sources, resulting in a simpler design and a smaller TCB (i.e. no
security monitor).

Other TEE solutions. Komodo is a verified security monitor that
can create enclaves for security-critical programs [116]. Li et al.
formally verify the firmware in Realms, part of ARM confidential
computing [117]. Use of formal verification warrants the strong
trust in the security monitor/firmware, but not the ARM processor
that hosts both security-critical and untrusted programs. For ex-
ample, Li et al. mention that “[p]rotection against known software
error injection attacks and side-channel attacks require appropriate
usage of architectural mitigations and are beyond the scope of this
paper”

Sanctum uses hardware modifications to RISC-V alongside a
software security monitor to create isolated enclaves [118]. Com-
pared to SGX, Sanctum enclaves are protected against both cache
and page fault side-channel attacks. MI6 time-partitions hardware
resources and implements a rigorous “purge” operation that erases
microarchitectural and memory states associated with a security-
sensitive program [119]. None, however, addresses other potential
hardware vulnerabilities such as interconnect side channels.

SANCTUARY leverages the Address Space Controller hardware to
enable strong isolation in TrustZone’s normal world [120]. Sanc-
TUARY still requires a security monitor to program the controller.

11 DISCUSSIONS

Scalability and Performance. The exclusive use of TEE domains
limits the number of concurrent security-critical programs. More-
over, our choice of using weak microcontrollers, small amounts of
memory, and I/O without DMA for TEEs limit the performance of
security-critical programs. We believe that the former is not a seri-
ous issue since we do not expect a large number of security-critical
programs executing simultaneously in a smartphone.

The latter is mostly a non-issue either since security-critical
programs are more concerned with security guarantees than per-
formance. However, there are exceptions, for example, authentica-
tion of the user by applying machine learning algorithms to photos
taken by the camera or privacy-preserving federated learning [121].
We believe that these programs can leverage accelerators (which
will be available in the machine in the form of additional I/O do-
mains). Indeed, Nider et al. propose a machine with no CPU and
several self-managed devices [122], showing the diminished role
of CPU for performance. We also note that our design allows for
using more powerful processors for the TEE domains, albeit at the
cost of additional hardware budget.

One might wonder whether we can use a single DMA engine to
improve performance of an I/O device for all TEE domains. This is
not feasible since domains’ memories are physically separated. In-
stead, we can potentially use multiple domain-bound DMA engines,
one for each TEE domain.
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Usability. We argue that the exclusive use of hardware resources
by security-critical programs in our machine does not cause usabil-
ity problems for normal programs, for three reasons. First, security-
critical programs in smartphones already use some I/O devices
exclusively. For example, the UI (display and touchscreen) is used
exclusively (e.g., when using TrustZone-based Protected Confirma-
tion [123]) due to its small form factor.

Second, the performance impact on other I/O types, such as
networking and storage, can be minimal when security-critical
programs use short sessions, e.g., a few seconds. In §9.2, we ex-
perimentally demonstrate this impact for storage. Moreover, TCP
network connection keepalives persist for tens of seconds. Further,
since smartphone network connections are frequently dropped
during handoffs, most widely used applications transparently re-
establish lost connections without user visible changes. Security-
critical programs can be designed to initiate, use, and close their
connections in a single session (a practice that we use in our own
security-critical programs).

It is also possible to mitigate these issues using multiple I/O
domains of the same type. For example, all smartphones have both
WiFi and cellular network interfaces. One can imagine allowing
normal programs to share and use one of these while security-
critical programs use the other (through two separate I/O domains
in our hardware).

Third, most security-critical programs rely on only a subset of
the I/O domains. For example, our insulin pump program (second
version) mainly requires access to its sensor and pump as well as
a brief access to storage. While this program is running, all other
I/O domains, e.g., network, UL, and even storage, can be used by
normal programs.

We finally note that any attempt to allow simultaneous shar-
ing of hardware resources will undoubtedly increase the TCB. For
example, enabling multiple domains to render to the display simul-
taneously will require trusting the display domain in our machine.

12 CONCLUSIONS

Smartphone owners expect to use their devices for a mixture of
security-critical and ordinary tasks, yet this requires trust that the
hardware and system software is able to isolate those tasks from
each other, trust that is often misplaced. Our goal in this work is
to minimize the TCB when executing security-critical programs.
We present a hardware design with multiple statically-partitioned,
physically-isolated trust domains, coordinated using a few simple,
formally-verified hardware components, along with OctopOS, an
OS to manage this hardware. We describe a complete prototype
implemented on a CPU-FPGA board and show that it incurs a
small hardware cost. For security-critical programs, our machine
significantly reduces the TCB compared to existing solutions, and
achieves usable performance. For normal programs, it achieves
similar performance to a legacy machine.
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