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Settling the Sharp Reconstruction Thresholds of
Random Graph Matching

Yihong Wu

Abstract—This paper studies the problem of recovering the
hidden vertex correspondence between two edge-correlated ran-
dom graphs. We focus on the Gaussian model where the two
graphs are complete graphs with correlated Gaussian weights
and the Erdés-Rényi model where the two graphs are subsampled
from a common parent Erdés-Rényi graph G(n, p). For dense
Erdés-Rényi graphs with p = n~°), we prove that there exists
a sharp threshold, above which one can correctly match all but a
vanishing fraction of vertices and below which correctly matching
any positive fraction is impossible, a phenomenon known as the
“all-or-nothing” phase transition. Even more strikingly, in the
Gaussian setting, above the threshold all vertices can be exactly
matched with high probability. In contrast, for sparse Erdgs-
Rényi graphs with p = n~°®) we show that the all-or-nothing
phenomenon no longer holds and we determine the thresholds
up to a constant factor. Along the way, we also derive the sharp
threshold for exact recovery, sharpening the existing results in
Erdds-Rényi graphs. The proof of the negative results builds
upon a tight characterization of the mutual information based
on the truncated second-moment computation and an ‘‘area
theorem” that relates the mutual information to the integral of
the reconstruction error. The positive results follows from a tight
analysis of the maximum likelihood estimator that takes into
account the cycle structure of the induced permutation on the
edges.

Index Terms— Graph matching, Erdds-Rényi random graphs,
Gaussian model, recovery threshold, mutual information, cycle
decomposition of permutations.

I. INTRODUCTION

HE problem of graph matching (or network alignment)

refers to finding the underlying vertex correspondence
between two graphs on the sole basis of their network topolo-
gies. Going beyond the worst-case intractability of finding
the optimal correspondence (quadratic assignment problem
[2], [22]), an emerging line of research is devoted to the
average-case analysis of graph matching under meaningful
statistical models, focusing on either information-theoretic
limits [4]-[6], [12], [16], [26] or computationally efficient
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algorithms [1], [8]-[11], [13], [19]. Despite these recent
advances, the sharp thresholds of graph matching remain not
fully understood especially for approximate reconstruction.
The current paper aims to close this gap.

Following [8] and [21], we consider the following prob-
abilistic model for two random graphs correlated through a
hidden vertex correspondence. Let the ground truth 7 be a uni-
formly random permutation on [n]. We generate two random
weighted graphs on the common vertex set [n] with (weighted)
adjacency vectors A = (A;;)1<i<j<n and B = (Bjj)i<i<j<n
such that (Aﬁ(i)ﬁ(j) , Bij) are i.i.d. pairs of correlated random
variables with a joint distribution P, which implicitly depends
on n. Of particular interest are the following two special
cases:

o (Gaussian model): P = N((g),(})g’)) is the joint
distribution of two standard Gaussian random vari-
ables with correlation coefficient p > 0. In this
case, we have B = pA™ + /1 —p2Z, where A
and Z are independent standard normal vectors and
A% = Anyn(i)-

o (Erd6s-Rényi random graph): P denotes the joint distri-
bution of two correlated Bern(¢q) random variables X
and Y such that P{Y =1|X =1} = s, where ¢ <
s < 1. In this case, A and B are the adjacency vectors
of two Erd6s-Rényi random graphs G1,G2 ~ G(n,q),
where GT (with the adjacency vector A™) and G2 are
independently edge-subsampled from a common parent
graph G ~ G(n,p) with p = ¢/s.

Given the observation A and B, the goal is to recover the
latent vertex correspondence 7 as accurately as possible. More
specifically, given two permutations 7,7 on [n], denote the
fraction of their overlap by

overlap(r, 7) 2 % i € [n] : 7(5) = 7()}].

Definition 1: We say an estimator 7 of m achieves,
as n — 0o,
o partial recovery, if P {overlap (7,7) > 6} = 1—o0(1) for
some constant § € (0,1);
e almost exact recovery, if P {overlap (77,7) >0} =1 —
o(1) for any constant 6 € (0, 1);
o exact recovery, if P{overlap (7,7) =1} =1 — o(1).
The information-theoretic threshold of exact recovery has
been determined for the Erd6s-Rényi graph model [5] in
the regime of p = O (log"*(n)) and more recently for
the Gaussian model [12]; however, the results and proof
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techniques in [5] do not hold for denser graphs. In contrast,
approximate recovery is far less well understood. Apart from
the sharp condition for almost exact recovery in the sparse
regime p = n~*(1) [6], only upper and lower bounds are
known for partial recovery [16]. See Section I-B for a detailed
review of these previous results.

In this paper, we characterize the sharp reconstruction
thresholds for both the Gaussian and dense Erdds-Rényi
graphs with p = n=°(). Specifically, we prove that there
exists a sharp threshold, above which one can estimate all but
a vanishing fraction of the latent permutation and below which
recovering any positive fraction is impossible, a phenomenon
known as the “all-or-nothing” phase transition [24]. This
phenomenon is even more striking in the Gaussian model,
in the sense that above the threshold the hidden permutation
can be estimated error-free with high probability. In contrast,
for sparse Erdés-Rényi graphs with p = n=9M) we show
that the all-or-nothing phenomenon no longer holds. To this
end, we determine the threshold for partial recovery up to a
constant factor and show that it is order-wise smaller than the
almost exact recovery threshold found in [6].

Along the way, we also derive a sharp threshold for exact
recovery, sharpening existing results in [4], [5]. As a byprod-
uct, the same technique yields an alternative proof of the result
in [12] for the Gaussian model.

A. Main Results

Throughout the paper, we let ¢ > 0 denote an arbitrarily
small but fixed constant. Let 7y denote the maximum like-
lihood estimator, which reduces to

L € arg max <A”’,B>. )
Theorem 1 (Gaussian Model): 1f
(4+¢)logn

p° > )
n
then P {overlap (Tymp, m) =1} = 1 — o(1).
Conversely, if
4 —e€)logn
pr < Uz dlogn 3)

n
then for any estimator 7 and any fixed constant 6 > 0,
P {overlap (7, 7) <6} =1 —o(1).

Theorem 1 implies that in the Gaussian setting, the recovery
of m exhibits a sharp phase transition in terms of the limiting
value of 12”’2” at threshold 4, above which exact recovery is
possible and below which even partial recovery is impossible.
The positive part of Theorem 1 was first shown in [12]. Here
we provide an alternative proof that does not rely on the
Gaussian property and works for Erdés-Rényi graphs as well.

The next result determines the sharp threshold for the Erdés-
Rényi model in terms of the key quantity nps?, the average
degree of the intersection graph G; A G (whose edges are
sampled by both GG and G5).

Theorem 2 (Erdds-Rényi Graphs, Dense Regime): Assume
p is bounded away from 1 and p = n—°M_ If

5 (24¢€)logn
T logi—1+p’

nps

“)
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then for any constant 6 < 1, P {overlap (Tpmp,7) >0} =1 —
o(1). Conversely, if

2 o (2 —¢)logn

nps ,
P = logl—14p

)
then for any estimator 7 and any constant § > 0,
P {overlap (7, m) <0} =1 —o(1).

Theorem 2 implies that analogous to the Gaussian model,
in dense Erd6s-Rényi graphs, the recovery of 7 exhibits an

“all-or-nothing” phase transition in terms of the limiting value

?(log -1+ .
of W at threshold 2, above which almost exact

recovery is possible and below which even partial recovery
is impossible. However, as we will see in Theorem 4, unlike
the Gaussian model, this threshold differs from that of exact
recovery.

Remark 1 (Entropy Interpretation of the Thresholds): The
sharp thresholds in Theorem 1 and Theorem 2 can be inter-
preted from an information-theoretic perspective. Suppose an
estimator 7 = (A, B) achieves almost exact recovery with
Eloverlap(m,7)] = 1 — o(1), which, by a rate-distortion
computation, implies that I(7;7) must be close to the full
entropy of m, that is, I(m;7) = (1 — o(1))nlogn. On the
other hand, by the data processing inequality, we have
I(m;7w) < I(m; A, B). The latter can be bounded simply as
(see Section I-C.2)

I(m; A, B) < (Z) 1(p). (©)
where I(P) denotes the mutual information between a pair of

random variables with joint distribution P. For the Gaussian
model, we have

1 1
I(P)=-log——.
(P) = 5log T— p2 @)
For the correlated Erd6és-Rényi graph,
I(P) = qd(sllq) + (1 — g)d(nll9), ®)

where ¢ = ps, n = ‘1(%_;), and d(s|q) =
D(Bern(s)||Bern(gq)) denotes the binary KL divergence.
By Taylor expansion, we have I(P) = s%p (p —1+1log ;1])
(1—0(1)). Combining these with (5)I(P) > (1—o(1))nlogn
shows the impossibility of almost exact recovery under the
conditions (3) and (5). The fact that they are also necessary
for partial recovery takes more effort to show, which we do
in Section II.
Theorem 3 (Erdds-Rényi Graphs, Sparse Regime): Assume
p=n"20_ If
logn
2
nps 2(2+e)max{7,2}, 9)
log(1/p)
then there exists a constant § > 0 such that
P {overlap (TmrL, ) > d} = 1 — o(1). Conversely, assuming
np = w(log2 n), if
nps® <1 —e, (10)

then for any estimator 7 and any constant 6 > 0,
P {overlap (7, 7) <} =1 —o(1).
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Theorem 3 implies that for sparse Erdés-Rényi graphs with
p =n~* for a constant o € (0,1), the information-theoretic
thresholds for partial recovery is at nps? =< 1, which is much
lower than the almost exact recovery threshold nps? = w(1)
as established in [6]. Hence, interestingly the all-or-nothing
phenomenon no longer holds for sparse Erd6s-Rényi graphs.
Note that the conditions (9) and (10) differ by a constant
factor. Determining the sharp threshold for partial recovery in
the sparse regime remains an open question. Since the initial
posting of this paper to arXiv, a subsequent work [14] shows
that partial recovery is impossible when nps? < 1 in the sparse
regime with a constant average degree np = ©(1), using
a different technique of analyzing the posterior distribution.
Determining the sharp threshold for partial recovery in the
sparse regime remains an open question.

Finally, we address the exact recovery threshold in the
Erd6s-Rényi graph model. For ease of notation, we consider
a general correlated ErdGs-Rényi graph model specified by
the joint distribution P = (pay : a,b € {0,1}), so that
]P’{A,r(q;),r(j) =a,B; = b} = pap for a,b € {0,1}. In this
general Erd6s-Rényi model, 7y is again given by the maxi-
mization problem (1) if p11poo > po1p10 (positive correlation)
and changes to minimization if p11poo < poipio (negative
correlation). The subsampling model is a special case with
positive correlation, where

p11 =ps®, pio=po1 =ps(l—s), poo=1—2ps—+ps’.
(1D

Theorem 4 (Erdds-Rényi Graphs, Exact Recovery): Under
the subsampling model (11), if

n (v/Poopi1 — \/P01P10)2 > (1+¢€)logn, (12)
then P {overlap (Tmr,, m) =1} =1 — o(1).
Conversely, if
n (v/Poopi1 — \/]9011?10)2 < (1 —¢)logn, (13)

then for any estimator 7, P {overlap (7, 7) = 1} = o(1).

If p is bounded away from 1, Theorem 4 implies thatche
exact recovery threshold is given by lim,, . w =
1. Since 1og% —14p>2(1- \/1_))2 with equality if and
only if p = 1, the threshold of exact recovery is strictly
higher than that of almost exact recovery in the Erdés-Rényi
graph model, unlike the Gaussian model. If p = 1 — o(1),
Theorem 4 implies that the exact recovery threshold is given
by lim, g8 = 4, where p £ Sﬁ—;fs’ denotes the
correlation parameter between A (;)~(;) and B; for any i < j
under the latent permutation 7.

m(J

B. Comparisons to Prior Work

Exact recovery: The information-theoretic thresholds for
exact recovery have been determined for the Gaussian model
and the general Erd6s-Rényi graph model in certain regimes.
In particular, for the Gaussian model, it is shown in [12] that
if np? > (4 + €)logn for any constant € > 0, then the
MLE achieves exact recovery; if instead an < (4 —e€)logn,
then exact recovery is impossible. Theorem 1 significantly
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strengthens this negative result by showing that under the same
condition even partial recovery is impossible.

Analogously, for Erdés-Rényi random graphs, it is shown
in [4] and [5] that the MLE achieve exact recovery when
nps? = logn + w(1) under the additional restriction that
p = O(log—*(n)).! Conversely, exact recovery is shown
in [4] to be information-theoretically impossible provided that
nps? < logn — w(1), based on the fact the intersection
graph G A Go ~ G(n,ps?) has many isolated nodes with
high probability. These two results together imply that when
p = O(log>(n)), the exact recovery threshold is given by
lim Iggz = 1, coinciding with the connectivity threshold of
G1 N Gy. In comparison, Theorem 4 implies that if p is
bounded away from 1, the precise exact recovery threshold

207 2
is instead given by lim w = 1, strictly higher than

the connectivity threshold. In particular, deriving the tight
condition (13) requires more than eliminating isolated nodes.
In fact, our results show that when p is bounded away from 1
and logn < nps? < (1?%)2 , exact recovery still fails even
when the intersection graph is asymmetric (no non-trivial
automorphism) with high probability [25]. See the discussions
in Section I-C.4 for more details.

Partial and almost exact recovery: Compared to exact
recovery, the understanding of partial and almost exact recov-
ery is less precise. It is shown in [6] that in the sparse regime
p = n~®M almost exact recovery is information-theoretically
possible if and only if nps> = w(1). The more recent
work [16] further investigates partial recovery. It is shown

. 2 logn
that if nps* > C(0) max{l, Togti /o)
exponential-time estimator 7 that achieves overlap (7, 7) > ¢
with high probability, where C'(d) is some large constant that
I(p _ log(n)
5 =0 n
with I(P) given in (8), then no estimator can achieve
overlap (7, ) > 0 with positive probability. These conditions
do not match in general and are much looser than the results
in Theorems 2 and 3.

}, then there exists an

tends to oo as & — 1; conversely, if

C. Proof Techniques

We start by introducing some preliminary definitions asso-
ciated with permutations (cf. [26, Section 3.1] for more details
and examples).

1) Node Permutation, Edge Permutation, and Cycle Decom-
position: Let S, denote the set of permutations on the node
set [n]. Each o € S,, induces a permutation o5 on the edge
set ([g]) of unordered pairs, according to

ot ((i,5)) £ (0(i),0(4))-

We shall refer to o and ¢F as a node permutation and edge
permutation. Each permutation can be decomposed as disjoint
cycles known as orbits. Orbits of o (resp. o) are referred as
node orbits (resp. edge orbits). Let ny (resp. Ni) denote the
number of k-node (resp. k-edge) orbits in o (resp. oF). The

(14)

In fact, [4], [5] studied exact recovery condition in a more general
correlated Erd6s-Rényi model with P { A (;)(;) = @, Bij = b} = pas for
a,b € {0, 1}, which will also be the setting in Section IV.
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cycle structure of o€ is determined by that of o. For example,

we have
n
N1 = <21) —f—?’LQ7

because an edge (i,j) is a fixed point of oF if and only if
either both i and j are fixed points of ¢ or (4,j) forms a
2-node orbit of o. Let F' be the set of fixed points of o with
|F'| = n1. Denote O = (1;) C O as the subset of fixed points
of edge permutation oF, where O denotes the collection of all
edge orbits of oF.

2) Negative Results on Partial Recovery: Let P denote the
joint distribution of A and B under the correlated model.
To prove our negative results, we introduce an auxiliary null
model Q, under which A and B are independent with the
same marginal as P. In other words, under Q, (A4;;, B;;)
are i.i.d. pairs of independent random variables with a
joint distribution () equal to the product of the marginals
of P.

As the first step, we leverage the previous truncated
second moment computation in [26] to conclude that the
KL-divergence D(P||Q) is negligible under the desired condi-
tions. By expressing the mutual information as I(m; A, B) =
(5)D(P||Q) — D(P||Q) where D(P||Q) = I(P), this readily
implies that I(m; A, B) = (3)1(P)(1+0(1)). Next, we relate
the mutual information I(m; A, B) to the integral of the
minimum mean-squared error (MMSE) of A", the weighted
adjacency vector relabeled according to the ground truth. For
the Gaussian model, this directly follows from the celebrated
I-MMSE formula [15]. For correlated Erd6s-Rényi graphs,
we introduce an appropriate interpolating model and obtain an
analogous but more involved “area theorem”, following [7],
[20]. These two steps together imply that the MMSE of
A™ given the observation (A, B) is asymptotically equal to
the estimation error of the trivial estimator [E[A™]. Finally,
we connect the MMSE of A™ to the Hamming loss of
reconstructing m, concluding the impossibility of the partial
recovery.

Note that by the non-negativity of D(P]|Q), we arrive
at the simple upper bound (6), that is, I(m;A,B) <
(72’)] (P). Interestingly, our proof relies on establishing
an asymptotically matching lower bound to the mutual
information I(m; A, B). This significantly deviates from
the existing results in [16] based on Fano’s inequality:
P {overlap(w,7) <} > 1 — % with m = |{r :
overlap(m,m) > 0}/, followed by applying the simple
bound (6).

3) Positive Results on Partial and Almost Exact Recovery:
Our positive results follow from a large deviation analysis of
the maximum likelihood estimator (1). A crucial observation
is that the difference between the objective function in (1)
evaluated at a given permutation 7’ and that at the ground truth
7 can be decomposed across the edge orbits of ¢ £ 7~ o 7/
as

5)

<A”’—A”,B>= Y Xo- Y Yo cXx-V

0cO\0, 0Oe0\0
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where F' is the set of fixed points of o, O; = (g) CcOisa
subset of fixed points of the edge permutation 052> Xo £
igeo A () Biss and Yo = ¥ co An(iyn() Biss
are independent across edge orbits O. Crucially, Y depends on
7’ only through its fixed point set F', which has substantially
fewer choices than 7’ itself when n — |F| < n. Therefore,
for the purpose of applying the union bound it is beneficial to
separately control X and Y. Indeed, we show that Y is highly
concentrated on its mean. Hence, it remains to analyze the
large-deviation event of X exceeding E [Y], which is accom-
plished by a careful computation of the moment generation
function (MGF) M|o| £ E [exp (tX0)] and proving that for
any t > 0,

Mo < MYPV2, for |O] > 2. (16)

Intuitively, it means that the contribution of longer edge orbits
can be effectively bounded by that of the 2-edge orbits.
Capitalizing on this key finding and applying the Chernoff
bound together with a union bound over 7’ yields the tight
condition when ¢ = o(1). When ¢ = ©(1), it turns out that the
correlation between X and Y can no longer be ignored so that
separately controlling X and Y leads to suboptimal results.
To remedy this issue, we need to center the adjacency vectors
A and B. More precisely, define X = 2. jyeoAnym () —

O)(Bij —q), Yo £ Y ecoAxiyri) — O)(Bij — a)s
X2 ZOe_O\O_lyo’ and Y £ 2 0eo\0, Yo. By definition,
X —Y = X —Y. Crucially, it can be verified that X and Y
(and hence X and Y) are uncorrelated after the centering. Thus
we can apply our aforementioned techniques to separately
bound X and Y, which yield the sharp conditions of recovery.

We remark that the partial recovery results in [16] are
obtained by analyzing an estimator slightly different from
the MLE and the same MGF bound (16) is used. However,
there are two major differences that led to the looseness of
their results. First, their analysis does not separately bound X
and Y. Second, the tilting parameter in the Chernoff bound is
suboptimal.

4) Exact Recovery: For exact recovery, we need to further
consider 7 that is close to 7, i.e., n — |F| = o(n). In this
regime, the number of choices of F' is comparable to that
of 7/. Hence, instead of separately bounding X and Y, it is
more favorable to directly applying the Chernoff bound to the
difference X — Y. Crucially, the moment generation function
E [exp (t(Xo — Yo))] continues to satisfy the relation (16)
and the bottleneck for exact recovery happens at |F| = n — 2,
where 7" differs from 7 from a 2-cycle (transposition).

Prompted by this observation, we prove a matching neces-
sary condition of exact recovery by considering all possible
permutations o £ 7! o 7/ that consists of 7 — 2 fixed points
and a 2-node cycle (4, j) (transposition), in which case,

<A’f’ - A“,B>

- >

ke[n\{is}

(A7, — A7) (Bix — Bji) - (17)

2Note that O7 consists of fixed points of the edge permutation, while F'
denotes the set of fixed points of the node permutation. An edge pair (4,7) €
O; if and only if both ¢ and j belong to F.
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There remain two key challenges to conclude the existence of
many choices of (i,) for which (A™, B) > (A™, B). First,
to derive a tight impossibility condition, we need to obtain
a tight large-deviation lower estimate for this event. Second,
the RHS of (17) for different pairs (i, j) are correlated. This
dependency is addressed by restricting the choices of (4, 7)
and applying a second moment computation.

Note that the impossibility proof of exact recovery for the
Gaussian model in [12] also considers the permutations that
consist of a single transposition. The difference is that their
large-deviation lower estimate simply follows from Gaussian
tail probability and the correlations among different pairs (¢, j)
is bounded by a second-moment calculation using densities of
correlated Gaussians.

II. IMPOSSIBILITY OF PARTIAL RECOVERY

To start, we characterize the asymptotic value of the mutual
information (A, B;m) — a key quantity that measures the
amount of information about 7 provided by the observation
(A, B). By definition,

I(A,B;m) 2 E[D (Papx|Pa,5)]
E [D (Pa,pixlQa,B)] — D (Pa,B||Qas)

for any joint distribution Q4 p of (A,B) such that
D (Pa,B||Qap) < oc. Note that P, p|, factorizes into a
product distribution [[,_; Pa_ ;) .).Bi; = P®(), where P
is the joint distribution of (Ay(;)x(j), Bij). Thus, to exploit
the tensorization property of the KL-divergence, we choose
Qa.p to be a product distribution under which A and B
are independent and (A,;, B;;) are i.i.d. pairs of independent
random variables with a joint distribution () with the same
marginals as P. (We shall refer to this Q4 p as the null
model.) In particular, for the Gaussian (resp. Erddés-Rényi)
model, @ is the joint distribution of two independent standard
normal (resp. Bern(g)) random variables. Under this choice,
we have D (Pa p[|Qa5) = (5)D(P|Q) = (5)I(P) and
hence

1A Bim) = (5 )1P) = D (PaslQan).

By the non-negativity of the KL divergence, we have
I(A,B;w) < (3)I(P). This bound turns out to be tight,
as made precise by the following proposition.

Proposition 1: Tt holds that

14 5im) = (5)1P) = G

where
e ¢, = o(1) in the Gaussian model with p?
e (, = o(1) in the dense ErdGs-Rényi graphs with p =
n=°M and nps? (log(1/p) — 1 + p) < (2 — €)log(n);
e (n = O(logn) in the sparse Erds-Rényi graphs with
p=n"%1 and np = w(1) and nps®> < 1 — ¢
for some arbitrarily small but fixed constant € > 0.
Given the tight characterization of the mutual information
in Proposition 1, we now relate it to the Bayes risk. Using the
chain rule, we have

I(A,B;w) = I(Biw | A) = I(B; A7 | A),

(4—e)logn .
< 0
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where the second equality follows from the fact that A —
A™ — B forms a Markov chain. The intuition is that condi-
tioned on A, B is a noisy observation of A™ (which is random
owning to 7). In such a situation, the mutual information can
typically be related to an integral of the reconstruction error
of the signal A™. To make this precise, we first introduce
a parametric model Py that interpolates between the planted
model P and the null model Q as 6 varies. We write Ey to
indicate expectation taken with respect to the law Py.

For the Gaussian model, let Py denote the model under
which B = VAA™ + /1 — 07, where A, Z are two indepen-
dent Gaussian matrices and 6 € [0,1]. Then 6 = p? corre-
sponds to the planted model P while # = 0 corresponds to
the null model Q. As 8 increases from 0 to p2, Py interpolates
between Q and P. Let

mmseg(A™) £ Ey[||A™ — Eg[A™|A, B]||?] (18)
denote the minimum mean-squared error (MMSE) of estimat-
ing A™ based on (A, B) distributed according to Py. The
following proposition follows from the celebrated [-MMSE
formula [15].

Proposition 2 (Gaussian Model):

0’ ™
1/ mmseg (A )dé).
0

I(A, B;m) = 5 1—0)

The correlated Erd6s-Rényi graph model requires more
effort. Let us fix ¢ = ps and consider the following cou-
pling Py between two Bern(g) random variables with joint
probability mass function py, where pg(11) = ¢0, py(01) =
po(10) = ¢q(1 — @), and pe(00) = 1 — (2 — 0)q, with
0 € [g, s]. Let Py denote the interpolated model under which
(A,,(i)w(j) , Bij) are i.i.d. pairs of correlated random variables
with joint distribution Py. As 6 increases from ¢ to s, Py
interpolates between the null model Q = P, and the planted
model P = Ps;. We have the following area theorem that
relates I(A, B;m) to the MMSE of A™.

Proposition 3 (Erdds-Rényi Random Graph): 1t holds that

I(A, B;n)

< (i (e

Finally, we relate the estimation error of A™ to that of .
Proposition 4: In both the Gaussian and Erd&s-Rényi graph
model, if
mmseg(A™) > E [||A[]*] (1 - ), (19)

for some £ > 0, then for any estimator 7 = 7(A, B),
1/4 nlogn 1/4
Eg[overlap(w,m)] < O | £/7 + (7) .
E[llA[?]

Now, we are ready to prove the negative results on partial
recovery. We start with the Gaussian case.
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Proof of the negative part in Theorem 1: In the

Gaussian model, we have
1Py = D (N ((®). (20)) [V (8).(60)))

1

= —log——.
ogl_p2

Assume that p? = (4 — ¢/2)°%2" Fix some , € (0, p°) to be
chosen. Then,

n\ 1 1
“log ——— — ¢,
(2)2 0677 ¢

@ 7, B-7r)

(b)
<

/ mmseg(A™)do

. = ((a)f0 e (47167 - )

- (B
(s, (47 = (5)) (2 - eo>>,

where ¢, = o(1) and (a) holds by Proposition 1; (b) follows
from the I-MMSE formula given in Proposition 2; (c¢) holds

because mmsey(A™) < E[||A]|3] = (3) and the fact that

mmseg(A™) is monotone decreasing in 6. Rearranging the
terms in the last displayed equation, we get

mmseg, (A7) — (Z)

= ((Z) (log =7 —p;f) i 24")

where the last inequality holds because log(1+z) > x—x? for
x > 0. Choosing 0y = (4 — €)== logn "\ve conclude that

() (1-0(+53))
- (3) (-0 (%))

where the last equality holds because p* = O(log(n)/n) and
¢n = o(1). Since E [[|A|3] = (%), it follows from Proposi-
tion 4 that

Eg, [overlap(7,7)] < O ((loi”>1/4> .

1/4
Finally, by Markov’s inequality, for any d,, = w ((1"%)

mmseg, (A™) >

(20)

(in particular, a fixed constant 6,, > 0), Py, {overlap(7, ) >

dn} = o(1). Note that Py, corresponds to the Gaussian

model with squared correlation coefficient equal to 6, =

(4 - e)lo%. By the arbitrariness of ¢, this completes the

proof of Theorem 1. O
Next, we move to the Erd&s-Rényi graph model.
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Proof of the negative parts in Theorems 2 and 3: Let

2 (2—¢€)logn . 2 _ l—e :
= wplog(1/p)-15p) in the dense regime and s° = in

the sparse regime. Then we get that "
n

—Cn — < >qs

¥ / A7y — (") qa do

< : 1_q mmseg (A™) = { , Ja(1 = q)

(b) " n

<[4 1_q mmseon i os(47) = (5 )a(1=q) ) d8
- n

/ (mmse(lﬁ)S(A )—( )q(l—q)) do

(1—€)s S 2

5 (2268?16_)61_) 268(] (mmse“‘ﬁs(m) a (Z) Q(I_Q))

=0(s)

—
INe

where (, = o(1) in the dense regime and (, = O(logn)
in the sparse regime; (a) follows from Proposition 1 and
Proposition 3; (b) holds because mmsep(A™) is monotone
decreasing in 6; (c) holds because

(1—e€)s 0 —
q Fig n
/q W (mmsee/\(l—e)s(A )— <2>(I(1—Q)> do,

is bounded above by 0, <
E[[|[A—-E[A][|3] = (5)q(1 — q).* Rearranging the terms in
the last displayed equation, we conclude that

(s)e -0 (-0 (G ++))
(5)a01- 00,

in view of mmseg(A™) <

Y

mmse(l,E)S(A”)

Y

where the last inequality holds because g < s, ¢, = O(n?qs?)
logn . .
and s? = o8t Since E[[|A[3] = (3)q. it follows

from Proposition 4 that

1/4
E(1_¢)s[overlap(7, )] < O <$1/4+ <10ﬂ) )

ngq

of (=)™,
nq
where the last equality holds because ngs = nps® = O(logn).

Note that in the dense regime, since s2 = —logn _and
np(log 3 —1+4p)

p=n"°M, we have ng = nps = w(logn). This also holds in
the sparse regime when s? = % under the extra assumption

that np = w (log>n). Thus, by Markov’s inequality, for

1/4
any 0, = w ((%)
6n >0, we have P(_o{overlap(7,m) > 0,} = o(l).
In other words, we have shown the desired impossibility
result under the distribution P(;_.)s, which corresponds to

), in particular, any fixed constant

3The fact that mmseg(A™) is monotone decreasing in 6 follows from a
simulation argument. Let (A, B) ~ Pg. Fix 0’ such that ¢ < 6’ < 0 <
s. Define B’ = (Bj;) by passing each B;; independently through the

same (asymmetric) channel W to obtain B’ where W (0[1) = w

and W (1/0) = 2= are well-defined. Then (A, B') ~ Py.
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the correlated Erdds-Rényi model with parameters p’ = -

and s’ = s(1 —¢). By the arbitrariness of ¢, this completes the
proof.

|

A. Proof of Proposition 1

In this subsection, we prove Proposition 1, which reduces
to bounding D (P4, 5|Qa,p). It is well-known that KL diver-
gence can be bounded by the y2-divergence (variance of the
likelihood ratio). This method, however, is often too loose as
the second moment can be derailed by rare events. Thus a
more robust version is by means of truncated second moment,
which has been carried out in [26] to bound TV (P4 5, Qa,B)
for studying the hypothesis testing problem in graph matching.
Here we leverage the same result to bound the KL divergence.
To this end, we first present a general bound then specialize
to our problem in both Gaussian and Erdés-Rényi models.

Lemma 1: Let Pxy denote the joint distribution of (X, Y).
Let £ be an event independent of X such that P(£) =1 — .
Let Qy be an auxiliary distribution such that Pyix < Qv
Px-a.s. Then

D(Py[|Qv) < log(1 +x*(Py(e Q)
+5 (105 + EID(Py /10

dPy|X)
+4/0 - Vi 1 ,
\/ ar(og 20y

where Py-|¢ denote the distribution of ¥ conditioned on &, and
the x2-divergence is defined as \%(P||Q) = [(dP )2 if
P < @ and oo otherwise.

Proof: Note that Py = (1 —0)Py|¢ 4+ 0Py g-. Thanks to
the convexity of the KL divergence, Jensen’s inequality yields

D(Py|Qy) < (1 —0)D(Py el Qy) + dD(Py|ec[|Qy)-

The first term can be bounded using the generic fact that

21

D(P|Q) < logEq[(g5)*] = log(l + x*(P|Q)). Let
g(X,Y) = log d:él/x . Using the convexity of KL divergence

and the independence of £ and X, we bound the second term
as follows:

D(Py|e<||Qy)
E[D(Py x| Qy)]

dP .
E |:/ dlpy|X’gc 10g (7dYQ);£ >:|

_ Ude TR (%ﬂ

log 5T 5E[( 9(X,Y)1(x,v)eee})

= log 5 +Elg(X,Y)

1
+5E [(9(X,Y) —Elg(X,Y)]) Lix,v)eee}] -
Applying Cauchy-Schwarz to the last term completes the
proof. O
Next we apply Lemma 1 in the context of the random
graph matching by identifying X and Y with the latent 7
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and the observation (A, B) respectively. Let £ be a certain
high-probability event independent of 7. Then
1
P = — Papl T)EEL
A,B|E PE) nl Z A,Blya B mes)
TES,
Recall that the null model is chosen to be Q4 p = P4 @ Pp.
As shown in [26], for both the Gaussian and Erd&s-Rényi
graph model, it is possible to construct a high-probability
event & satisfying the symmetry condition P(€ | 7) = P(E),
such that x*(P4 p|e]|Qa,8) = o(1). This bounds the first

term in (21). For the second term, since both A and B are
individually independent of 7, we have

A,B|m

d
E [log 7;;;1 B

)

} = I(A; Br)

- ()i =(5)1e). e

where the last equality holds because () is the product of
the marginals of P. The third term in (21) can be computed
explicitly. Next we give details on how to complete the proof
of Proposition 1.

a) Gaussian model: 1t is shown in [26, Section 4.1,
Lemma 1] that there exists an event £ independent of
such that P(£¢) = e~ ™) and y2 (Pg]|Q) = o(1), provided
that p? < m. Furthermore, by (22) and (7), we have

E {bg IPa e (g)%logﬁ = O(nlogn). To compute
the Varlance note that
dPy Bl 1/n 9 h(A, B, )
log———— = — = log(l — p?) — —~—2—~
Ty 5| o ) log(l —p%) 10—
where
B(A,B,m) 2 pPI|A|2 + p?I| B2 - 2p (A", B)
Thus Var(log dAB"’) 167\/'&1"( (A B, 7)).
Writte B = pA™ + /1 —p2Z where is an
independent copy of A, we have h(A, B ,T) =
G(IBIP — | AI?) = 2p\/T— 77 (A7, Z). Here both [|A|* and

| B||? are distributed as X2"n , with variance equal to 2(3).

2
Furthermore, Var((A™, Z)) = (3). Thus Var(h(A, B, 7)) =
O(nlogn). Applying Lemma 1, we conclude that
D(Pa,pllQa,B) = o(1).

b) Erdds-Rényi Graphs: In the dense regime of
p = n°® and p = 1 — Q(1), it is shown in

[26, Section A.3, Lemma 6] that there exists an event £ such
that P(SC) = e " and 2 (Pg|Q) = o(1), provided
that nps (log(l/p) —1+4+p) < (2—¢€)log(n). In the sparse
regime (see [26, Section 5, Lemma 2]), it is possible to choose
& such that P(E°) = O(+) and x? (Pe||Q) = o(1), provided
that nps? < 1 — € and np = w(1).

By (22) and (8), we have E Llog = (g)I(P)
where I(P) = qd(s|q) + (1 — g)d(n]g). with g = ps and
n = qf%;. In both the dense and sparse regime, one can
verify that

d'PA B\'rr

I(P)= s?p <p -1+ logl—lj) (14 o0(1)).
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dP 4 B\‘rr

As a result, we have E {bg
cases.
It remains to bound the variance in (21). Note that

PA,B|7m) (n 1—n
8o ) <2>log1—p8

} = O(nlogn) in both

+ %h(A’ B’ ’/T)?

where

1—s
h(A,B.m) & log 7= (14 +]1BI)

s(1—n) "
ogi A

ni—s) 40
Since p is bounded away from 1 and s = o(1) in both the
dense regime (p = n—°")) and sparse regime (p = n—(1)
and np = w(1)), it follows that

+1

1—n s(1—p)
BT = 1Og<”<1—s><1—ps>>
— (1+0(1)s(1 - p)
si=n) _ (1-m(l-ps) _ 1+o(1)
W18~ pll-s)? P

Note that HAH2,||BH2 ~ Binom((}),ps) and (A’T B) ~
Binom((}),ps®). We have Var(h) = O(n?ps®log” 5). Con-
sequently, y/Var(h)P(€¢) = o(1) and O(logn) in the dense
and sparse case, respectively. Applying Lemma 1 yields the
same upper bound on D(P4 5||Qa. B).

B. Proof of Proposition 2

The proof follows from a simple application of the -MMSE
formula for the additive Gaussian channel. Note that under the
interpolated model Py, we have

B Z
A 7L 4
VIi-0 1-6

which is the output of an additive Gaussian channel with
input A™ and the standard Gaussian noise Z. Letting I(6) =
I(B;A™ | ) = I(A,B;7) and using the I-MMSE for-
mula [15, Theorem 2], we have
di(e 1
(6) = —mmseg (A™).

a@/1-9)) 2

Wmmseg (A™). Integrating over 6 from

(23)

dr) _
Thus W =

0 to p? and noting 1(0) = 0, we arrive at
’ 1
/ mmmsee (Aﬂ—) deb.
0 —

C. Proof of Proposition 3
Note that under the interpolated model Py, we have

0 r=1y=1
1-0 z=1,y=0

€T = s =
po(y|x) ) e—0y=1" "

q(1-10)
1—q

1—-n 2=0,y=0

D(FR|Q) = q-d(0llg) + (1 — g)d(nllg). Then

Let g(§) &£ D —q)d(n
D(P||Q) and g(q) = 0. Let I(8) = Iy(A, B;m),

9(s) =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

where the subscript 6 indicates that A™ and B are distributed
according to Py. Then
I;(A™; B|A) = Hs(AT|A) — H4(A™|B, A)
H,(A™|B,A) — Hy(A™|B, A)

s d
= — AT|B, A)d
| gttt Ao
where the second equality holds because for a fixed ¢,
Hy(A™|A) does not change with 6 and when 6 = ¢, A™
and B are independent and hence I,(A™; B|A) = 0 so that
H,(A™|A) = H,(A™|B, A). By [7, Lemma 7.1], we have

B4 = @+ ()5 (o) - 9(0)

- - (Z)g’w),

where h(q) = —qlog g—(1—¢)log(1—gq) is the binary entropy
function,

I = Z Z Ipe ( ye|$e

ec(ln]) Te e

E | pte(we|Bye, A)10g > po(yelal) e (2| Bye, A) |

’
Te

B\, denotes the adjacency vector B excluding Be, fic(- |
B¢, A) is the distribution of A7 conditional on (B, A)
under Py. Note that the expectation in (I) is taken over the
random variables A, B\, which depend on 6. Since g(q) = 0,

we have
- /q W+ (Z)g(s)
- /q <I>+( ) (PlQ). @4

It remains to relate (I) to the reconstruction error. Note that
for z,y € {0, 1},

po(ylr) = a(z)y+(1-a(@))(1-y),

I(A™; Bl) =

a(z) = 0z+n(l—2)
(25)

and
dpe(llz)  Oa(x) n B
20~ o9 ol Y=

Thus for each =z,

Ipo (Ye|ze)
> — E fie(ze| Bye, A)x

Yye=0,1

log > po(yelal)pe(z,|B\e, A)
x,=0,1
Ipe(1|z.)

= ———FE
00

Ope(0|x)
09

pe(Ze| Bye, A) X

Z:r/f,‘:(),l p9(1|$/e)/j'e(x/e|B\ea A)
L= Ez;:m po(1|zl) pe (0| Byes A)

=g, A ]

log
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where we defined After some simplification, we have
e = ye(Bi, A) 2 Y po(Llee)ue(e|By., A). Te= Y epte(we|B, A)
x.=0,1 Te

56(936 + (1 - 6)(1 - Be))
1—n—(1-2n)B.+Z.(2B. —1)(8 — n)
Z Z Ope( ye|xe _ {1571_57%?77) Be=0

= i~ -
20=0,1y.=0,1 n+Ze(0—n) Be=1

Since n < ¢ < 0 < s, we have

and used h/(z) = log 1=%. Then we have =

E | pe(we|Bye, A)1og D polyelu)pe(al| B, A) )
2/=0,1 Z. < B,min (1, —Ee> + (1 —= Be)ze
n

dy
[ 8(96 R (y )] and hence
2
Let 7. = E[A]|B\., A]. Then y. = 0z +n(1 — 7). Let E[z?] < E |min (1, %@) B.| +E[zZ]
- 0—q, .
Ac=yo—q= (0—n)(T.—¢q) = 1_q(xe—q). Note that
q 5 9
Then E[A.] = 0 and E[A2] = (§=%)?Var(Z.). Furthermore, E |min {1, e Be
Oye | (a) s 2
50 Tq(xe - q). 2 E |E |min (1, E@) ‘Ag E[B. | A7]
Using h"/(z) = x(l 2y We get W (ye) = h'(q)— ﬁAe (b) . s\
for some ¢ between 7, and ¢. Note that n < ¢ < 6 < s and = E |E |min <17 —$e> ‘AZ (sA7 +n(1— A7)
Ye € [1,0]. Thus n < € < s. So g
()
e, < SE[AT] + sE [E [x A’f} (1- Ag)}
—-E h (ye)
a0 < sq+ sE[z.] = 2sq
h(q 60— Te —q)?
= -1 E )E [Ze —q] + 1= q)QIE {(;(61 _qf)) } where (a) follows from the conditional independence of Z.
o_ qq q (which depends on (4, B\.)) and B. given AT; (b) follows
= S(1—q)2 Varg (z.). from (25); (c) follows by using min (1, Exe) <1 to get the
2
Integrating over 6 we get first term and min ( 1, %56) < %56 to get the second term.

Combining the previous two displays yields that

[o-%[ de( [ayeh% ) )< 2o B[R] < 200" Vor ()

> Z / el Vare (72 26) It follows that
mmse(A™)
Finally, note that the above bound pertains to Z. = = ZE[ — 7. }
E[A]|B\., A], which we now relate to Z. = E[A]|B, A].
Denote by . (:|B, A) the full posterior law of AT. Note that _ Z (E [a:Q] _E [gQ])
e e
er Lefle (xe|B\ea A)pg (Be|x6) ‘

Te = erﬂe(xe|BaA) =

Te

v

>, el Bro. Apo(Belz) | (g)qu_q)_z(;)sq_;var @. e

where the last equality holds by the Bayes’ theorem and the Combining (26) with (27) yields that
independence between B, and (A, B\.) conditional on A7,

e S
that is, / )
q

,u'e(xe|BaA):]P{A7eT:xe|BaA} - gd@ 0—q
o<]P’{Ag:xe|B\e,A}]P’{B6|Ag:xe,B\e,A} = /q s(1—q)2
= Me € B evA Be e)-
12 (iL' | \ )p9( |£L’ ) <<g) (1 _Q) —2<2>sq mmseﬂA”)) do
By (25), we have
= df ——— (1— AT) ) de
po(yle) = 1=y + (6 +n(1 — 2)) (2y — 1). / —o ((5) -0 - mseatar) )
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B (n> (s —a)’q
(1 - q)
/ dd———— 1 —)? ((2) (1-q)— mmseg(A”)> de
e

The conclusion follows by combining the last display
with (24).

D. Proof of Proposition 4

In this section, we prove Proposition 4 by connecting the
MSE of A™ to the Hamming risk of estimating 7. In particular,
assuming (19), that is, mmse(A™) > E [||A[?] (1-¢€), we aim

=0 (& + (i) /") for
any estimator 7(A, B). We first present a general program and
then specialize the argument to the Gaussian and Erdés-Rényi
graph model.

Recall that overlap(r, 7) denotes the fraction of fixed points
of 0 £ 77107, Let a7, 7) denote the fraction of fixed points
of the edge permutation oF induced by the node permutation
o (cf. Section I-C.1). The following simple lemma relates
a(m, ) to overlap(m, 7).

Lemma 2: Tt holds that

to show that E [overlap(7, 7))

E [overlap(m, 7)] < E[a(r, 7)] + %

Proof: In view of (15),

(noverlazp(w, %)) . (;L) o).

By Jensen’s inequality,

(nE [overl;p(ﬂ, %)]) B [ (noverl;;p(ﬂ, %))]
< (g)Ma(ﬂﬁ)].

The desired conclusion follows because for z,y > 0, ("2””)
By <= nat-z - (n -1y <0

=
1+\/1+4 —1)y

In v1ew of Lemma 2 and the fact that
it suffices to show E [a(m,

Let ap = Efa(r, )] and define an estimator of A™ by
A = agA™ + (1 — ag)E[A]. This is well-defined since Qg is
deterministic and 7 only depends on (A, B). Intuitively, A can
be viewed as an interpolation between the “plug-in” estimator
AT and the trivial estimator E [A™] = E[A]. We remark that
to derive the desired lovler bound to «y, it is crucial to use the
interpolated estimator A rather than the “plug-in” estimator,
because we expect «p to be small and 7 is only slightly
correlated with 7.

On the one hand, by definition of the MMSE and the
assumption (19),

IAIA

MO

E[lA]7] < n

7] = 0(€72 + (i 2

E[ll47 - A7 = mmse(A™) > E[J4)?] (1-¢). @8)
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On the other hand, we claim that in both the Gaussian and
Erd6s-Rényi model,

E [<Aﬂ,/ﬁ>] > E[||A)2] o

-0 (VElaRInosn). @9
so that
E[|lA™ - 4J2] = E[|A7I?] +E [ )] - 28 [(4", 4)]
Y (14 ad)E [14)7] ~ (1~ a0)?||E [4]]?

— 2a0F KA”, A*ﬂ

< (1-ag)E [||Alf]
+0 (ao E[|A|§]n10gn> ,

where in (a) we used the fact that E[A™] = E
constant and (E[A],AT) =

(30)

[A] is entrywise
ElAw] >i; Az rg) =

E[A12] Yo, Aiy = (E[A],A) so that (E[A],E[A7]) =
| E[A]||?>. Combining (28) and (30) yields that
9 nlogn
% = “O<a° E[IA|2]>
logn
—ap= O eV2 [ 081 ) 31
w0 (’5 E[TAT] Gy

To finish the proof, it remains to prove the claim (29).
Proof of Claim (29): Let C be a sufficiently large con-
stant. For each permutation 7’ € S,,, define an event

Fo = {<A’:A“’> > E[||4]?] a(r, ')

—C W} (32)
and set F = Nyes, Frr. It follows that
B |(47 47)]
= El(4"

A7) 1m | +E [(A7, A7) 1)

> [HAH | E [a(m, 7)1z]
E[[A]2]nlogn — E [ A]*1{r]
=z E[HAHQ} (a0 = P{F})

— CVE[[A]% nlogn — VE[|A|[]P{F<},

where the last inequality holds because
E [a(w, %)1{;}] = Ela(r,7)] - E [a(w,?r)l{fu}]

2 ap — ]P){-/Tc}v

and E [||A|?1{7] < E[[A[Y]P{F°} by the Cauchy-
Schwarz inequality. Note that E[||A[|*] = O(n?), and
E [||A]|?] is equal to (%) in the Gaussian case and (3)q in
the ErdSs-Rényi case (with ¢ > n~9W). To get (29), it
suffices to prove P {F¢} < e~"1°8" which, by union bound,
further reduces to showing that P {F¢,} < e=2"1°8" for any
permutation 7' € S,,. To this end, we consider the Gaussian
and Erdés-Rényi graph model separately.
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For the Gaussian Wigner model, let M € {0, 1}([;])X([3])
denote the permutation matrix corresponding to the edge per-
mutation oF induced by o = 7~ 'on’. Recalling that A denotes
the weighted adjacency vector, we have (A™, A™) = AT MA.
By Hanson-Wright inequality Lemma 9 in Appendix , with
probability at least 1 — §

ATMA =Te(M) = O (|M |3/ 10g(1/8) +]| M2 10g(1/5))

where C’ > 0 is a universal constant. Since Tr(M)

(5)a(m, @), [[M||% = (5), and the spectral norm || M2 = 1,

it follows that with probability at least 1 — 6,
ATMA > (Z)a(w,w’) —c (n\/log(l/é) + 1og(1/5)) .

Choosing § = e~2"1°8™ and C in (32) to be a large enough
constant, we get that P {F.} > 1 — e 2nlosn,

Next, we move to the Erd6s-Rényi graph model. Fix any
permutation 77’ € S,,. Let O7 denote the set of fixed points
of the edge permutation induced by 7’ o 7—!. By definition,
|01] = (3) (7, 7’) and

<A“,A”'> > 3 Aj ~ Binom <<Z)a(7r,7r'),q> .

(2,7)€01

By Bernstein’s inequality, with probability at least 1 — 6,
(447
> (Dot
—c <\/<Z) a(m, m)qlog(1/8) + 10g(1/5)>
(2ot

_c ( n2qlog(1/8) + log(l/é)) :

v

where C’ > 0 is a universal constant. Choosing § = e 271087

and C' to be a large enough constant, we get that P {F,/} >
1— 67271 log n.

III. POSSIBILITY OF PARTIAL AND ALMOST
EXACT RECOVERY

In this section, we prove the positive parts of Theorem 2
and Theorem 3.

We first argue that we can assume ps < 1/2 without
loss of generality. Note that the existence/absence of an edge
is a matter of representation and they are mathematically
equivalent. As a consequence, by flipping 0 and 1, the model
with parameter (n,p, s) is equivalent to that with parameter
(n,p',s") for an appropriate choice of p’ and s’ such that
p's’ =1 — ps, where

2
;) (1—])5) s —

1 — 2ps + ps?
P 1 —2ps + ps?’ ’

33
1= ps (33)
Therefore when ps > %, we can replace the model (n,p,s)

with (n,p’,s’) so that p’s’ = 1 — ps < %

5401

For any two permutations 7,7’ € S, let d(m,7’") denote
the number of non-fixed points in the 7/ o 7~1. The following
proposition provides sufficient conditions for 7y defined
in (1) to achieve the partial recovery and almost exact recovery
in Erd6s-Rényi graphs.

Proposition 5: Let ps < . If p=1—o(1) and

ns’(1—p)*
— > (4 1 34
orifp=1-—Q(1) and
(24+¢€) logn . _1
nps® > ¢ les(/p)=l¥p %fp = (35)
4+4+¢€ ifp<n™2

for any arbitrarily small constant e > 0, there exists a constant
0 < 6 < 1 such that

P{d(7mL,7) < on} > 1— p 1o,

that is, Ty achieves partial recovery.
If in addition nps?(1 — p)? = w(1), then for any constant
>0,
P{d (RuL,7) < on} > 1 —n~ 1T,

that is, Tw achieves almost exact recovery.
Remark 2: We explain how to prove the positive parts of
Theorem 2 and Theorem 3 using Proposition 5.

o In the dense regime of p = n=°W either (34) or
(35) already implies that nps?(1 — p)?> = w(1). By
Proposition 5, the MLE achieves almost exact recovery
under the condition (34) when p = 1 — o(1) or nps? >
w?&ﬂlfloﬁ% when p = 1—Q(1); this proves the positive
part of Theorem 2.

e In the sparse regime of p = n*"), condition (9)
implies (35) and hence the MLE achieves partial recov-
ery; this proves the positive part of Theorem 3. Further-
more, since nps? = w(1) implies (35), the MLE achieves
the almost exact recovery provided that nps? = w(1),
which is in fact needed for any estimator to succeed [6].

Q(1)

To prove Proposition 5, we need the following intermediate
lemma, which bounds the probability that the ML estimator (1)
makes a given number of errors.

Lemma 3: Let e € (0,1) be an arbitrary constant and
ps < 3.

o For the Erdds-Rényi model, suppose that either (34) or

(35) holds. Then there exists some constant 0 < § < 1
such that for any k > dn,

P{d(7mL, ) =k} < 2exp (—nh (%)) lip<n—1y

1
X e—210gn1{k:n} + exp (_aek log n) , o (36)

where h(z) = —xlogx — (1 —2)log(1—x) is the binary
entropy function.
If in addition nps?(1 — p) = w(1), then (36) holds for
any constant 0 < § < 1 and all k£ > don.

« For the Gaussian model, suppose that np? > (4+¢) logn.
Then (36) holds for any constant 0 < § < 1 and all
k > on.
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Note that Lemma 3 also includes the Gaussian case.
In fact, analogous to Proposition 5, we can apply Lemma 3
to show that the MLE attains almost exact recovery when
np® > (4+¢€)logn. We will not do it here; instead in the next
section, we will directly prove a stronger result, showing that
the MLE attains exact recovery under the same condition.

Now, we proceed to prove Proposition 5.

Proof of Proposition 5: Applying Lemma 3 with a union
bound yields that

P{d (%ML, 7T) > 571}

n

Z P{d(%ML,T{') = k}

k>on

IN

n—1

exp (—2logn) +2 Y exp (_nh (§>>

k>on

1
+ Z exp (—aeklogn>
k>dén

— n71+o(1)7

IN

(37
where the last inequality follows from » , _, exp
(—Zeklogn) < exp(~grfnlogn) —X

1—exp(—65—4 log n)
fixed constant § > 0, and

= n %M for any

10logn
>,

n
<2} (—kl —) 2
< exp og A +

k=1 10logn<k<n/2

< 271987 % 10logn + 4 x 2710l — p=1to(l)

where (a) follows from h(z) = A(l — z) and
h(x)za:log%. O

A. Proof of Lemma 3

Without loss of generality, we assume ¢ < 1. Fix k € [n].
Let 7}, denote the set of permutations 7’ such that d(w, ') =
k. Recall that F' is the set of fixed points of ¢ £ 7!
7 with |[F| = n —k and O; = () is a subset of fixed
points of edge permutation oF. Let A = (A;j)1<icj<n =
(Aij — E[Aij]1<icj<n and B = (Bij)i<icj<n = (Bij —
E [Bij;])i<i<j<n denote the centered adjacency vectors of A
and B respectively. It follows from the definition of MLE

in (1) that for any 7 € R,
{d (Fuw,7) = k}
c {377' €T : (A", B) — <A”’,B> < o}

[¢]

(a) _ _ _ _
C 3 €Tt ) Anin(y Bij— ) Aw(iyw () Big <0

1<J 1<J

> Aniyn(n B

= {377' €Ty
(1,5)£01

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

- Z Zw'(i)w'(a‘ﬁz‘jﬁo}

(4,7)¢01

C {3 €Ti: Y Arm(nBiy <7
(1,5)¢ 01

USFmeTi: Y AwwiBiy 270,
(1,) 01
where (a) holds because (A™, B) — <Avr’7 B> _
Zi<j An(iyr() Bij — Zi<j Az (iyer () Bij. Note that

In' €Ty Z Ariye(yBij < T
(4,5)£O1

= dF C [n] : |F| =n—k, Z Zw(i)w(j)gij <T
GE(5)
Thus, by the union bound,

]P{d (%ML;'/T) = k}

< >, P

FC[n]:|F|l=n—k

+ > P

' €Ty,

Y AneBiy <7
i.0¢(5)

Y AvwwpBiyzT
(1001
Let V' = 33 g0, Artyr(pBiy and Xo = 33 500,
Aﬂ_l(z)ﬂ./(])B” Then,
Pl =k < (1P <n)
+ Z P{Xﬂ" > T}

' €Ty,
(D + {dD.

(1>

(38)

For (I), we claim that for both the Erd6s-Rényi random
graph and Gaussian model and appropriate choice of 7,

D < exp <—nh (S)) +exp (—2logn) 1ip—pny. (39)

For (II), applying the Chernoff bound together with the
union bound yields that for any ¢ > 0,

m< > P{Xp>7}

' €Ty,

< nFexp (—t7) E [exp (tXH)] - (40)

Note that

Xﬂ./ =

> Y Avw)Bi

0ec0O\0; (i,j)€0

£Xo
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where O denotes the collection of all edge orbits of o. Since
edge orbits are disjoint, it follows that X are mutually
independent across different O. Therefore,

E[exp (tX)] = H E [exp (tX0)] . 41)
0e0\0,

It turns out that the MGF of X can be explicitly computed
for both Erd6s-Rényi random graph and Gaussian model.

In particular, applying Lemma 7 yields that E [ety‘?} = M),
and M, < M§/2 for ¢ > 2. It follows that

(3)
Efexp (tX,)] 2wy [T i
=2
(3)
< e T
=2
© (M} 32 (3')*2("51)
?(5) m
k
@ (MEN? o
= P M 2
<«A42 2
where (a) follows from (41) and N; = ("21) + no in view

of (15); (b) follows from M, < MZ/2 for ¢ > 2; (c) follows

from Egi)l (N, = &g), (d) follows from ne < k, ny = n —k,
and m £ () — (","). Combining the last displayed equation

with (40) yields that

k M?
I < exp (klogn—t7+§logﬁ;+%logM2)
(a) k M2 m
< 1 - log —- My —1
< exp(kogn t7+20gM2+2( 2 ))

(2 exp (— —klog n)

where (a) holds because log(1 + z) < x for any z > —1;
(b) follows from the claim that

. k. M;
tlg(f){ tr+ — logm—i——(Mg—l)}

< (1+ )klogn 42)

It remains to specify 7 and verify (39) and (42) for Erdds-
Rényi and Gaussian models separately. In the following,
we will use the inequality

1(1—l>kn§ m < kn, 43)
2 n

which follows from m = (%) — (*;*) = kn ( k1),
o For Erdds-Rényi random graphs, A = (A;; — q)1<i<j<n
and B = (Bij—q)1<i<j<n, Where ¢ = ps. Then for any

F C [n] with |[F|=n—k,

Y= Y (Aeiyn) — O(Bij — ).
i.0)¢(5)
Note that E [(A,,(i)ﬁ(j) —q)(Bij — q)] = ps?(1—p) any

i<

Let 4 = E[Y] = mps?(1 —p) and set 7 = (1 — )u
where

16h(k/n)
2 )V ksn—1
7= 16logn kE=n

n(n—1)ps?(1—p)?
We next ch(2)ose a constant 0 < 0 < 1 such that
h(8) /6 < s=nps*(1 — p)?. Since h(z)/z is monotone
decreasing in x and converges to 0 as « — 1, under
the condition (34) or (35), t2here exists some 0 < § <
1 such that h(8) /0 < gmnps*(1 — p)?. If further
nps?(1 — p)? = w(l) then for any constant 0 < § < 1,
2

h(8) /6 < £=nps*(1 — p)?. Hence, for all on < k <
n — 1, we have 2h (£) < h(8) /s < 2%71}752(1 —p)2,
and then v < % < 16; if k& = n, since
np52(1 —p)? = Q(1) under the condition (34) or (35),
v < 16 for all sufficiently large n. In conclusion, we have
v< 5
Applying the Bernstein inequality yields

é,yQMQ )

mps® + 3yp

Qjevu(l )>

(a)

P{Y <7} < exp (—
() <
< exp

< exp <——72u(1 - p)> : (44)

where (a) holds because for any ¢ < j
E [(Ax(iyr() — 07 (Bij — 9)?]
= ps? (1 — 4Aps + 2p?s + 4p?s® — 3p352)
< ps® (1= 2ps + 4p?s®) < ps?,
. . 1 A o n
in view of ps < &; (b) holds because mps? = 1‘_1) and
v < 15- By (43), we have

Y2u(l - p) > {z(lzg_nl)h(k/n)- l]z i Z_ L

Finally, applying (44) together with () < emn(5), we
arrive at the desired claim (39).

Next, we verify (42) by choosing ¢ > 0 appropriately.
Recall that ¢ = ps. In view of (64) in Lemma 7,
M5 depends on ¢ and ¢g. When ¢ is small and p is bounded
away from 1, we will choose ¢t < 1og%; otherwise,
we will choose ¢ < 2%0 As such, we bound M> using its
Taylor expansion around ¢ = 0 and ¢ = 0, respectively,
resulting in the following lemma.

Lemma 4: Assume ps < l

—Ift<10g— then—1<e and
My < 1+¢%*s* —2¢% +10 ¢t(1 + 1)
+2elq?(1 — s%) + e*g?s%. (45)
- Ift < 2%, then ?\/[—g < €2, and

My < 1+t%0* (14p%) +8 t%qs,  (46)

s—q
1—q

where p = and 02 = q(1 — q).
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The proof of Lemma 4 is deferred to Appendix . With (%) —(1—7) <log1 + 1—p> +~(1—p)
Lemma 4, we separately consider two cases, depending P
on whether ¢ is small and p is bounded away from 1. Pick (<b) 1
qo and ¢ to be sufficiently small constants such that = (1 -7 E) log ——l+p
co < i, q0 < —¢(l — o), where (a) holds because s? < 1; (b) holds by (50)
213 480 : :
in Claim 1. Hence,
where for any = € (0, 1), we define 1 1
2
. log%—l—i—x S mps (f() 5 <log——1—l—p)>
¢ (x) = 1) T (47)
x (log ;) (1 + log ;)
< mps (1—7——) log——l—l—p

This function is monotonically decreasing on (0,1) (see 2 24
Appendix for a proof). - ( 6) 1 ( )

—(1+-)(1—=](1l—y— =)kl
Then we separately consider two cases. - + 4 n 7 s

Case 1: ¢ < qo and p < 1 — ¢g. Here we will pick

1 : where the last inequality follows from (43) and our
t <log e Then, by (45) in Lemma 4,

assumption nps? (log(1/p) — 1 + p) > (4+¢) logn.

k. M2 - Case 1(b): (2 + ¢logn <

—tr+ 3 logﬁ Ty (M2 -1) nps (log(l/p) —14p) < (4 + e)logn and
p>n- 7. We p1ckt—log— and get

INs

—t(1 —y)mps*(1 — p) + k + % (My—1) L
b) 1 ft) <-—2(1- )log + 4201 -5?)
< k+ 5mps2 (f(t) +10 p*st(L + 1)), p

—~

+ps —2p
where 1 52

= —2(1—~n <log——1+p>+—
ft) 2 —2(1 =) t+e*ps?+2 e'p(1—s%) +ps® —2p; ( ) p p

+2y(1—p)+s*(p—2
(a) holds by 3 Ml < €?; (b) holds by (45). Note that for 7(1=p) (r=2)

(a) € 1
t<lo < —2(1-y-—)(logs -1
85 < 7)oy —1Hp
1 1
10 p?st(1+¢) < 10 gp <log—> <1+log—> +2y(1-p)
P ®) ¢ 1
1 < 2(1— ——)<log——1+p),
< 13 (log -—1+ p> (48) Tm p
82 (44-€) logn
where the last inequality holds because ¢ < ¢ < v:here (a) holds because P = np2(log(1/p)—1+p) =
(1 — o) < 150(p), and ¢(x) is a monotone i (log(l/f) — 1+ p) for all sufficiently larget n
decreasing function on z € (0,1) by Lemma 10. when n=> S p < 1 —co: (b) holds mn view
Therefore, to verify (42), it suffices to check of (50) in Claim 1. Then under the assumption that
) nps? (log(1/p) — 1 + p) > (2+€) logn, and by (43),
2
Smps” | f(t) + (log——1+p>) 1 1
2 ( 48 Emps2 (f() 5 <log——1—l—p)>
< (1+6 )klogn—k (49)
. . < —(1+—)<1——>(1—’y——)k10gn
To this end, we need the following simple claim. 2 n 16
; . 2 1
Claim  1:  Suppose  nps” (log; —1+p z — Case 1(c): np52 > 4 +eand p < n=%. We pick

(2+€)logn. Then, for all sufficiently large n and t=1log-L < log L, where the inequality follows

all 0 <p<1-co, because S > p, in Vlew of nps? > 4+ ¢ and p <

€ 1 n~z. Then
wW(l-p < 2 log Z —1+p). (50)
: : ft)= —(1=7)log— +1+2y/5(1—5%)
We defer the proof of Claim 1 and first finish the proof ps S
of (49), by choosing different values of ¢t € [0,log %] — 2p 4 ps®
according to different cases. 1 D
— Case 1(a): nps (log(l/p)—1+p) (44 ¢€)logn. < _(1_7>10g}§+1+2\/8_2
We pick ¢t = % log & e Then € 1
< - (1—7——)1 08—,
)= —(1—=7)1 1+2( 1)? s
1) = (1=7)log P s WP where the last 1nequallty holds forn sufﬁc1ently large
+2p—2p because % < Zfie < 4—+6 and log > 2 logn
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when nps? > 4+ ¢ and p < n~2. Then,

1, 1

-  (log= -1

5P (f()+48 (ng +p>)

(a) 1 1

< ——(1——)(1—7——)knps log
4 n

< (49 (15) (1_7__)“%

where (a) holds by (43) and 1og L _14p<log- 557
(b) holds due to np52 >4d+e

Hence, in view of v < <
the three cases, we get

lmps2 inf f(@)

2 0<t<log(1/ps?)

< -(1+3) <1—%) (1——)klog4j_€
< (1+6)k10gn k,

where the last inequality holds for all sufficiently large
n. Thus we arrive at the desired (49) which further
implies (42).
Now we are left to prove Claim 1.

Proof of Claim 1: Note that for any 0 < p <1 — ¢,

8h(5)/6 (log 1 1+p)

g for on < k < n, combining

(a) (b)
16h(6)/3 (&

1—p) <
Y1 -p) = nps? logn
(é) 16h(6)/d

1
<log -—1 —|—p)
<log 1_160 - co) logn p

(i) € | 1 1
< g \less—1+p

where (a) holds because if on < k < n —1, h(z)/x
is a monotone decreasing function on 0 < z <
1 and %h(%) < h(d) /s, and if k = n, I:Zg? <

h(8)/6 for n sufficiently large; (b) holds by assumption
nps> <log% -1+ p) > (24 ¢€)logn; (c) holds because
log% — 1 + x is monotone decreasing function on = €
(0,1) and we have p < 1—cq; (d) holds for n sufficiently
large. Hence, the claim (50) follows. O
Case 2: ¢ > qo or p > 1—cq. Here we will pick t < 515.
Then, by Lemma 4, we get
k. M?
—tr+ = log——i-m(Mg—l)
My

(a)
< k—tr+5(M2—1)

(b)
< k+mf(t),
where

F(t) 2 —tpo? (1 - 1—6) = (My—1);
(a) holds by %f < 62 and (46) given t < iy (b)
holds because 7 > po?m (1 - —) in view of (1—

S
1
y)mps?(1—p), p = gi pi),UQ =ps(l—ps),andy < 5.
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Therefore, to verify (42), it suffices to check

mf(t) < (1+ )k;logn k. (51)

— Case 2(a): p > 1 — cg. We pick t = m =
_ (a) .
% < £ < o5, where (a) holds in

view of p > 1 — ¢g and ps < % By (46),

P 8p’qs

1+ p2  o6(14 p2)3

P €

<1 (1 —),
- +1+p2 +16

wherz (tlhe iast inequality holds because % =
—p

P77 < 33 8iven 1=p < co < 5y and
ps < 5. Then, we have

p? € 1 €
fO<-17 (1‘1—6‘5(”3—2))
p

- 2 1 He
1+ p2\2 64)°

Therefore,

(a) 2 €
' -3 (1-D)i(25) (-3

2
@ 1+ ) k1 k
< = (1) Koen—k

My, < 1+

where (a) holds by (43); (b) holds under the assump-
2 2

tion that p? = =B > (44 ¢)"&2 in (34) for n

sufficiently large.

— Case 2(b): ¢ > qo and p < 1—co. We pick t =
4/)1;;5: — p:zl(ng ;’)n < 210, where the last inequality

holds for n sufficiently large. By (46),
8tqs
L+t20t (14 p° 4+ ———
( g 4(1 +0?)

1+ 2041 2(1 )
+ %0t (1 + p?) t51)

My

IN

IN

where the last inequality holds because ﬁ =

32logn for n sufficiently large,

(1-p)g*(1-q)2(1+p? )2n < &
given qp < ¢ <3 L and p < 1 —c¢q. Then, we have

< — 4logn (1_i)

n 32
log? 2
8 og2 n1+2p (1+ e)
n p 64
4logn (1 i) 32log®n
n 32 p2n?
< _i’)logn7
n

where the last inequality holds for n sufficiently large

because p = 951 p’; ) > 1‘1060 Therefore,

(a) 3 1
mf(t) < ~3 1——)klogn

n
(b)

<1+6 )klogn k,
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where (a) holds by (43); (b) holds for n sufficiently
large.

For Gaussian model, set 7 = pm — a, where

/ k
0 = {C’ 2h(5)nm k<n-1

Cny/logn k=n

for some universal constant C' > 0 to be specified later.
Recall that h(z)/x is monotone decreasing in x and
converges to 0 as x — 1, under the condition an >
(4 + €)logn, for any constant 0 < & < 1, we have
h(d) /0 < 213202 np? when n is sufﬁcnently large. There-
fore, for 6n < k < n—1, 2h (&) < h(5) /5 <
213202np Since m = kn (1 — &) > 1kn, we have
ap < 64p\/ knm < 35 pm. For k = n, by the assumption
that np* > (4 + €)logn, ax < z5pm. In conclusion,
we have 7 > pm (1 — 5).
Note that (Ay()r(j), Bij) are ii.d. pairs of standard
normal random variables with zero mean and correlation
coefficient p. Therefore, ‘A= A and B = B. It follows
that Y = Z(@j)Q(g) Aﬂ(i)ﬁ(j)Bij'
First, we verify (39) using the Hanson-Wright inequality
stated in Lemma 9. Pick C' = 2¢, where ¢ > 0 is
the universal constant in Lemma 9. If £ = n, applying
Lemma 9 with M = I, to Y = Z(i7j)€(§) A iyr(j) Bij
yields that P (Y < 7) < e 218" If k < n—1, applying
Lemma 9 again yields that

<Z>P (Y <7)< <Z> exp <—2 nh (%))
o (2).

Next, we check (42). In view of (65) in Lemma 7, M, =

%2 and My = ﬁ, where A; = /(14 pt)> — ¢ and

>‘2:\/(1_Pt)2—t2f0r0<t< . Thus for 0 <

t< sz, M =M <1+p2<21It follows that
. k M?
%gg (—tr—i— logE+ (M2—1))
. M m+k
< k+ inf ( tr +—m+k(M2—1)>
0<t< 2, 2
1 .
< ktgk(n=Dp lfllf . f),
where
1 2
1) 2 —t(l—i) —(1+—=—) -1
f(t) ) T3, Ut (My—1),

and the last inequality holds because 7 > pm (1 — 5)
and (43).
Therefore, to verify (42), it suffices to check

1

Si=Dp it f()
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< (1+6 )1ogn—1 (52)
Case 1: p > = 555+ We pick t = 1+2 —£—. Then,
1+ 2p?
M, — (1+20%)°

V1+p2+ piy/1+5p% + 9pt
1420\ 202
) S\t g
L+ 5p? 2+3p
where the first inequality holds because (1+ p?+p?)(1+
5% +9p%) > (1+ %p2)4. Therefore,

F(t) (- €)+2+p3p (1+n31>

) 6-5)

(e
(o)
G0-5)-(+5))

where the first inequality holds because 7 +2p2 <4 5 and

the last inequality follows from 2 + 3p? < 5. Hence,

1 2 (2 Be 2
3=V < - -k (55— 2).

2

Thus it follows from p? > 55 that (52) holds for all
sufficiently large n.

2+3p

Case 2: (4 + €)% < p? < % We pick t = 5.
Then,
(140
My =
V14 3p2 +4pty/1 — p2
2
(1+0%) 2 4
< P iy

14 p? —

where the first inequality holds because (1 + 3p? +
Ap )1 —p*) = (L +p* = p*)? = p*(2 = 20> +p*) 2 0
under the assumption that p2 < 2 /256. Therefore,

P €
s - (1—5)
p(1+2p%) 2
+ 20227 (Hn_l)

1 € 4
< =) 2716 I———=,
n—1

where the first inequality holds because p? < -%-. Hence,

256
50— 1)pr (1)
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where the last inequality follows from the assumption
that p? > (4+ €)™, Thus (52) holds for all sufficiently
large n.

IV. EXACT RECOVERY
A. Possibility of Exact Recovery

Building upon the almost exact recovery results in the
preceding section, we now analyze the MLE for exact recov-
ery. Improving upon Lemma 3, the following lemma gives
a tighter bound on the probability that the MLE makes a
small number of errors with respect to the general correlated
Erd6s-Rényi graph model specified by the joint distribution
P = (pab : a,b € {0,1}).

Lemma 5: Suppose that for any constant 0 < € < 1,

o for general Erd6s-Rényi random graphs,

. 2
if n (\/Poop11 — /Poib1o) = (1 +€)logn;
o for Gaussian model, if np? > (4 + €) logn;

then for any & € [n] such that k < {5n,

P{d (7mL,7) =k} < exp (—gklogn) . (53)

Note that Lemma 5 only holds when k/n is small but
requires less stringent conditions than Lemma 3. Inspecting
the proof of Lemma 5, one can see that if the condltlon is
strengthened by a factor of 2 to n (\/poopir — \/pmplo) >
(2 + €) logn for the ErdGs-Rényi graphs (which is the assump-
tion of [4]), then (53) holds for any k& € [n]. Conversely,
we will prove in Section IV-B that exact recovery is impossible
if n (\/poopu - \/p01p10)2 < (1 — €)logn. Closing this gap
of two for general Erd&s-Rényi graphs is an open problem.

In the following, we apply Lemma 5 for small k
and Lemma 3 (or Proposition 5) for large k to show the success
of MLE in exact recovery.

Proof of positive parts in Theorem 1 and Theorem 4:
Without loss of generality, we assume € < 1. For all £ < 1—6671,
by Lemma 5, for both Erd&s-Rényi random graphs and
Gaussian model,

_€_
16"

Z]P’{d(%w“_,w) =k} < 1iﬁzexp (—ék‘logn)
k=1 k=1

exp (—§ logn) — psto(l)
— glogn
Moreover,

o For the Gaussian model, pick § = 5. Thus by (36) in
Lemma 3 and (37), (57) follows.

o For the subsampling Erd6s-Rényi random graphs,
we divide the proof into two cases depending on whether
ps < 1/2.
Case 1: ps <
to

%. Note that condition (12) is equivalent

n (v/P11Poo — \/19011910)2 = nps*f(p, s)
> (1+¢)logn, (54)

where

2
) & (\/1—2ps—|—p52 \/_1—8)

In the sequel, we aim to show that if (54) holds, then
nps?(1 — p) = w(1), (34) holds for p = 1 — o(1), and
(35) holds for p = 1 —Q(1). To this end, we will use the
inequality

< 2y/p, (55)
which follows from
2
of(p, s) 2f(\/1—2p5+p52 VP 1—8)
o5 T —2ps 1 ps? |

— By (55), f(p,s) is a monotone increasing on s €
(0,1). Therefore, f(p,s) < 1 — p. Hence, if (54)
holds, then nps? (1 —p) = w(1).

— Suppose p =1 — o(1). We have

2
2 1-p
f(p,s)= p(1—3s) ( 1+m—1>
(1-p)?
~ Ap(1—s)?

where the last inequality holds because /1 + z <
1+ % Thus, if (54) holds, then

n(-p°_ _ n(l-p’
(-ps” = (+8)p-9)
where the first inequality holds because p = 1 —o0(1)
and ps < % Hence, (34) follows.

— Suppose p = 1 — Q(1). By the mean value theorem
and (55), we have

5 > (44 ¢)logn,

fp.s) < f(p,0)+s sup 3fép,s)
s:ps<1/2 S

< (1-p)* +2ps,

Now, suppose s = o(1) or p = o(1). Then

A=vp+2vps < (1= v (1+3),

for all sufficiently large n. Therefore, if (54) holds,
then

nps*(1— /p)? > (1 + %) logn. (56)

If instead s = Q(1) and p = (1), then (56) follows
directly.
In conclusion, for both cases, since 1og% —1+p>
2(1 — /p)?, we get that (35) holds.

Finally, by Proposition 5, we have that

P{d(%ML,w) > 1—6671} < polre (57

Case 2: ps > % In this case, we consider the equivalent
model (n,p’, s") as specified in (33) with p's’ = 1—ps <
1/2 by flipping 0 and 1. Note that after flipping 0 and 1,
both the value of /p11poo — /Po1p10 and the MLE
are clearly unchanged. Therefore, applying the Case 1
of Theorem 4 to to the model (n,p’, s’), we get that (57)
holds for the model (n,p, s).
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Hence, for both the Erd6s-Rényi random graph and Gaussian
model,
5N
P{d(@uL,m) >0} < > P{d(fm,m) =k}
k=1

+P {d (FaaL, ™) > %n}

S n*§+0(1).

U

1) Proof of Lemma 5: In this proof we focus on the case
with positive correlation, i.e., poop11 > Po1p1o in the general
Erd6s-Rényi graphs and p > 0 in the Gaussian model. The
case with negative correlation can be proved analogously by
L B> <0.

Fix k € [n] and let 7, denote the set of permutation " such
that d(m,7") = k. Let O] is the set of fixed points of edge
permutation oF, where in view of (15),

)
“+ nag.

n n —
ol= M= () +m= ("]

Then, applying the Chernoff bound together with the union
bound yields that for any ¢ > 0,

P{d(%ML,TF) = kj} <

bounding the probability <A”/

> P{Z. >0}

' €Ty,

< nFEfexp (tZ)], (58)
where
Znt = ZAW/(i)W/(j)Bij - ZAﬂ(i)w(j)Bz]
1<j i<j
- Z Z Ay () Big — Z Ariyn () Birj
O\O; \(i,j)€0 (i,5)€0
£ Y Zo
O\O;
where

Zo = Xo - Yo.

Since edge orbits are disjoint, it follows that Zo are mutually
independent across different O. Therefore, for any ¢ > 0,

exptZZo =

0e0\0;

II Elexp(tZo)].

0€0\0,

It turns out that the MGF of Zo can be explicitly computed
in both Erd6s-Rényi random graph and Gaussian model.
In particular, applying Lemma 8 yields that E [etz()] = Lo

and L, < LZ/Q for ¢ > 2. It follows that
2) () i
Elexp (tZ)] = [[Zd < J[ L% < L,

(=2 =2

() - (”;k) — ng and the last inequality follows
from Zgi)l (Ny = (5) and Ny = (")) + no = (”gk) + no.

Hence,

P{d (%ML,’]T) = k}

A
where m =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

(a) 1 k
< exp <I<:10gn + —kn (1 - L) logL2>
2 2n

(b) e k+2 €
< — | - — —
< exp < <4 o (1 + 4)) k‘logn>

(2 exp (— —klog n)

where (a) holds because ny < k/2 and then m >
kn (1 — E£2); (b) holds by the claim that nlog Ly < —2(1 +
¢/4)logn for appropriately chosen ¢; (¢) holds for all suffi-
ciently large n given k/n < {5 and 0 < e < 1. It remains
to check nlog Ly < —2(1+ ¢/4)logn by choosing appropri-
ately ¢ for Erdés-Rényi random graphs and Gaussian model
separately.

o For Erd6s-Rényi random graphs, in view of (66) in

Lemma 8,

Lo= 142 (po1p1o (et - 1) + PooP11 (6

—t
-1)).
Since poop11 > PoiP1o, by choosing the optimal

t > 0 such that ¢! = | /BOPU T, = 1 —

poi1pio’

2
2 (\/PooP11 — \/PoiP10) » and hence

— 2n (y/poop11 — \/19011910)2
< —2(1+e¢)logn,

nlog Ly <

where the last 1nequaht§ holds by the assumption that

n (y/Poob11 — /Poib1o) = (1+¢€)logn;
e For Gaussian model, in view of (67) in Lemma 8,

1
VI+dtp—4t2(1—p?)
> 0, Ly =

Ly =

By choosing the optimal ¢ =

/1 — p2. and hence

1 2
- <
np

__P
2017

nlog Ly < —2(1+¢€/4)logn,

where the last inequality holds by the assumption that
np? > (4 + €) logn.

B. Impossibility of Exact Recovery

In this subsection we prove the negative result in Theorem 4.
As in Section IV-A, we consider a general correlated Erdds-
Rényi graph model, where P {Aﬂ(i)ﬁ(j) =a,B;; = b} = Pab-
We aim to show that if

n (v/Poop1t — \/polplo)2 < (1 —¢)logn, (59)

then the exact recovery of the latent permutation 7 is impos-
sible. Particularizing to the subsampling model parameterized
by (11) the condition (59) reduces to

nps (\/1—2ps+ps2 \/_1—5) < (1 —¢€)logn,

which, under the assumption that p = 1 — (1) in Theorem 4,
is further equivalent to the desired (13).

Since the true permutation 7 is uniformly distributed, the
MLE 7y minimizes the error probability among all esti-
mators. In the sequel, we focus on the case of positive
correlation as the other case is entirely analogous. Without
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loss of generality, the latent permutation 7 is assumed to be
the identity permutation id.

To prove the failure of the MLE, it suffices to show the
existence of a permutation 7’ that achieves a higher likelihood
than the true permutation 7 = id. To this end, we consider
the set 73 of permutation " such that d(n’, 7) = 2; in other
words, 7’ coincides with 7 except for swapping two vertices.
Then the cycle decomposition of 7’ consists of n — 2 fixed
points and a 2-node orbit (, j) for some pair of vertices (¢, ).
It follows that

>

(A,B) — (A™ | B) =
ke[n)\{i,j}

2.

ke[n]\{i.j}

(Air — Aji) (Bik — Bji)

(1>

Xijk,

where Xij’kmf\.sl.a5+1 +bi_1+ (1 —a—>b)dy for k € [n]\{i,7}
with a £ 2 poop11, b £ 2 po1p1o and a > b by assumption.
We aim to show the existence of 7/ € 75 such that (A, B) <
<A”l , B), which further implies that 7’ has a higher likelihood
than 7. We divide the remaining analysis into two cases
depending on whether na > (2 — ¢) logn.

First we consider the case where na < (2 — ¢€)logn.
We show that with probability at least 1 —n (<), there are at
least n(©) distinct 7' € 75 such that (A, B) < (A™ | B). This
implies that the MLE 7y, coincides with 7 with probability at
most n~*(¢), Specifically, define Xi; as the indicator random
variable which equals to 1 if Xj;; < 0 for all £ # 4, j, and
0 otherwise. Then

P{xi;=1}= H P{X;jr <0}
ki

_ (1 - a)n72 > n72+670(1)7

where the last inequality holds because an < (2 — €)logn.
Let I = Zlgign/z Zn/kan Xij. Then E[I] > ne—o),
Next, we show var(I) = o (]E [1]2), which, by Chebyshev’s

inequality, implies that / > 1 [I] with high probability. Note
that

var(I) =

PN

1<,/ <n/2n/2<j,j'<n

—P{xij = 1} P{xwj = 1}>~

(P {xij =1, x5 =1}

We break the analysis into the following four cases depending
on the choice of (7,7) and (i, 7).
Case 1: 7 =14/, and j = j'. In this case,
P{xij = Lxiy =1} = P{xi; = 1} P{xsryy = 1}
< P{xi; =1}.

Case 2: i =i/, and j # j'. In this case, note that

P{xijy =1]xi =1}

= H P{Xijx <0 xi; =1}
ki,

= P{Xij; 0] Xij; <0}

5409

x ]I P{Xiyx <0 Xiju <0}
King i

< (1 -poop11)" 2,
where the last inequality holds because
P{X,jr <0]X;jr <0}
p11 (1 = poo)” + po1 + p1o + poo (1 — p11)°

1 = 2poop11
_ 1 —4poop11 + poop1n (poo + p11)
1 —2poop11
1-3
< _—oPooPil < 1—poop11,
1 — 2poop11

and similarly for P{X,; ; < 0| X;; ;7 <0}.
Case 3: i # 4/, and j = j'. Analogous to Case 2, we have
P{xij= 1|x5=1}< (1—poop11)" ">
Case 4: i # 4/, and j # j'. In this case,
k#i’ 5’

< J] P{Xujx<0}
Kok, .5

= (1 —2poop11)" %,

where the first inequality holds because for all k # i,4’, 5, 7,
X jr 1 are independent from {X;; » } s ;. Therefore,

P{xij =1, xij =1} = P{xi; = 1} P{xwr; = 1}
= (1- 2p00p11)2n_6 (1 -(1- 2p00p11)2)
< 4 poop11 (1 — 2poop11 )" "

Combining all four cases above, we get that

var(I) < E[I] (1 +n (1= poop11)" >

4
+ n%poop11 (1 — 2poop11)” )

Therefore,
var(I)
E[1]?
1+n (1 = poop11)" > + n?poop11 (1 — 2poop11)" "
n2 (1 - 2poop11)" >

=0 (n_Q(E)) ,

where the last inequality holds because npoop1n < (1 —
€/2)logn. In conclusion, we have shown that I > nsie)
with probability at least 1 — n~*%(€). This implies that the
MLE exactly recovers the true permutation with probability

at most 1<),

Next, we shift to the case where na > (2 — €)logn. The
assumption (59) translates to n(yv/a — vb)? < 2(1 — €) logn,
we have

(2—e)logn<1—\/g> < na(l— g)
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< 2(1—¢)logn.
It follows that

2(1 —
\/7>1 21-¢ R
2—¢€ 2—¢€

€

= 2(2_6) =

and hence < 16 § - <1.LetT be aset of 2m vertices where
m = |n/log”n|. We further partition T into 7} U T> where
|Th| = |T2| = m. Let S denote the set of permutations 7’
that consists of n — 2 fixed points and a 2-node orbit (4, j) for
some i € Ty and j € Ty. Then |S| = m?. Next we show that

P{Elw' €8st (A,B) - <A”/,B> < o}
= 1-o0(1). (60)

Fix a 7’ € § with (¢,7) as its 2-node orbit, i.e., 7'(i) =
j, ©'(j) = 4, and 7'(k) = k for any k € [n]\{4,j}. Then
(A, B — <A7“,B> = X; + Y, where

X;; & ZXij,k; and Y = Z Xij k-
keTe keT\{i,j}

Note that E[Y;;] = (2m—2)(a¢ — b) and Var[Y;;] <
(2m —2) (a + b). Letting

T2 2m—2)(a—b)++/(2m—2)(a+b)logn,

by Chebyshev’s inequality,

P{Y;; > 7} < ©1)

logn’
Define
T = {Gi,j) e Th x Ty : Y <T}.

Then E[|(Ty x To)\T'|] < m?/logn. Hence, by Markov’s
inequality, [(T1 x T2)\T'| > im? with probability at most

Hence we have |T’| > 1m? with probability at least

log n'

Tog

No(;enthat crucially 7" is independent of {ng}zeTl,JeTz
Thus, we condition on the event that |T'| > im? in the
sequel. Define I, = > eq 1{x;;<—r}. To bound the
P{X,;; < —7} from below, we need the following reverse
large-deviation estimate (proved at the end of this subsection):

Lemma 6: Suppose {Xj}ic(n)~ a5+1 +b61+(1—a-—
b)oy with some a,b € [0,1] such that 0 < a+b < 1,1 <

2
2 =0(1), an = w(1), and <\/_— \/Z_)) < 21(’%. For all 7

such that 7 = o (\/an log n) and 7 = o(an), and any constant
0 < § < 1, there exists ng such that for all n > ny,

P{;ng—r}z eXp( (f—\f) ——logn)
).

n(a—b)
logZn

+

To apply this lemma, note that 7 = O (
SO

Jaren ~ () o)
B O<10;n>

Authorized licensed use limited to: Yale University. Downloaded on

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

T _of 2 + ! _of 1
an log?n  Vanlogn/) Viegn )’
where we used the fact that m < n/ log®n, b < a, Va—+vb=

O(y/1og(n )/n) and an = w(1l). Then, applying Lemma 6
with § = { yields

E[I,] > %m exp (—|TC| (\/_—\/_) ——logn>
> ne—o(l), (62)

where the 2last inequality holds by assumption that
(\/_—\/_) < 2(1—6)10%. Next, we show that

Var[l,]/E[I,]*> = o(1), which, by Chebyshev’s inequality,
implies that I, > $E [I,,] with high probability.

Write
Var|[7,)
- Z (P {Xij < -7, Xiljl < —7’}
(i,4),(#,5") €T’
-P{X;; < —7}P{Xys < —T})
< (D + dD),
where
= > P{X;<-1}=E[L],
(4,5)€T’
(In) = > P{X;; <0,X; <0}
(,9),(5,5" ) ET" . j#5"
+ > P{Xij <0,X;; <0}.

(1,5), (", ) ET i#d!
To bound (II) ﬁx (i,7), (i,7") € T such that j # j'. Note that
{Xijrtjer, ™~ Bern (poo) conditional on A;, = 1, By = 1;
{—Xi;, k}]ETz “Bern (p10) conditional on A, = 1, By, = 0;
{—Xi;, k}]ETz 14 Bern (po1) conditional on A, = 0, B;, = 1;

{X4, k}jETQ MBern (p11) conditional on A;; = 0, By, = 0.
Then, for ¢,¢ € {0,1}, we define

Mul = |{k? S T6|Aik = E,Bik = E’}l s
and get that for any A > 0,

P{ Z Xijr <0, Z Xijrp < 0}

keTe keTe

@ E[P{ Z Xijke < 0‘M11;M107M107M00} X

keTe

]P’{ Z Xijrw < 0‘M117M10,M10,M00H

keTe
(b) 2M11 _2Mio 2Mio . 2Moo
= El|vo "1 "MoPio 71

|7
= (’Ygopn + ’7311)10 + ’onpm + ’71211700)

Y

where Yoo = 1 — peer + p”/e(2|€74’|*1))\; (a) holds
because ), o Xijx and ), ., Xij k. are independent
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conditional on Mjy, Mg, Mo, Moo; (b) holds by applying
the Chernoff bound; (¢) holds by applying the MGF of

the multinomial distribution, since M1, Mo, M1g, Moo ~
PooP11 —

: - X —  [poopus
Multi(|7|, p11, P10, Po1, Poo). Choosing e = /B0l —

\/% where a = 2 PooP11 and b =2 Po1P1o, WE have

P{ Z Xijr <0, Z Xijrk < 0}

keTe keTe

3 2
< (15 (va-v))
The same upper bound applies to any (¢, j), (7',

that 7 £ 7/
Therefore, we get that

(I < 2m3 (1 B g (f_ JE)Q)Tcl
T )

Hence, by Chebyshev’s inequality,

P{In < %E [In]}

[T

j) € T' such

Var[l,]
T HEL)
4 8 x (I)
< 3
E[l,] * (E[L.))
(i) n—cto(l)
32 1 2
+ p <§ (\/_— \/5) [T + glogn)
(0)

< n776/8+0(1)

where (a) is due to (62); (b) holds by the assumption that

2
(va-vo) <20
Therefore, with probability 1 — n~%(¢) there exists some
(¢,7) € T" such that X;; < —7. By definition of 7", we have
Y;; < 7 and hence X;; +Y;; < 0. Thus, we arrive at the
desired claim (60).

Proof of Lemma 6: Let E, = {} ;_; X < —7}. Let Q
denote the distribution of Xj. The following large-deviation
lower estimate based on the data processing inequality is well-
known (see [3, Eq. (5.21), p. 167] and [18, Lemma 3]): For
any @',

— o) lemn,

—nD (Q']|Q) —log2
Q(E.) > exp < o ) RN
Choose
Ql: 0[_55+1+ a;ﬁ571+(1_a)50’
where
N 2v/ab
o =

o a o /blogn
5, and 5Am1n{§ '3 }

5411

Note that under the assumption that 1 < a/b = O(1) and
<\/_—\/_) < 10%, we have that 2b < a = O(a).

Moreover, since 7 = o(v/anlogn) and 7 = o(an), it follows
that 7 = o(n). Then,

Q(E) = Q (ZYk > —T>
k=1

n

e (Z (Y ~E[Yi)) > 6n - T>

k=1
) 3k Var[Vy]
- (Bn-1)°
() an (@
< G e,

where (a) holds because E[Yy] = —p3; (b) follows from

by Chebyshev’s inequality as {Y%};c,) are independent

and 7 = o(Bn); (c) holds because Y ,_; Var[Yy] <

SB[V < an; (d) holds because T = o(fn), and
64 4

7 = max{m, —- ¢ =o0(1), in view of that 6 = O(1),

a=0(a) =0() and an = BO(an) = w(1).
Next, we upper bound D (Q']|@Q). We get

D(Q'Q)
_a-—f a—0 a+p a+ 3
= g sty leey
11—«
+(1—O{)10gm
2 2
@ _bg(l_(f_@f)%bg@if)
8 ala+ )
+§1Og7b(a—ﬁ)

2 _
(2)—1og<1—(\/_—\/5)2>+aﬁ_6+5\/a\/5\/5
(©) 5logn
<<\/__\/_) dn

where (a) holds because o = ﬁ (b) holds because
log g"’g < aﬁﬁ and 1 1og < va— \/, in view of log(1 +

xz) < a; (c¢) holds for all sufficiently large n because
2

(f— \/6) < 2lEn oo that log(1 — (Va — Vb)?) =

—(va—vb)2+0 (log*(n)/n?), B < Jaand g < &/ 2ler

32 262 52blogn Va—vb
so that =5 < =0- < 5= < and 3 7 <

B/ (va - V) < Y,

In conclusion, it follows from (63) that
Q5,2 o0 (~(1+0(1) (n (va-vB) "+ logn +10g2))
> eXp( (\/_—\f) ——10gn),

where the last 1nequa11ty holds for all sufficiently large n in

Vlewofn<\/_—\/_) < 2logn. 0

5% logn
32n
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APPENDIX

Lemma 7: Fixing w and 7/, where  is the latent permuta-
tion under P. For any edge orbit O of o = 7~ !ox’ with |OS—

kand t >0, let M, £ E [exp (t Z(i feo Zﬁf(i)ﬁl(j)gij ]
where Zij = Zij - EA” and Eij = Eij - EB”
o For Erd6s-Rényi random graphs,

<T— VT2 —4D>k+ <T+\/T2 —4D>k
2

2

bl

My, =

)

(64)
where
T =197 542 e_t‘I(l_Q)q(l—s)—l—etqz(l —2q +qs)
D= (et(l—Q)2+tq2 _ e—2tq(1—q)) a(s — q)

and g = ps.
o For Gaussian model, for ¢ < ?1p’
-1
AT A

M, = - 65

k < > ) 5 (65)

where \; = (14+pt)2—t> and Ny =

(1—pt)2 —¢2.

Moreover, M, < MQIC/2 for all k > 2.

Proof: For ease of notation, let {(a;,b;)}%_; be indepen-
dently and identically distributed pairs of random variables
with joint distribution P. Let ag11 = a; and bgy1 = by.
Since O is an edge orbit of o&, we have {A;(i)x(j) }(i.j)c0 =
(A Higco and (D), 7 (7)) = (w(o(0)), 7(a()))-
Then, we have that

k
My = E lexp (Z t(ait1 — Elais1])(b; — E [bi+1])>1
i=1
= E [E [exp <Zt(ai+1 —E [aH_l])(bi —E [bi-l—l])) ‘

A1, a2, -, 0k ‘|

|
) Lljl]E[exp (t (ait1 — Elait1]) (b; — E [bi+1])) ‘

Qs , Cl7;+1:|‘| .

o For Erdds-Rényi random graphs, E[a;] = E[b;] = ¢, and
My, = tr (M*) , where M is a 2x 2 row-stochastic matrix
with rows and columns indexed by {0, 1} and

M(¢,m)
E {exp (t (a1 — q) (b — q))

P (ai+1 = m) .

B |exp (1 (n—) (=) )

ai:&aiﬂ —m] X

|ai=4 P (Cl7;+1 = m) .
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Explicitly, we have
M= ¢ (1=n) (1 —g)+e 10y (1—q)
M = e710-9 (1 — ) g+ /179" pq
My = es(1—q)+e 09 (1—5)(1—q)
My = e 1079 (1 — 5) g 4 €179 q.

1—s . T2
where 77 = %. The eigenvalues of M are T=1-=4D
2 _
and TEVIZ=4D - where

T2 Tr(M) = et(lquqs +2 e 10D g1 — )
tg® (1 _
+e" (1 —-2q+qs)
D% det(M) = (et(l_‘”z“qz —G_QtQ(l_Q)) q(s—q).
o For Gaussian model, E[a;] = E[b;] = 0, and

k
1
HeXP (tpaiai—i-l + 5752 (1-p%) a?ﬂ)] )

i=1

My=E

where the equality follows from b; ~ N(pa;,1 — p?)
conditional on a; and E [exp (tZ)] = exp (tp + 22 /2)
for Z ~ N (u,v?).

Let Ay = \/(1+pt)> =12 and Ay = /(1 — pt)* — 2,
where ¢t < fp By change of variables,
M,
LI (Rutdeg, 4 M=dag, 1)
= / H exp 2 3 i+l
i1 V2T 2
daq - - -dag

@ /.../ﬁ#exp(—%?)

dX;---dXp det(J 1)
(b) 1
()t (apey®

where (a) holds by letting X; = 21422, + 21-22 Qit1s
and denoting J as the Jacobian matrix with J;; = %f’_“
J

whose inverse matrix is

)\142r)\2 /\1;)\2 0 0
SO T 5
1 2 .
g— 1 o 0 : o |,
: : : A1—=A2
: : : . 5
A1—Ao At
- 0 0 0 2

(b) holds because det(J™!) =
det(J) = ()\145)\2)’C _ (AlgAz)k_
Finally, we prove that M;, < (M)*/? for k > 2. Indeed, for
the Erdés-Rényi graphs, this simply follows from z* + y* <
(x2 4 y?)*/? for z,y > 0 and k € N. Analogously, for the
Gaussian model, this follows from (a + b)¥ — (a — b)* >
(4ab)*/2, which holds by rewriting (a +b)? = (a —b)>+4 ab
and letting x = (a — b)? and y = 4ab. O
Lemma 8: Fixing m and m, where 7 is the latent
permutation under P. For any edge orbit O of

det(J)~!, where
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o = nlon with |[O] = k and t > 0, let L, =
ke {GXP (t 2 (i yeo Ar@m () Bii — X jeo Aw(i)vr(j)Bij)]
o For general Erd6s-Rényi random graphs model,
k k
. (T—\/T2—4D> . <T—|—\/T2—4D>
p= | —Y S e
2 2

+ t2 (ai+1 — ai)Q (1 — p2) /2)‘|

exp <(t2 (1= p2) —tp) Z (af — aiaiﬂ))]

i=1

=E

’ 1
() ()t

(66) 2
where T = 1 and D = — (poipio(et —1) + where the first equality follows from b; ~ N(pa;, 1 — p?)
pooprr (€7t — 1)). conditional on a; and E [exp (tZ)] = exp (tp + 27 /2)
o For Gaussian model, for < -+ for Z ~ N(u,v?) ; the last equality holds by change of

20=e) variables and Gaussian integral analogous to the proof of

—1
A+ o k A= Ay k Lemma 7.
Ly = 9 - 9 ) (67) Finally, L < (Lg)k/2 for £ > 2 follows from the same
reasoning as in Lemma 7. O
where A\; = 1 and Ay = /144 tp — 412 (1 — p?). In view of (64) in Lemma 7, M; = T and
Moreover, L < LS/Q for all k& > 2. M, = T2 — 2D, (68)

Proof: For ease of notation, let {(a;,b;)}%_; be indepen- ) ,
dently and identically distributed pairs of random variables ~Wwhere by letting a = e!(1=9" b = ¢=*(1=9) and ¢ = ',
with joint distribution P. Let agy; = a1 and byy; = b;. We get

Since O is an edge orbit of o&, we have {A;(i)x(j) }(i.j)co = 9
. . RN T = aqs+2 bq(1—s)+c(1—2g+qs), D = (ac—0b7)q(s—q).
{Ax @y () Hagpeo and (7'(i), 7' (5)) = w(0 (i), 0(j)). Then, (1=s)tel ) ( Ja(s=9)

we have that o Suppose t < log %. Since 1+ < e® <1+ x+ 22 for
I 0<xz<landl+x+2%/2+23 <e® <1+ax+2%/2 for
L= E|exp |t Z (ATr’(i)ﬂ"(j) — Aﬂ.(i)ﬂ.(j)) Bij -1 <2 <0, we get
(54)€0 Lo o 2 _ 433
k 1-tq(1-q) +5t°¢" (1 - q)" —t'¢
= E |E |exp t(aig1 —a;)bi | |a1, a2, ay 1
I (m < b< 1-tg(l—q)+5%¢*(1 - )%,
[k
=E HE {GXP (t(aiy1 — ai) by) aiaaiﬂH ~ and
i—1 1+tg> < e< 1+tg®+ 3.
o For Erd6s-Rényi random graphs, Ly = tr (Lk), where L It follows that
is a 2 X 2 row-stochastic matrix with rows and columns H1—q)®
indexed by {0, 1} and T< e gs
1
L(t,m) = Elexp (t (ait1 — ai) bi) |ai = €, aip1 = m] +2 <1 —tg(l—q)+ 57" (1 - (J)2> q(1 —s)

P (ai+1 = m) .

1+t +t3¢") (1 -2 s
= Elexp (t(m — Obi) s = O] P (a551 = m) . (Lt +a) (1 =2+ 49)

= «ao+ ait + OtQtQ,
Explicitly, we have

where

L — 1 — .

! plop " P ap= 2¢(1—s)+(1—2g+qgs)+ =2 s (69)
Liz = et ) + = —2¢(1—q)q(1 — )+ ¢*(1 — 2 70

12 <1 e pe— RS URS R = q( ) q)a( 8)4;q (1—-2¢+gs), (70)
I ( PU_ )( ) ar = ¢*(1—¢q)%q(1 —s)+¢*(1 —2g+¢qs). (71)

= (— (-1 +1 +
B P10+ P11 o Moreover,

Laz = p1o +pur- D> ¢l-o* (1+1t¢°) a(s — q)

The eigenvalues of L are T_ﬂ;_‘w and T"”T22_4D, 1, ) 2
where 7' =1 and —<1—tQ(1—Q)+§tQ(1—Q)> q(s —q)
D= — (poipio (¢' = 1) + poop11 (e™" —1)). = fo+ But + ot + Bat® + Pat?,
e For Gaussian model, where

Bo= —qls —q)+ e g(s — q), (72)

Ii= E 2
i Bi=2¢1-q(s—q) +e D¢ s—q), (13)

k
H exp (t (@ig1 — ai) pa;
i=1

Authorized licensed use limited to: Yale University. Downloaded on June 28,2023 at 07:45:38 UTC from IEEE Xplore. Restrictions apply.



Bo= —24¢(1-9)*(s—q), (74)
Bz = q' (1—q)* (s —q), (75)
Ba= — icf (1-)" (s —q) (76)
By (68), we get
My = T?-2D
< (ao + a1t + a2t2)2
—2(Bo + Put + Bot® + Bst® + Bat?)
= Y0 + Mt + 72t +yst’ + !
where
Yo = af — 26 (77
M= 2a001 — 25 (78)
Y2 = af + 200z — 202 (79)
Y3 = 20100 — 203 (80)
4= o3 — 2064 (81)

By (69), (72) and (77), we get
Yo = af — 26
2
= (1 —qs+ et(l_Q)zqs)

N2
—2 (—q(s —q) + e (s — Q))
= 1-2¢% + ¢%s2 + 2010797 2 (1-s%)
+ th(l—q)quSQ,
< 1-2¢° + ¢*s* + 2e'¢? (1 — s%) + e¥¢?s>.
Note that the above bound on 7, determines the main
terms in our final bound on M. For the remaining terms,
we will show 37 ~;t' = O(¢*(1 + t)) so that they
can be made negligible later when we apply the bound

on Ms in the proof of Lemma 3 (see (48)).
By (69), (70), (73) and (78), we get

M= 20001 — 206
—2¢2 + 4> + 4¢3s — 4% — 4¢* + 2¢*5*
+ (—4q3s +4¢3s% 4+ 2¢" — 2(]482) et1=)*
(a) 2, () )
< 4@ 4260707 < 6
where (a) holds because —2¢* + 4¢> <0 given g < 1,
—4¢%s? — 4¢* + 2¢*s®> < 0 and —4¢>s —1—24(]382 +2¢* —
2¢*s% < 2¢*; (b) holds because 2 e!(1=9"¢* < 2 elg? <
2 ¢3, given t < log 1—1). By (69), (70), (71), (74) and (79),
we get
Yo = of +2a0as — 20
= 2¢° — 2¢°s — ¢* — 4¢"s + 6¢*s* + 10¢°s — 8¢° s>
—6¢° —4¢%s + ¢%s? + 647 4+ 2¢"s — 2¢°
+ et1=a)? (2q4s —2¢%s? — 2% + 4q552—|—2q65)
(a) (b)
< 2¢° —2¢°s + ¢*s® 4+ 10¢°s + 2e'q*s < 6¢°,
where (a) holds because —q* — 4q¢*s + 6¢*s? < ¢*s?,
—8¢°s% — 6% — 4¢8s + ¢®s% + 6¢7 + 2¢"s — 2¢® < 0,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

and —2¢*s% — 2¢°s + 4¢°s* + 2¢%s < 0 given ¢ < 3;
(b) holds because —2¢®s + ¢*s® + 10¢°s < 2 ¢° given
q < 3. 2¢'q"s < 2¢%s < 2¢° given ¢ < log L. By (70),

(71), (75) and (80), we get

V3= 20100 — 203
—2¢*s +12¢°s — 4¢°s® — 4¢5 — 16¢5s + 10¢° s>
+8¢" —4q¢"s* — 2¢° + 2¢%s
(@) , O
< —2¢s+12¢°s < 44,
where (a) holds because —4¢°s?—4¢%—16¢%s+10¢%s2+
8¢7 < 0 and —4q"s? — 2¢® + 2¢®s < 0; (b) holds by
q < 4. By (71), (76) and (81), we get

4= a3 —2B4

1
= 5(q"as + q6 — 8q65 + 2q652 + 18q7s — 8q7s2

—8¢% — 8¢%s 4+ 8¢%s* + 8¢ — 7¢°s + ¢'?)
(@) 1 (b)
< 5((155 +q% —8¢5s 4+ 2¢%s% +18¢"s) < 2¢°,
where (a) holds because —8¢7s% —8¢® — 8¢%s + 8¢%s? +
8¢° < 0, and —7¢%s + ¢'° < 0; (b) holds because
—8¢%s +2¢55% +18¢"s < 4 ¢8s and ¢°s + ¢® + 4¢%s <
4 q5, given g < %
Combining the above bounds, we have

My < 1—=2¢%+¢*s> +6¢°t +6¢°t> + 4 ¢*t® +2 ¢°t*
+2 etqQ(l _ 52) +62tq252
=1-2¢"+¢°s* + ¢°t (64 6t + 4 qt* + 2 ¢°t*) +
9 etq2(1 - 52) +€2tq2s2
<1 —2¢% 4+ ¢*s* +10 ¢3t(1 + 1) + 2 e'¢*(1 — s?)

2 2 2
+evqsT,

where the last inequality holds because ¢t?> < 1 and
¢*t? <1 given t < log 1_1)'
Moreover, given M; =T and My = T2 — 2D,

M? 2D 9

— = 1+—< 1+2D<

M, + M = + < e7,

where the first inequality holds because Ms; > 1 by
definition, and the last inequality holds because

(a)
D= (ac—b*q(s—q) < acq(s —q)

< e (1+t¢* +t%¢*) q(s — q)

®) )

< 1+tg” +t°¢° <3,
where (a) holds because b%g(s — q) > 0; (b) holds
because etq < 1 given t < log%; (¢) holds because
qt <1, given t < 1og%.
Suppose t < 5. Since 1 +z +2?/2 < e” < 1+z+
2?2/24+ 23 for0 <z <land l+x+2?/2+2% <e® <
1+z+2%/2for -1 <z <0, we get

1
L+t(l-g*+ 5t (1-9)" < a

1 [
< 1+t(1-q)%+ 5t2(1 — )+ 21 — )%
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1—tg(1—q)+ %thQ(l —q)® =t < b
< 1—tq(l—q)+ %thQ(l -q)%
1+tg® + %tzq4 <c
< 1_’_tq2+%t2q4+t3q6.
It follows that
T < (1+t(1—q)2+%t2(1—q)4+t3(1—Q)6> qs
+2 (1—tq(1 —q) + %thQ (1—q)2) q(l—s)
+ (1 +tg® + %t2q4 + t3q6> (1 —2q+qs)
= 14 ait+ast’+ a3t3,
where

ar= (1-¢)°gs—2q(1-q)q(l—s)

+¢*(1-2¢+gs) =q(s — q), (82)
ay = %(1 ) gs+ ¢ (1-q)q(1-5)

+%q4(1—2q+qs), (83)
as= (1-q)°gs+q°(1-2q+qgs). (84)

And

D> <1+t(1—q)2+%t2(1—q)4> X

1
<1 +tg® + §t2q4> q(s —q)

2
- (1 —tq(1—q)+ %thQ (1- q)z) q(s — q)

= Bt + Bot® + B3t + Bat?,
where

= (1-q)qls—q)+d*(s—q)
+2¢(1—-q)q(s —q)

= q(s—q), (85)
By = %(1 —q)'q(s —q) + %q5(8—q)

+(1-92¢ -9 - 1-9) als —q)
—¢(1-9q)?q(s —q)
= %(1 —4q+44¢%) q(s — q), (86)
5= 50- (s —a) + 51— (s — )
+q(1 = q)*(1 — q)%q(s — q)
= - (-2 +¢") q(s —q), (87)
= L 1-q)'¢°(s —q) — %(1 -q)'¢°(s —q)
(88)

DN | —

=N

By (68), we get that
My = T?—-2D
< (]. + ot + a2t2 + a3t3)2

—2(Bit + Bot® + Bat® + But?)
< 1+ yit 4yt + at® + yatt + 5t° + 6t°,

where
1= a1 — B, (89)
Yo = af + 200 — 2032, (90)
V3 = 201000 + 23 — 23, on
1= a3+ 2103 — 204, 92)
V5 = 20203, 93)
Y6 = 3. (94)

Next, we show ;3 = 0 and get a tight bound on 7s,
which governs our final bound to M. For the remaining
terms, we will show 2?23 vitt = O(t3gs) so that they
can be made negligible later when we apply the bound
on My in the proof of Lemma 3 (See the proof of Case
2 of Erd6s-Rényi graphs).
By (82), (85) and (89), we get
1= a1 — B =0.
Recall that p = 22 and 02 = ps(1 — ps). By (82),
(83), (86) and (90), we get
Yo = at + 209 — 20
= ¢ +¢*° —2¢° —2¢°s + 2¢* = o* (1 + p?) .
By (82), (83), (84),(87) and (91), we get

V3 = 20102 + 203 — 2[33
= 2¢s — 12¢%s 4+ ¢®s% + 28¢%s — 4¢° s> +¢* —32¢*s
+4¢*s? — 4¢°+22¢°s+6¢°—12¢0s—4¢" +4¢" s

(a) . ()
< 2gs — 12¢%s 4+ ¢*s® + 28¢%s < 4gs,

where (a) holds because —4¢3s? + ¢* < 0, —32¢*s +
4q*s? — 4¢° + 22¢°s + 6¢% < 0 and —12¢5s — 4q¢" +
4q"s < 0; (b) holds because —12¢?s + ¢?s% + 28¢%s <
—12¢2s+¢%s% + 14¢%s < 4 ¢®s < 2 ¢s given ¢ < % By
(82), (83), (84), (88) and (92), we get

Y4 = a3+ 20103 — 264
1
= 1(9(1252 —12¢%s — 56¢°s + 4¢* + 60¢"s
+ 144¢%s? — 8¢° — 146¢°s — 192¢°s? + 8¢°
+200¢%s + 136¢°%s% — 12¢" — 136¢"s — 48¢" s>

+ % +32¢%s + 16¢%s% + 16¢° — 16¢°s)

(a) 1
< 1 (9¢%s% —12¢3s — 564> s> +4q* +60q¢ s +144q*s%)

®)
<13 ¢%s%,

where (a) holds because

—8¢° — 146¢°s — 192¢°s? + 8¢5 + 200¢°s + 136¢°s>
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(—8¢° +8¢°%) + (—146¢°s — 192¢°s?)
+ (200¢%s + 136¢°s)
< —338¢°s% 4 336¢°s <0,

and

—12¢7 — 136¢"s — 48¢"s? + ¢° + 32¢°s+

16 ¢%s% + 16¢°

= (—12q7 + q8) + (—136q7s — 48q752)

+ (32¢%s + 16 ¢®s* + 164°)

< —184¢"s% 4+ 64¢%s < 0;
(b) holds by holds because —12¢3s + 4¢* < —8¢3s,
60g*s + 144¢*s? < 30¢>s + 72¢%s?, and then —8¢%s —
56¢3s% + 30¢%s + 72¢3s% < 24¢3s + 16¢3s% < 32 ¢2s2,
given g < % By (83), (84) and (93), we get

V5 = 2an03
= ¢ (s — 4qs + 2¢° + 4¢%s — 3q3)
(s — 6gs + 15¢%s — 20¢°s + 15¢"s
—6¢°s +q° — 2¢° +2¢%s)
< ¢? (s +4qs + 2¢% + 4¢%s + 3q3)
(5 + 6¢s + 15¢%s + 20¢>s + 15¢™s
+6¢°s + ¢° 4 2¢° + 2¢%s)
= ¢*s* (14 4q + 2qp + 4¢° + 3¢°p)
(1 + 6q + 15¢% + 20> + 15¢* + 6¢°
+q'p+2¢°p +2¢°)
< (14-68) ¢?s* < 2'0¢%s%,
By (84) and (94), we get

2
Y6 = Q3

= ¢*(s — 6gs + 15¢%s — 20¢°s + 15¢*s
—6¢°s 4+ ¢° — 2¢5 + 2¢55)?

¢* (s + 6gs + 15¢%s + 20¢°s + 15¢"s
+6¢°s 4+ ¢° + 2¢° +2¢%5)?

¢*s*(1 4+ 6q + 15¢° + 20¢> + 15¢*
+6¢° + ¢'p+2¢°p + 2¢°)°
(68)2¢%s < 2134242

IN

IA

IN

Then, we have
M, < 1+t%0* (1 + p2) +4 t3gs + 13 t1¢°s?
421045242 4 9134622
<1+t%0* (14 p%) +8 t7¢s,
where the last inequality holds because 13t* + 219¢° 4

21246 < 4 43 given t < 2%
Moreover, given M; = T and M, = T? — 2D,

M3

2D
— 1422 < 142D< ¢
My, trE s itEPs

where the first inequality holds because Ms; > 1 by
definition, and the second inequality holds because

D= (ac—b*)q(s —q)
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(a)
< acq(s — q)

< (1+t(1—q)2+%t2(1—q)4+t3(1—Q)6> X

1 (b)
(1 +tg* + §t2q4 + t3q6> q(s —q) < 3,

where (a) holds because b%q(s — ¢) > 0; (b) holds
because 1 + ¢ + %tQ +13 < % given t < 2%
The following lemma stated in [26, Lemma 10] follows
from the Hanson-Wright inequality [17], [23].
Lemma 9 (Hanson-Wright Inequality): Let U,V € R™ are
standard Gaussian vectors such that the pairs (Ug,Vj) ~

N((S),(;’f)) are independent for k = 1,...,n. Let M €

R™*™ be any deterministic matrix. There exists some universal
constant ¢ > 0 such that with probability at least 1 — 6,

|UTMV — pTe(M)|
< (IMI|pv/10g(178) + | M ||z 10g(1/3)) .

Lemma 10: The function ¢ in (47), namely

95)

log%—l—l—a:
x(log%) (1+1og %)

is monotonically decreasing on x € (0,1).
Proof: We have

¢ (x)

Y(x)

P s @) - 17108 @)

) (96)

where

(x) =

Next, write

log® (z) +log® (z) + (1 — 2x)log (z) + = — 1.

o7
where

r(x) £ 3log? (x) + (2 — 2x)log (x) — = + 1.
Note that for = € (0, 1),
_ 2zlog (z) —6log(z) + 3z —2 -

K (z) = 0,

x
where the last inequality holds because 2 x log () > —1 and
—61log (z) + 3z > 3 for z € (0,1). Thus, x(x) is monotone
decreasing on z € (0,1) and then x(x) > k(1) = 0 for
x € (0,1). By (97), ¥'(x) > 0 for « € (0,1), and then v (z)
is monotone increasing on x € (0, 1) with ¢(z) < (1) =0.
Then, by (96), ¢'(z) < 0 on z € (0, 1), as desired. 0
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