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Abstract— This paper studies the problem of recovering the1

hidden vertex correspondence between two edge-correlated ran-2

dom graphs. We focus on the Gaussian model where the two3

graphs are complete graphs with correlated Gaussian weights4

and the Erdős-Rényi model where the two graphs are subsampled5

from a common parent Erdős-Rényi graph G(n, p). For dense6

Erdős-Rényi graphs with p = n−o(1), we prove that there exists7

a sharp threshold, above which one can correctly match all but a8

vanishing fraction of vertices and below which correctly matching9

any positive fraction is impossible, a phenomenon known as the10

“all-or-nothing” phase transition. Even more strikingly, in the11

Gaussian setting, above the threshold all vertices can be exactly12

matched with high probability. In contrast, for sparse Erdős-13

Rényi graphs with p = n−Θ(1), we show that the all-or-nothing14

phenomenon no longer holds and we determine the thresholds15

up to a constant factor. Along the way, we also derive the sharp16

threshold for exact recovery, sharpening the existing results in17

Erdős-Rényi graphs. The proof of the negative results builds18

upon a tight characterization of the mutual information based19

on the truncated second-moment computation and an “area20

theorem” that relates the mutual information to the integral of21

the reconstruction error. The positive results follows from a tight22

analysis of the maximum likelihood estimator that takes into23

account the cycle structure of the induced permutation on the24

edges.25

Index Terms— Graph matching, Erdős-Rényi random graphs,26

Gaussian model, recovery threshold, mutual information, cycle27

decomposition of permutations.28

I. INTRODUCTION29

THE problem of graph matching (or network alignment)30

refers to finding the underlying vertex correspondence31

between two graphs on the sole basis of their network topolo-32

gies. Going beyond the worst-case intractability of finding33

the optimal correspondence (quadratic assignment problem34

[2], [22]), an emerging line of research is devoted to the35

average-case analysis of graph matching under meaningful36

statistical models, focusing on either information-theoretic37

limits [4]–[6], [12], [16], [26] or computationally efficient38
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algorithms [1], [8]–[11], [13], [19]. Despite these recent 39

advances, the sharp thresholds of graph matching remain not 40

fully understood especially for approximate reconstruction. 41

The current paper aims to close this gap. 42

Following [8] and [21], we consider the following prob- 43

abilistic model for two random graphs correlated through a 44

hidden vertex correspondence. Let the ground truth π be a uni- 45

formly random permutation on [n]. We generate two random 46

weighted graphs on the common vertex set [n] with (weighted) 47

adjacency vectors A = (Aij)1≤i<j≤n and B = (Bij)1≤i<j≤n 48

such that
�
Aπ(i)π(j), Bij

�
are i.i.d. pairs of correlated random 49

variables with a joint distribution P , which implicitly depends 50

on n. Of particular interest are the following two special 51

cases: 52

• (Gaussian model): P = N
�

( 0
0 ) ,

� 1 ρ
ρ 1

� �
is the joint 53

distribution of two standard Gaussian random vari- 54

ables with correlation coefficient ρ > 0. In this 55

case, we have B = ρAπ +
�

1 − ρ2Z , where A 56

and Z are independent standard normal vectors and 57

Aπ
ij = Aπ(i)π(j). 58

• (Erdős-Rényi random graph): P denotes the joint distri- 59

bution of two correlated Bern(q) random variables X 60

and Y such that P {Y = 1 | X = 1} = s, where q ≤ 61

s ≤ 1. In this case, A and B are the adjacency vectors 62

of two Erdős-Rényi random graphs G1, G2 ∼ G(n, q), 63

where Gπ
1 (with the adjacency vector Aπ) and G2 are 64

independently edge-subsampled from a common parent 65

graph G ∼ G(n, p) with p = q/s. 66

Given the observation A and B, the goal is to recover the 67

latent vertex correspondence π as accurately as possible. More 68

specifically, given two permutations π, �π on [n], denote the 69

fraction of their overlap by 70

overlap(π, �π) � 1
n
|{i ∈ [n] : π(i) = �π(i)}| . 71

Definition 1: We say an estimator �π of π achieves, 72

as n→ ∞, 73

• partial recovery, if P {overlap (�π, π) ≥ δ} = 1−o(1) for 74

some constant δ ∈ (0, 1); 75

• almost exact recovery, if P {overlap (�π, π) ≥ δ} = 1 − 76

o(1) for any constant δ ∈ (0, 1); 77

• exact recovery, if P {overlap (�π, π) = 1} = 1 − o(1). 78

The information-theoretic threshold of exact recovery has 79

been determined for the Erdős-Rényi graph model [5] in 80

the regime of p = O
�
log−3(n)

�
and more recently for 81

the Gaussian model [12]; however, the results and proof 82
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techniques in [5] do not hold for denser graphs. In contrast,83

approximate recovery is far less well understood. Apart from84

the sharp condition for almost exact recovery in the sparse85

regime p = n−Ω(1) [6], only upper and lower bounds are86

known for partial recovery [16]. See Section I-B for a detailed87

review of these previous results.88

In this paper, we characterize the sharp reconstruction89

thresholds for both the Gaussian and dense Erdős-Rényi90

graphs with p = n−o(1). Specifically, we prove that there91

exists a sharp threshold, above which one can estimate all but92

a vanishing fraction of the latent permutation and below which93

recovering any positive fraction is impossible, a phenomenon94

known as the “all-or-nothing” phase transition [24]. This95

phenomenon is even more striking in the Gaussian model,96

in the sense that above the threshold the hidden permutation97

can be estimated error-free with high probability. In contrast,98

for sparse Erdős-Rényi graphs with p = n−Θ(1), we show99

that the all-or-nothing phenomenon no longer holds. To this100

end, we determine the threshold for partial recovery up to a101

constant factor and show that it is order-wise smaller than the102

almost exact recovery threshold found in [6].103

Along the way, we also derive a sharp threshold for exact104

recovery, sharpening existing results in [4], [5]. As a byprod-105

uct, the same technique yields an alternative proof of the result106

in [12] for the Gaussian model.107

A. Main Results108

Throughout the paper, we let � > 0 denote an arbitrarily109

small but fixed constant. Let �πML denote the maximum like-110

lihood estimator, which reduces to111

�πML ∈ argmax
π′

�
Aπ′

, B
	
. (1)112

Theorem 1 (Gaussian Model): If113

ρ2 ≥ (4 + �) logn
n

, (2)114

then P {overlap (�πML, π) = 1} = 1 − o(1).115

Conversely, if116

ρ2 ≤ (4 − �) logn
n

, (3)117

then for any estimator �π and any fixed constant δ > 0,118

P {overlap (�π, π) ≤ δ} = 1 − o(1).119

Theorem 1 implies that in the Gaussian setting, the recovery120

of π exhibits a sharp phase transition in terms of the limiting121

value of nρ2

log n at threshold 4, above which exact recovery is122

possible and below which even partial recovery is impossible.123

The positive part of Theorem 1 was first shown in [12]. Here124

we provide an alternative proof that does not rely on the125

Gaussian property and works for Erdős-Rényi graphs as well.126

The next result determines the sharp threshold for the Erdős-127

Rényi model in terms of the key quantity nps2, the average128

degree of the intersection graph G1 ∧ G2 (whose edges are129

sampled by both G1 and G2).130

Theorem 2 (Erdős-Rényi Graphs, Dense Regime): Assume131

p is bounded away from 1 and p = n−o(1). If132

nps2 ≥ (2 + �) logn
log 1

p − 1 + p
, (4)133

then for any constant δ < 1, P {overlap (�πML, π) ≥ δ} = 1 − 134

o(1). Conversely, if 135

nps2 ≤ (2 − �) logn
log 1

p − 1 + p
, (5) 136

then for any estimator �π and any constant δ > 0, 137

P {overlap (�π, π) ≤ δ} = 1 − o(1). 138

Theorem 2 implies that analogous to the Gaussian model, 139

in dense Erdős-Rényi graphs, the recovery of π exhibits an 140

“all-or-nothing” phase transition in terms of the limiting value 141

of
nps2(log 1

p−1+p)
log n at threshold 2, above which almost exact 142

recovery is possible and below which even partial recovery 143

is impossible. However, as we will see in Theorem 4, unlike 144

the Gaussian model, this threshold differs from that of exact 145

recovery. 146

Remark 1 (Entropy Interpretation of the Thresholds): The 147

sharp thresholds in Theorem 1 and Theorem 2 can be inter- 148

preted from an information-theoretic perspective. Suppose an 149

estimator �π = �π(A,B) achieves almost exact recovery with 150

E[overlap(π, �π)] = 1 − o(1), which, by a rate-distortion 151

computation, implies that I(π; �π) must be close to the full 152

entropy of π, that is, I(π; �π) = (1 − o(1))n logn. On the 153

other hand, by the data processing inequality, we have 154

I(π; �π) ≤ I(π;A,B). The latter can be bounded simply as 155

(see Section I-C.2) 156

I(π;A,B) ≤


n

2

�
I(P ), (6) 157

where I(P ) denotes the mutual information between a pair of 158

random variables with joint distribution P . For the Gaussian 159

model, we have 160

I(P ) =
1
2

log
1

1 − ρ2
. (7) 161

For the correlated Erdős-Rényi graph, 162

I(P ) = qd(s	q) + (1 − q)d(η	q), (8) 163

where q = ps, η � q(1−s)
1−q , and d(s	q) � 164

D(Bern(s)	Bern(q)) denotes the binary KL divergence. 165

By Taylor expansion, we have I(P ) = s2p
�
p− 1 + log 1

p

�
166

(1−o(1)). Combining these with
�
n
2

�
I(P ) ≥ (1−o(1))n logn 167

shows the impossibility of almost exact recovery under the 168

conditions (3) and (5). The fact that they are also necessary 169

for partial recovery takes more effort to show, which we do 170

in Section II. 171

Theorem 3 (Erdős-Rényi Graphs, Sparse Regime): Assume 172

p = n−Ω(1). If 173

nps2 ≥ (2 + �)max
�

logn
log(1/p)

, 2


, (9) 174

then there exists a constant δ > 0 such that 175

P {overlap (�πML, π) ≥ δ} = 1 − o(1). Conversely, assuming 176

np = ω(log2 n), if 177

nps2 ≤ 1 − �, (10) 178

then for any estimator �π and any constant δ > 0, 179

P {overlap (�π, π) ≤ δ} = 1 − o(1). 180
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Theorem 3 implies that for sparse Erdős-Rényi graphs with181

p = n−α for a constant α ∈ (0, 1), the information-theoretic182

thresholds for partial recovery is at nps2 
 1, which is much183

lower than the almost exact recovery threshold nps2 = ω(1)184

as established in [6]. Hence, interestingly the all-or-nothing185

phenomenon no longer holds for sparse Erdős-Rényi graphs.186

Note that the conditions (9) and (10) differ by a constant187

factor. Determining the sharp threshold for partial recovery in188

the sparse regime remains an open question. Since the initial189

posting of this paper to arXiv, a subsequent work [14] shows190

that partial recovery is impossible when nps2 ≤ 1 in the sparse191

regime with a constant average degree np = Θ(1), using192

a different technique of analyzing the posterior distribution.193

Determining the sharp threshold for partial recovery in the194

sparse regime remains an open question.195

Finally, we address the exact recovery threshold in the196

Erdős-Rényi graph model. For ease of notation, we consider197

a general correlated Erdős-Rényi graph model specified by198

the joint distribution P = (pab : a, b ∈ {0, 1}), so that199

P
�
Aπ(i)π(j) = a,Bij = b

�
= pab for a, b ∈ {0, 1}. In this200

general Erdős-Rényi model, �πML is again given by the maxi-201

mization problem (1) if p11p00 > p01p10 (positive correlation)202

and changes to minimization if p11p00 < p01p10 (negative203

correlation). The subsampling model is a special case with204

positive correlation, where205

p11 = ps2, p10 = p01 = ps(1 − s), p00 = 1 − 2ps+ ps2.206

(11)207

Theorem 4 (Erdős-Rényi Graphs, Exact Recovery): Under208

the subsampling model (11), if209

n (
√
p00p11 −

√
p01p10)

2 ≥ (1 + �) logn, (12)210

then P {overlap (�πML, π) = 1} = 1 − o(1).211

Conversely, if212

n (
√
p00p11 −

√
p01p10)

2 ≤ (1 − �) logn, (13)213

then for any estimator �π, P {overlap (�π, π) = 1} = o(1).214

If p is bounded away from 1, Theorem 4 implies that the215

exact recovery threshold is given by limn→∞
nps2(1−√

p)2

log n =216

1. Since log 1
p − 1 + p ≥ 2(1 − √

p)2, with equality if and217

only if p = 1, the threshold of exact recovery is strictly218

higher than that of almost exact recovery in the Erdős-Rényi219

graph model, unlike the Gaussian model. If p = 1 − o(1),220

Theorem 4 implies that the exact recovery threshold is given221

by limn→∞
nρ2

log n = 4, where ρ � s(1−p)
1−ps denotes the222

correlation parameter between Aπ(i)π(j) and Bij for any i < j223

under the latent permutation π.224

B. Comparisons to Prior Work225

Exact recovery: The information-theoretic thresholds for226

exact recovery have been determined for the Gaussian model227

and the general Erdős-Rényi graph model in certain regimes.228

In particular, for the Gaussian model, it is shown in [12] that229

if nρ2 ≥ (4 + �) logn for any constant � > 0, then the230

MLE achieves exact recovery; if instead nρ2 ≤ (4 − �) logn,231

then exact recovery is impossible. Theorem 1 significantly232

strengthens this negative result by showing that under the same 233

condition even partial recovery is impossible. 234

Analogously, for Erdős-Rényi random graphs, it is shown 235

in [4] and [5] that the MLE achieve exact recovery when 236

nps2 = logn + ω(1) under the additional restriction that 237

p = O(log−3(n)).1 Conversely, exact recovery is shown 238

in [4] to be information-theoretically impossible provided that 239

nps2 ≤ logn − ω(1), based on the fact the intersection 240

graph G1 ∧ G2 ∼ G(n, ps2) has many isolated nodes with 241

high probability. These two results together imply that when 242

p = O(log−3(n)), the exact recovery threshold is given by 243

lim nps2

log n = 1, coinciding with the connectivity threshold of 244

G1 ∧ G2. In comparison, Theorem 4 implies that if p is 245

bounded away from 1, the precise exact recovery threshold 246

is instead given by lim
nps2(1−√

p)2

log n = 1, strictly higher than 247

the connectivity threshold. In particular, deriving the tight 248

condition (13) requires more than eliminating isolated nodes. 249

In fact, our results show that when p is bounded away from 1 250

and logn < nps2 < log n
(1−√

p)2 , exact recovery still fails even 251

when the intersection graph is asymmetric (no non-trivial 252

automorphism) with high probability [25]. See the discussions 253

in Section I-C.4 for more details. 254

Partial and almost exact recovery: Compared to exact 255

recovery, the understanding of partial and almost exact recov- 256

ery is less precise. It is shown in [6] that in the sparse regime 257

p = n−Ω(1), almost exact recovery is information-theoretically 258

possible if and only if nps2 = ω(1). The more recent 259

work [16] further investigates partial recovery. It is shown 260

that if nps2 ≥ C(δ)max
�
1, log n

log(1/p)

�
, then there exists an 261

exponential-time estimator �π that achieves overlap (�π, π) ≥ δ 262

with high probability, where C(δ) is some large constant that 263

tends to ∞ as δ → 1; conversely, if I(P )
δ = o

�
log(n)

n

�
264

with I(P ) given in (8), then no estimator can achieve 265

overlap (�π, π) ≥ δ with positive probability. These conditions 266

do not match in general and are much looser than the results 267

in Theorems 2 and 3. 268

C. Proof Techniques 269

We start by introducing some preliminary definitions asso- 270

ciated with permutations (cf. [26, Section 3.1] for more details 271

and examples). 272

1) Node Permutation, Edge Permutation, and Cycle Decom- 273

position: Let Sn denote the set of permutations on the node 274

set [n]. Each σ ∈ Sn induces a permutation σE on the edge 275

set
�
[n]
2

�
of unordered pairs, according to 276

σE((i, j)) � (σ(i), σ(j)). (14) 277

We shall refer to σ and σE as a node permutation and edge 278

permutation. Each permutation can be decomposed as disjoint 279

cycles known as orbits. Orbits of σ (resp. σE) are referred as 280

node orbits (resp. edge orbits). Let nk (resp. Nk) denote the 281

number of k-node (resp. k-edge) orbits in σ (resp. σE). The 282

1In fact, [4], [5] studied exact recovery condition in a more general
correlated Erdős-Rényi model with P

�
Aπ(i)π(j) = a, Bij = b

�
= pab for

a, b ∈ {0, 1}, which will also be the setting in Section IV.
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cycle structure of σE is determined by that of σ. For example,283

we have284

N1 =


n1

2

�
+ n2, (15)285

because an edge (i, j) is a fixed point of σE if and only if286

either both i and j are fixed points of σ or (i, j) forms a287

2-node orbit of σ. Let F be the set of fixed points of σ with288

|F | = n1. Denote O1 =
�
F
2

�
⊂ O as the subset of fixed points289

of edge permutation σE, where O denotes the collection of all290

edge orbits of σE.291

2) Negative Results on Partial Recovery: Let P denote the292

joint distribution of A and B under the correlated model.293

To prove our negative results, we introduce an auxiliary null294

model Q, under which A and B are independent with the295

same marginal as P . In other words, under Q, (Aij , Bij)296

are i.i.d. pairs of independent random variables with a297

joint distribution Q equal to the product of the marginals298

of P .299

As the first step, we leverage the previous truncated300

second moment computation in [26] to conclude that the301

KL-divergence D(P	Q) is negligible under the desired condi-302

tions. By expressing the mutual information as I(π;A,B) =303 �
n
2

�
D(P	Q)−D(P	Q) where D(P	Q) = I(P ), this readily304

implies that I(π;A,B) =
�
n
2

�
I(P )(1 + o(1)). Next, we relate305

the mutual information I(π;A,B) to the integral of the306

minimum mean-squared error (MMSE) of Aπ, the weighted307

adjacency vector relabeled according to the ground truth. For308

the Gaussian model, this directly follows from the celebrated309

I-MMSE formula [15]. For correlated Erdős-Rényi graphs,310

we introduce an appropriate interpolating model and obtain an311

analogous but more involved “area theorem”, following [7],312

[20]. These two steps together imply that the MMSE of313

Aπ given the observation (A,B) is asymptotically equal to314

the estimation error of the trivial estimator E [Aπ]. Finally,315

we connect the MMSE of Aπ to the Hamming loss of316

reconstructing π, concluding the impossibility of the partial317

recovery.318

Note that by the non-negativity of D(P	Q), we arrive319

at the simple upper bound (6), that is, I(π;A,B) ≤320 �
n
2

�
I(P ). Interestingly, our proof relies on establishing321

an asymptotically matching lower bound to the mutual322

information I(π;A,B). This significantly deviates from323

the existing results in [16] based on Fano’s inequality:324

P {overlap(�π, π) ≤ δ} ≥ 1 − I(π;A,B)+1
log(n!/m) with m = |{π :325

overlap(π, π) ≥ δ}|, followed by applying the simple326

bound (6).327

3) Positive Results on Partial and Almost Exact Recovery:328

Our positive results follow from a large deviation analysis of329

the maximum likelihood estimator (1). A crucial observation330

is that the difference between the objective function in (1)331

evaluated at a given permutation π� and that at the ground truth332

π can be decomposed across the edge orbits of σ � π−1 ◦ π�
333

as334 �
Aπ′ −Aπ , B

	
=

�
O∈O\O1

XO −
�

O∈O\O1

YO � X − Y,335

where F is the set of fixed points of σ, O1 =
�
F
2

�
⊂ O is a 336

subset of fixed points of the edge permutation σE,2 XO � 337�
(i,j)∈O Aπ′(i)π′(j)Bij , and YO �

�
(i,j)∈O Aπ(i)π(j)Bij , 338

are independent across edge orbits O. Crucially, Y depends on 339

π� only through its fixed point set F , which has substantially 340

fewer choices than π� itself when n − |F | 
 n. Therefore, 341

for the purpose of applying the union bound it is beneficial to 342

separately control X and Y . Indeed, we show that Y is highly 343

concentrated on its mean. Hence, it remains to analyze the 344

large-deviation event of X exceeding E [Y ], which is accom- 345

plished by a careful computation of the moment generation 346

function (MGF) M|O| � E [exp (tXO)] and proving that for 347

any t ≥ 0, 348

M|O| ≤M
|O|/2
2 , for |O| ≥ 2. (16) 349

Intuitively, it means that the contribution of longer edge orbits 350

can be effectively bounded by that of the 2-edge orbits. 351

Capitalizing on this key finding and applying the Chernoff 352

bound together with a union bound over π� yields the tight 353

condition when q = o(1). When q = Θ(1), it turns out that the 354

correlation between X and Y can no longer be ignored so that 355

separately controlling X and Y leads to suboptimal results. 356

To remedy this issue, we need to center the adjacency vectors 357

A andB. More precisely, define XO �
�

(i,j)∈O(Aπ′(i)π′(j)− 358

q)(Bij − q), Y O �
�

(i,j)∈O(Aπ(i)π(j) − q)(Bij − q), 359

X �
�

O∈O\O1
XO, and Y �

�
O∈O\O1

Y O . By definition, 360

X−Y = X−Y . Crucially, it can be verified that XO and Y O 361

(and henceX and Y ) are uncorrelated after the centering. Thus 362

we can apply our aforementioned techniques to separately 363

bound X and Y , which yield the sharp conditions of recovery. 364

We remark that the partial recovery results in [16] are 365

obtained by analyzing an estimator slightly different from 366

the MLE and the same MGF bound (16) is used. However, 367

there are two major differences that led to the looseness of 368

their results. First, their analysis does not separately bound X 369

and Y . Second, the tilting parameter in the Chernoff bound is 370

suboptimal. 371

4) Exact Recovery: For exact recovery, we need to further 372

consider π� that is close to π, i.e., n − |F | = o(n). In this 373

regime, the number of choices of F is comparable to that 374

of π�. Hence, instead of separately bounding X and Y , it is 375

more favorable to directly applying the Chernoff bound to the 376

difference X − Y . Crucially, the moment generation function 377

E [exp (t(XO − YO))] continues to satisfy the relation (16) 378

and the bottleneck for exact recovery happens at |F | = n− 2, 379

where π� differs from π from a 2-cycle (transposition). 380

Prompted by this observation, we prove a matching neces- 381

sary condition of exact recovery by considering all possible 382

permutations σ � π−1 ◦ π� that consists of n− 2 fixed points 383

and a 2-node cycle (i, j) (transposition), in which case, 384�
Aπ′ −Aπ , B

	
385

= −
�

k∈[n]\{ij}

�
Aπ

ik −Aπ
jk

�
(Bik −Bjk) . (17) 386

2Note that O1 consists of fixed points of the edge permutation, while F
denotes the set of fixed points of the node permutation. An edge pair (i, j) ∈
O1 if and only if both i and j belong to F .
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There remain two key challenges to conclude the existence of387

many choices of (i, j) for which �Aπ′
, B� ≥ �Aπ, B�. First,388

to derive a tight impossibility condition, we need to obtain389

a tight large-deviation lower estimate for this event. Second,390

the RHS of (17) for different pairs (i, j) are correlated. This391

dependency is addressed by restricting the choices of (i, j)392

and applying a second moment computation.393

Note that the impossibility proof of exact recovery for the394

Gaussian model in [12] also considers the permutations that395

consist of a single transposition. The difference is that their396

large-deviation lower estimate simply follows from Gaussian397

tail probability and the correlations among different pairs (i, j)398

is bounded by a second-moment calculation using densities of399

correlated Gaussians.400

II. IMPOSSIBILITY OF PARTIAL RECOVERY401

To start, we characterize the asymptotic value of the mutual402

information I(A,B;π) – a key quantity that measures the403

amount of information about π provided by the observation404

(A,B). By definition,405

I(A,B;π) � E
�
D
�
PA,B|π	PA,B

��
406

= E
�
D
�
PA,B|π	QA,B

��
−D (PA,B||QAB)407

for any joint distribution QA,B of (A,B) such that408

D (PA,B||QAB) < ∞. Note that PA,B|π factorizes into a409

product distribution
�

i<j PAπ(i)π(j) ,Bij = P⊗(n
2), where P410

is the joint distribution of (Aπ(i)π(j), Bij). Thus, to exploit411

the tensorization property of the KL-divergence, we choose412

QA,B to be a product distribution under which A and B413

are independent and (Aij , Bij) are i.i.d. pairs of independent414

random variables with a joint distribution Q with the same415

marginals as P . (We shall refer to this QA,B as the null416

model.) In particular, for the Gaussian (resp. Erdős-Rényi)417

model, Q is the joint distribution of two independent standard418

normal (resp. Bern(q)) random variables. Under this choice,419

we have D
�
PA,B|π	QA,B

�
=

�
n
2

�
D(P	Q) =

�
n
2

�
I(P ) and420

hence421

I(A,B;π) =


n

2

�
I(P ) −D (PA,B||QAB) .422

By the non-negativity of the KL divergence, we have423

I(A,B;π) ≤
�
n
2

�
I(P ). This bound turns out to be tight,424

as made precise by the following proposition.425

Proposition 1: It holds that426

I(A,B;π) =


n

2

�
I(P ) − ζn,427

where428

• ζn = o(1) in the Gaussian model with ρ2 ≤ (4−�) log n
n ;429

• ζn = o(1) in the dense Erdős-Rényi graphs with p =430

n−o(1) and nps2 (log(1/p)− 1 + p) ≤ (2 − �) log(n);431

• ζn = O(log n) in the sparse Erdős-Rényi graphs with432

p = n−Ω(1) and np = ω(1) and nps2 ≤ 1 − �;433

for some arbitrarily small but fixed constant � > 0.434

Given the tight characterization of the mutual information435

in Proposition 1, we now relate it to the Bayes risk. Using the436

chain rule, we have437

I(A,B;π) = I(B;π | A) = I(B;Aπ | A),438

where the second equality follows from the fact that A → 439

Aπ → B forms a Markov chain. The intuition is that condi- 440

tioned on A, B is a noisy observation of Aπ (which is random 441

owning to π). In such a situation, the mutual information can 442

typically be related to an integral of the reconstruction error 443

of the signal Aπ . To make this precise, we first introduce 444

a parametric model Pθ that interpolates between the planted 445

model P and the null model Q as θ varies. We write Eθ to 446

indicate expectation taken with respect to the law Pθ. 447

For the Gaussian model, let Pθ denote the model under 448

which B =
√
θAπ +

√
1 − θZ, where A,Z are two indepen- 449

dent Gaussian matrices and θ ∈ [0, 1]. Then θ = ρ2 corre- 450

sponds to the planted model P while θ = 0 corresponds to 451

the null model Q. As θ increases from 0 to ρ2, Pθ interpolates 452

between Q and P . Let 453

mmseθ(Aπ) � Eθ[	Aπ − Eθ[Aπ|A,B]	2] (18) 454

denote the minimum mean-squared error (MMSE) of estimat- 455

ing Aπ based on (A,B) distributed according to Pθ. The 456

following proposition follows from the celebrated I-MMSE 457

formula [15]. 458

Proposition 2 (Gaussian Model): 459

I(A,B;π) =
1
2

� ρ2

0

mmseθ(Aπ)
(1 − θ)2

dθ. 460

The correlated Erdős-Rényi graph model requires more 461

effort. Let us fix q = ps and consider the following cou- 462

pling Pθ between two Bern(q) random variables with joint 463

probability mass function pθ, where pθ(11) = qθ, pθ(01) = 464

pθ(10) = q(1 − θ), and pθ(00) = 1 − (2 − θ)q, with 465

θ ∈ [q, s]. Let Pθ denote the interpolated model under which 466�
Aπ(i)π(j), Bij

�
are i.i.d. pairs of correlated random variables 467

with joint distribution Pθ . As θ increases from q to s, Pθ 468

interpolates between the null model Q = Pq and the planted 469

model P = Ps. We have the following area theorem that 470

relates I(A,B;π) to the MMSE of Aπ. 471

Proposition 3 (Erdős-Rényi Random Graph): It holds that 472

I(A,B;π) 473

≤


n

2

�
I(P ) +



n

2

�
qs2 474

+
� s

q

θ − q

s(1 − q)2



mmseθ(Aπ) −



n

2

�
q(1 − q)

�
dθ. 475

Finally, we relate the estimation error of Aπ to that of π. 476

Proposition 4: In both the Gaussian and Erdős-Rényi graph 477

model, if 478

mmseθ(Aπ) ≥ E
�
	A	2

�
(1 − ξ), (19) 479

for some ξ > 0, then for any estimator �π = �π(A,B), 480

Eθ[overlap(�π, π)] ≤ O

�
ξ1/4 +



n logn

E [	A	2]

�1/4
�
. 481

Now, we are ready to prove the negative results on partial 482

recovery. We start with the Gaussian case. 483
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Proof of the negative part in Theorem 1: In the484

Gaussian model, we have485

I(P ) = D
�
N
�

( 0
0 ) ,

� 1 ρ
ρ 1

� ����N�
( 0

0 ) , ( 1 0
0 1 )

��
486

=
1
2

log
1

1 − ρ2
.487

Assume that ρ2 = (4− �/2) logn
n . Fix some θ0 ∈ (0, ρ2) to be488

chosen. Then,489 

n

2

�
1
2

log
1

1 − ρ2
− ζn490

(a)
= I(A,B;π)491

(b)

≤ 1
2(1 − ρ2)2

� ρ2

0

mmseθ(Aπ)dθ492

(c)

≤ 1
2(1 − ρ2)2




n

2

�
θ0 + mmseθ0(A

π)(ρ2 − θ0))
�

493

=
1

2(1 − ρ2)2

�

n

2

�
ρ2+494



mmseθ0(A

π) −


n

2

��
(ρ2 − θ0)

�
,495

where ζn = o(1) and (a) holds by Proposition 1; (b) follows496

from the I-MMSE formula given in Proposition 2; (c) holds497

because mmseθ(Aπ) ≤ E
�
	A	2

2

�
=

�
n
2

�
and the fact that498

mmseθ(Aπ) is monotone decreasing in θ. Rearranging the499

terms in the last displayed equation, we get500

mmseθ0(A
π) −



n

2

�
501

≥ (1 − ρ2)2

ρ2 − θ0

�

n

2

��
log

1
1 − ρ2

− ρ2

(1 − ρ2)2

�
− 2ζn

�
502

≥ − (1 − ρ2)2

ρ2 − θ0




n

2

�
2ρ4

(1 − ρ2)2
+ 2ζn

�
,503

where the last inequality holds because log(1+x) ≥ x−x2 for504

x ≥ 0. Choosing θ0 = (4 − �) log n
n , we conclude that505

mmseθ0(A
π) ≥



n

2

�

1 −O



ρ2 +

ζn
n2ρ2

��
506

=


n

2

�

1 −O



logn
n

��
, (20)507

where the last equality holds because ρ2 = Θ(log(n)/n) and508

ζn = o(1). Since E
�
	A	2

2

�
=

�
n
2

�
, it follows from Proposi-509

tion 4 that510

Eθ0 [overlap(�π, π)] ≤ O

�

logn
n

�1/4
�
.511

Finally, by Markov’s inequality, for any δn = ω


�
log n

n

�1/4
�

512

(in particular, a fixed constant δn > 0), Pθ0{overlap(�π, π) ≥513

δn} = o(1). Note that Pθ0 corresponds to the Gaussian514

model with squared correlation coefficient equal to θ0 =515

(4 − �) log n
n . By the arbitrariness of �, this completes the516

proof of Theorem 1.517

Next, we move to the Erdős-Rényi graph model.518

Proof of the negative parts in Theorems 2 and 3: Let 519

s2 = (2−�) log n
np(log(1/p)−1+p) in the dense regime and s2 = 1−�

np in 520

the sparse regime. Then we get that 521

− ζn −


n

2

�
qs2 522

(a)

≤
� s

q

θ − q

s(1 − q)2



mmseθ(Aπ) −



n

2

�
q(1 − q)

�
dθ 523

(b)

≤
� s

q

θ − q

s(1 − q)2



mmseθ∧(1−�)s(Aπ)−



n

2

�
q(1−q)

�
dθ 524

(c)

≤
� s

(1−�)s

θ − q

s(1−q)2



mmse(1−�)s(Aπ)−



n

2

�
q(1−q)

�
dθ 525

=
s2(2�− �2) − 2�sq

2s(1 − q)2� �� �
=Θ(s)



mmse(1−�)s(Aπ) −



n

2

�
q(1−q)

�
526

where ζn = o(1) in the dense regime and ζn = O(log n) 527

in the sparse regime; (a) follows from Proposition 1 and 528

Proposition 3; (b) holds because mmseθ(Aπ) is monotone 529

decreasing in θ; (c) holds because 530� (1−�)s

q

θ − q

s(1−q)2



mmseθ∧(1−�)s(Aπ)−



n

2

�
q(1−q)

�
dθ, 531

is bounded above by 0, in view of mmseθ(Aπ) ≤ 532

E
�
	A− E [A] 	2

2

�
=

�
n
2

�
q(1 − q).3 Rearranging the terms in 533

the last displayed equation, we conclude that 534

mmse(1−�)s(Aπ) ≥


n

2

�
q(1 − q)



1−O



ζn
n2qs

+ s

��
535

≥


n

2

�
q (1 −O(s)) , 536

where the last inequality holds because q ≤ s, ζn = O(n2qs2) 537

and s2 
 log n
np log(1/p) . Since E

�
	A	2

2

�
=

�
n
2

�
q, it follows 538

from Proposition 4 that 539

E(1−�)s[overlap(�π, π)] ≤ O

�
s1/4 +



logn
nq

�1/4
�

540

= O

�

logn
nq

�1/4
�
, 541

where the last equality holds because nqs = nps2 = O(log n). 542

Note that in the dense regime, since s2 
 log n
np(log 1

p−1+p)
and 543

p = n−o(1), we have nq = nps = ω(logn). This also holds in 544

the sparse regime when s2 
 1
np under the extra assumption 545

that np = ω
�
log2 n

�
. Thus, by Markov’s inequality, for 546

any δn = ω


�
log n
nq

�1/4
�

, in particular, any fixed constant 547

δn > 0, we have P(1−�)s{overlap(�π, π) ≥ δn} = o(1). 548

In other words, we have shown the desired impossibility 549

result under the distribution P(1−�)s, which corresponds to 550

3The fact that mmseθ(Aπ) is monotone decreasing in θ follows from a
simulation argument. Let (A, B) ∼ Pθ . Fix θ′ such that q < θ′ < θ <
s. Define B′ = (B′

ij) by passing each Bij independently through the

same (asymmetric) channel W to obtain B′
ij , where W (0|1) = (1−q)(θ−θ′)

θ−q

and W (1|0) = q(θ−θ′)
θ−q

are well-defined. Then (A, B′) ∼ Pθ′ .
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the correlated Erdős-Rényi model with parameters p� = p
1−�551

and s� = s(1− �). By the arbitrariness of �, this completes the552

proof.553

A. Proof of Proposition 1554

In this subsection, we prove Proposition 1, which reduces555

to bounding D (PA,B	QA,B). It is well-known that KL diver-556

gence can be bounded by the χ2-divergence (variance of the557

likelihood ratio). This method, however, is often too loose as558

the second moment can be derailed by rare events. Thus a559

more robust version is by means of truncated second moment,560

which has been carried out in [26] to bound TV (PA,B,QA,B)561

for studying the hypothesis testing problem in graph matching.562

Here we leverage the same result to bound the KL divergence.563

To this end, we first present a general bound then specialize564

to our problem in both Gaussian and Erdős-Rényi models.565

Lemma 1: Let PXY denote the joint distribution of (X,Y ).566

Let E be an event independent of X such that P(E) = 1− δ.567

Let QY be an auxiliary distribution such that PY |X � QY568

PX -a.s. Then569

D(PY 	QY ) ≤ log(1 + χ2(PY |E	QY ))570

+ δ



log

1
δ

+ E[D(PY |X	QY )]
�

571

+

�
δ · Var



log

dPY |X
dQY

�
, (21)572

where PY |E denote the distribution of Y conditioned on E , and573

the χ2-divergence is defined as χ2(P	Q) = EQ[( dP
dQ − 1)2] if574

P � Q and ∞ otherwise.575

Proof: Note that PY = (1− δ)PY |E + δPY |Ec . Thanks to576

the convexity of the KL divergence, Jensen’s inequality yields577

D(PY 	QY ) ≤ (1 − δ)D(PY |E	QY ) + δD(PY |Ec	QY ).578

The first term can be bounded using the generic fact that579

D(P	Q) ≤ log EQ[( dP
dQ)2] = log(1 + χ2(P	Q)). Let580

g(X,Y ) = log dPY |X
dQY

. Using the convexity of KL divergence581

and the independence of E and X , we bound the second term582

as follows:583

D(PY |Ec	QY )584

≤ E[D(PY |X,Ec	QY )]585

= E

 �
dPY |X,Ec log



dPY |X,Ec

dQY

�!
586

= E

 �
dPY |X

1{(X,Y )∈Ec}
P(Ec)

log



dPY |X
dQY P(Ec)

�!
587

= log
1
δ

+
1
δ

E[(g(X,Y )1{(X,Y )∈Ec}]588

= log
1
δ

+ E[g(X,Y )]589

+
1
δ

E
�
(g(X,Y ) − E[g(X,Y )])1{(X,Y )∈Ec}

�
.590

Applying Cauchy-Schwarz to the last term completes the591

proof.592

Next we apply Lemma 1 in the context of the random593

graph matching by identifying X and Y with the latent π594

and the observation (A,B) respectively. Let E be a certain 595

high-probability event independent of π. Then 596

PA,B|E =
1

P(E) n!

�
π∈Sn

PA,B1{(A,B,π)∈E}. 597

Recall that the null model is chosen to be QA,B = PA ⊗PB . 598

As shown in [26], for both the Gaussian and Erdős-Rényi 599

graph model, it is possible to construct a high-probability 600

event E satisfying the symmetry condition P(E | π) = P(E), 601

such that χ2(PA,B|E	QA,B) = o(1). This bounds the first 602

term in (21). For the second term, since both A and B are 603

individually independent of π, we have 604

E

 
log

dPA,B|π
dQA,B

!
= I(A;B|π) 605

=


n

2

�
D(P	Q) =



n

2

�
I(P ), (22) 606

where the last equality holds because Q is the product of 607

the marginals of P . The third term in (21) can be computed 608

explicitly. Next we give details on how to complete the proof 609

of Proposition 1. 610

a) Gaussian model: It is shown in [26, Section 4.1, 611

Lemma 1] that there exists an event E independent of π 612

such that P(Ec) = e−Ω(n) and χ2 (PE	Q) = o(1), provided 613

that ρ2 ≤ (4−�) log n
n . Furthermore, by (22) and (7), we have 614

E

"
log dPA,B|π

dQA,B

#
=

�
n
2

�
1
2 log 1

1−ρ2 = O(n logn). To compute 615

the variance, note that 616

log
dPA,B|π
dQA,B

= − 1
2



n

2

�
log(1 − ρ2) − h(A,B, π)

4(1 − ρ2)
, 617

where 618

h(A,B, π) � ρ2	A	2 + ρ2	B	2 − 2ρ �Aπ , B� . 619

Thus Var(log dPA,B|π
dQA,B

) = 1
16(1−ρ2)2 Var(h(A,B, π)). 620

Write B = ρAπ +
�

1 − ρ2Z where Z is an 621

independent copy of A, we have h(A,B, π) = 622

ρ2(	B	2−	A	2)−2ρ
�

1 − ρ2 �Aπ, Z�. Here both 	A	2 and 623

	B	2 are distributed as χ2

(n
2)

, with variance equal to 2
�
n
2

�
. 624

Furthermore, Var(�Aπ , Z�) =
�
n
2

�
. Thus Var(h(A,B, π)) = 625

O(n logn). Applying Lemma 1, we conclude that 626

D(PA,B	QA,B) = o(1). 627

b) Erdős-Rényi Graphs: In the dense regime of 628

p = n−o(1) and p = 1 − Ω(1), it is shown in 629

[26, Section A.3, Lemma 6] that there exists an event E such 630

that P(Ec) = e−n1−o(1)
and χ2 (PE	Q) = o(1), provided 631

that nps2 (log(1/p) − 1 + p) ≤ (2 − �) log(n). In the sparse 632

regime (see [26, Section 5, Lemma 2]), it is possible to choose 633

E such that P(Ec) = O( 1
n ) and χ2 (PE	Q) = o(1), provided 634

that nps2 ≤ 1 − � and np = ω(1). 635

By (22) and (8), we have E

"
log dPA,B|π

dQA,B

#
=

�
n
2

�
I(P ), 636

where I(P ) = qd(s	q) + (1 − q)d(η	q), with q = ps and 637

η = q(1−s)
1−q . In both the dense and sparse regime, one can 638

verify that 639

I(P ) = s2p



p− 1 + log

1
p

�
(1 + o(1)). 640
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As a result, we have E

"
log dPA,B|π

dQA,B

#
= O(n log n) in both641

cases.642

It remains to bound the variance in (21). Note that643

log
P(A,B | π)
Q(A,B)

=


n

2

�
log

1 − η

1 − ps
+

1
2
h(A,B, π),644

where645

h(A,B, π) � log
1 − s

1 − η

�
	A	2 + 	B	2

�
646

+ log
s(1 − η)
η(1 − s)

�Aπ, B� .647

Since p is bounded away from 1 and s = o(1) in both the648

dense regime (p = n−o(1)) and sparse regime (p = n−Ω(1)
649

and np = ω(1)), it follows that650

log
1 − η

1 − s
= log



1 +

s(1 − p)
(1 − s)(1 − ps)

�
651

= (1 + o(1)) s(1 − p)652

s(1 − η)
η(1 − s)

=
(1 − η)(1 − ps)
p(1 − s)2

=
1 + o(1)

p
.653

Note that 	A	2, 	B	2 ∼ Binom(
�

n
2

�
, ps) and �Aπ, B� ∼654

Binom(
�
n
2

�
, ps2). We have Var(h) = O(n2ps2 log2 1

p ). Con-655

sequently,
�

Var(h)P(Ec) = o(1) and O(log n) in the dense656

and sparse case, respectively. Applying Lemma 1 yields the657

same upper bound on D(PA,B	QA,B).658

B. Proof of Proposition 2659

The proof follows from a simple application of the I-MMSE660

formula for the additive Gaussian channel. Note that under the661

interpolated model Pθ , we have662

B√
1 − θ

=

$
θ

1 − θ
Aπ + Z,663

which is the output of an additive Gaussian channel with664

input Aπ and the standard Gaussian noise Z . Letting I(θ) =665

I(B;Aπ | π) = I(A,B;π) and using the I-MMSE for-666

mula [15, Theorem 2], we have667

dI(θ)
d (θ/(1 − θ))

=
1
2
mmseθ (Aπ) . (23)668

Thus dI(θ)
dθ = 1

2(1−θ)2 mmseθ (Aπ). Integrating over θ from669

0 to ρ2 and noting I(0) = 0, we arrive at670

I(ρ2) =
� ρ2

0

1
2(1 − θ)2

mmseθ (Aπ) dθ.671

C. Proof of Proposition 3672

Note that under the interpolated model Pθ, we have673

pθ(y|x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ x = 1, y = 1
1 − θ x = 1, y = 0
η x = 0, y = 1
1 − η x = 0, y = 0

, η =
q(1 − θ)
1 − q

.674

Let g(θ) � D(Pθ	Q) = q · d(θ	q) + (1 − q)d(η	q). Then675

g(s) = D(P	Q) and g(q) = 0. Let I(θ) = Iθ(A,B;π),676

where the subscript θ indicates that Aπ and B are distributed 677

according to Pθ. Then 678

Is(Aπ ;B|A) = Hs(Aπ|A) −Hs(Aπ |B,A) 679

= Hq(Aπ |B,A) −Hs(Aπ |B,A) 680

= −
� s

q

d

dθ
Hθ(Aπ |B,A)dθ, 681

where the second equality holds because for a fixed q, 682

Hθ(Aπ |A) does not change with θ and when θ = q, Aπ
683

and B are independent and hence Iq(Aπ ;B|A) = 0 so that 684

Hq(Aπ |A) = Hq(Aπ |B,A). By [7, Lemma 7.1], we have 685

d

dθ
Hθ(Aπ |B,A) = (I) +



n

2

�
d

dθ
(h(q) − g(θ)) 686

= (I) −


n

2

�
g�(θ), 687

where h(q) = −q log q−(1−q) log(1−q) is the binary entropy 688

function, 689

(I) =
�

e∈([n]
2 )

�
xe,ye

∂pθ(ye|xe)
∂θ

690

E

⎡⎣μe(xe|B\e, A) log
�
x′

e

pθ(ye|x�e)μe(x�e|B\e, A)

⎤⎦ , 691

B\e denotes the adjacency vector B excluding Be, μe(· | 692

B\e, A) is the distribution of Aπ
e conditional on (B\e, A) 693

under Pθ . Note that the expectation in (I) is taken over the 694

random variables A,B\e which depend on θ. Since g(q) = 0, 695

we have 696

Is(Aπ;B|π) = −
� s

q

(I) +


n

2

�
g(s) 697

= −
� s

q

(I) +


n

2

�
D(P	Q). (24) 698

It remains to relate (I) to the reconstruction error. Note that 699

for x, y ∈ {0, 1}, 700

pθ(y|x) = α(x)y+(1−α(x))(1−y), α(x) = θx+η(1−x) 701

(25) 702

and 703

∂pθ(1|x)
∂θ

=
∂α(x)
∂θ

= x+
∂η

∂θ
(1 − x) = −∂pθ(0|x)

∂θ
. 704

Thus for each xe, 705�
ye=0,1

∂pθ(ye|xe)
∂θ

E

-
μe(xe|B\e, A)× 706

log
�

x′
e=0,1

pθ(ye|x�e)μe(x�e|B\e, A)

.
707

=
∂pθ(1|xe)

∂θ
E

-
μe(xe|B\e, A)× 708

log

�
x′

e=0,1 pθ(1|x�e)μe(x�e|B\e, A)

1 −
�

x′
e=0,1 pθ(1|x�e)μe(x�e|B\e, A)

.
709

= − ∂pθ(1|xe)
∂θ

E
�
μe(xe|B\e, A)h�(ye)

�
, 710
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where we defined711

ye ≡ ye(B\e, A) �
�

xe=0,1

pθ(1|xe)μe(xe|B\e, A).712

and used h�(x) = log 1−x
x . Then we have713 �

xe=0,1

�
ye=0,1

∂pθ(ye|xe)
∂θ

714

E

⎡⎣μe(xe|B\e, A) log
�

x′
e=0,1

pθ(ye|x�e)μe(x�e|B\e, A)

⎤⎦715

= − E

 
∂ye

∂θ
h�(ye)

!
716

Let /xe = E[Aπ
e |B\e, A]. Then ye = θ/xe + η(1 − /xe). Let717

Δe = ye − q = (θ − η)(/xe − q) =
θ − q

1 − q
(/xe − q).718

Then E[Δe] = 0 and E[Δ2
e] = ( θ−q

1−q )2Var(/xe). Furthermore,719

∂ye

∂θ
=

1
1 − q

(/xe − q).720

Using h��(x) = − 1
x(1−x) , we get h�(ye) = h�(q)− 1

ξ(1−ξ)Δe721

for some ξ between ye and q. Note that η ≤ q ≤ θ ≤ s and722

ye ∈ [η, θ]. Thus η ≤ ξ ≤ s. So723

− E

 
∂ye

∂θ
h�(ye)

!
724

= − h�(q)
1 − q

E [/xe − q] +
θ − q

(1 − q)2
E

 
(/xe − q)2

ξ(1 − ξ)

!
725

≥ θ − q

s(1 − q)2
Varθ(/xe).726

Integrating over θ we get727 � s

q

(I) =
�

e

� s

q

dθ



−E

 
∂ye

∂θ
h�(ye)

!�
728

≥
�

e

� s

q

dθ
θ − q

s(1 − q)2
Varθ(/xe) (26)729

Finally, note that the above bound pertains to /xe =730

E[Aπ
e |B\e, A], which we now relate to �xe = E[Aπ

e |B,A].731

Denote by μe(·|B,A) the full posterior law of Aπ
e . Note that732

�xe =
�
xe

xeμe(xe|B,A) =

�
xe
xeμe(xe|B\e, A)pθ(Be|xe)�

xe
μe(xe|B\e, A)pθ(Be|xe)

,733

where the last equality holds by the Bayes’ theorem and the734

independence between Be and (A,B\e) conditional on Aπ
e ,735

that is,736

μe(xe|B,A) = P {Aπ
e = xe|B,A}737

∝ P
�
Aπ

e =xe|B\e, A
�

P
�
Be|Aπ

e =xe, B\e, A
�

738

= μe(xe|B\e, A)pθ(Be|xe).739

By (25), we have740

pθ(y|x) = 1−y + (θx+ η(1 − x)) (2y − 1).741

After some simplification, we have 742

�xe =
�
xe

xeμe(xe|B,A) 743

=
/xe(θBe + (1 − θ)(1 −Be))

1 − η − (1 − 2η)Be + /xe(2Be − 1)(θ − η)
744

=

0
(1−θ)�xe

1−η−�xe(θ−η) Be = 0
θ�xe

η+�xe(θ−η) Be = 1
. 745

Since η ≤ q ≤ θ ≤ s, we have 746

�xe ≤ Be min



1,
s

η
/xe

�
+ (1 −Be)/xe 747

and hence 748

E[�x2
e] ≤ E

-
min



1,
s

η
/xe

�2

Be

.
+ E[/x2

e]. 749

Note that 750

E

-
min



1,
s

η
/xe

�2

Be

.
751

(a)
= E

-
E

-
min



1,
s

η
/xe

�2 111Aπ
e

.
E[Be | Aπ

e ]

.
752

(b)
= E

-
E

-
min



1,
s

η
/xe

�2 111Aπ
e

.
(sAπ

e + η(1 −Aπ
e ))

.
753

(c)

≤ sE [Aπ
e ] + sE

"
E

"/xe

111Aπ
e

#
(1 −Aπ

e )
#

754

≤ sq + sE[/xe] = 2sq, 755

where (a) follows from the conditional independence of /xe 756

(which depends on (A,B\e)) and Be given Aπ
e ; (b) follows 757

from (25); (c) follows by using min
�
1, s

η /xe

�2

≤ 1 to get the 758

first term and min
�
1, s

η /xe

�2

≤ s
η /xe to get the second term. 759

Combining the previous two displays yields that 760

Eθ[�x2
e] ≤ 2sq + E

�/x2
e

�
≤ 2sq + q2 + Var

�/x2
e

�
. 761

It follows that 762

mmse(Aπ) 763

=
�

e

E

"
(xe − �xe)

2
#

764

=
�

e

�
E
�
x2

e

�
− E

��x2
e

��
765

≥


n

2

�
q(1 − q) − 2



n

2

�
sq −

�
e

Var
�/x2

e

�
. (27) 766

Combining (26) with (27) yields that 767� s

q

(I) 768

≥
� s

q

dθ
θ − q

s(1 − q)2
769



n

2

�
q(1 − q) − 2



n

2

�
sq − mmseθ(Aπ)

�
dθ 770

=
� s

q

dθ
θ − q

s(1 − q)2




n

2

�
q(1 − q) − mmseθ(Aπ)

�
dθ 771
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−


n

2

�
(s− q)2q
(1 − q)2

772

≥
� s

q

dθ
θ − q

s(1 − q)2




n

2

�
q(1 − q) − mmseθ(Aπ)

�
dθ773

−


n

2

�
qs2774

The conclusion follows by combining the last display775

with (24).776

D. Proof of Proposition 4777

In this section, we prove Proposition 4 by connecting the778

MSE of Aπ to the Hamming risk of estimating π. In particular,779

assuming (19), that is, mmse(Aπ) ≥ E
�
	A	2

�
(1−ξ), we aim780

to show that E [overlap(π, �π)] = O
�
ξ1/4 + ( n log n

E[
A
2] )
1/4

�
for781

any estimator �π(A,B). We first present a general program and782

then specialize the argument to the Gaussian and Erdős-Rényi783

graph model.784

Recall that overlap(π, �π) denotes the fraction of fixed points785

of σ � π−1◦�π. Let α(π, �π) denote the fraction of fixed points786

of the edge permutation σE induced by the node permutation787

σ (cf. Section I-C.1). The following simple lemma relates788

α(π, �π) to overlap(π, �π).789

Lemma 2: It holds that790

E [overlap(π, �π)] ≤
�

E [α(π, �π)] +
1
n
.791

Proof: In view of (15),792 

noverlap(π, �π)

2

�
≤



n

2

�
α(π, �π).793

By Jensen’s inequality,794 

nE [overlap(π, �π)]

2

�
≤ E

 

noverlap(π, �π)

2

�!
795

≤


n

2

�
E [α(π, �π)] .796

The desired conclusion follows because for x, y ≥ 0,
�
nx
2

�
≤797 �

n
2

�
y ⇐⇒ nx2−x − (n − 1)y ≤ 0 =⇒ x ≤798

1+
√

1+4n(n−1)y

2n ≤ √
y + 1

n .799

In view of Lemma 2 and the fact that E
�
	A	2

�
≤ n2,800

it suffices to show E [α(π, �π)] = O
�
ξ1/2 + ( n log n

E[
A
2] )
1/2

�
.801

Let α0 = E [α(π, �π)] and define an estimator of Aπ by802 �A = α0A
�π + (1 − α0)E [A]. This is well-defined since α0 is803

deterministic and �π only depends on (A,B). Intuitively, �A can804

be viewed as an interpolation between the “plug-in” estimator805

A�π and the trivial estimator E [Aπ] = E [A]. We remark that806

to derive the desired lower bound to α0, it is crucial to use the807

interpolated estimator �A rather than the “plug-in” estimator,808

because we expect α0 to be small and �π is only slightly809

correlated with π.810

On the one hand, by definition of the MMSE and the811

assumption (19),812

E

"
	Aπ − �A	2

#
≥ mmse(Aπ) ≥ E

�
	A	2

�
(1 − ξ). (28)813

On the other hand, we claim that in both the Gaussian and 814

Erdős-Rényi model, 815

E

"�
Aπ , A�π

	#
≥ E

�
	A	2

2

�
α0 816

−O


2
E [	A	2

2]n logn
�
, (29) 817

so that 818

E

"
	Aπ − �A	2

#
= E

�
	Aπ	2

�
+ E

"
	 �A	2

#
− 2E

"�
Aπ, �A	# 819

(a)
= (1 + α2

0)E
�
	A	2

�
− (1 − α0)2	E [A]	2

820

− 2α0E

"�
Aπ, A�π

	#
821

≤ (1 − α2
0)E

�
	A	2

�
822

+O



α0

2
E [	A	2

2]n logn
�
, (30) 823

where in (a) we used the fact that E [Aπ] = E [A] is entrywise 824

constant and
3
E [A] , A�π

4
= E[A12]

�
i<j A�π(i),�π(j) = 825

E[A12]
�

i<j Ai,j = �E [A] , A� so that
3
E [A] ,E[A�π]

4
= 826

	E[A]	2. Combining (28) and (30) yields that 827

α2
0 ≤ ξ +O

�
α0

�
n logn

E [	A	2]

�
828

=⇒ α0 = O

�
ξ1/2 +

�
n logn

E [	A	2]

�
. (31) 829

To finish the proof, it remains to prove the claim (29). 830

Proof of Claim (29): Let C be a sufficiently large con- 831

stant. For each permutation π� ∈ Sn, define an event 832

Fπ′ =
�
�Aπ , Aπ′� ≥ E

�
	A	2

�
α(π, π�) 833

−C
�

E [	A	2]n logn



(32) 834

and set F � ∩π′∈SnFπ′ . It follows that 835

E

"�
Aπ, A�π

	#
836

= E

"�
Aπ, A�π

	
1{F}

#
+ E

"�
Aπ, A�π

	
1{Fc}

#
837

≥ E
�
	A	2

�
E
�
α(π, �π)1{F}

�
838

−C
�

E [	A	2]n logn− E
�
	A	21{Fc}

�
839

≥ E
�
	A	2

�
(α0 − P {Fc}) 840

− C
�

E [	A	2]n logn−
�

E [	A	4]P {Fc}, 841

where the last inequality holds because 842

E
�
α(π, �π)1{F}

�
= E [α(π, �π)] − E

�
α(π, �π)1{Fc}

�
843

≥ α0 − P {Fc} , 844

and E
�
	A	21{Fc}

�
≤

�
E [	A	4] P {Fc} by the Cauchy- 845

Schwarz inequality. Note that E
�
	A	4

�
= O(n4), and 846

E
�
	A	2

�
is equal to

�
n
2

�
in the Gaussian case and

�
n
2

�
q in 847

the Erdős-Rényi case (with q ≥ n−O(1)). To get (29), it 848

suffices to prove P {Fc} ≤ e−n log n, which, by union bound, 849

further reduces to showing that P {Fc
π′} ≤ e−2n log n for any 850

permutation π� ∈ Sn. To this end, we consider the Gaussian 851

and Erdős-Rényi graph model separately. 852
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For the Gaussian Wigner model, let M ∈ {0, 1}(
[n]
2 )×([n]

2 )
853

denote the permutation matrix corresponding to the edge per-854

mutation σE induced by σ = π−1◦π�. Recalling that A denotes855

the weighted adjacency vector, we have �Aπ, Aπ′� = A�MA.856

By Hanson-Wright inequality Lemma 9 in Appendix , with857

probability at least 1 − δ858

A�MA ≥Tr(M)−C�
�
	M	2

F

�
log(1/δ)+	M	2 log(1/δ)

�
,859

where C� > 0 is a universal constant. Since Tr(M) =860 �
n
2

�
α(π, π�), 	M	2

F =
�
n
2

�
, and the spectral norm 	M	2 = 1,861

it follows that with probability at least 1 − δ,862

A�MA ≥


n

2

�
α(π, π�) − C�

�
n
�

log(1/δ) + log(1/δ)
�
.863

Choosing δ = e−2n log n and C in (32) to be a large enough864

constant, we get that P {Fπ′} ≥ 1 − e−2n log n.865

Next, we move to the Erdős-Rényi graph model. Fix any866

permutation π� ∈ Sn. Let O1 denote the set of fixed points867

of the edge permutation induced by π� ◦ π−1. By definition,868

|O1| =
�
n
2

�
α(π, π�) and869 �

Aπ, Aπ′	 ≥
�

(i,j)∈O1

Aij ∼ Binom




n

2

�
α(π, π�), q

�
.870

By Bernstein’s inequality, with probability at least 1 − δ,871 �
Aπ, Aπ′	

872

≥


n

2

�
α(π, π�)q873

− C�

��

n

2

�
α(π, π�)q log(1/δ) + log(1/δ)

�
874

≥


n

2

�
α(π, π�)q875

− C�
��

n2q log(1/δ) + log(1/δ)
�
,876

where C� > 0 is a universal constant. Choosing δ = e−2n log n
877

and C to be a large enough constant, we get that P {Fπ′} ≥878

1 − e−2n log n.879

III. POSSIBILITY OF PARTIAL AND ALMOST880

EXACT RECOVERY881

In this section, we prove the positive parts of Theorem 2882

and Theorem 3.883

We first argue that we can assume ps ≤ 1/2 without884

loss of generality. Note that the existence/absence of an edge885

is a matter of representation and they are mathematically886

equivalent. As a consequence, by flipping 0 and 1, the model887

with parameter (n, p, s) is equivalent to that with parameter888

(n, p�, s�) for an appropriate choice of p� and s� such that889

p�s� = 1 − ps, where890

p� =
(1 − ps)2

1 − 2ps+ ps2
, s� =

1 − 2ps+ ps2

1 − ps
. (33)891

Therefore when ps > 1
2 , we can replace the model (n, p, s)892

with (n, p�, s�) so that p�s� = 1 − ps < 1
2 .893

For any two permutations π, π� ∈ Sn, let d(π, π�) denote 894

the number of non-fixed points in the π� ◦π−1. The following 895

proposition provides sufficient conditions for �πML defined 896

in (1) to achieve the partial recovery and almost exact recovery 897

in Erdős-Rényi graphs. 898

Proposition 5: Let ps ≤ 1
2 . If p = 1 − o(1) and 899

ns2(1 − p)2

(1 − ps)2
≥ (4 + �) logn, (34) 900

or if p = 1 − Ω(1) and 901

nps2 ≥
0

(2+�) log n
log(1/p)−1+p if p ≥ n− 1

2

4 + � if p < n− 1
2
, (35) 902

for any arbitrarily small constant � > 0, there exists a constant 903

0 < δ < 1 such that 904

P {d (�πML, π) < δn} ≥ 1 − n−1+o(1), 905

that is, �πML achieves partial recovery. 906

If in addition nps2(1 − p)2 = ω(1), then for any constant 907

δ > 0, 908

P {d (�πML, π) < δn} ≥ 1 − n−1+o(1), 909

that is, �πML achieves almost exact recovery. 910

Remark 2: We explain how to prove the positive parts of 911

Theorem 2 and Theorem 3 using Proposition 5. 912

• In the dense regime of p = n−o(1), either (34) or 913

(35) already implies that nps2(1 − p)2 = ω(1). By 914

Proposition 5, the MLE achieves almost exact recovery 915

under the condition (34) when p = 1 − o(1) or nps2 ≥ 916

(2+�) log n
log(1/p)−1+p when p = 1−Ω(1); this proves the positive 917

part of Theorem 2. 918

• In the sparse regime of p = n−Ω(1), condition (9) 919

implies (35) and hence the MLE achieves partial recov- 920

ery; this proves the positive part of Theorem 3. Further- 921

more, since nps2 = ω(1) implies (35), the MLE achieves 922

the almost exact recovery provided that nps2 = ω(1), 923

which is in fact needed for any estimator to succeed [6]. 924

To prove Proposition 5, we need the following intermediate 925

lemma, which bounds the probability that the ML estimator (1) 926

makes a given number of errors. 927

Lemma 3: Let � ∈ (0, 1) be an arbitrary constant and 928

ps ≤ 1
2 . 929

• For the Erdős-Rényi model, suppose that either (34) or 930

(35) holds. Then there exists some constant 0 < δ < 1 931

such that for any k ≥ δn, 932

P {d (�πML, π) = k} ≤ 2 exp


−nh



k

n

��
1{k≤n−1} 933

+ e−2 log n1{k=n} + exp


− 1

64
�k logn

�
, (36) 934

where h(x) = −x log x− (1−x) log(1−x) is the binary 935

entropy function. 936

If in addition nps2(1 − p) = ω(1), then (36) holds for 937

any constant 0 < δ < 1 and all k ≥ δn. 938

• For the Gaussian model, suppose that nρ2 ≥ (4+�) logn. 939

Then (36) holds for any constant 0 < δ < 1 and all 940

k ≥ δn. 941
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Note that Lemma 3 also includes the Gaussian case.942

In fact, analogous to Proposition 5, we can apply Lemma 3943

to show that the MLE attains almost exact recovery when944

nρ2 ≥ (4+�) logn. We will not do it here; instead in the next945

section, we will directly prove a stronger result, showing that946

the MLE attains exact recovery under the same condition.947

Now, we proceed to prove Proposition 5.948

Proof of Proposition 5: Applying Lemma 3 with a union949

bound yields that950

P {d (�πML, π) ≥ δn}951

≤
n�

k≥δn

P {d (�πML, π) = k}952

≤ exp (−2 logn) + 2
n−1�
k≥δn

exp


−nh



k

n

��
953

+
�

k≥δn

exp


− 1

64
�k logn

�
954

= n−1+o(1), (37)955

where the last inequality follows from
�

k≥δn exp956 �
− 1

64�k logn
�

≤ exp(− ε
64 δn log n)

1−exp(− ε
64 log n) = n−Ω(n) for any957

fixed constant δ > 0, and958

n−1�
k≥1

exp


−nh



k

n

��
959

(a)

≤ 2
�

1≤k≤n/2

exp
�
−k log

n

k

�
960

≤ 2
10 log n�

k=1

exp
�
−k log

n

k

�
+ 2

�
10 log n≤k≤n/2

2−k
961

≤ 2e− log n × 10 logn+ 4 × 2−10 log n = n−1+o(1),962

where (a) follows from h(x) = h(1 − x) and963

h(x) ≥ x log 1
x .964

A. Proof of Lemma 3965

Without loss of generality, we assume � < 1. Fix k ∈ [n].966

Let Tk denote the set of permutations π� such that d(π, π�) =967

k. Recall that F is the set of fixed points of σ � π−1 ◦968

π� with |F | = n − k and O1 =
�
F
2

�
is a subset of fixed969

points of edge permutation σE. Let A = (Aij)1≤i<j≤n =970

(Aij − E [Aij ])1≤i<j≤n and B = (Bij)1≤i<j≤n = (Bij −971

E [Bij ])1≤i<j≤n denote the centered adjacency vectors of A972

and B respectively. It follows from the definition of MLE973

in (1) that for any τ ∈ R,974

{d (�πML, π) = k}975

⊂
�
∃π� ∈ Tk : �Aπ, B� −

�
Aπ′

, B
	
≤ 0

�
976

(a)
⊂

⎧⎨⎩∃π� ∈ Tk :
�
i<j

Aπ(i)π(j)Bij−
�
i<j

Aπ′(i)π′(j)Bij ≤0

⎫⎬⎭977

=

0
∃π� ∈ Tk :

�
(i,j)/∈O1

Aπ(i)π(j)Bij978

−
�

(i,j)/∈O1

Aπ′(i)π′(j)Bij ≤ 0

8
979

⊂

⎧⎨⎩∃π� ∈ Tk :
�

(i,j)/∈O1

Aπ(i)π(j)Bij < τ

⎫⎬⎭ 980

∪

⎧⎨⎩∃π ∈ Tk :
�

(i,j)/∈O1

Aπ′(i)π′(j)Bij ≥ τ

⎫⎬⎭ , 981

where (a) holds because �Aπ , B� −
�
Aπ′

, B
	

= 982�
i<j Aπ(i)π(j)Bij −

�
i<j Aπ′(i)π′(j)Bij . Note that 983⎧⎨⎩∃π� ∈ Tk :

�
(i,j)/∈O1

Aπ(i)π(j)Bij < τ

⎫⎬⎭ 984

=

⎧⎪⎨⎪⎩∃F ⊂ [n] : |F | = n− k,
�

(i,j)/∈(F
2)
Aπ(i)π(j)Bij < τ

⎫⎪⎬⎪⎭ . 985

Thus, by the union bound, 986

P {d (�πML, π) = k} 987

≤
�

F⊂[n]:|F |=n−k

P

⎧⎪⎨⎪⎩
�

(i,j)/∈(F
2)
Aπ(i)π(j)Bij < τ

⎫⎪⎬⎪⎭ 988

+
�

π′∈Tk

P

⎧⎨⎩ �
(i,j)/∈O1

Aπ′(i)π′(j)Bij ≥ τ

⎫⎬⎭ . 989

Let Y =
�

(i,j)/∈O1
Aπ(i)π(j)Bij and Xπ′ =

�
(i,j)/∈O1

990

Aπ′(i)π′(j)Bij . Then, 991

P {d (�πML, π) = k} ≤


n

k

�
P {Y ≤ τ} 992

+
�

π′∈Tk

P {Xπ′ ≥ τ} 993

� (I) + (II). (38) 994

For (I), we claim that for both the Erdős-Rényi random 995

graph and Gaussian model and appropriate choice of τ , 996

(I) ≤ exp


−nh



k

n

��
+ exp (−2 logn)1{k=n}. (39) 997

For (II), applying the Chernoff bound together with the 998

union bound yields that for any t > 0, 999

(II) ≤
�

π′∈Tk

P {Xπ′ ≥ τ} 1000

≤ nk exp (−tτ) E [exp (tXπ′)] . (40) 1001

Note that 1002

Xπ′ =
�

O∈O\O1

�
(i,j)∈O

Aπ′(i)π′(j)Bij� �� �
�XO

, 1003
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where O denotes the collection of all edge orbits of σ. Since1004

edge orbits are disjoint, it follows that XO are mutually1005

independent across different O. Therefore,1006

E [exp (tXπ′)] =
9

O∈O\O1

E
�
exp

�
tXO

��
. (41)1007

It turns out that the MGF of XO can be explicitly computed1008

for both Erdős-Rényi random graph and Gaussian model.1009

In particular, applying Lemma 7 yields that E

"
etXO

#
= M|O|,1010

and M
 ≤M

/2
2 for � ≥ 2. It follows that1011

E [exp (tXπ′)]
(a)
= Mn2

1

(n
2)9


=2

MN�


1012

(b)

≤ Mn2
1

(n
2)9


=2

M

N�/2
21013

(c)
=



M2

1

M2

� 1
2 n2

M
(n
2)−(n1

2 )
2

21014

(d)
=



M2

1

M2

� k
2

M
m
2

2 ,1015

where (a) follows from (41) and N1 =
�
n1
2

�
+ n2 in view1016

of (15); (b) follows from M
 ≤ M

/2
2 for � ≥ 2; (c) follows1017

from
�(n

2)

=1 �N
 =

�
n
2

�
; (d) follows from n2 ≤ k, n1 = n− k,1018

and m �
�
n
2

�
−
�
n−k

2

�
. Combining the last displayed equation1019

with (40) yields that1020

(II) ≤ exp


k log n− tτ +

k

2
log

M2
1

M2
+
m

2
logM2

�
1021

(a)

≤ exp


k logn− tτ +

k

2
log

M2
1

M2
+
m

2
(M2 − 1)

�
1022

(b)

≤ exp
�
− �

64
k logn

�
,1023

where (a) holds because log(1 + x) ≤ x for any x > −1;1024

(b) follows from the claim that1025

inf
t≥0

�
−tτ +

k

2
log

M2
1

M2
+
m

2
(M2 − 1)



1026

≤ −
�
1 +

�

64

�
k log n. (42)1027

It remains to specify τ and verify (39) and (42) for Erdős-1028

Rényi and Gaussian models separately. In the following,1029

we will use the inequality1030

1
2



1 − 1

n

�
kn ≤ m ≤ kn, (43)1031

which follows from m =
�
n
2

�
−
�
n−k

2

�
= 1

2kn
�
2 − k+1

n

�
.1032

• For Erdős-Rényi random graphs, A = (Aij − q)1≤i<j≤n1033

and B = (Bij−q)1≤i<j≤n, where q = ps. Then for any1034

F ⊂ [n] with |F | = n− k,1035

Y =
�

(i,j)/∈(F
2)

(Aπ(i)π(j) − q)(Bij − q).1036

Note that E
�
(Aπ(i)π(j) − q)(Bij − q)

�
= ps2(1−p) any1037

i < j.1038

Let μ � E [Y ] = mps2(1 − p) and set τ = (1 − γ)μ 1039

where 1040

1041

γ �

⎧⎨⎩
2

16h(k/n)
kps2(1−p)2 k ≤ n− 12

16 log n
n(n−1)ps2(1−p)2 k = n

. 1042

We next choose a constant 0 < δ < 1 such that 1043

h (δ) /δ ≤ �2

212nps
2(1 − p)2. Since h(x)/x is monotone 1044

decreasing in x and converges to 0 as x → 1, under 1045

the condition (34) or (35), there exists some 0 < δ < 1046

1 such that h (δ) /δ ≤ �2

212nps
2(1 − p)2. If further 1047

nps2(1 − p)2 = ω(1) then for any constant 0 < δ < 1, 1048

h (δ) /δ ≤ �2

212nps
2(1 − p)2. Hence, for all δn ≤ k ≤ 1049

n − 1, we have n
kh

�
k
n

�
≤ h (δ) /δ ≤ �2

212nps
2(1 − p)2, 1050

and then γ ≤
2

16h(δ)/δ
nps2(1−p)2 < �

16 ; if k = n, since 1051

nps2(1 − p)2 = Ω(1) under the condition (34) or (35), 1052

γ < �
16 for all sufficiently large n. In conclusion, we have 1053

γ < �
16 . 1054

Applying the Bernstein inequality yields 1055

P {Y ≤ τ}
(a)

≤ exp


−

1
2γ

2μ2

mps2 + 1
3γμ

�
1056

(b)

≤ exp


− 1

2 + �
24

γ2μ (1 − p)
�

1057

≤ exp


−1

4
γ2μ(1 − p)

�
, (44) 1058

where (a) holds because for any i < j 1059

E
�
(Aπ(i)π(j) − q)2(Bij − q)2

�
1060

= ps2
�
1 − 4ps+ 2p2s+ 4p2s2 − 3p3s2

�
1061

≤ ps2
�
1 − 2ps+ 4p2s2

�
≤ ps2, 1062

in view of ps ≤ 1
2 ; (b) holds because mps2 = μ

1−p and 1063

γ < �
16 . By (43), we have 1064

γ2μ(1 − p) ≥
0

8(n− 1)h(k/n). k ≤ n− 1
8 logn k = n

. 1065

Finally, applying (44) together with
�
n
k

�
≤ enh( k

n), we 1066

arrive at the desired claim (39). 1067

Next, we verify (42) by choosing t > 0 appropriately. 1068

Recall that q = ps. In view of (64) in Lemma 7, 1069

M2 depends on t and q. When q is small and p is bounded 1070

away from 1, we will choose t ≤ log 1
p ; otherwise, 1071

we will choose t ≤ 1
210 . As such, we bound M2 using its 1072

Taylor expansion around q = 0 and t = 0, respectively, 1073

resulting in the following lemma. 1074

Lemma 4: Assume ps ≤ 1
2 . 1075

– If t ≤ log 1
p , then M2

1
M2

≤ e2, and 1076

M2 ≤ 1 + q2s2 − 2q2 + 10 q3t(1 + t) 1077

+ 2 etq2(1 − s2) + e2tq2s2. (45) 1078

– If t ≤ 1
210 , then M2

1
M2

≤ e2, and 1079

M2 ≤ 1 + t2σ4
�
1 + ρ2

�
+ 8 t3qs, (46) 1080

where ρ = s−q
1−q and σ2 = q(1 − q). 1081
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The proof of Lemma 4 is deferred to Appendix . With1082

Lemma 4, we separately consider two cases, depending1083

on whether q is small and p is bounded away from 1. Pick1084

q0 and c0 to be sufficiently small constants such that1085

c0 ≤ �

213
, q0 ≤ �

480
φ (1 − c0) ,1086

where for any x ∈ (0, 1), we define1087

φ (x) �
log 1

x − 1 + x

x
�
log 1

x

� �
1 + log 1

x

� (47)1088

This function is monotonically decreasing on (0, 1) (see1089

Appendix for a proof).1090

Then we separately consider two cases.1091

Case 1: q ≤ q0 and p ≤ 1 − c0. Here we will pick1092

t ≤ log 1
p . Then, by (45) in Lemma 4,1093

− tτ +
k

2
log

M2
1

M2
+
m

2
(M2 − 1)1094

(a)

≤ −t(1 − γ)mps2(1 − p) + k +
m

2
(M2 − 1)1095

(b)

≤ k +
1
2
mps2

�
f(t) + 10 p2st(1 + t)

�
,1096

where1097

f(t) � −2 (1 − γ) t+e2tps2+2 etp(1−s2)+ps2−2p;1098

(a) holds by M2
1

M2
≤ e2; (b) holds by (45). Note that for1099

t ≤ log 1
p ,1100

10 p2st(1 + t) ≤ 10 qp



log
1
p

�

1 + log

1
p

�
1101

≤ �

48



log

1
p
− 1 + p

�
, (48)1102

where the last inequality holds because q ≤ q0 ≤1103

�
480φ(1 − c0) ≤ �

480φ(p), and φ(x) is a monotone1104

decreasing function on x ∈ (0, 1) by Lemma 10.1105

Therefore, to verify (42), it suffices to check1106

1
2
mps2



f(t) +

�

48



log

1
p
− 1 + p

��
1107

≤ −
�
1 +

�

64

�
k logn− k. (49)1108

To this end, we need the following simple claim.1109

Claim 1: Suppose nps2
�
log 1

p − 1 + p
�

≥1110

(2 + �) logn. Then, for all sufficiently large n and1111

all 0 < p ≤ 1 − c0,1112

γ(1 − p) ≤ �

48



log

1
p
− 1 + p

�
. (50)1113

We defer the proof of Claim 1 and first finish the proof1114

of (49), by choosing different values of t ∈ [0, log 1
p ]1115

according to different cases.1116

– Case 1(a): nps2 (log(1/p) − 1 + p) ≥ (4 + �) logn.1117

We pick t = 1
2 log 1

p . Then1118

f(t) = − (1 − γ) log
1
p

+ s2 (
√
p− 1)21119

+ 2
√
p− 2 p1120

(a)

≤ − (1 − γ)



log
1
p

+ 1−p
�

+ γ(1 − p) 1121

(b)

≤ −
�
1 − γ − �

48

�

log

1
p
− 1 + p

�
, 1122

where (a) holds because s2 ≤ 1; (b) holds by (50) 1123

in Claim 1. Hence, 1124

1
2
mps2



f(t) +

�

48



log

1
p
− 1 + p

��
1125

≤ − 1
2
mps2

�
1 − γ − �

24

�

log

1
p
− 1 + p

�
1126

≤ −
�
1 +

�

4

�

1 − 1

n

��
1 − γ − �

24

�
k logn. 1127

where the last inequality follows from (43) and our 1128

assumption nps2 (log(1/p) − 1 + p) ≥ (4+ �) logn. 1129

– Case 1(b): (2 + �) logn ≤ 1130

nps2 (log(1/p) − 1 + p) ≤ (4 + �) logn and 1131

p ≥ n− 1
2 . We pick t = log 1

p and get 1132

f(t) ≤ −2 (1 − γ) log
1
p

+
s2

p
+ 2(1 − s2) 1133

+ ps2 − 2p 1134

= − 2 (1 − γ)



log
1
p
− 1 + p

�
+
s2

p
1135

+ 2γ (1 − p) + s2(p− 2) 1136

(a)

≤ − 2
�
1 − γ − �

48

�

log

1
p
− 1 + p

�
1137

+ 2γ (1 − p) 1138

(b)

≤ − 2
�
1 − γ − �

24

�

log

1
p
− 1 + p

�
, 1139

where (a) holds because s2

p ≤ (4+�) log n
np2(log(1/p)−1+p) ≤ 1140

�
48 (log(1/p) − 1 + p) for all sufficiently large n 1141

when n− 1
2 ≤ p ≤ 1 − c0; (b) holds in view 1142

of (50) in Claim 1. Then under the assumption that 1143

nps2 (log(1/p) − 1 + p) ≥ (2+�) logn, and by (43), 1144

1
2
mps2



f(t) +

�

48



log

1
p
− 1 + p

��
1145

≤ −
�
1 +

�

2

�

1 − 1

n

��
1 − γ − �

16

�
k logn. 1146

– Case 1(c): nps2 ≥ 4 + � and p < n− 1
2 . We pick 1147

t = 1
2 log 1

ps2 ≤ log 1
p , where the inequality follows 1148

because s2 ≥ p, in view of nps2 ≥ 4 + � and p < 1149

n− 1
2 . Then 1150

f(t) = − (1 − γ) log
1
ps2

+ 1 + 2
$

p

s2
(1 − s2) 1151

− 2p+ ps2 1152

≤ − (1 − γ) log
1
ps2

+ 1 + 2
$

p

s2
1153

≤ −
�
1 − γ − �

48

�
log

1
ps2

, 1154

where the last inequality holds for n sufficiently large 1155

because p
s2 ≤ np2

4+� ≤ 1
4+� and log 1

ps2 ≥ 1
2 logn 1156
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when nps2 ≥ 4 + � and p < n− 1
2 . Then,1157

1
2
mps2



f(t) +

�

48



log

1
p
− 1 + p

��
1158

(a)

≤ − 1
4



1 − 1

n

��
1 − γ − �

24

�
knps2 log

1
ps2

1159

(b)

≤ −
�
1 +

�

4

�

1− 1

n

��
1 − γ− �

24

�
k log

n

4 + �
,1160

where (a) holds by (43) and log 1
p −1+p ≤ log 1

ps2 ;1161

(b) holds due to nps2 ≥ 4 + �.1162

Hence, in view of γ < �
16 for δn ≤ k ≤ n, combining1163

the three cases, we get1164

1
2
mps2 inf

0≤t≤log(1/ps2)
f(t)1165

< −
�
1 +

�

4

�

1 − 1

n

��
1 − �

8

�
k log

n

4 + �
1166

≤ −
�
1 +

�

64

�
k logn−k,1167

where the last inequality holds for all sufficiently large1168

n. Thus we arrive at the desired (49) which further1169

implies (42).1170

Now we are left to prove Claim 1.1171

Proof of Claim 1: Note that for any 0 < p ≤ 1 − c0,1172

γ(1 − p)
(a)

≤

�
16h(δ)/δ
nps2

(b)

≤

:;;<8h(δ)/δ
�
log 1

p−1+p
�

logn
1173

(c)

≤
:;;< 16h(δ)/δ�

log 1
1−c0

− c0

�
logn



log

1
p
− 1 + p

�
1174

(d)

≤ �

48



log

1
p
− 1 + p

�
,1175

where (a) holds because if δn ≤ k ≤ n − 1, h(x)/x1176

is a monotone decreasing function on 0 < x ≤1177

1 and n
kh

�
k
n

�
≤ h (δ) /δ, and if k = n, log n

n−1 ≤1178

h(δ)/δ for n sufficiently large; (b) holds by assumption1179

nps2
�
log 1

p − 1 + p
�
≥ (2 + �) logn; (c) holds because1180

log 1
x − 1 + x is monotone decreasing function on x ∈1181

(0, 1) and we have p ≤ 1−c0; (d) holds for n sufficiently1182

large. Hence, the claim (50) follows.1183

Case 2: q ≥ q0 or p ≥ 1−c0. Here we will pick t ≤ 1
210 .1184

Then, by Lemma 4, we get1185

− tτ +
k

2
log

M2
1

M2
+
m

2
(M2 − 1)1186

(a)

≤ k − tτ +
m

2
(M2 − 1)1187

(b)

≤ k +mf(t),1188

where1189

f(t) � −tρσ2
�
1 − �

16

�
+

1
2

(M2 − 1) ;1190

(a) holds by M2
1

M2
≤ e2, and (46) given t ≤ 1

210 ; (b)1191

holds because τ ≥ ρσ2m
�
1 − �

16

�
, in view of τ = (1 −1192

γ)mps2(1−p), ρ = s(1−p)
1−ps , σ2 = ps(1−ps), and γ ≤ �

16 .1193

Therefore, to verify (42), it suffices to check 1194

mf(t) ≤ −
�
1 +

�

64

�
k log n−k. (51) 1195

– Case 2(a): p > 1 − c0. We pick t = ρ
σ2(1+ρ2) = 1196

(1−p)
p(1−ps)(1+ρ2)

(a)
< 2c0

1−c0
≤ 1

210 , where (a) holds in 1197

view of p > 1 − c0 and ps ≤ 1
2 . By (46), 1198

M2 ≤ 1 +
ρ2

1 + ρ2
+

8ρ3qs

σ6(1 + ρ2)3
1199

≤ 1 +
ρ2

1 + ρ2

�
1 +

�

16

�
, 1200

where the last inequality holds because 8ρqs
σ6(1+ρ2)2 = 1201

8(1−p)
p2(1−ps)4(1+ρ2)2 ≤ �

32 given 1−p ≤ c0 ≤ �
213 and 1202

ps ≤ 1
2 . Then, we have 1203

f(t) ≤ − ρ2

1 + ρ2



1 − �

16
− 1

2

�
1 +

�

32

��
1204

= − ρ2

1 + ρ2



1
2
− 5�

64

�
. 1205

Therefore, 1206

mf(t)
(a)

≤ − 1
2



1 − 1

n

�
kn



ρ2

1 + ρ2

�

1
2
− 5�

64

�
1207

(b)

≤ −
�
1 +

�

64

�
k logn−k, 1208

where (a) holds by (43); (b) holds under the assump- 1209

tion that ρ2 = s2(1−p)2

(1−ps)2 ≥ (4 + �) log n
n in (34) for n 1210

sufficiently large. 1211

– Case 2(b): q ≥ q0 and p ≤ 1 − c0. We pick t = 1212

4 log n
ρσ2n = 4 log n

ps2(1−p)n ≤ 1
210 , where the last inequality 1213

holds for n sufficiently large. By (46), 1214

M2 ≤ 1 + t2σ4



1 + ρ2 +

8tqs
σ4(1 + ρ2)

�
1215

≤ 1 + t2σ4(1 + ρ2)
�
1 +

�

64

�
, 1216

where the last inequality holds because 8tqs
σ4(1+ρ2)2 = 1217

32 log n
(1−p)q2(1−q)2(1+ρ2)2n

≤ �
64 for n sufficiently large, 1218

given q0 ≤ q ≤ 1
2 and p ≤ 1 − c0. Then, we have 1219

f(t) ≤ − 4 logn
n

�
1 − �

32

�
1220

+
8 log2 n

n2

1 + ρ2

ρ2

�
1 +

�

64

�
1221

≤ − 4 logn
n

�
1 − �

32

�
+

32 log2 n

ρ2n2
1222

≤ − 3 logn
n

, 1223

where the last inequality holds for n sufficiently large 1224

because ρ = s(1−p)
1−ps ≥ q0c0

1−q0
. Therefore, 1225

mf(t)
(a)

≤ − 3
2



1 − 1

n

�
k logn 1226

(b)

≤ −
�
1 +

�

64

�
k logn−k, 1227
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where (a) holds by (43); (b) holds for n sufficiently1228

large.1229

• For Gaussian model, set τ = ρm− ak, where1230

ak =

0
C
2

2h
�

k
n

�
nm k ≤ n− 1

Cn
√

logn k = n
1231

for some universal constant C > 0 to be specified later.1232

Recall that h(x)/x is monotone decreasing in x and1233

converges to 0 as x → 1, under the condition nρ2 ≥1234

(4 + �) logn, for any constant 0 < δ < 1, we have1235

h (δ) /δ ≤ �2

213C2nρ
2 when n is sufficiently large. There-1236

fore, for δn ≤ k ≤ n − 1, n
kh

�
k
n

�
≤ h (δ) /δ ≤1237

�2

213C2nρ
2. Since m = kn

�
1 − k+1

2n

�
≥ 1

4kn, we have1238

ak ≤ �
64ρ

√
knm ≤ �

32ρm. For k = n, by the assumption1239

that nρ2 ≥ (4 + �) logn, ak ≤ �
32ρm. In conclusion,1240

we have τ ≥ ρm
�
1 − �

32

�
.1241

Note that (Aπ(i)π(j), Bij) are i.i.d. pairs of standard1242

normal random variables with zero mean and correlation1243

coefficient ρ. Therefore, A = A and B = B. It follows1244

that Y =
�

(i,j) �∈(F
2)Aπ(i)π(j)Bij .1245

First, we verify (39) using the Hanson-Wright inequality1246

stated in Lemma 9. Pick C = 2c, where c > 0 is1247

the universal constant in Lemma 9. If k = n, applying1248

Lemma 9 with M = Im to Y =
�

(i,j) �∈(F
2)Aπ(i)π(j)Bij1249

yields that P (Y ≤ τ) ≤ e−2 log n. If k ≤ n−1, applying1250

Lemma 9 again yields that1251 

n

k

�
P (Y ≤ τ) ≤



n

k

�
exp



−2 nh



k

n

��
1252

≤ exp


−nh



k

n

��
.1253

Next, we check (42). In view of (65) in Lemma 7, M1 =1254

1
λ2

and M2 = 1
λ1λ2

, where λ1 =
2

(1 + ρt)2 − t2 and1255

λ2 =
2

(1 − ρt)2 − t2 for 0 ≤ t ≤ 1
1+ρ . Thus for 0 ≤1256

t ≤ ρ
1+ρ2 , M1

M2
= λ1 ≤ 1 + ρ2 ≤ 2. It follows that1257

inf
t≥0



−tτ +

k

2
log

M2
1

M2
+
m

2
(M2 − 1)

�
1258

= inf
t≥0



−tτ + k log

M1

M2
+
m+ k

2
(M2 − 1)

�
1259

≤ k + inf
0≤t≤ ρ

1+ρ2



−tτ +

m+ k

2
(M2 − 1)

�
1260

≤ k +
1
2
k(n− 1)ρ inf

0≤t≤ ρ

1+ρ2

f(t),1261

where1262

f(t) � − t
�
1 − �

32

�
+

1
2ρ



1 +

2
n− 1

�
(M2 − 1) ,1263

and the last inequality holds because τ ≥ ρm
�
1 − �

32

�
1264

and (43).1265

Therefore, to verify (42), it suffices to check1266

1
2
(n− 1)ρ inf

0≤t≤ ρ

1+ρ2

f(t)1267

≤ −
�
1 +

�

64

�
logn− 1. (52) 1268

Case 1: ρ2 ≥ �2

256 . We pick t = ρ
1+2ρ2 . Then, 1269

M2 =

�
1 + 2ρ2

�2�
1 + ρ2 + ρ4

�
1 + 5ρ2 + 9ρ4

1270

≤



1 + 2ρ2

1 + 3
2ρ

2

�2

≤ 1 +
2ρ2

2 + 3ρ2
, 1271

where the first inequality holds because (1+ρ2 +ρ4)(1+ 1272

5ρ2 + 9ρ4) ≥
�
1 + 3

2ρ
2
�4

. Therefore, 1273

f(t) = − ρ

1 + 2ρ2

�
1 − �

32

�
+

ρ

2 + 3ρ2



1 +

2
n− 1

�
1274

= − ρ

2 + 3ρ2

�

2 − ρ2

1 + 2ρ2

��
1 − �

32

�
1275

−



1 +
2

n− 1

��
1276

≤ − ρ

2 + 3ρ2



5
3

�
1 − �

32

�
−



1 +
2

n− 1

��
1277

≤ − ρ

5



2
3
− 5�

96
− 2
n− 1

�
, 1278

where the first inequality holds because ρ2

1+2ρ2 ≤ 1
3 and 1279

the last inequality follows from 2 + 3ρ2 ≤ 5. Hence, 1280

1
2
(n− 1)ρf(t) ≤ − (n− 1)

ρ2

10



2
3
− 5�

96
− 2
n− 1

�
. 1281

Thus it follows from ρ2 ≥ �2

256 that (52) holds for all 1282

sufficiently large n. 1283

Case 2: (4 + �) log n
n ≤ ρ2 < �2

256 . We pick t = ρ
1+ρ2 . 1284

Then, 1285

M2 =

�
1 + ρ2

�2�
1 + 3ρ2 + 4ρ4

�
1 − ρ2

1286

≤
�
1 + ρ2

�2
1 + ρ2 − ρ4

≤ 1 + ρ2 + 2ρ4, 1287

where the first inequality holds because (1 + 3ρ2 + 1288

4ρ4)(1 − ρ2) − (1 + ρ2 − ρ4)2 = ρ4(2 − 2ρ2 + ρ4) ≥ 0 1289

under the assumption that ρ2 ≤ �2/256. Therefore, 1290

f(t) ≤ − ρ

1 + ρ2

�
1 − �

32

�
1291

+
ρ(1 + 2ρ3)

2



1 +

2
n− 1

�
1292

≤ − ρ



1
2
− �

16

�

1 − 4

n− 1

�
, 1293

where the first inequality holds because ρ2 < �2

256 . Hence, 1294

1
2
(n− 1)ρf(t) 1295

≤ − 1
4
(n− 1)ρ2

�
1 − �

32

�

1 − 4

n− 1

�
1296

≤ −
�
1 +

�

32

�

1 − 1

n

�

1 − 4

n− 1

�
logn, 1297
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where the last inequality follows from the assumption1298

that ρ2 ≥ (4+ �) log n
n . Thus (52) holds for all sufficiently1299

large n.1300

IV. EXACT RECOVERY1301

A. Possibility of Exact Recovery1302

Building upon the almost exact recovery results in the1303

preceding section, we now analyze the MLE for exact recov-1304

ery. Improving upon Lemma 3, the following lemma gives1305

a tighter bound on the probability that the MLE makes a1306

small number of errors with respect to the general correlated1307

Erdős-Rényi graph model specified by the joint distribution1308

P = (pab : a, b ∈ {0, 1}).1309

Lemma 5: Suppose that for any constant 0 < � < 1,1310

• for general Erdős-Rényi random graphs,1311

if n
�√
p00p11 −

√
p01p10

�2 ≥ (1 + �) logn;1312

• for Gaussian model, if nρ2 ≥ (4 + �) logn;1313

then for any k ∈ [n] such that k ≤ �
16n,1314

P {d (�πML, π) = k} ≤ exp
�
− �

8
k logn

�
. (53)1315

Note that Lemma 5 only holds when k/n is small but1316

requires less stringent conditions than Lemma 3. Inspecting1317

the proof of Lemma 5, one can see that if the condition is1318

strengthened by a factor of 2 to n
�√
p00p11 −

√
p01p10

�2 ≥1319

(2 + �) logn for the Erdős-Rényi graphs (which is the assump-1320

tion of [4]), then (53) holds for any k ∈ [n]. Conversely,1321

we will prove in Section IV-B that exact recovery is impossible1322

if n
�√
p00p11 −

√
p01p10

�2 ≤ (1 − �) logn. Closing this gap1323

of two for general Erdős-Rényi graphs is an open problem.1324

In the following, we apply Lemma 5 for small k1325

and Lemma 3 (or Proposition 5) for large k to show the success1326

of MLE in exact recovery.1327

Proof of positive parts in Theorem 1 and Theorem 4:1328

Without loss of generality, we assume � < 1. For all k ≤ �
16n,1329

by Lemma 5, for both Erdős-Rényi random graphs and1330

Gaussian model,1331

ε
16n�
k=1

P {d (�πML, π) = k} ≤
ε
16n�
k=1

exp
�
− �

8
k logn

�
1332

≤
exp

�
− �

8 logn
�

1 − �
8 logn

= n− ε
8+o(1).1333

Moreover,1334

• For the Gaussian model, pick δ = �
16 . Thus by (36) in1335

Lemma 3 and (37), (57) follows.1336

• For the subsampling Erdős-Rényi random graphs,1337

we divide the proof into two cases depending on whether1338

ps ≤ 1/2.1339

Case 1: ps ≤ 1
2 . Note that condition (12) is equivalent1340

to1341

n (
√
p11p00 −

√
p01p10)

2 = nps2f(p, s)1342

≥ (1 + �) logn, (54)1343

where1344

f(p, s) �
��

1 − 2ps+ ps2 −√
p(1 − s)

�2

.1345

In the sequel, we aim to show that if (54) holds, then 1346

nps2(1 − p) = ω(1), (34) holds for p = 1 − o(1), and 1347

(35) holds for p = 1−Ω(1). To this end, we will use the 1348

inequality 1349

0 ≤ ∂f(p, s)
∂s

≤ 2
√
p, (55) 1350

which follows from 1351

∂f(p, s)
∂s

=
2
√
p
��

1 − 2ps+ ps2 −√
p (1 − s)

�2

�
1 − 2ps+ ps2

. 1352

– By (55), f(p, s) is a monotone increasing on s ∈ 1353

(0, 1). Therefore, f(p, s) ≤ 1 − p. Hence, if (54) 1354

holds, then nps2 (1 − p) = ω(1). 1355

– Suppose p = 1 − o(1). We have 1356

f(p, s) = p(1 − s)2
��

1 +
1 − p

p(1 − s)2
− 1

�2

1357

≤ (1 − p)2

4p(1 − s)2
, 1358

where the last inequality holds because
√

1 + x ≤ 1359

1 + x
2 . Thus, if (54) holds, then 1360

n (1 − p)2

(1 − ps)2
≥ n (1 − p)2�

1 + �
2

�
p (1 − s)2

≥ (4 + �) logn, 1361

where the first inequality holds because p = 1−o(1) 1362

and ps ≤ 1
2 . Hence, (34) follows. 1363

– Suppose p = 1 − Ω(1). By the mean value theorem 1364

and (55), we have 1365

f(p, s) ≤ f(p, 0) + s sup
s:ps≤1/2

∂f(p, s)
∂s

1366

≤ (1 −√
p)2 + 2

√
ps, 1367

Now, suppose s = o(1) or p = o(1). Then 1368

(1 −√
p)2 + 2

√
ps ≤ (1 −√

p)2
�
1 +

�

4

�
, 1369

for all sufficiently large n. Therefore, if (54) holds, 1370

then 1371

nps2(1 −√
p)2 ≥

�
1 +

�

2

�
logn. (56) 1372

If instead s = Ω(1) and p = Ω(1), then (56) follows 1373

directly. 1374

In conclusion, for both cases, since log 1
p − 1 + p ≥ 1375

2(1 −√
p)2, we get that (35) holds. 1376

Finally, by Proposition 5, we have that 1377

P

�
d (�πML, π) >

�

16
n
�
≤ n−1+o(1). (57) 1378

Case 2: ps > 1
2 . In this case, we consider the equivalent 1379

model (n, p�, s�) as specified in (33) with p�s� = 1−ps ≤ 1380

1/2 by flipping 0 and 1. Note that after flipping 0 and 1, 1381

both the value of
√
p11p00 − √

p01p10 and the MLE 1382

are clearly unchanged. Therefore, applying the Case 1 1383

of Theorem 4 to to the model (n, p�, s�), we get that (57) 1384

holds for the model (n, p, s). 1385
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Hence, for both the Erdős-Rényi random graph and Gaussian1386

model,1387

P {d (�πML, π) > 0} ≤
ε
16 n�
k=1

P {d (�πML, π) = k}1388

+ P

�
d (�πML, π) >

�

16
n
�

1389

≤ n− ε
8+o(1).1390

1391

1) Proof of Lemma 5: In this proof we focus on the case1392

with positive correlation, i.e., p00p11 ≥ p01p10 in the general1393

Erdős-Rényi graphs and ρ ≥ 0 in the Gaussian model. The1394

case with negative correlation can be proved analogously by1395

bounding the probability
�
Aπ′ −Aπ, B

	
≤ 0.1396

Fix k ∈ [n] and let Tk denote the set of permutation π� such1397

that d(π, π�) = k. Let O�
1 is the set of fixed points of edge1398

permutation σE, where in view of (15),1399

|O�
1| = N1 =



n1

2

�
+ n2 =



n− k

2

�
+ n2.1400

Then, applying the Chernoff bound together with the union1401

bound yields that for any t ≥ 0,1402

P {d (�πML, π) = k} ≤
�

π′∈Tk

P {Zπ′ ≥ 0}1403

≤ nk
E [exp (tZπ′)] , (58)1404

where1405

Zπ′ �
�
i<j

Aπ′(i)π′(j)Bij −
�
i<j

Aπ(i)π(j)Bij1406

=
�
O\O′

1

⎛⎝ �
(i,j)∈O

Aπ′(i)π′(j)Bi,j−
�

(i,j)∈O

Aπ(i)π(j)Bi,j

⎞⎠1407

�
�
O\O′

1

ZO,1408

where1409

ZO = XO − YO.1410

Since edge orbits are disjoint, it follows that ZO are mutually1411

independent across different O. Therefore, for any t > 0,1412

E

⎡⎣exp

⎛⎝t �
O∈O\O′

1

ZO

⎞⎠⎤⎦ =
9

O∈O\O′
1

E [exp (tZO)] .1413

It turns out that the MGF of ZO can be explicitly computed1414

in both Erdős-Rényi random graph and Gaussian model.1415

In particular, applying Lemma 8 yields that E
�
etZO

�
= L|O|1416

and L
 ≤ L

/2
2 for � ≥ 2. It follows that1417

E [exp (tZπ′)] =
(n
2)9


=2

LN�


 ≤
(n
2)9


=2

L

N�/2
2 ≤ L

m
2
2 ,1418

where m �
�

n
2

�
−
�
n−k

2

�
− n2 and the last inequality follows1419

from
�(n

2)

=1 �N
 =

�
n
2

�
and N1 =

�
n1
2

�
+ n2 =

�
n−k

2

�
+ n2.1420

Hence,1421

P {d (�πML, π) = k}1422

(a)

≤ exp


k logn+

1
2
kn



1 − k + 2

2n

�
logL2

�
1423

(b)

≤ exp


−


�

4
− k + 2

2n

�
1 +

�

4

��
k logn

�
1424

(c)

≤ exp
�
− �

8
k logn

�
, 1425

where (a) holds because n2 ≤ k/2 and then m ≥ 1426

kn
�
1 − k+2

2n

�
; (b) holds by the claim that n logL2 ≤ −2(1+ 1427

�/4) logn for appropriately chosen t; (c) holds for all suffi- 1428

ciently large n given k/n ≤ �
16 and 0 < � < 1. It remains 1429

to check n logL2 ≤ −2(1 + �/4) logn by choosing appropri- 1430

ately t for Erdős-Rényi random graphs and Gaussian model 1431

separately. 1432

• For Erdős-Rényi random graphs, in view of (66) in 1433

Lemma 8, 1434

L2 = 1 + 2
�
p01p10

�
et − 1

�
+ p00p11

�
e−t − 1

��
. 1435

Since p00p11 ≥ p01p10, by choosing the optimal 1436

t ≥ 0 such that et =
2

p00p11
p01p10

, L2 = 1 − 1437

2
�√
p00p11 −

√
p01p10

�2
, and hence 1438

n logL2 ≤ − 2n (
√
p00p11 −

√
p01p10)

2
1439

≤ − 2(1 + �) logn, 1440

where the last inequality holds by the assumption that 1441

n
�√
p00p11 −

√
p01p10

�2 ≥ (1 + �) logn; 1442

• For Gaussian model, in view of (67) in Lemma 8, 1443

L2 =
1�

1 + 4 tρ− 4t2 (1 − ρ2)
. 1444

By choosing the optimal t = ρ
2(1−ρ2) ≥ 0, L2 = 1445�

1 − ρ2. and hence 1446

n logL2 ≤ − 1
2
nρ2 ≤ − 2(1 + �/4) logn, 1447

where the last inequality holds by the assumption that 1448

nρ2 ≥ (4 + �) logn. 1449

B. Impossibility of Exact Recovery 1450

In this subsection we prove the negative result in Theorem 4. 1451

As in Section IV-A, we consider a general correlated Erdős- 1452

Rényi graph model, where P
�
Aπ(i)π(j) = a,Bij = b

�
= pab. 1453

We aim to show that if 1454

n (
√
p00p11 −

√
p01p10)

2 ≤ (1 − �) logn, (59) 1455

then the exact recovery of the latent permutation π is impos- 1456

sible. Particularizing to the subsampling model parameterized 1457

by (11) the condition (59) reduces to 1458

nps2
��

1 − 2ps+ ps2 −√
p(1 − s)

�2

≤ (1 − �) logn, 1459

which, under the assumption that p = 1−Ω(1) in Theorem 4, 1460

is further equivalent to the desired (13). 1461

Since the true permutation π is uniformly distributed, the 1462

MLE �πML minimizes the error probability among all esti- 1463

mators. In the sequel, we focus on the case of positive 1464

correlation as the other case is entirely analogous. Without 1465
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loss of generality, the latent permutation π is assumed to be1466

the identity permutation id.1467

To prove the failure of the MLE, it suffices to show the1468

existence of a permutation π� that achieves a higher likelihood1469

than the true permutation π = id. To this end, we consider1470

the set T2 of permutation π� such that d(π�, π) = 2; in other1471

words, π� coincides with π except for swapping two vertices.1472

Then the cycle decomposition of π� consists of n − 2 fixed1473

points and a 2-node orbit (i, j) for some pair of vertices (i, j).1474

It follows that1475

�A,B� − �Aπ′
, B� =

�
k∈[n]\{i,j}

(Aik −Ajk) (Bik − Bjk)1476

�
�

k∈[n]\{i,j}
Xij,k,1477

where Xij,k
i.i.d.∼ aδ+1+bδ−1+(1 − a− b) δ0 for k ∈ [n]\{i, j}1478

with a � 2 p00p11, b � 2 p01p10 and a ≥ b by assumption.1479

We aim to show the existence of π� ∈ T2 such that �A,B� ≤1480

�Aπ′
, B�, which further implies that π� has a higher likelihood1481

than π. We divide the remaining analysis into two cases1482

depending on whether na ≥ (2 − �) logn.1483

First we consider the case where na ≤ (2 − �) logn.1484

We show that with probability at least 1−n−Ω(�), there are at1485

least nΩ(�) distinct π� ∈ T2 such that �A,B� ≤ �Aπ′
, B�. This1486

implies that the MLE �πML coincides with π with probability at1487

most n−Ω(�). Specifically, define χij as the indicator random1488

variable which equals to 1 if Xij,k ≤ 0 for all k �= i, j, and1489

0 otherwise. Then1490

P {χij = 1} =
9

k �=i,j

P {Xij,k ≤ 0}1491

= (1 − a)n−2 ≥ n−2+�−o(1),1492

where the last inequality holds because an ≤ (2 − �) logn.1493

Let I =
�

1≤i≤n/2

�
n/2<j≤n χij . Then E [I] ≥ n�−o(1).1494

Next, we show var(I) = o
�
E [I]2

�
, which, by Chebyshev’s1495

inequality, implies that I ≥ 1
2E [I] with high probability. Note1496

that1497

var(I) =
�

1≤i,i′≤n/2

�
n/2<j,j′≤n

�
P {χij = 1, χi′j′ = 1}1498

− P {χij = 1}P {χi′j′ = 1}
�
.1499

We break the analysis into the following four cases depending1500

on the choice of (i, j) and (i�, j�).1501

Case 1: i = i�, and j = j�. In this case,1502

P {χij = 1, χi′j′ = 1} − P {χij = 1}P {χi′j′ = 1}1503

≤ P {χij = 1} .1504

Case 2: i = i�, and j �= j�. In this case, note that1505

P {χij′ = 1 | χij = 1}1506

=
9

k �=i,j′
P {Xij,k ≤ 0 | χij = 1}1507

= P {Xij′,j ≤ 0 | Xij,j′ ≤ 0}1508

×
9

k �=i,j,j′
P {Xij′,k ≤ 0 | Xij,k ≤ 0} 1509

≤ (1 − p00p11)
n−2

, 1510

where the last inequality holds because 1511

P {Xij′,k ≤ 0 | Xij,k ≤ 0} 1512

=
p11 (1 − p00)

2 + p01 + p10 + p00 (1 − p11)
2

1 − 2p00p11
1513

=
1 − 4p00p11 + p00p11 (p00 + p11)

1 − 2p00p11
1514

≤ 1 − 3p00p11

1 − 2p00p11
≤ 1 − p00p11, 1515

and similarly for P {Xij′,j ≤ 0 | Xij,j′ ≤ 0}. 1516

Case 3: i �= i�, and j = j�. Analogous to Case 2, we have 1517

P {χi′j = 1 | χij = 1} ≤ (1 − p00p11)
n−2

1518

Case 4: i �= i�, and j �= j�. In this case, 1519

P {χi′j′ = 1 | χij = 1} =
9

k �=i′,j′
P {Xi′j′,k ≤ 0 | χij = 1} 1520

≤
9

k �=i,i′,j,j′
P {Xi′j′,k ≤ 0} 1521

= (1 − 2p00p11)
n−4 , 1522

where the first inequality holds because for all k �= i, i�, j, j�, 1523

Xi′j′,k are independent from {Xij,k}k �=i,j . Therefore, 1524

P {χij = 1, χi′j′ = 1} − P {χij = 1}P {χi′j′ = 1} 1525

= (1 − 2p00p11)
2n−6

�
1 − (1 − 2p00p11)

2
�

1526

≤ 4 p00p11 (1 − 2p00p11)
2n−6

. 1527

Combining all four cases above, we get that 1528

var(I) ≤ E [I]

�
1 + n (1 − p00p11)

n−2
1529

+ n2p00p11 (1 − 2p00p11)
n−4

�
1530

Therefore, 1531

var(I)
E [I]2

1532

≤ 1 + n (1 − p00p11)
n−2 + n2p00p11 (1 − 2p00p11)

n−4

n2 (1 − 2p00p11)
n−2 1533

= O
�
n−Ω(�)

�
, 1534

where the last inequality holds because np00p11 ≤ (1 − 1535

�/2) logn. In conclusion, we have shown that I ≥ nΩ(�)
1536

with probability at least 1 − n−Ω(�). This implies that the 1537

MLE exactly recovers the true permutation with probability 1538

at most n−Ω(�). 1539

Next, we shift to the case where na ≥ (2 − �) logn. The 1540

assumption (59) translates to n(
√
a−

√
b)2 ≤ 2(1 − �) logn, 1541

we have 1542

(2 − �) logn

�
1 −

$
b

a

�2

≤ na

�
1 −

$
b

a

�2

1543
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≤ 2(1 − �) logn.1544

It follows that1545 $
b

a
≥ 1 −

$
2(1 − �)
2 − �

= 1 −
$

1 − �

2 − �
1546

≥ �

2(2 − �)
≥ �

4
1547

and hence �2

16 ≤ b
a ≤ 1 . Let T be a set of 2m vertices where1548

m =
A
n/ log2 n

B
. We further partition T into T1 ∪ T2 where1549

|T1| = |T2| = m. Let S denote the set of permutations π�
1550

that consists of n−2 fixed points and a 2-node orbit (i, j) for1551

some i ∈ T1 and j ∈ T2. Then |S| = m2. Next we show that1552

P

�
∃π� ∈ S s.t. �A,B� −

�
Aπ′

, B
	
< 0

�
1553

= 1 − o(1). (60)1554

Fix a π� ∈ S with (i, j) as its 2-node orbit, i.e., π�(i) =1555

j, π�(j) = i, and π�(k) = k for any k ∈ [n]\{i, j}. Then1556

�A,B� −
�
Aπ′

, B
	

= Xij + Yij , where1557

Xij �
�

k∈T c

Xij,k, and Yij �
�

k∈T\{i,j}
Xij,k.1558

Note that E [Yij ] = (2m− 2) (a − b) and Var[Yij ] ≤1559

(2m− 2) (a+ b). Letting1560

τ � (2m− 2) (a− b) +
�

(2m− 2) (a+ b) logn,1561

by Chebyshev’s inequality,1562

P {Yij ≥ τ} ≤ 1
logn

. (61)1563

Define1564

T � = {(i, j) ∈ T1 × T2 : Yij < τ} .1565

Then E [|(T1 × T2)\T �|] ≤ m2/ logn. Hence, by Markov’s1566

inequality, |(T1 × T2)\T �| ≥ 1
2m

2 with probability at most1567

2
log n . Hence, we have |T �| ≥ 1

2m
2 with probability at least1568

1 − 2
log n .1569

Note that crucially T � is independent of {Xij}i∈T1,j∈T2 .1570

Thus, we condition on the event that |T �| ≥ 1
2m

2 in the1571

sequel. Define In =
�

(i,j)∈T ′ 1{Xij≤−τ}. To bound the1572

P{Xij ≤ −τ} from below, we need the following reverse1573

large-deviation estimate (proved at the end of this subsection):1574

Lemma 6: Suppose {Xk}i∈[n]
i.i.d.∼ aδ+1 + bδ−1 + (1 − a −1575

b)δ0 with some a, b ∈ [0, 1] such that 0 ≤ a + b ≤ 1, 1 ≤1576

a
b = Θ(1), an = ω(1), and

�√
a−

√
b
�2

≤ 2 log n
n . For all τ1577

such that τ = o
�√
an logn

�
and τ = o(an), and any constant1578

0 < δ < 1, there exists n0 such that for all n ≥ n0,1579

P

0
n�

k=1

Xk ≤ −τ
8

≥ exp


−n

�√
a−

√
b
�2

− δ

2
log n

�
.1580

To apply this lemma, note that τ = O
�

n(a−b)
log2 n

+
2

na
log n

�
,1581

so1582

τ√
an logn

= O


�√
a−

√
b
�$ n

log5 n
+

1
logn

�
1583

= O



1

logn

�
1584

τ

an
= O



1

log2 n
+

1√
an logn

�
= O



1√

logn

�
, 1585

where we used the fact that m ≤ n/ log2 n, b ≤ a,
√
a−

√
b = 1586

O(
�

log(n)/n), and an = ω(1). Then, applying Lemma 6 1587

with δ = �
4 yields 1588

E [In] ≥ 1
2
m2 exp



−|T c|

�√
a−

√
b
�2

− �

8
logn

�
1589

≥ n�−o(1), (62) 1590

where the last inequality holds by assumption that 1591�√
a−

√
b
�2

≤ 2 (1 − �) log n
n . Next, we show that 1592

Var[In]/E [In]2 = o(1), which, by Chebyshev’s inequality, 1593

implies that In ≥ 1
2E [In] with high probability. 1594

Write 1595

Var[In] 1596

=
�

(i,j),(i′,j′)∈T ′

�
P {Xij ≤ −τ,Xi′j′ ≤ −τ} 1597

− P {Xij ≤ −τ}P {Xi′j′ ≤ −τ}
�

1598

≤ (I) + (II), 1599

where 1600

(I) =
�

(i,j)∈T ′
P {Xij ≤ −τ} = E [In] , 1601

(II) =
�

(i,j),(i,j′)∈T ′,j �=j′
P {Xij ≤ 0, Xij′ ≤ 0} 1602

+
�

(i,j),(i′,j)∈T ′,i�=i′
P {Xij ≤ 0, Xi′j ≤ 0} . 1603

To bound (II), fix (i, j), (i, j�) ∈ T � such that j �= j�. Note that 1604

{Xij,k}j∈T2

i.i.d.∼ Bern (p00) conditional on Aik = 1, Bik = 1; 1605

{−Xij,k}j∈T2

i.i.d.∼ Bern (p10) conditional on Aik = 1, Bik = 0; 1606

{−Xij,k}j∈T2

i.i.d.∼ Bern (p01) conditional on Aik = 0, Bik = 1; 1607

{Xij,k}j∈T2

i.i.d.∼ Bern (p11) conditional on Aik = 0, Bik = 0. 1608

Then, for �, �� ∈ {0, 1}, we define 1609

M

′ = |{k ∈ T c|Aik = �, Bik = ��}| , 1610

and get that for any λ ≥ 0, 1611

P

0�
k∈T c

Xij,k ≤ 0,
�

k∈T c

Xij′,k ≤ 0

8
1612

(a)
= E

 
P

0�
k∈T c

Xij,k ≤ 0
1111M11,M10,M10,M00

8
× 1613

P

0�
k∈T c

Xij′,k ≤ 0
1111M11,M10,M10,M00

8!
1614

(b)
= E

"
γ2M11
00 γ2M10

01 γ10p
2M10
10 γ2M00

11

#
1615

(c)
=

�
γ2
00p11 + γ2

01p10 + γ2
10p01 + γ2

11p00

�|T c|
, 1616

where γ
,
′ = 1 − p

′ + p

′e
(2|
−
′|−1)λ; (a) holds 1617

because
�

k∈T ′ Xij,k and
�

k∈T ′ Xij′,k are independent 1618

Authorized licensed use limited to: Yale University. Downloaded on June 28,2023 at 07:45:38 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: SETTLING SHARP RECONSTRUCTION THRESHOLDS OF RANDOM GRAPH MATCHING 5411

conditional on M11,M10,M10,M00; (b) holds by applying1619

the Chernoff bound; (c) holds by applying the MGF of1620

the multinomial distribution, since M11,M10,M10,M00 ∼1621

Multi(|T c|, p11, p10, p01, p00). Choosing eλ =
2

p00p11
p01p10

=1622 �
a
b where a = 2 p00p11 and b = 2 p01p10, we have1623

P

0�
k∈T c

Xij,k ≤ 0,
�

k∈T c

Xij′,k ≤ 0

8
1624

≤



1 − 3
2

�√
a−

√
b
�2
�|T c|

.1625

The same upper bound applies to any (i, j), (i�, j) ∈ T � such1626

that i �= i�.1627

Therefore, we get that1628

(II) ≤ 2m3



1 − 3

2

�√
a−

√
b
�2
�|T c|

1629

≤ 2 m3 exp


−3

2

�√
a−

√
b
�2

|T c|
�
.1630

Hence, by Chebyshev’s inequality,1631

P

�
In ≤ 1

2
E [In]



1632

≤ Var[In]
1
4 (E [In])2

1633

≤ 4
E [In]

+
8 × (II)

(E [In])2
1634

(a)

≤ n−�+o(1)
1635

+
32
m

exp



1
2

�√
a−

√
b
�2

|T c| + �

8
logn

�
1636

(b)

≤ n−7�/8+o(1)
1637

where (a) is due to (62); (b) holds by the assumption that1638 �√
a−

√
b
�2

≤ 2 (1 − �) log n
n .1639

Therefore, with probability 1 − n−Ω(�) there exists some1640

(i, j) ∈ T � such that Xij ≤ −τ . By definition of T �, we have1641

Yij < τ and hence Xij + Yij < 0. Thus, we arrive at the1642

desired claim (60).1643

Proof of Lemma 6: Let En = {
�n

k=1Xk ≤ −τ}. Let Q1644

denote the distribution of Xk. The following large-deviation1645

lower estimate based on the data processing inequality is well-1646

known (see [3, Eq. (5.21), p. 167] and [18, Lemma 3]): For1647

any Q�,1648

Q (En) ≥ exp


−nD (Q�	Q)− log 2

Q�(En)

�
. (63)1649

Choose1650

Q� =
α− β

2
δ+1 +

α+ β

2
δ−1 + (1 − α)δ0,1651

where1652

α � 2
√
ab

1 −
�√

a−
√
b
�2 , and β � min

0
α

2
,
δ

8

$
b logn
n

8
.1653

Note that under the assumption that 1 ≤ a/b = Θ(1) and 1654�√
a−

√
b
�2

≤ log n
n , we have that 2b ≤ α = Θ(a). 1655

Moreover, since τ = o(
√
an logn) and τ = o(an), it follows 1656

that τ = o(βn). Then, 1657

Q�(Ec
n) = Q�

�
n�

k=1

Yk ≥ −τ
�

1658

(a)

≤ Q�

�
n�

k=1

(Yk − E [Yk]) ≥ βn− τ

�
1659

(b)

≤
�n

k=1 Var[Yk]

(βn− τ)2
1660

(c)

≤ αn

(βn− τ)2
(d)
= o(1), 1661

where (a) holds because E [Yk] = −β; (b) follows from 1662

by Chebyshev’s inequality as {Yk}i∈[n] are independent 1663

and τ = o(βn); (c) holds because
�n

k=1 Var[Yk] ≤ 1664�n
k=1 E

�
Y 2

k

�
≤ αn; (d) holds because τ = o (βn), and 1665

α
β2n = max

�
64α

δ2b log n ,
4

αn

�
= o(1), in view of that δ = Θ(1), 1666

α = Θ(a) = Θ(b) and αn = Θ(an) = ω(1). 1667

Next, we upper bound D (Q�	Q). We get 1668

D (Q�	Q) 1669

=
α− β

2
log

α− β

2a
+
α+ β

2
log

α+ β

2b
1670

+ (1 − α) log
1 − α

1 − a− b
1671

(a)
= − log



1 −

�√
a−

√
b
�2
�

+
α

2
log

�
α2 − β2

�
α2

1672

+
β

2
log

a(α+ β)
b(α− β)

1673

(b)

≤ − log



1 −
�√

a−
√
b
�2
�

+
β2

α− β
+ β

√
a−

√
b√

b
1674

(c)

≤
�√

a−
√
b
�2

+
δ logn

4n
, 1675

where (a) holds because α = 2
√

ab

1−(√a−
√

b)2 ; (b) holds because 1676

log α+β
α−β ≤ 2β

α−β and 1
2 log a

b ≤
√

a−
√

b√
b

, in view of log(1 + 1677

x) ≤ x; (c) holds for all sufficiently large n because 1678�√
a−

√
b
�2

≤ 2 log n
n so that log(1 − (

√
a −

√
b)2) = 1679

−(
√
a−

√
b)2 +O

�
log2(n)/n2

�
, β ≤ 1

2α and β ≤ δ
8

2
b log n

n 1680

so that β2

α−β ≤ 2β2

α ≤ δ2b log n
32αn ≤ δ2 log n

32n , and β
√

a−
√

b√
b

≤ 1681

δ
8

2
log n

n

�√
a−

√
b
�
≤

√
2δ log n
8n . 1682

In conclusion, it follows from (63) that 1683

Q (En)≥exp


−(1+o(1))



n
�√

a−
√
b
�2

+
δ

4
logn+log 2

��
1684

≥ exp


−n

�√
a−

√
b
�2

− δ

2
logn

�
, 1685

where the last inequality holds for all sufficiently large n in 1686

view of n
�√

a−
√
b
�2

≤ 2 logn. 1687
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APPENDIX1688

Lemma 7: Fixing π and π�, where π is the latent permuta-1689

tion under P . For any edge orbit O of σ = π−1◦π� with |O| =1690

k and t ≥ 0, let Mk � E

"
exp

�
t
�

(i,j)∈O Aπ′(i)π′(j)Bij

�#
,1691

where Aij = Aij − EAij and Bij = Bij − EBij .1692

• For Erdős-Rényi random graphs,1693

Mk =

�
T −

√
T 2 − 4D
2

�k

+

�
T +

√
T 2 − 4D
2

�k

,1694

(64)1695

where1696

T = et(1−q)2qs+2 e−tq(1−q)q(1−s)+etq2
(1 − 2q + qs)1697

D =
�
et(1−q)2+tq2 − e−2tq(1−q)

�
q(s− q)1698

and q � ps.1699

• For Gaussian model, for t ≤ 1
1+ρ ,1700

Mk =

-

λ1 + λ2

2

�k

−


λ1 − λ2

2

�k
.−1

(65)1701

where λ1 =
�

(1 + ρt)2 − t2 and λ2 =1702 �
(1 − ρt)2 − t2.1703

Moreover, Mk ≤M
k/2
2 for all k ≥ 2.1704

Proof: For ease of notation, let {(ai, bi)}k
i=1 be indepen-1705

dently and identically distributed pairs of random variables1706

with joint distribution P . Let ak+1 = a1 and bk+1 = b1.1707

Since O is an edge orbit of σE, we have {Aπ(i)π(j)}(i,j)∈O =1708

{Aπ′(i)π′(j)}(i,j)∈O and (π�(i), π�(j)) = (π(σ(i)), π(σ(j))).1709

Then, we have that1710

Mk = E

-
exp

�
k�

i=1

t(ai+1 − E [ai+1])(bi − E [bi+1])

�.
1711

= E

-
E

 
exp

�
k�

i=1

t(ai+1 − E [ai+1])(bi − E [bi+1])

� 11111712

a1, a2, · · · , ak

!.
1713

= E

-
k9

i=1

E

 
exp



t (ai+1 − E [ai+1]) (bi − E [bi+1])

�11111714

ai, ai+1

!.
.1715

• For Erdős-Rényi random graphs, E[ai] = E[bi] = q, and1716

Mk = tr
�
Mk

�
, whereM is a 2×2 row-stochastic matrix1717

with rows and columns indexed by {0, 1} and1718

M(�,m)1719

= E

 
exp



t (ai+1 − q) (bi − q)

�1111ai =�, ai+1 =m
!
×1720

P (ai+1 = m) .1721

= E

 
exp



t (m−q) (bi−q)

�1111|ai =�
!

P (ai+1 = m) .1722

Explicitly, we have 1723

M11 = etq2
(1 − η) (1 − q) + e−tq(1−q)η (1 − q) 1724

M12 = e−tq(1−q) (1 − η) q + et(1−q)2ηq 1725

M21 = etq2
s (1 − q) + e−tq(1−q) (1 − s) (1 − q) 1726

M22 = e−tq(1−q) (1 − s) q + et(1−q)2sq. 1727

where η = q(1−s)
1−q . The eigenvalues of M are T−

√
T 2−4D
2 1728

and T+
√

T 2−4D
2 , where 1729

T � Tr(M) = et(1−q)2qs+ 2 e−tq(1−q)q(1 − s) 1730

+ etq2
(1 − 2q + qs) 1731

D � det(M) =
�
et(1−q)2+tq2

−e−2tq(1−q)
�
q(s−q). 1732

• For Gaussian model, E[ai] = E[bi] = 0, and 1733

Mk = E

-
k9

i=1

exp


tρaiai+1 +

1
2
t2
�
1 − ρ2

�
a2

i+1

�.
, 1734

where the equality follows from bi ∼ N (ρai, 1 − ρ2) 1735

conditional on ai and E [exp (tZ)] = exp
�
tμ+ t2ν2/2

�
1736

for Z ∼ N (μ, ν2). 1737

Let λ1 =
2

(1 + ρt)2 − t2 and λ2 =
2

(1 − ρt)2 − t2, 1738

where t ≤ 1
1+ρ . By change of variables, 1739

Mk 1740

=
�

· · ·
� k9

i=1

1√
2π

exp

�
−
�

λ1+λ2
2 ai+ λ1−λ2

2 ai+1

�2
2

�
1741

da1 · · ·dak 1742

(a)
=

�
· · ·

� k9
i=1

1√
2π

exp


−X

2
i

2

�
1743

dX1 · · · dXk det(J−1) 1744

(b)
=

1�
λ1+λ2

2

�k −
�

λ1−λ2
2

�k
, 1745

where (a) holds by letting Xi = λ1+λ2
2 ai + λ1−λ2

2 ai+1, 1746

and denoting J as the Jacobian matrix with Jij = ∂Xk

∂aj
1747

whose inverse matrix is 1748

J =

⎛⎜⎜⎜⎜⎜⎝
λ1+λ2

2
λ1−λ2

2 0 · · · 0
0 λ1+λ2

2
λ1−λ2

2 · · · 0
0 0 λ1+λ2

2 · · · 0
...

...
...

. . . λ1−λ2
2

λ1−λ2
2 0 · · · 0 0 λ1+λ2

2

⎞⎟⎟⎟⎟⎟⎠ ; 1749

(b) holds because det(J−1) = det(J)−1, where 1750

det(J) =
�

λ1+λ2
2

�k −
�

λ1−λ2
2

�k
. 1751

Finally, we prove that Mk ≤ (M2)k/2 for k ≥ 2. Indeed, for 1752

the Erdős-Rényi graphs, this simply follows from xk + yk ≤ 1753

(x2 + y2)k/2 for x, y ≥ 0 and k ∈ N. Analogously, for the 1754

Gaussian model, this follows from (a + b)k − (a − b)k ≥ 1755

(4ab)k/2, which holds by rewriting (a+ b)2 = (a− b)2 +4 ab 1756

and letting x = (a− b)2 and y = 4ab. 1757

Lemma 8: Fixing π and /π, where π is the latent 1758

permutation under P . For any edge orbit O of 1759
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σ = π−1 ◦ π� with |O| = k and t > 0, let Lk �1760

E

"
exp

�
t
�

(i,j)∈O Aπ′(i)π′(j)Bij −
�

(i,j)∈O Aπ(i)π(j)Bij

�#
.1761

• For general Erdős-Rényi random graphs model,1762

Lk =

�
T −

√
T 2 − 4D
2

�k

+

�
T +

√
T 2 − 4D
2

�k

,1763

(66)1764

where T = 1 and D = − (p01p10 (et − 1) +1765

p00p11 (e−t − 1)).1766

• For Gaussian model, for t ≤ 1
2(1−ρ) ,1767

Lk =

-

λ1 + λ2

2

�k

−


λ1 − λ2

2

�k
.−1

, (67)1768

where λ1 = 1 and λ2 =
�

1 + 4 tρ− 4t2 (1 − ρ2).1769

Moreover, Lk ≤ L
k/2
2 for all k ≥ 2.1770

Proof: For ease of notation, let {(ai, bi)}k
i=1 be indepen-1771

dently and identically distributed pairs of random variables1772

with joint distribution P . Let ak+1 = a1 and bk+1 = b1.1773

Since O is an edge orbit of σE, we have {Aπ(i)π(j)}(i,j)∈O =1774

{Aπ′(i)π′(j)}(i,j)∈O and (π�(i), π�(j)) = π(σ(i), σ(j)). Then,1775

we have that1776

Lk = E

⎡⎣exp

⎛⎝t �
(i,j)∈O

�
Aπ′(i)π′(j) −Aπ(i)π(j)

�⎞⎠Bij

⎤⎦1777

= E

-
E

-
exp

�
k�

i=1

t (ai+1 − ai) bi

� 1111a1, a2, · · · , ak

..
1778

= E

-
k9

i=1

E

 
exp (t (ai+1 − ai) bi)

1111ai, ai+1

!.
.1779

• For Erdős-Rényi random graphs, Lk = tr
�
Lk

�
, where L1780

is a 2 × 2 row-stochastic matrix with rows and columns1781

indexed by {0, 1} and1782

L(�,m) = E [exp (t (ai+1 − ai) bi) |ai = �, ai+1 = m]1783

P (ai+1 = m) .1784

= E [exp (t(m− �)bi) |ai = �] P (ai+1 = m) .1785

Explicitly, we have1786

L11 = 1 − p10 − p111787

L12 =



p01

1 − p10 − p11
et+

p00

1 − p10 − p11

�
(p10+p11)1788

L21 =



p11

p10 + p11
(et − 1) + 1

�
(p10 + p11)1789

L22 = p10 + p11.1790

The eigenvalues of L are T−
√

T 2−4D
2 and T+

√
T 2−4D
2 ,1791

where T = 1 and1792

D = −
�
p01p10

�
et − 1

�
+ p00p11

�
e−t − 1

��
.1793

• For Gaussian model,1794

Lk = E

-
k9

i=1

exp


t (ai+1 − ai) ρai1795

+ t2 (ai+1 − ai)
2 �1 − ρ2

�
/2
�.

1796

= E

-
exp

��
t2
�
1 − ρ2

�
− tρ

� k�
i=1

�
a2

i − aiai+1

��.
1797

=
1�

λ1+λ2
2

�k −
�

λ1−λ2
2

�k
. 1798

where the first equality follows from bi ∼ N (ρai, 1−ρ2) 1799

conditional on ai and E [exp (tZ)] = exp
�
tμ+ t2ν2/2

�
1800

for Z ∼ N (μ, ν2) ; the last equality holds by change of 1801

variables and Gaussian integral analogous to the proof of 1802

Lemma 7. 1803

Finally, Lk ≤ (L2)k/2 for k ≥ 2 follows from the same 1804

reasoning as in Lemma 7. 1805

In view of (64) in Lemma 7, M1 = T and 1806

M2 = T 2 − 2D, (68) 1807

where by letting a = et(1−q)2 , b = e−tq(1−q), and c = etq2
, 1808

we get 1809

T = aqs+2 bq(1−s)+c(1−2q+qs), D =
�
ac− b2

�
q(s−q). 1810

• Suppose t ≤ log 1
p . Since 1 + x ≤ ex ≤ 1 + x + x2 for 1811

0 ≤ x ≤ 1 and 1+x+x2/2+x3 ≤ ex ≤ 1+x+x2/2 for 1812

−1 ≤ x < 0, we get 1813

1 − tq(1 − q) +
1
2
t2q2(1 − q)2 − t3q3 1814

≤ b ≤ 1 − tq(1 − q) +
1
2
t2q2(1 − q)2, 1815

and 1816

1 + tq2 ≤ c ≤ 1 + tq2 + t2q4. 1817

It follows that 1818

T ≤ et(1−q)2qs 1819

+ 2



1 − tq(1 − q) +
1
2
t2q2(1 − q)2

�
q(1 − s) 1820

+
�
1 + tq2 + t2q4

�
(1 − 2q + qs) 1821

= α0 + α1t+ α2t
2, 1822

where 1823

α0 = 2 q(1 − s) + (1 − 2q + qs) + et(1−q)2qs, (69) 1824

α1 = − 2 q(1 − q)q(1 − s) + q2(1 − 2q + qs), (70) 1825

α2 = q2(1 − q)2q(1 − s) + q4(1 − 2q + qs). (71) 1826

Moreover, 1827

D ≥ et(1−q)2
�
1 + tq2

�
q(s− q) 1828

−



1 − tq(1 − q) +
1
2
t2q2(1 − q)2

�2

q(s− q) 1829

= β0 + β1t+ β2t
2 + β3t

3 + β4t
4, 1830

where 1831

β0 = − q(s− q) + et(1−q)2q(s− q), (72) 1832

β1 = 2 q2(1 − q)(s− q) + et(1−q)2q3(s− q), (73) 1833
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β2 = − 2 q3(1 − q)2(s− q), (74)1834

β3 = q4 (1 − q)3 (s− q), (75)1835

β4 = − 1
4
q5 (1 − q)4 (s− q). (76)1836

By (68), we get1837

M2 = T 2 − 2D1838

≤
�
α0 + α1t+ α2t

2
�2

1839

− 2
�
β0 + β1t+ β2t

2 + β3t
3 + β4t

4
�

1840

= γ0 + γ1t+ γ2t
2 + γ3t

3 + γ4t
4

1841

where1842

γ0 = α2
0 − 2β0 (77)1843

γ1 = 2α0α1 − 2β1 (78)1844

γ2 = α2
1 + 2α0α2 − 2β2 (79)1845

γ3 = 2α1α2 − 2β3 (80)1846

γ4 = α2
2 − 2β4 (81)1847

By (69), (72) and (77), we get1848

γ0 = α2
0 − 2β01849

=
�
1 − qs+ et(1−q)2qs

�2

1850

− 2
�
−q(s− q) + et(1−q)2q(s− q)

�
1851

= 1 − 2q2 + q2s2 + 2et(1−q)2q2
�
1 − s2

�
1852

+ e2t(1−q)2q2s2,1853

≤ 1 − 2q2 + q2s2 + 2etq2
�
1 − s2

�
+ e2tq2s2.1854

Note that the above bound on γ0 determines the main1855

terms in our final bound on M2. For the remaining terms,1856

we will show
�4

i=1 γit
i = O(q3t(1 + t)) so that they1857

can be made negligible later when we apply the bound1858

on M2 in the proof of Lemma 3 (see (48)).1859

By (69), (70), (73) and (78), we get1860

γ1 = 2α0α1 − 2β11861

= − 2q2 + 4q3 + 4q3s− 4q3s2 − 4q4 + 2q4s21862

+
�
−4q3s+ 4q3s2 + 2q4 − 2q4s2

�
et(1−q)2

1863

(a)

≤ 4q3 + 2et(1−q)2q4
(b)

≤ 6q3,1864

where (a) holds because −2q2 + 4q3 ≤ 0 given q ≤ 1
2 ,1865

−4q3s2 − 4q4 + 2q4s2 ≤ 0 and −4q3s+ 4q3s2 + 2q4 −1866

2q4s2 ≤ 2q4; (b) holds because 2 et(1−q)2q4 ≤ 2 etq4 ≤1867

2 q3, given t ≤ log 1
p . By (69), (70), (71), (74) and (79),1868

we get1869

γ2 = α2
1 + 2α0α2 − 2β21870

= 2q3 − 2q3s− q4 − 4q4s+ 6q4s2 + 10q5s− 8q5s21871

− 6q6 − 4q6s+ q6s2 + 6q7 + 2q7s− 2q81872

+ et(1−q)2
�
2q4s− 2q4s2 − 2q5s+ 4q5s2+2q6s

�
1873

(a)

≤ 2q3 − 2q3s+ q4s2 + 10q5s+ 2etq4s
(b)

≤ 6q3,1874

where (a) holds because −q4 − 4q4s + 6q4s2 ≤ q4s2,1875

−8q5s2 − 6q6 − 4q6s + q6s2 + 6q7 + 2q7s − 2q8 ≤ 0,1876

and −2q4s2 − 2q5s + 4q5s2 + 2q6s ≤ 0 given q ≤ 1
2 ; 1877

(b) holds because −2q3s + q4s2 + 10q5s ≤ 2 q3 given 1878

q ≤ 1
2 , 2etq4s ≤ 2q3s ≤ 2q3 given t ≤ log 1

p . By (70), 1879

(71), (75) and (80), we get 1880

γ3 = 2α1α2 − 2β3 1881

= − 2q4s+ 12q5s− 4q5s2 − 4q6 − 16q6s+ 10q6s2 1882

+ 8q7 − 4q7s2 − 2q8 + 2q8s 1883

(a)

≤ − 2q4s+ 12q5s
(b)

≤ 4 q4, 1884

where (a) holds because −4q5s2−4q6−16q6s+10q6s2+ 1885

8q7 ≤ 0 and −4q7s2 − 2q8 + 2q8s ≤ 0; (b) holds by 1886

q ≤ 1
2 . By (71), (76) and (81), we get 1887

γ4 = α2
2 − 2β4 1888

=
1
2
(q5s+ q6 − 8q6s+ 2q6s2 + 18q7s− 8q7s2 1889

− 8q8 − 8q8s+ 8q8s2 + 8q9 − 7q9s+ q10) 1890

(a)

≤ 1
2
(q5s+ q6 − 8q6s+ 2q6s2 + 18q7s)

(b)

≤ 2q5, 1891

where (a) holds because −8q7s2−8q8−8q8s+8q8s2 + 1892

8q9 ≤ 0, and −7q9s + q10 ≤ 0; (b) holds because 1893

−8q6s+ 2q6s2 + 18q7s ≤ 4 q6s and q5s+ q6 + 4q6s ≤ 1894

4 q5, given q ≤ 1
2 . 1895

Combining the above bounds, we have 1896

M2 ≤ 1 − 2q2 + q2s2 + 6q3t+ 6q3t2 + 4 q4t3 + 2 q5t4 1897

+ 2 etq2(1 − s2) + e2tq2s2 1898

= 1 − 2q2 + q2s2 + q3t
�
6 + 6t+ 4 qt2 + 2 q2t3

�
+ 1899

2 etq2(1 − s2) + e2tq2s2 1900

≤ 1 − 2q2 + q2s2 + 10 q3t(1 + t) + 2 etq2(1 − s2) 1901

+ e2tq2s2, 1902

where the last inequality holds because qt2 ≤ 1 and 1903

q2t3 ≤ 1 given t ≤ log 1
p . 1904

Moreover, given M1 = T and M2 = T 2 − 2D, 1905

M2
1

M2
= 1 +

2D
M2

≤ 1 + 2D ≤ e2, 1906

where the first inequality holds because M2 ≥ 1 by 1907

definition, and the last inequality holds because 1908

D = (ac− b2)q(s− q)
(a)

≤ acq(s− q) 1909

≤ et
�
1 + tq2 + t2q4

�
q(s− q) 1910

(b)

≤ 1 + tq2 + t2q4
(c)

≤ 3, 1911

where (a) holds because b2q(s − q) ≥ 0; (b) holds 1912

because etq ≤ 1 given t ≤ log 1
p ; (c) holds because 1913

qt ≤ 1, given t ≤ log 1
p . 1914

• Suppose t ≤ 1
210 . Since 1 + x + x2/2 ≤ ex ≤ 1 + x + 1915

x2/2 + x3 for 0 ≤ x ≤ 1 and 1 + x+ x2/2 + x3 ≤ ex ≤ 1916

1 + x+ x2/2 for −1 ≤ x < 0, we get 1917

1 + t(1 − q)2 +
1
2
t2(1 − q)4 ≤ a 1918

≤ 1 + t(1 − q)2 +
1
2
t2(1 − q)4 + t3(1 − q)6; 1919
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1 − tq(1 − q) +
1
2
t2q2(1 − q)2 − t3q3 ≤ b1920

≤ 1 − tq(1 − q) +
1
2
t2q2(1 − q)2;1921

1 + tq2 +
1
2
t2q4 ≤ c1922

≤ 1 + tq2 +
1
2
t2q4 + t3q6.1923

It follows that1924

T ≤



1 + t (1 − q)2 +
1
2
t2 (1 − q)4 + t3 (1 − q)6

�
qs1925

+ 2



1 − tq (1 − q) +
1
2
t2q2 (1 − q)2

�
q (1 − s)1926

+



1 + tq2 +
1
2
t2q4 + t3q6

�
(1 − 2q + qs)1927

= 1 + α1t+ α2t
2 + α3t

3,1928

where1929

α1 = (1 − q)2 qs− 2 q (1 − q) q (1 − s)1930

+ q2 (1 − 2q + qs) = q(s− q), (82)1931

α2 =
1
2

(1 − q)4 qs+ q2 (1 − q)2 q (1 − s)1932

+
1
2
q4 (1 − 2q + qs) , (83)1933

α3 = (1 − q)6 qs+ q6 (1 − 2q + qs) . (84)1934

And1935

D ≥



1 + t (1 − q)2 +
1
2
t2 (1 − q)4

�
×1936 


1 + tq2 +
1
2
t2q4

�
q(s− q)1937

−



1 − tq (1 − q) +
1
2
t2q2 (1 − q)2

�2

q(s− q)1938

= β1t+ β2t
2 + β3t

3 + β4t
4,1939

where1940

β1 = (1 − q)2 q(s− q) + q3(s− q)1941

+ 2q (1 − q) q(s− q)1942

= q(s− q), (85)1943

β2 =
1
2

(1 − q)4 q(s− q) +
1
2
q5(s− q)1944

+ (1 − q)2 q3(s− q) − q2 (1 − q)2 q(s− q)1945

− q2 (1 − q)2 q(s− q)1946

=
1
2
�
1 − 4q + 4q2

�
q(s− q), (86)1947

β3 =
1
2
(1 − q)2q5(s− q) +

1
2
(1 − q)4q3(s− q)1948

+ q(1 − q)q2(1 − q)2q(s− q)1949

=
1
2
�
q2 − 2q3 + q4

�
q(s− q), (87)1950

β4 =
1
4
(1 − q)4q5(s− q) − 1

4
(1 − q)4q5(s− q)1951

= 0. (88)1952

By (68), we get that 1953

M2 = T 2 − 2D 1954

≤
�
1 + α1t+ α2t

2 + α3t
3
�2

1955

− 2
�
β1t+ β2t

2 + β3t
3 + β4t

4
�

1956

≤ 1 + γ1t+ γ2t
2 + γ3t

3 + γ4t
4 + γ5t

5 + γ6t
6, 1957

where 1958

γ1 = α1 − β1, (89) 1959

γ2 = α2
1 + 2α2 − 2β2, (90) 1960

γ3 = 2α1α2 + 2α3 − 2β3, (91) 1961

γ4 = α2
2 + 2α1α3 − 2β4, (92) 1962

γ5 = 2α2α3, (93) 1963

γ6 = α2
3. (94) 1964

Next, we show γ1 = 0 and get a tight bound on γ2, 1965

which governs our final bound to M2. For the remaining 1966

terms, we will show
�6

i=3 γit
i = O(t3qs) so that they 1967

can be made negligible later when we apply the bound 1968

on M2 in the proof of Lemma 3 (See the proof of Case 1969

2 of Erdős-Rényi graphs). 1970

By (82), (85) and (89), we get 1971

γ1 = α1 − β1 = 0. 1972

Recall that ρ = s(1−p)
1−ps and σ2 = ps(1 − ps). By (82), 1973

(83), (86) and (90), we get 1974

γ2 = α2
1 + 2α2 − 2β2 1975

= q2 + q2s2 − 2q3 − 2q3s+ 2q4 = σ4
�
1 + ρ2

�
. 1976

By (82), (83), (84),(87) and (91), we get 1977

γ3 = 2α1α2 + 2α3 − 2β3 1978

= 2qs− 12q2s+ q2s2 + 28q3s− 4q3s2+q4−32q4s 1979

+ 4q4s2 − 4q5+22q5s+6q6−12q6s−4q7+4q7s 1980

(a)

≤ 2qs− 12q2s+ q2s2 + 28q3s
(b)

≤ 4qs, 1981

where (a) holds because −4q3s2 + q4 ≤ 0, −32q4s + 1982

4q4s2 − 4q5 + 22q5s + 6q6 ≤ 0 and −12q6s − 4q7 + 1983

4q7s ≤ 0; (b) holds because −12q2s + q2s2 + 28q3s ≤ 1984

−12q2s+ q2s2 +14q2s ≤ 4 q2s ≤ 2 qs given q ≤ 1
2 . By 1985

(82), (83), (84), (88) and (92), we get 1986

γ4 = α2
2 + 2α1α3 − 2β4 1987

=
1
4
(9q2s2 − 12q3s− 56q3s2 + 4q4 + 60q4s 1988

+ 144q4s2 − 8q5 − 146q5s− 192q5s2 + 8q6 1989

+ 200q6s+ 136q6s2 − 12q7 − 136q7s− 48q7s2 1990

+ q8 + 32q8s+ 16q8s2 + 16q9 − 16q9s) 1991

(a)

≤ 1
4
(9q2s2−12q3s−56q3s2+4q4+60q4s+144q4s2) 1992

(b)

≤ 13 q2s2, 1993

where (a) holds because 1994

− 8q5 − 146q5s− 192q5s2 + 8q6 + 200q6s+ 136q6s2 1995
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=
�
−8q5 + 8q6

�
+
�
−146q5s− 192q5s2

�
1996

+
�
200q6s+ 136q6s2

�
1997

≤ − 338q5s2 + 336q6s ≤ 0,1998

and1999

− 12q7 − 136q7s− 48q7s2 + q8 + 32q8s+2000

16 q8s2 + 16q92001

=
�
−12q7 + q8

�
+
�
−136q7s− 48q7s2

�
2002

+
�
32q8s+ 16 q8s2 + 16q9

�
2003

≤ − 184q7s2 + 64q8s ≤ 0;2004

(b) holds by holds because −12q3s + 4q4 ≤ −8q3s,2005

60q4s + 144q4s2 ≤ 30q3s + 72q3s2, and then −8q3s −2006

56q3s2 + 30q3s+ 72q3s2 ≤ 24q3s+ 16q3s2 ≤ 32 q2s2,2007

given q ≤ 1
2 . By (83), (84) and (93), we get2008

γ5 = 2α2α32009

= q2
�
s− 4qs+ 2q2 + 4q2s− 3q3

�
2010

(s− 6qs+ 15q2s− 20q3s+ 15q4s2011

− 6q5s+ q5 − 2q6 + 2q6s)2012

≤ q2
�
s+ 4qs+ 2q2 + 4q2s+ 3q3

�
2013

(s+ 6qs+ 15q2s+ 20q3s+ 15q4s2014

+ 6q5s+ q5 + 2q6 + 2q6s)2015

= q2s2
�
1 + 4q + 2qp+ 4q2 + 3q2p

�
2016

(1 + 6q + 15q2 + 20q3 + 15q4 + 6q52017

+ q4p+ 2q5p+ 2q6)2018

≤ (14 · 68) q2s2 ≤ 210q2s2.2019

By (84) and (94), we get2020

γ6 = α2
32021

= q2(s− 6qs+ 15q2s− 20q3s+ 15q4s2022

− 6q5s+ q5 − 2q6 + 2q6s)22023

≤ q2(s+ 6qs+ 15q2s+ 20q3s+ 15q4s2024

+ 6q5s+ q5 + 2q6 + 2q6s)22025

≤ q2s2(1 + 6q + 15q2 + 20q3 + 15q42026

+ 6q5 + q4p+ 2q5p+ 2q6)22027

≤ (68)2q2s2 ≤ 213q2s2.2028

Then, we have2029

M2 ≤ 1 + t2σ4
�
1 + ρ2

�
+ 4 t3qs+ 13 t4q2s22030

+ 210t5q2s2 + 213t6q2s22031

≤ 1 + t2σ4
�
1 + ρ2

�
+ 8 t3qs,2032

where the last inequality holds because 13t4 + 210t5 +2033

212t6 ≤ 4 t3 given t ≤ 1
210 .2034

Moreover, given M1 = T and M2 = T 2 − 2D,2035

M2
1

M2
= 1 +

2D
T 2

≤ 1 + 2D ≤ e2,2036

where the first inequality holds because M2 ≥ 1 by2037

definition, and the second inequality holds because2038

D = (ac− b2)q(s− q)2039

(a)

≤ acq(s− q) 2040

≤



1 + t (1 − q)2 +
1
2
t2 (1 − q)4 + t3 (1 − q)6

�
× 2041


1 + tq2 +
1
2
t2q4 + t3q6

�
q(s− q)

(b)

≤ 3, 2042

where (a) holds because b2q(s − q) ≥ 0; (b) holds 2043

because 1 + t+ 1
2 t

2 + t3 ≤ 3
2 given t ≤ 1

210 . 2044

The following lemma stated in [26, Lemma 10] follows 2045

from the Hanson-Wright inequality [17], [23]. 2046

Lemma 9 (Hanson-Wright Inequality): Let U, V ∈ R
n are 2047

standard Gaussian vectors such that the pairs (Uk, Vk) ∼ 2048

N
�

( 0
0 ) ,

� 1 ρ
ρ 1

� �
are independent for k = 1, . . . , n. Let M ∈ 2049

R
n×n be any deterministic matrix. There exists some universal 2050

constant c > 0 such that with probability at least 1 − δ, 205111U�MV − ρTr(M)
11 2052

≤ c
�
	M	F

�
log(1/δ) + 	M	2 log(1/δ)

�
. (95) 2053

Lemma 10: The function φ in (47), namely 2054

φ (x) �
log 1

x − 1 + x

x
�
log 1

x

� �
1 + log 1

x

� 2055

is monotonically decreasing on x ∈ (0, 1). 2056

Proof: We have 2057

φ�(x) =
ψ(x)

x2 (log (x) − 1)2 log2 (x)
, (96) 2058

where 2059

ψ(x) � log3 (x) + log2 (x) + (1 − 2x) log (x) + x− 1. 2060

Next, write 2061

ψ�(x) =
κ(x)
x

, (97) 2062

where 2063

κ(x) � 3 log2 (x) + (2 − 2x) log (x) − x+ 1. 2064

Note that for x ∈ (0, 1), 2065

κ�(x) = − 2x log (x) − 6 log (x) + 3x− 2
x

≤ 0, 2066

where the last inequality holds because 2 x log (x) ≥ −1 and 2067

−6 log (x) + 3x ≥ 3 for x ∈ (0, 1). Thus, κ(x) is monotone 2068

decreasing on x ∈ (0, 1) and then κ(x) > κ(1) = 0 for 2069

x ∈ (0, 1). By (97), ψ�(x) ≥ 0 for x ∈ (0, 1), and then ψ(x) 2070

is monotone increasing on x ∈ (0, 1) with ψ(x) < ψ(1) = 0. 2071

Then, by (96), φ�(x) < 0 on x ∈ (0, 1), as desired. 2072
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ularized quadratic relaxations II: Erdős-Rényi graphs and universality,”2106

2019, arXiv:1907.08883.2107

[11] S. Feizi, G. Quon, M. Recamonde-Mendoza, M. Médard, M. Kellis, and2108

A. Jadbabaie, “Spectral alignment of graphs,” 2016, arXiv:1602.04181.2109

[12] L. Ganassali, “Sharp threshold for alignment of graph databases with2110

Gaussian weights,” in Proc. 22nd Annu. Conf. Math. Sci. Mach. Learn.,2111

vol. 145, 2021, pp. 1–22.2112

[13] L. Ganassali and L. Massoulié, “From tree matching to sparse graph2113

alignment,” in Proc. Conf. Learn. Theory, 2020, pp. 1633–1665.2114

[14] L. Ganassali, L. Massoulié, and M. Lelarge, “Impossibility of partial2115

recovery in the graph alignment problem,” in Proc. Conf. Learn. Theory,2116

2021, pp. 2080–2102.2117

[15] D. Guo, S. Shamai (Shitz), and S. Verdú, “Mutual information and2118

minimum mean-square error in Gaussian channels,” IEEE Trans. Inf.2119

Theory, vol. 51, no. 4, pp. 1261–1282, Apr. 2005.2120

[16] G. Hall and L. Massoulié, “Partial recovery in the graph alignment2121

problem,” 2020, arXiv:2007.00533.2122

[17] D. L. Hanson and F. T. Wright, “A bound on tail probabilities for2123

quadratic forms in independent random variables,” Ann. Math. Statist.,2124

vol. 42, no. 3, pp. 1079–1083, Jun. 1971.2125

[18] B. Hajek, Y. Wu, and J. Xu, “Information limits for recovering a hidden2126

community,” IEEE Trans. Inf. Theory, vol. 63, no. 8, pp. 4729–4745,2127

Aug. 2017.2128

[19] V. Lyzinski, D. Fishkind, M. Fiori, J. Vogelstein, C. Priebe, and2129

G. Sapiro, “Graph matching: Relax at your own risk,” IEEE Trans.2130

Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 60–73, Jan. 2016.2131

[20] C. Méasson, A. Montanari, T. J. Richardson, and R. Urbanke, “The gen-2132

eralized area theorem and some of its consequences,” IEEE Trans. Inf.2133

Theory, vol. 55, no. 11, pp. 4793–4821, Nov. 2009.2134

[21] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized2135

networks,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery2136

Data Mining (KDD), 2011, pp. 1235–1243.2137

[22] P. M. Pardalos and H. Wolkowicz, Quadratic Assignment and Related 2138

Problems: DIMACS Workshop, May 20-21, 1993, vol. 16. Providence, 2139

RI, USA: AMS, 1994. 2140

[23] M. Rudelson and R. Vershynin, “Hanson-wright inequality and sub- 2141

Gaussian concentration,” Electron. Commun. Probab., vol. 18, pp. 1–9, 2142

Jan. 2013. 2143

[24] G. Reeves, J. Xu, and I. Zadik, “The all-or-nothing phenomenon 2144

in sparse linear regression,” in Proc. Conf. Learn. Theory, 2019, 2145

pp. 2652–2663. 2146

[25] E. M. Wright, “Graphs on unlabelled nodes with a given number of 2147

edges,” Acta Mathematica, vol. 126, no. 1, pp. 1–9, 1971. 2148

[26] Y. Wu, J. Xu, and H. Sophie Yu, “Testing correlation of unlabeled 2149

random graphs,” Ann. Appl. Probab., 2022. [Online]. Available: 2150

https://www.e-publications.org/ims/submission/AAP/user/submission 2151

File/49912?confirm=f224c86b 2152

Yihong Wu received the B.E. degree from Tsinghua University, China, 2153

in 2006, and the Ph.D. degree from Princeton University, Princeton, NJ, USA, 2154

in 2011. He was a Post-Doctoral Fellow with the Statistics Department, The 2155

Wharton School, University of Pennsylvania, from 2011 to 2012, and an 2156

Assistant Professor with the Department of Electronic and Communication 2157

Engineering, University of Illinois Urbana-Champaign, from 2013 to 2015. 2158

He is currently an Associate Professor with the Department of Statistics 2159

and Data Science, Yale University. His research interests include theoretical 2160

and algorithmic aspects of high-dimensional statistics, information theory, and 2161

optimization. He was a recipient of the NSF CAREER Award in 2017 and the 2162

Sloan Research Fellowship in Mathematics in 2018. 2163

Jiaming Xu (Member, IEEE) received the B.E. degree in electrical and 2164

computer engineering from Tsinghua University, China, in 2009, the M.S. 2165

degree in electrical and computer engineering from The University of Texas 2166

at Austin, Austin, TX, USA, in 2011, and the Ph.D. degree in electrical 2167

and computer engineering from the University of Illinois Urbana-Champaign 2168

(UIUC) in 2014. He was an Assistant Professor with the Krannert School of 2169

Management, Purdue University, from August 2016 to June 2018, a Research 2170

Fellow with the Simons Institute for the Theory of Computing, UC Berkeley, 2171

from January 2016 to June 2016, and a Post-Doctoral Fellow with the Statistics 2172

Department, The Wharton School, University of Pennsylvania, from January 2173

2015 to December 2015. He is currently an Assistant Professor with The 2174

Fuqua School of Business, Duke University. His research interests include 2175

data science, high-dimensional statistical inference, information theory, convex 2176

and non-convex optimization, queueing theory, and game theory. He was a 2177

recipient of the Simons-Berkeley Fellowship in 2016 and the NSF CAREER 2178

Award in 2022. 2179

Sophie H. Yu (Student Member, IEEE) received the B.S. degree in economics 2180

from the School of Finance, Renmin University of China, in 2015, and the 2181

M.S. degree in statistical and economical modeling from Duke University, 2182

Durham, NC, USA, in 2017, where she is currently pursuing the Ph.D. degree 2183

in decision sciences with The Fuqua School of Business, Duke University. 2184

In Fall 2021, she visited the Simons Institute for the Theory of Computing as 2185

a Visiting Graduate Student. Her research interests include data science, high- 2186

dimensional statistical inference, network science, machine learning, Bayesian 2187

analysis, decision sciences, and data privacy. She was a recipient of the Ph.D. 2188

Fellowship at Duke University. 2189

Authorized licensed use limited to: Yale University. Downloaded on June 28,2023 at 07:45:38 UTC from IEEE Xplore.  Restrictions apply. 


