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ABSTRACT
We propose an efficient algorithm for graph matching based on

similarity scores constructed from counting a certain family of

weighted trees rooted at each vertex. For two Erdős–Rényi graphs

G(𝑛, 𝑞) whose edges are correlated through a latent vertex cor-

respondence, we show that this algorithm correctly matches all

but a vanishing fraction of the vertices with high probability, pro-

vided that 𝑛𝑞 → ∞ and the edge correlation coefficient 𝜌 satisfies

𝜌2 > 𝛼 ≈ 0.338, where 𝛼 is Otter’s tree-counting constant. More-

over, this almost exact matching can be made exact under an extra

condition that is information-theoretically necessary. This is the

first polynomial-time graph matching algorithm that succeeds at an

explicit constant correlation and applies to both sparse and dense

graphs. In comparison, previous methods either require 𝜌 = 1−𝑜 (1)
or are restricted to sparse graphs.

The crux of the algorithm is a carefully curated family of rooted

trees called chandeliers, which allows effective extraction of the

graph correlation from the counts of the same tree while suppress-

ing the undesirable correlation between those of different trees.
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1 INTRODUCTION
Graph matching (also known as network alignment) refers to the

problem of finding the bijection between the vertex sets of the two

graphs that maximizes the total number of common edges. When

the two graphs are exactly isomorphic to each other, this reduces to

the classical graph isomorphism problem, for which the best known

algorithm runs in quasi-polynomial time [5]. In general, graph

matching is an instance of the quadratic assignment problem [10],

which is known to be NP-hard to solve or even approximate [29].

Motivated by real-world applications (such as social network

de-anonymization [36] and computational biology [43]) as well as

the need to understand the average-case computational complexity,

a recent line of work is devoted to the study of theory and algo-

rithms for graph matching under statistical models, by assuming

the two graphs are randomly generated with correlated edges under

a hidden vertex correspondence. A canonical model is the following

correlated Erdős–Rényi graph model [39].

Definition 1 (Correlated Erdős–Rényi graph model). Let 𝜋 denote

a latent permutation on [𝑛] ≜ {1, . . . , 𝑛}. We generate two random

graphs on the common vertex set [𝑛] with adjacency matrices 𝐴

and 𝐵 such that (𝐴𝑖 𝑗 , 𝐵𝜋 (𝑖 )𝜋 ( 𝑗 ) ) are i.i.d. pairs of Bernoulli random
variables with mean 𝑞 ∈ [0, 1] and correlation coefficient 𝜌 for

1 ≤ 𝑖 < 𝑗 ≤ 𝑛. We write (𝐴, 𝐵) ∼ G(𝑛, 𝑞, 𝜌).

Given (𝐴, 𝐵) ∼ G(𝑛, 𝑞, 𝜌), our goal is to recover the latent vertex
correspondence 𝜋 . The information-theoretic thresholds for both

exact and partial recovery have been derived [12, 13, 17, 22, 25, 45]

and various efficient matching algorithms have been developed

with performance guarantees [16, 18–21, 23, 30, 31]. Despite these

exciting progresses, most existing efficient algorithms require the

two graphs to be almost perfectly correlated; as such, the problem

of polynomial-time recovery with a constant correlation remains

largely unresolved except for sufficiently sparse graphs. Specifically,

if the correlation 𝜌 is an (unspecified) constant sufficiently close to

1, exact recovery is achievable in polynomial time for graphs whose

average degrees satisfy (1 + 𝜖) log𝑛 ≤ 𝑛𝑞 ≤ 𝑛
1

Θ(log log𝑛)
[31], while

partial recovery is achievable for sparse graphs with 𝑛𝑞 = 𝑂 (1)
[21, 23]. For dense graphs, the best known result for polynomial-

time recovery requires 𝜌 ≥ 1 − (log log(𝑛))−𝐶 for some constant

𝐶 > 0 [30]. The current paper significantly advances the state of

the art by establishing the following results.
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Theorem. Assume that 0 < 𝑞 ≤ 1/2 and

𝜌2 > 𝛼 ≈ 0.338,

where

𝛼 = lim

𝐾→∞
𝐾

log(number of unlabeled trees with 𝐾 edges)
is Otter’s tree-counting constant [38]. Given a pair of correlated

Erdős–Rényi graphs (𝐴, 𝐵) ∼ G(𝑛, 𝑞, 𝜌), the following holds:
• (Exact recovery) If 𝜌 > 0 and 𝑛𝑞(𝑞 + 𝜌 (1−𝑞)) ≥ (1 + 𝜖) log𝑛
for any constant 𝜖 > 0,

1
there is a polynomial-time algorithm

that recovers 𝜋 exactly with high probability.

• (Almost exact recovery) If 𝑛𝑞 = 𝜔 (1), there is a polynomial-

time algorithm that outputs a subset 𝐼 ⊂ [𝑛] and a map

𝜋 : 𝐼 → [𝑛] such that 𝜋 = 𝜋 |𝐼 and |𝐼 | = (1 − 𝑜 (1))𝑛 with

high probability.

• (Partial recovery) For any constant 𝛿 ∈ (0, 1), there is a

constant 𝐶 (𝜌, 𝛿) > 0 depending only on 𝜌 and 𝛿 such that

if 𝑛𝑞 ≥ 𝐶 (𝜌, 𝛿), the above 𝐼 and 𝜋 satisfy that 𝜋 = 𝜋 |𝐼 with
high probability and E[|𝐼 |] ≥ (1 − 𝛿)𝑛.

The above theorem identifies an explicit threshold 𝜌2 > 𝛼 that

allows polynomial-time graph matching for both sparse and dense

graphs. In certain regimes, the condition for exact recovery in

this result is in fact optimal, matching the information-theoretic

threshold identified in [13, 45] (see Remark 2 and Figure 2 for

a detailed discussion). Here we further assume 𝜌 > 0 for exact

recovery as the current seeded matching algorithms for boosting

from almost exact to exact recovery require a positive correlation.

In passing, we remark that after the initial posting of the present

paper, [24] proves that a different algorithm proposed earlier in [23,

40] achieves partial recovery (correctly matching Ω(𝑛) vertices
with 𝑜 (𝑛) errors with high probability) under the same condition

of 𝜌 >
√
𝛼 . Their algorithm relies on the tree structure of local

neighborhoods and thus is restricted to sparse graphs with 𝑛𝑞 =

𝑂 (1). Moreover, their results do not provide exact or almost exact

recovery.

1.1 Key Challenges and Algorithmic
Innovations

A principled approach to graphmatching is the following three-step

procedure:

(1) Signature embedding: Associate to each vertex 𝑖 in 𝐴 a signa-
ture 𝑠𝑖 and to each vertex 𝑗 in 𝐵 a signature 𝑡 𝑗 .

(2) Similarity scoring: Compute the similarity score Φ𝑖 𝑗 based on
𝑠𝑖 and 𝑡 𝑗 using a certain similarity measure on the signature

space.

(3) Linear assignment: Solve max-weight bipartite matching

withweightsΦ𝑖 𝑗 either exactly or approximately (e.g., greedy

algorithm).

In this way, we reduce the problem from the NP-hard quadratic

assignment to the tractable linear assignment. Clearly, the key to

this approach is the construction of the similarity scores.

1
The condition 𝑛𝑞 (𝑞 + 𝜌 (1 − 𝑞) ) ≥ (1 + 𝜖 ) log𝑛 is information-theoretically neces-

sary, for otherwise the intersection graph between𝐴 and 𝐵 (under the vertex corre-

spondence 𝜋 ) contains isolated vertices with high probability and exact recovery is

impossible.

Many existing algorithms for graph matching largely follow this

paradigm using similarity scores based on neighborhood statistics

[8, 15, 16, 18, 30], spectral methods [20, 43, 44], or convex relaxations

[1, 28, 47]. In terms of theoretical guarantees, these methods either

require extremely high correlation or are tailored to sparse graphs.

Note that two 𝜌-correlated Erdős–Rényi graphs differ by Θ(1 − 𝜌)
fraction of edges. Thus, to succeed at a constant 𝜌 bounded away

from 1, the similarity scores need to be robust to perturbing a con-

stant fraction of edges. All existing algorithms [21, 23, 31] achieving

this goal crucially exploit the tree structure of local neighborhoods

and are thus restricted to sparse graphs. On the other hand, algo-

rithms that apply to both sparse and dense graphs [18, 20, 30] so

far can only tolerate a vanishing fraction of edge perturbation and

thus all require 𝜌 = 1 − 𝑜 (1).
The major algorithmic innovation of this work is a new construc-

tion based on subgraph counts. Specifically, the signature assigned
to a node 𝑖 is a vector indexed by a family of non-isomorphic sub-

graphs, where each entry records the total number of subgraphs

rooted at 𝑖 that appear in the graph weighted by the centered ad-

jacency matrix, known as the signed graph count [9] (cf. (1) and

(2) for the formal definition). The similarity score for each pair of

vertices is the weighted inner product between their signatures.

The key to executing this strategy is a carefully curated family of

trees called chandeliers, which, as we explain next, allows one to

extract the graph correlation from the counts of the same tree while

suppressing the undesirable correlation between those of different

trees. This leads to a robust construction of signatures that can

withstand perturbing a constant fraction of edges, without relying

on the locally tree-like property that limits the previous methods

to sparse graphs.

Counting subgraphs is a popular method for network analysis in

both theory [9, 35] and practice [2, 34, 42]. We refer to [32, Sec. 2.4]

for a comprehensive overview of hypothesis testing and estimation

based on subgraph counting for networks with latent structures.

Notably, most of these previous works focus on counting cycles.

However, here in order to succeed at a constant 𝜌 , we need to count

a sufficiently rich class of subgraphs (whose cardinality grows at

least exponentially with the number of edges)
2
and cycles clearly

fall short of this basic requirement. A much richer family of strictly
balanced, asymmetric subgraphs is considered in [6], where the

edge density of the subgraphs is carefully chosen so that typically

they co-occur in both graphs at most once. Hence, by searching

for such rare subgraphs, dubbed “black swans”, one can match the

corresponding vertices. Although this method succeeds even for

vanishing correlation 𝜌 ≥ (log𝑛)−𝑜 (1) , it has a quasi-polynomial

time complexity𝑛Θ(log𝑛)
due to the exhaustive search of subgraphs

of sizeΘ(log𝑛). Moreover, the construction of this special family of

subgraphs requires the average degree 𝑛𝑞 to fall into a very specific

range of [𝑛𝛿𝑛 , 𝑛1/153] ∪ [𝑛2/3, 𝑛1−𝜖 ] for some sequence of positive

quantities 𝛿𝑛 = 𝑜 (1) and an arbitrarily small constant 𝜖 > 0, and, in

particular, it does not accommodate relatively sparse graphs such

as 𝑛𝑞 = 𝑂 (log𝑛).

2
A high-level explanation is as follows. For a single subgraph 𝐻 with 𝑁 edges, the

correlation between the subgraph counts of 𝐻 rooted at vertex 𝑖 across𝐴 and 𝐵 – the

signal, is smaller than their variances by a multiplicative factor of 𝜌𝑁 . Therefore, to

pick up the signal, we need to further average over a family H of such subgraphs so

that |H |𝜌2𝑁 → ∞ (cf. (25) for a more detailed explanation).
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As opposed to relying on rare subgraphs, our approach is to count

a family of unlabeled rooted trees with size 𝑁 = Θ(log𝑛), which
are abundant even in very sparse graphs. Moreover, by leveraging

the method of color coding [3, 4, 26], such trees can be counted ap-

proximately but sufficiently accurately in polynomial time. While

centering the adjacency matrices and counting signed trees are

helpful, there still remains excessive correlation among different

trees counts which is hard to control – this is the key difficulty in

analyzing signatures based on subgraph counts. To resolve this chal-

lenge, we propose to count a special family T of unlabeled rooted

trees, which we call chandeliers; see (1) for the formal definition.

As discussed in Section 2.2, the chandelier structure plays a crucial

role in curbing the undesired correlation between different tree

counts. Moreover, even though chandeliers only occupy a vanish-

ing fraction of all trees, by choosing the parameters appropriately,

we can ensure that |T | = (1/𝛼 + 𝑜 (1))𝑁 , which grows almost at

the same rate as the entire family of trees.

A similar idea of counting signed but unrooted trees has been

applied in [32] for the graph correlation detection problem, i.e., test-

ing whether the two graphs are independent Erdős–Rényi graphs

or 𝜌-correlated through a latent vertex matching chosen uniformly

at random. It is shown that the two hypotheses can be distinguished

with high probability in polynomial time at the same threshold of

𝜌2 > 𝛼 . However, unlike the present paper, averaging over the

random permutation dramatically simplifies the analysis of correla-

tions between different tree counts. As a result, it suffices to simply

count all trees as opposed to a carefully constructed collection of

special trees. We refer to the last two paragraphs in Section 2.2 for

a detailed comparison.

1.2 Notation
Given a graph𝐻 , let𝑉 (𝐻 ) denote its vertex set and 𝐸 (𝐻 ) denote its
edge set. Let 𝑣 (𝐻 ) = |𝑉 (𝐻 ) | and 𝑒 (𝐻 ) = |𝐸 (𝐻 ) |. We call 𝑒 (𝐻 )−𝑣 (𝐻 )
the excess of the graph 𝐻 . We denote by K𝑛 the complete graph

with vertex set [𝑛] and edge set

([𝑛]
2

)
≜ {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ [𝑛], 𝑢 ≠ 𝑣}.

An empty graph is denoted as ∅, if it does not contain any vertex

or edge. A rooted graph is a graph in which one vertex has been

distinguished as the root. An isomorphism between two rooted

graphs𝐻 and𝐺 is a bijection between the vertex sets that preserves

both edges and the root, namely, 𝑓 : 𝑉 (𝐻 ) → 𝑉 (𝐺) such that the

root of 𝐻 is mapped to that of 𝐺 and any two vertices 𝑢 and 𝑣 are

adjacent in 𝐻 if and only if 𝑓 (𝑢) and 𝑓 (𝑣) are adjacent in 𝐺 . An
automorphism of a rooted graph is an isomorphism to itself. Let

aut(𝐻 ) be the number of automorphisms of 𝐻 . For a rooted tree 𝑇

and a vertex 𝑎 ∈ 𝑉 (𝑇 ), let (𝑇 )𝑎 denote the subtree of 𝑇 consisting

of all descendants of 𝑎 and we set (𝑇 )𝑎 = ∅ if 𝑎 ∉ 𝑉 (𝑇 ).
For two real numbers 𝑥 and 𝑦, we let 𝑥 ∨ 𝑦 ≜ max{𝑥,𝑦} and

𝑥 ∧ 𝑦 ≜ min{𝑥,𝑦}. We use standard asymptotic notation: for two

positive sequences {𝑥𝑛} and {𝑦𝑛}, we write 𝑥𝑛 = 𝑂 (𝑦𝑛) or 𝑥𝑛 ≲ 𝑦𝑛 ,
if 𝑥𝑛 ≤ 𝐶𝑦𝑛 for an absolute constant𝐶 and for all 𝑛; 𝑥𝑛 = Ω(𝑦𝑛) or
𝑥𝑛 ≳ 𝑦𝑛 , if 𝑦𝑛 = 𝑂 (𝑥𝑛); 𝑥𝑛 = Θ(𝑦𝑛) or 𝑥𝑛 ≍ 𝑦𝑛 , if 𝑥𝑛 = 𝑂 (𝑦𝑛) and
𝑥𝑛 = Ω(𝑦𝑛); 𝑥𝑛 = 𝑜 (𝑦𝑛) or 𝑦𝑛 = 𝜔 (𝑥𝑛), if 𝑥𝑛/𝑦𝑛 → 0 as 𝑛 → ∞.

1.3 Organization
The rest of the paper is organized as follows. In Section 2.1, we

first introduce the similarity scores between vertices of the two

graphs based on counting signed chandeliers, and then state our

main results on the recovery of the latent vertex correspondence

for correlated Erdős–Rényi graphs. In Section 2.2, we explain the

rationale for focusing on the class of chandeliers. Section 3 provides

a statistical analysis of the similarity scores, proving our results on

partial and almost exact recovery stated in Theorem 1. In partic-

ular, Propositions 2 and 3 are the key ingredients controlling the

variance of the similarity scores. In Section 4, we use the method

of color coding to approximate the proposed similarity scores in

polynomial time, and show that the same statistical guarantees

continue to hold for the approximated scores, thereby proving The-

orem 2. Finally, in Section 5, we demonstrate how to upgrade an

almost exact matching to an exact matching, establishing Theo-

rem 3. Appendix A consists of auxiliary results, and Appendix B

discusses a data-driven way to choose a threshold parameter in our

algorithm. Due to space constraints, we omit the proofs of Proposi-

tion 2-Proposition 6, which can be found in the full version of this

paper [33] https://arxiv.org/abs/2209.12313.

2 MAIN RESULTS AND DISCUSSIONS
2.1 Similarity Scores and Statistical Guarantees
We start with some preliminary definitions before specializing to

chandeliers. For any weighted adjacency matrix 𝑀 , node 𝑖 ∈ [𝑛],
and rooted graph 𝐻 , define the weighted subgraph count

𝑊𝑖,𝐻 (𝑀) ≜
∑︁

𝑆 (𝑖 )�𝐻
𝑀𝑆 , where𝑀𝑆 ≜

∏
𝑒∈𝐸 (𝑆 )

𝑀𝑒 , (1)

and 𝑆 (𝑖) denotes a subgraph of K𝑛 rooted at 𝑖 . (Whenever the

context is clear, we also abbreviate 𝑆 (𝑖) as 𝑆 .) Note that when𝑀 is

the adjacency matrix 𝐴,𝑊𝑖,𝐻 reduces to the usual subgraph count,

i.e., the number of subgraphs rooted at 𝑖 in𝑀 that are isomorphic

to 𝐻 . When 𝑀 is a centered adjacency matrix 𝐴 ≜ 𝐴 − 𝑞, we call
𝑊𝑖,𝐻 a signed subgraph count following [9]. For example (with

solid vertex as the root),𝑊𝑖, (𝐴) = 𝑑𝑖 − (𝑛−1)𝑞 and𝑊𝑖, (𝐴) =(𝑑𝑖
2

)
− (𝑛 − 2)𝑑𝑖𝑞 +

(𝑛−1
2

)
𝑞2, where 𝑑𝑖 is the degree of 𝑖 in 𝐴.

Next, given a family H of non-isomorphic rooted graphs 𝐻 , the

subgraph count signature of a node 𝑖 is defined as the vector

𝑊 H
𝑖 (𝑀) ≜

(
𝑊𝑖,𝐻 (𝑀)

)
𝐻 ∈H . (2)

Algorithm 1 below describes our proposed method for graph match-

ing based on subgraph count signatures.

At this point Algorithm 1 is a “meta algorithm” and the key to

its application is to carefully choose this collection of subgraphs

H . Ideally, we would like ΦH
𝑖 𝑗

to be maximized at 𝑗 = 𝜋 (𝑖), at least
on average. To this end, we require 𝐻 ∈ H to be uniquely rooted,
under which we have E[ΦH

𝑖 𝑗
] ∝ 1{𝜋 (𝑖 )=𝑗 } (see Proposition 1).

Definition 2 (Uniquely rooted graph). We say that a graph 𝐻

rooted at 𝑖 is uniquely rooted, if 𝐻 (𝑖) is non-isomorphic to 𝐻 (𝑣)
for any vertex 𝑣 ≠ 𝑖 in 𝑉 (𝐻 ).

However, the uniquely rooted property is far from enough. In

order for the signature ΦH
𝑖 𝑗

to distinguish whether 𝑗 = 𝜋 (𝑖) or not,
we need to ensure that the fluctuation of ΦH

𝑖 𝑗
does not overwhelm

3
Note that in (3) the coefficient aut(𝐻 ) accounts for the symmetry of 𝐻 and compen-

sates for the fact that the number of copies of𝐻 in the complete graph K𝑛 is inversely

proportional to aut(𝐻 ) . This simplifies the first moment calculation in Proposition 1.
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Algorithm 1 Graph Matching by Counting Signed Graphs

1: Input: Adjacency matrices 𝐴 and 𝐵 on 𝑛 vertices, a familyH
of non-isomorphic rooted graphs, and a threshold 𝜏 > 0.

2: Output: A mapping 𝜋 : 𝐼 → [𝑛].
3: For each pair of node 𝑖 in 𝐴 and node 𝑗 in 𝐵, compute their

similarity score as the weighted3 inner product between their

subgraph count signatures:

ΦH
𝑖 𝑗 ≜

〈
𝑊 H
𝑖 (𝐴) ,𝑊 H

𝑗 (𝐵)
〉

≜
∑︁
𝐻 ∈H

aut(𝐻 )𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵) , (3)

where 𝐴 = 𝐴 − 𝑞 and 𝐵 = 𝐵 − 𝑞 are the centered adjacency

matrices.

4: For each 𝑖 ∈ [𝑛], if there exists a unique 𝑗 ∈ [𝑛] such that

ΦH
𝑖 𝑗

≥ 𝜏 , let 𝜋 (𝑖) = 𝑗 and include 𝑖 in set 𝐼 .

Figure 1: A chandelier with 𝐿 = 3, 𝑀 = 2, 𝐾 = 4, rooted at
the solid vertex. The wires are shown in red, and the bulbs
in blue. In this case 𝑅 = 1 since each bulb has no non-trivial
automorphism (as rooted graphs).

the mean E[ΦH
𝑖𝑖
] for all 𝑗 ∈ [𝑛]. In particular, we need Var[ΦH

𝑖 𝑗
]

to be much smaller than (E[ΦH
𝑖𝑖
])2. This turns out to be extremely

challenging to show and calls for a rather delicate choice of H . To

this end, we construct a special family of trees T , which we call

chandeliers (see Figure 1 for an illustration).

Definition 3 (Chandelier). An (𝐿,𝑀, 𝐾, 𝑅)-chandelier is a rooted
tree with 𝐿 branches, each of which consists of a path with𝑀 edges

(which we call an𝑀-wire) followed by a rooted tree with 𝐾 edges

(which we call a 𝐾-bulb); the 𝐾-bulbs are non-isomorphic to each

other and each of them has at most 𝑅 automorphisms.

For any chandelier 𝐻 , let K(𝐻 ) denote its set of bulbs. Since all
bulbs are non-isomorphic to each other, we have

aut(𝐻 ) =
∏

B∈K(𝐻 )
aut(B), (4)

which is a special case of the classical recursive formula for the

number of automorphisms of rooted trees [27]. Moreover, when

𝐿 ≥ 2, the root of 𝐻 is the unique vertex incident to 𝐿 branches

each having𝑀 + 𝐾 edges. As a result, each chandelier is uniquely

rooted.

Let T denote the family of non-isomorphic (𝐿,𝑀, 𝐾, 𝑅)- chande-
liers. Then

|T | =
(
|J |
𝐿

)
, (5)

where J ≡ J (𝐾, 𝑅) denotes the collection of unlabeled rooted

trees having 𝐾 edges and at most 𝑅 automorphisms. Counting

unlabeled trees with a prescribed number of automorphisms has

been well studied in the literature:

• All trees: As mentioned earlier in Section 1, a classical result

in enumerative combinatorics is that the total number of

unlabeled trees with 𝐾 edges satisfies as 𝐾 → ∞ [38, 41]

|J (𝐾) | ≡ |J (𝐾,∞)| = (𝛼 + 𝑜 (1))−𝐾 , (6)

where 𝛼 ≈ 0.338 is Otter’s constant.

• Typical trees: The recent result [37] implies that the majority

of the trees have 𝑒Θ(𝐾 )
automorphisms.

4
In other words, for

some absolute constant 𝐶 ,

|J (𝐾, exp(𝐶𝐾)) | = (𝛼 + 𝑜 (1))−𝐾 . (7)

It turns out that to bound the fluctuation of the similarity score it

is more advantageous if the bulbs do not have too much symmetry.

Thanks to (7) and in view of (4)–(5), by choosing 𝑅 = exp(𝐶𝐾) we
can ensure that |T | = (𝛼 + 𝑜 (1))−𝑁 has maximal growth while

keeping aut(𝐻 ) for each 𝐻 ∈ T relatively small.

In the rest of the paper, we will apply the similarity score Φ𝑖 𝑗 ≡
ΦT
𝑖 𝑗

in (3) to the collection T of chandeliers with carefully chosen

parameters. Crucially, by exploiting the structure of chandeliers,

we show:

• For true pairs 𝑗 = 𝜋 (𝑖),

E[Φ𝑖𝜋 (𝑖 ) ] = 𝜇, Var(Φ𝑖𝜋 (𝑖 ) ) = 𝑜 (𝜇2),

where

𝜇 ≜ |T |(𝜌𝜎2)𝑁 (𝑛 − 1)!
(𝑛 − 𝑁 − 1)! , 𝜎2 ≜ 𝑞(1 − 𝑞) . (8)

• For fake pairs 𝑗 ≠ 𝜋 (𝑖),

E[Φ𝑖 𝑗 ] = 0, Var(Φ𝑖 𝑗 ) = 𝑜
(
𝜇2

𝑛2

)
.

This immediately implies that by running a greedy matching with

weights Φ𝑖 𝑗 (or simply thresholding Φ𝑖 𝑗 ), we can match all but a

vanishing fraction of vertices correctly with high probability. This

is made precise by the following theorem.

Throughout this paper, we assume without loss of generality
5

that 𝑞 ≤ 1/2.

Theorem 1 (Partial and almost exact recovery). There exist absolute
constants 𝐶1, . . . ,𝐶4 > 0 such that the following holds. Suppose

𝜌2 ≥ 𝛼 + 𝜖 , (9)

4
Indeed, (7) is an immediate corollary of the following asymptotic normality result in

[37, Theorem 2]:
1√
𝐾
(log aut(𝐻𝐾 ) − 𝜇𝐾 ) 𝐾→∞−−−−→ 𝑁 (0, 𝜎2 ) , where 𝐻𝐾 is a uniform

random unlabeled tree with 𝐾 edges (known as the Pólya tree of order 𝐾 + 1), and

𝜇 ≈ 0.137 and 𝜎2 ≈ 0.197 are absolute constants.
5
If 𝑞 > 1/2, we can consider the complement graphs of𝐴 and 𝐵, which are correlated

Erdős–Rényi graphs with parameter (𝑛, 1 − 𝑞, 𝜌 ) . In addition, it is not hard to see

that the similarity scores Φ𝑖 𝑗 remain unchanged.
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where 𝜖 is an arbitrarily small constant. Choose 𝐾, 𝐿,𝑀, 𝑅 ∈ N such
that 𝑁 = (𝐾 +𝑀)𝐿 is even6,

𝐿 =
𝐶1

𝜖
, 𝐾 = 𝐶2 log𝑛, 𝑀 =

𝐶3𝐾

log(𝑛𝑞) , 𝑅 = exp (𝐶4𝐾) . (10)

Fix any constant 0 < 𝑐 < 1 and let 𝜇 be given in (8). Let 𝜋 : 𝐼 →
[𝑛] denote the output of Algorithm 1 applied to the collection T of
(𝐿,𝑀, 𝐾, 𝑅)-chandeliers and threshold 𝜏 = 𝑐𝜇. Then 𝜋 = 𝜋 |𝐼 with
probability 1 − 𝑜 (1). Moreover,

• If 𝑛𝑞 = 𝜔 (1), then |𝐼 | = (1 − 𝑜 (1))𝑛 with probability 1 − 𝑜 (1).
• For any constant 𝛿 ∈ (0, 1), there exists a positive constant
𝐶 (𝜖, 𝛿) depending only on 𝜖 and 𝛿 , such that if 𝑛𝑞 ≥ 𝐶 (𝜖, 𝛿),
then E [|𝐼 |] ≥ (1 − 𝛿)𝑛.

Remark 1 (Adapting to unknown parameters). Note that the

choice of𝑀 and 𝜏 in (10) assumes the knowledge of 𝑞 and 𝜌 . The

edge probability 𝑞 can be easily estimated by the empirical graph

density of 𝐴 and 𝐵. Moreover, the threshold 𝜏 can be specified in a

data-driven manner (cf. Appendix B).

From a computational perspective, naïve evaluation of𝑊𝑖,𝐻 (𝐴)
by exhaustive search for each 𝐻 with 𝑁 edges takes 𝑛Θ(𝑁 )

time

which is super-polynomial when 𝑁 = 𝜔 (1). To resolve this compu-

tational issue, in Section 4, we give a polynomial-time algorithm

(Algorithm 2) that computes an approximation Φ̃𝑖 𝑗 for Φ𝑖 𝑗 using
the strategy of color coding as done in [32]. The following result

shows that the approximated similarity score Φ̃𝑖 𝑗 enjoys the same

statistical guarantee under the same condition (9) as Theorem 1.

Theorem 2. Theorem 1 continues to hold with Φ̃𝑖 𝑗 in place of Φ𝑖 𝑗 .
Moreover, {Φ̃𝑖 𝑗 }𝑖, 𝑗∈[𝑛] can be computed in 𝑂 (𝑛𝐶 ) for some constant
𝐶 ≡ 𝐶 (𝜖) depending only on 𝜖 .

Theorem 2 shows that our matching algorithm achieves the

almost exact recovery in polynomial time when 𝑛𝑞 = 𝜔 (1) and
𝜌2 ≥ 𝛼 +𝜖 . In comparison, the almost exact recovery is information-

theoretically possible if and only if 𝑛𝑞𝜌 = 𝜔 (1), when 𝜌 > 0 and

𝑞 = 𝑛−1/2−Ω (1)
[14, 45].

Moreover, under an extra condition that is information- theoret-

ically necessary, we can upgrade the almost exact recovery to exact

recovery in polynomial time. The main idea is to use the partial

matching 𝜋 |𝐼 correctly identified by Algorithm 1 as seeds and apply
a seeded matching algorithm (which is similar to percolation-based

matching in [6, 46]) to extend it to a full matching. For this purpose

we assume 𝜌 > 0 as the current seeded matching algorithm requires

positive correlation.

Theorem 3 (Exact recovery). Suppose

𝑛𝑞 (𝑞 + 𝜌 (1 − 𝑞)) ≥ (1 + 𝜖) log𝑛, 𝜌 ≥
√
𝛼 + 𝜖 (11)

for some arbitrarily small constant 𝜖 . Then a seeded matching algo-
rithm (see Algorithm 3 in Section 5) with input 𝜋 outputs 𝜋 = 𝜋 in
𝑂 (𝑛3𝑞2) time with probability 1 − 𝑜 (1).

Remark 2 (Comparison to the exact recovery threshold). It is in-

structive to compare the performance guarantee (11) of our polyno-

mial-time algorithm with the information-theoretic threshold of

6
For simplicity, we assume 𝑁 is even so that 𝜇 ≥ 0 even when 𝜌 < 0. To lighten the

notation, we do not explicitly round each parameter in (10) to integers as this only

changes constant factors; see (26) for a more general condition.

exact recovery derived in [45] for positive correlation, that is,

𝜌 ≥ (1 + 𝜖)
(
2

√︂
log𝑛

𝑛
+ log𝑛

𝑛𝑞

)
. (12)

1 1√
𝛼

10

√
𝛼

1

0

0

?

impossible

easy

𝜆

𝜌

Figure 2: The phase diagram for exact recovery in the loga-
rithmic degree regime, where 𝑛𝑞 = 𝜆 log𝑛 for a fixed con-
stant 𝜆 > 0. The impossible and easy regime are given
by 𝜌 < min{1, 1/𝜆} and 𝜌 > max{

√
𝛼, 1/𝜆}, respectively. No

polynomial-time algorithm is known to achieve exact recov-
ery in the red regime.

Assuming 𝑛𝑞 = 𝜆 log𝑛 for a fixed constant 𝜆, (11) simplifies to

𝜌 > max{1/𝜆,
√
𝛼}, while (12) is reduced to 𝜌 > 1/𝜆; see Figure 2

for an illustration. Observe that when 𝜆 < 1/
√
𝛼 , the condition

(11) for exact recovery matches (12) and hence our polynomial-

time matching algorithm is information-theoretically optimal. If

𝜆 > 1/
√
𝛼 , there exists a gap, between (11) and (12), depicted as the

red regime in Figure 2. It is an open problemwhether exact recovery

is attainable in polynomial time in the red regime when 𝜌 <
√
𝛼 .

So far the only rigorous evidence for hardness is that detection

(and hence recovery) is computationally hard in the low-degree

polynomial framework
7
when 𝜌 ≤ 1/polylog(𝑛) [32].

2.2 On the Choice of Chandeliers
The key to the success of our matching algorithm is to leverage

the correlation of subgraph counts in the two graphs 𝐴 and 𝐵

as much as possible, while suppressing the undesired correlation

between different subgraph counts. In this subsection, we explain

why restricting to the special family of chandeliers is crucial, as well

as some basic guidelines on the choice of its parameters. Assume

for convenience that 𝜋 = id.

First of all, we require the expected similarity score E[Φ𝑖 𝑗 ] to be
zero except for 𝑖 = 𝑗 . As discussed in the previous subsection, this

is guaranteed by the uniquely rooted property of each chandelier in

T . Further, to distinguish a true pair (𝑖, 𝑖) from fake pairs (𝑖, 𝑗), we
7
Specifically, it is shown in [32] that any test statistic that is a degree-polylog(𝑛)
polynomial of (𝐴, 𝐵) fails to detect correlation 𝜌 = 1/polylog(𝑛) .
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need Var(Φ𝑖 𝑗 ) to be much smaller than E[Φ𝑖𝑖 ]2 for any pair (𝑖, 𝑗).
More precisely, in order to apply a union bound over all fake pairs,

we need Var(Φ𝑖 𝑗 )/E [Φ𝑖𝑖 ]2 = 𝑜 (1/𝑛2) for all 𝑖 ≠ 𝑗 . Later in (25),

we will see that even if all the tree counts were uncorrelated, the

variance would always be lower bounded by Var(Φ𝑖 𝑗 )/E [Φ𝑖𝑖 ]2 =
Ω( |T |−1𝜌−2𝑁 ). It follows that our class of chandeliers T needs to

satisfy

|T | = 𝜔 (𝑛2𝜌−2𝑁 ). (13)

By choosing the parameters appropriately, we can ensure that |T |
grows as (𝛼 + 𝑜 (1))−𝑁 , almost at the same rate as the entire set of

unlabelled rooted trees. Therefore, whenever 𝜌2 > 𝛼 , (13) holds by

choosing 𝑁 = Θ(log𝑛).
To further see the significance of chandeliers on the correlations

between subgraph counts, let us expand out the variance of Φ𝑖 𝑗 :

Var[Φ𝑖 𝑗 ] =
∑︁
𝐻,𝐼 ∈T

aut(𝐻 )aut(𝐼 )·

Cov

(
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵),𝑊𝑖,𝐼 (𝐴)𝑊𝑗,𝐼 (𝐵)

)
=

∑︁
𝐻,𝐼 ∈T

aut(𝐻 )aut(𝐼 )
∑︁

𝑆1 (𝑖 ),𝑆2 ( 𝑗 )�𝐻

∑︁
𝑇1 (𝑖 ),𝑇2 ( 𝑗 )�𝐼

Cov

(
𝐴𝑆1𝐵𝑆2 , 𝐴𝑇1𝐵𝑇2

)
. (14)

Here, 𝑆1 and 𝑇1 are labeled subgraphs of K𝑛 isomorphic to chan-

deliers 𝐻 and 𝐼 respectively and both rooted at 𝑖 , and similarly

for 𝑆2 and 𝑇2 rooted at 𝑗 . It turns out that, thanks to centering,

Cov

(
𝐴𝑆1𝐵𝑆2 , 𝐴𝑇1𝐵𝑇2

)
= 0 unless every edge in the union graph𝑈 ≜

𝑆1∪𝑇1∪𝑆2∪𝑇2 appears at least twice in the 4-tuple (𝑆1,𝑇1, 𝑆2,𝑇2). Fur-
thermore, each covariance in (14) is upper bounded by𝜎4𝑁𝑞−2𝑁+𝑒 (𝑈 )

(cf. [33, eq(45)]). To proceed, we need to enumerate all possible 4-

tuples (𝑆1,𝑇1, 𝑆2,𝑇2) according to the union graph 𝑈 . Note that the

number of different vertex labelings of𝑈 (excluding vertices 𝑖 and 𝑗 )

is simply upper bound by 𝑛𝑣 (𝑈 )−1−1{𝑖≠𝑗 }
. However, there are many

configurations for the four chandeliers (𝑆1,𝑇1, 𝑆2,𝑇2) to generate

the same unlabeled graph𝑈 , which may lead to excessive correla-

tion. The chandelier structure is designed specifically to limit the

possible overlapping patterns and reduce the correlations.

To convey some intuitions, let us focus on a true pair (𝑖, 𝑖) and
consider the simple case where 𝑈 is a tree and every edge in 𝑈

appears exactly twice in the 4-tuple. In this case, 𝑒 (𝑈 ) = 2𝑁 and

𝑣 (𝑈 ) = 2𝑁 + 1. Moreover, 𝑈 is a chandelier with 2𝐿 branches,

each of which belongs to exactly two out of the four chandeliers

(𝑆1,𝑇1, 𝑆2,𝑇2). For example, in Figure 3(a), we show two branches of

𝑈 , one comes from 𝑆1, 𝑆2 and the other comes from𝑇1,𝑇2. Using this

specific structure, we can precisely enumerate all possible 4-tuples

that generate such a union graph 𝑈 and bound their contributions

to the variance.

Moving from this simple case (referred to as the baseline) to

more general cases, the following three observations are crucial for

bounding the total variance (although the proof does not exactly

follow this classification):

• If bulbs from different branches overlap (Figure 3(b)), this will

create cycles and hence increase the excess 𝑒 (𝑈 )−𝑣 (𝑈 ), gain-
ing extra factors of 1/𝑛 in the variance bound (14) compared

to the contribution of the baseline. As a result, although the

(a) (b)

(c) (d)

Figure 3: Examples of overlapping patterns of two branches
from, say, 𝑆1 ∩ 𝑆2 and 𝑇1 ∩ 𝑇2, shown in red/blue and
black/orange respectively. The solid vertex is the root 𝑖. (a):
The two branches overlap only at the root 𝑖. (b): The two
wires are disjoint and the two dangling bulbs intersect cre-
ating cycle(s). (c): The two wires completely overlap and the
bulbs can intersect into an arbitrary tree. (d): The two wires
overlap in the beginning before branching out and the bulbs
are disjoint.

structure of𝑈 is difficult to track, a crude enumeration based

on 𝑒 (𝑈 ) and 𝑣 (𝑈 ) suffices. Next we assume𝑈 is a tree.
• If two wires completely overlap (Figure 3(c)), both 𝑒 (𝑈 )
and 𝑣 (𝑈 ) are reduced by 𝑀 and hence we gain a factor of

(𝑛𝑞)−𝑀 in the variance bound. On the other hand, the two

bulbs can intersect to form an arbitrary tree which has at

most exp(𝑂 (𝐾)) possibilities up to isomorphism. To ensure

(𝑛𝑞)−𝑀 dominates exp(𝑂 (𝐾)), we need𝑀 ≳ 𝐾/log(𝑛𝑞).
• If two wires first intersect then branch out (Figure 3(d)), the

attached bulbs must be disjoint (otherwise a cycle will ensue),

so that each bulb appears in exactly two out of (𝑆1,𝑇1, 𝑆2,𝑇2).
It turns out that the worst case occurs when the two wires

share a single edge, for which there are at most 𝐿2 possible

ways (since each chandelier has 𝐿 wires). On the other hand,

we gain a factor of (𝑛𝑞)−1 in the variance bound (14) (cf. Re-

mark 3). Thus to ensure 𝐿2 is dominated by 𝑛𝑞−1, we need
𝐿 = 𝑜 (√𝑛𝑞).

In all, we see that it is critical for chandeliers to be a “thin”

tree with only a few long wires, especially when the graphs get

sparser. To further reduce the symmetry, we require the bulbs in

each chandelier 𝐻 are all non-isomorphic so that aut(𝐻 ) is given
by (4), namely aut(𝐻 ) =

∏
B∈K(𝐻 ) aut(B), and each aut(B) is

required to be at most 𝑅 = exp(𝑂 (𝐾)).

1350



Random Graph Matching at Otter’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

The method of counting signed trees has been applied to the

detection problem in the previous work [32]. The goal therein is to

decide whether two Erdős–Rényi random graphs are independent

or correlated using the test statistic

𝑓 (𝐴, 𝐵) =
∑︁
𝐻 ∈T′

aut(𝐻 )𝑊𝐻 (𝐴)𝑊𝐻 (𝐵), (15)

where the weighted subgraph count𝑊𝐻 (𝑊 ) is similarly defined

as (1) for unrooted 𝐻 . Compared to (3), there are three major dis-

tinctions: First, the trees in (15) are not rooted and aut(·) is for
unrooted graphs. Second, trees in T ′

only have Θ (log𝑛/log log𝑛)
edges, instead of Θ(log𝑛) edges required in this paper. This is be-

cause for detection, one only needs to achieve a vanishing error,

instead of a specific 𝑜 (1/𝑛2) error probability for recovery in the

current work. Third (and most importantly), T ′
contains all trees

without special structure, while here we choose T to be a family

of special trees called chandeliers, which, as explained earlier, is

crucial for reducing the correlation between different signed tree

counts.

In terms of analysis, for the detection problem in [32] the latent

permutation is chosen uniformly at random, so one can average the

second moment calculation over the random permutation which

drastically simplifies the analysis of the tree counting statistic. In

contrast, for the recovery problem in the present paper, we need to

condition on the realization of the latent permutation. As such, the

secondmoment calculation here is muchmore challenging combina-

torially and involves delicate enumeration procedures that revolve

around the chandelier construction. In addition, since the trees in

[32] are much smaller with only Θ( log𝑛

log log𝑛
) edges, so that many

quantities can be bounded very crudely (e.g., aut(𝐻 ) ≤ 𝑣 (𝐻 )!); for
the current paper since the trees have Θ(log𝑛) edges such simple

analysis does not suffice.

3 STATISTICAL ANALYSIS OF SIMILARITY
SCORES

Throughout the analysis, without loss of generality, we assume

𝜋 = id. First, we compute the first moment of the similarity scores

ΦH
𝑖 𝑗

for a general collectionH of subgraphs.

Proposition 1. Let H be a family of unlabeled uniquely rooted
graphs with 𝑁 edges and 𝑉 + 1 vertices. For any 𝑖, 𝑗 ∈ [𝑛], we have

E
[
ΦH
𝑖 𝑗

]
= |H |

(
𝜌𝜎2

)𝑁 (𝑛 − 1)!
(𝑛 −𝑉 − 1)!1{𝑖=𝑗 } , (16)

where 𝜎2 = 𝑞(1−𝑞). Moreover, if𝑉 2 = 𝑜 (𝑛), then we have E
[
ΦH
𝑖 𝑗

]
=

(1 + 𝑜 (1)) |H |
(
𝜌𝜎2

)𝑁
𝑛𝑉 .

Proof. For a rooted graph 𝐻 with 𝑁 edges and 𝑉 + 1 vertices,

the number of copies of𝐻 in the complete graphK𝑛 that are rooted

at 𝑖 ∈ [𝑛] is

sub𝑛 (𝐻 ) ≡ sub(𝐻,K𝑛) =
(𝑛−1
𝑉

)
𝑉 !

aut(𝐻 ) , (17)

where recall that aut(𝐻 ) denotes the number of automorphisms of

𝐻 . For any weighted adjacency matrix 𝑀 and any subgraph 𝑆 of

K𝑛 , recall that𝑀𝑆 =
∏
𝑒∈𝐸 (𝑆 ) 𝑀𝑒 as in (1). Then,

E
[
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵)

]
=

∑︁
𝑆 (𝑖 )�𝐻

∑︁
𝑇 ( 𝑗 )�𝐻

E
[
𝐴𝑆𝐵𝑇

]
(a)
=

∑︁
𝑆 (𝑖 )�𝐻,𝑆 ( 𝑗 )�𝐻

E
[
𝐴𝑆𝐵𝑆

]
(b)
=

(
𝜌𝜎2

)𝑁
sub𝑛 (𝐻 )1{𝑖=𝑗 } , (18)

where (a) is because E
[
𝐴𝑆𝐵𝑇

]
= 0 unless 𝑆 = 𝑇 (as unrooted

graphs); (b) is because 𝑆 (𝑖) � 𝐻 and 𝑆 ( 𝑗) � 𝐻 imply that 𝑖 = 𝑗 ,

thanks to the unique-rootedness of 𝐻 . By (3),

E[ΦH
𝑖 𝑗 ] =

∑︁
𝐻 ∈H

aut(𝐻 )E[𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵)]

= |H |
(
𝜌𝜎2

)𝑁 (
𝑛 − 1

𝑉

)
𝑉 !1{𝑖=𝑗 } .

In view of

(𝑛−1
𝑉

)
𝑉 ! =

(𝑛−1)!
(𝑛−𝑉 −1)! , we obtain the desired (16). Finally,

since

(
1 − 𝑉

𝑛

)𝑉
≤ (𝑛−1)!

(𝑛−𝑉 −1)!𝑛𝑉 ≤
(
1 − 1

𝑛

)𝑉
and 𝑉 = 𝑜 (

√
𝑛), we

have
(𝑛−1)!

(𝑛−𝑉 −1)! = (1 + 𝑜 (1))𝑛𝑉 . □

Next, we bound the variance of the similarity scores Φ𝑖 𝑗 ≡ ΦT
𝑖 𝑗
,

where T is the collection of (𝐾, 𝐿,𝑀, 𝑅)-chandeliers, for both true

pairs 𝑖 = 𝑗 and fake pairs 𝑖 ≠ 𝑗 . In the remainder of the paper, let 𝛽

denote a universal constant such that

|J (𝐾) | ≤ 𝛽𝐾 , ∀𝐾 ≥ 1. (19)

Such a 𝛽 (not to be confused with Otter’s constant 𝛼) exists thanks

to (6).

Proposition 2 (True pairs). Suppose 𝑞 ≤ 1

2
, 𝐿 ≥ 2, and

14𝐿2

𝜌2(𝐾+𝑀 ) |J |
≤ 1

2

,
11𝑅4 (2𝑁 )3 (11𝛽)2(𝐾+𝑀 )

𝑛
≤ 1

2

,

𝑅
4

𝑀 (11𝛽)
4𝑀+4𝐾
𝑀

𝑛𝑞
≤ 1

2

,
1 + 2𝐿2

𝜌2𝑛𝑞
≤ 1

2

. (20)

Then, for any 𝑖 ∈ [𝑛], we have

Var [Φ𝑖𝑖 ]
E [Φ𝑖𝑖 ]2

= 𝑂

(
𝐿2

𝜌2𝑛𝑞
+ 𝐿2

𝜌2(𝐾+𝑀 ) |J |

)
. (21)

Proposition 3 (Fake pairs). Suppose 𝑞 ≤ 1

2
, 𝐿 ≥ 2, and

𝑅
2

𝑀 (11𝛽)
4(𝐾+𝑀 )
𝑀

𝑛𝑞
≤ 1

2

,

4
𝐿+3𝐿2𝐿∧(4𝐾+2) (11𝛽)8(𝐾+𝑀 )𝑅2 (2𝑁 + 1)3 ≤ 𝑛

2

. (22)

Then, for any 𝑖 ≠ 𝑗 , we have

Var

[
Φ𝑖 𝑗

]
E [Φ𝑖𝑖 ]2

= 𝑂

(
1

|T |𝜌2𝑁

)
. (23)

The next remark shows that the results in Propositions 2 and

3 are essentially optimal, by identifying which configurations of

(𝑆1,𝑇1, 𝑆2,𝑇2) in (14) contribute predominantly to the variance.
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Remark 3. The upper bound (21) for true pairs is almost tight. In

fact, when 𝑁 2 ≪ 𝑛, 𝑞 = 𝑜 (1) and 𝜌 ≥ 0,

Var [Φ𝑖𝑖 ]
E [Φ𝑖𝑖 ]2

≥ Ω

(
𝐿2

𝑛𝑞
+ 𝐿2

𝜌2(𝐾+𝑀 ) |J |

)
. (24)

For the first term in this lower bound, fix any𝐻, 𝐼 ∈ T and consider

the special case where 𝑆1 = 𝑆2 � 𝐻 , 𝑇1 = 𝑇2 � 𝐼 , where 𝑆1 and
𝑇1 only intersect on one edge that connects to 𝑖 (see Figure 3(d)).

Then, we can show that Cov

(
𝐴𝑆1𝐵𝑆2 , 𝐴𝑇1𝐵𝑇2

)
= Ω(

(
𝜌𝜎2

)
2𝑁
𝑞−1).

There are Ω(𝐿2sub𝑛 (𝐻 )sub𝑛 (𝐼 )𝑛−1) number of (𝑆1,𝑇1, 𝑆2,𝑇2) that
satisfies the above condition. Combining this with (14) and applying

Proposition 1, we obtain

Var [Φ𝑖𝑖 ]
E [Φ𝑖𝑖 ]2

≳
1

|T |2
(
𝜌𝜎2

)
2𝑁
𝑛2𝑁∑︁

𝐻,𝐼 ∈T
aut(𝐻 )aut(𝐼 )sub𝑛 (𝐻 )sub𝑛 (𝐼 )

(
𝜌𝜎2

)
2𝑁

𝐿2 (𝑛𝑞)−1

= Ω

(
𝐿2

𝑛𝑞

)
,

where the last equality holds because aut(𝐻 )sub𝑛 (𝐻 ) = Ω(𝑛𝑁 ) by
(17) and 𝑁 2 ≪ 𝑛.

For the second term in (24), suppose the chandeliers 𝐻 and 𝐼

only share one common bulb B (i.e., |K(𝐻 ) ∩ K(𝐼 ) | = 1). Consider

(𝑆1,𝑇1, 𝑆2,𝑇2) such that (i) 𝑆1 (resp.𝑇1) completely overlaps with 𝑆2
(resp. 𝑇2) except for B and its attached wire; (ii) 𝑆1 (resp. 𝑆2) only

overlaps with 𝑇1 (resp. 𝑇2) on B and its attached wire. This corre-

sponds to a baseline case as described in Section 2.2. Then, we can

show Cov

(
𝐴𝑆1𝐵𝑆2 , 𝐴𝑇1𝐵𝑇2

)
≥

(
𝜌𝜎2

)
2𝑁

𝜌−2(𝑀+𝐾 )
, and there are

Ω(sub𝑛 (𝐻 )sub𝑛 (𝐼 )) number of (𝑆1,𝑇1, 𝑆2,𝑇2) satisfying the above
conditions (i) and (ii). Therefore, combining this with (14) and

Proposition 1 yields

Var [Φ𝑖𝑖 ]
E [Φ𝑖𝑖 ]2

≳
1

|T |2
(
𝜌𝜎2

)
2𝑁
𝑛2𝑁

∑︁
𝐻,𝐼 ∈T

aut(𝐻 )aut(𝐼 )sub𝑛 (𝐻 )sub𝑛 (𝐼 )(
𝜌𝜎2

)
2𝑁

𝜌−2(𝑀+𝐾 )1{ |K (𝐻 )∩K (𝐼 ) |=1}

=

∑
𝐻,𝐼 ∈T 1{ |K (𝐻 )∩K (𝐼 ) |=1}

|T |2𝜌2(𝑀+𝐾 ) ≳
𝐿2

𝜌2(𝐾+𝑀 ) |J |
.

where the last step holds because there are 𝐿
( | J |
𝐿

) ( | J |
𝐿−1

)
number of

pairs of 𝐻 and 𝐼 that only share a single bulb.

The upper bound (23) for fake pairs is sharp. In fact, if 𝑁 2 ≪ 𝑛,

𝑞 ≤ 1/2, and 𝜌 ≥ 0, for any collectionH of uniquely rooted trees

(not just chandeliers) and any fake pair 𝑖 ≠ 𝑗 , we have

Var[ΦH
𝑖 𝑗
]

E
[
ΦH
𝑖𝑖

]
2
≥ Ω

(
1

|H |𝜌2𝑁

)
. (25)

To see this, first note that for any 𝑆1,𝑇1, 𝑆2,𝑇2 where 𝑆1 (𝑖), 𝑆2 ( 𝑗) �
𝐻 and 𝑇1 (𝑖),𝑇2 ( 𝑗) � 𝐼 with 𝐻, 𝐼 ∈ H ,

Cov

(
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵) , 𝑊𝑖,𝐼 (𝐴)𝑊𝑗,𝐼 (𝐵)

)
= E

[
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵)𝑊𝑖,𝐼 (𝐴)𝑊𝑗,𝐼 (𝐵)

]
≥ 0 ,

where the first equality applies (18) for uniquely rooted trees, and

the last inequality holds because E
[
𝐴𝑆1𝐵𝑆2𝐴𝑆1𝐵𝑆2

]
≥ 0 whenever

𝜌 ≥ 0 (cf. (43) in Lemma 1, Appendix A). Second, consider the

special case where 𝐻 = 𝐼 and 𝑆1 = 𝑇1, 𝑆2 = 𝑇2, 𝑆1 and 𝑆2 are vertex-

disjoint (i.e., just focus on the diagonal terms in the expansion of the

variance (14) and ignore the possible correlations between counts

of distinct trees inH ), we get

Cov

(
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵),𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵)

)
≥

∑︁
𝑆1 (𝑖 )=𝑇1 (𝑖 )�𝐻

∑︁
𝑆2 ( 𝑗 )=𝑇2 ( 𝑗 )�𝐻

1{𝑆1 and 𝑆2 are vertex-disjoint}Cov
(
𝐴𝑆1𝐵𝑆2 , 𝐴𝑇1𝐵𝑇2

)
= 𝜎4𝑁

∑︁
𝑆1 (𝑖 )�𝐻

∑︁
𝑆2 ( 𝑗 )�𝐻

1{𝑆1 and 𝑆2 are vertex-disjoint}

= Ω
(
𝜎4𝑁𝑛2𝑁 /aut2 (𝐻 )

)
.

Therefore,

Var

[
ΦH
𝑖 𝑗

]
≥

∑︁
𝐻 ∈H

aut(𝐻 )2

Cov

(
𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵),𝑊𝑖,𝐻 (𝐴)𝑊𝑗,𝐻 (𝐵)

)
≥ Ω

(
|H |𝜎4𝑁𝑛2𝑁

)
.

Combining the above with Proposition 1 yields (25).

3.1 Proof of Theorem 1
We aim to prove Theorem 1 under the assumption (9), that is, 𝜌2 ≥
𝛼 + 𝜖 , and the following more general condition than (10):

𝐿 ≤ 𝑐1 log𝑛

log log𝑛
∧ 𝑐6

√
𝑛𝑞,

𝑐2

log(𝑛𝑞) ≤ 𝑀

𝐾
≤

log
𝜌2

𝛼

2 log
1

𝜌2

,

𝐾𝐿 ≥ 𝑐3 log𝑛

log
𝜌2

𝛼

, 𝐾 +𝑀 ≤ 𝑐4 log𝑛, 𝑅 = exp(𝑐5𝐾), (26)

for some absolute constants 𝑐1, . . . , 𝑐6 > 0. Indeed, the specific

choice of 𝐾, 𝐿,𝑀, 𝑅 in (10) satisfies (26) when 𝑛𝑞 ≥ 𝐶 (𝜖) for a
sufficiently large constant 𝐶 (𝜖) that only depends on 𝜖 .

Next, we verify that (26) with appropriately chosen (𝑐1, . . . , 𝑐6)
ensures that the condition (20) in Proposition 2 and the condition

(22) in Proposition 3 are both satisfied for all sufficiently large 𝑛. To

start, we note that

𝑀

𝐾
≤

log
𝜌2

𝛼

2 log
1

𝜌2

⇐⇒ 𝜌2(𝐾+𝑀 )/𝐾

𝛼
≥

√︂
𝜌2

𝛼
. (27)

Moreover, since 𝑅 = exp(𝑐5𝐾), by choosing 𝑐5 to be an appropriate

absolute constant and applying (7), we have that for all 𝐾 large

enough,

|J | ≥ (𝛼 (1 + 𝑐0))−𝐾 , (28)
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where 𝑐0 > 0 is an arbitrarily small constant. Combining the last

two displayed equation gives that

𝜌2(𝐾+𝑀 ) |J | ≥
(
𝜌2(𝐾+𝑀 )/𝐾

𝛼 (1 + 𝑐0)

)𝐾
≥

(
𝜌2

𝛼

)𝐾/4
, (29)

where the last inequality holds by choosing 𝑐0 = 𝜌2/𝛼 − 1 ≥
𝜖/𝛼 . Since 𝐿 ≤ 𝑐1 log𝑛

log log𝑛
and 𝐾𝐿 ≥ 𝑐3 log𝑛

log(𝜌2/𝛼 ) , 𝐾 ≥ 𝑐3 log log𝑛

𝑐1 log(𝜌2/𝛼 ) . We

deduce from (29) that

𝜌2(𝐾+𝑀 ) |J | ≥ (log𝑛)𝑐3/(4𝑐1 ) ≥ 𝜔 (𝐿2), (30)

where the last inequality holds by choosing 𝑐1, 𝑐3 so that 𝑐3/𝑐1 > 8.

Assuming that 𝐾 + 𝑀 ≤ 𝑐4 log𝑛, 𝐿 ≤ 𝑐1
log𝑛

log log𝑛
, and 𝑅 =

exp(𝑐5𝐾), by choosing 𝑐4 to be a sufficiently small constant and

noting that 𝑁 = (𝐾 +𝑀)𝐿, we deduce that
11𝑅4 (2𝑁 )3 (11𝛽)2(𝐾+𝑀 )

𝑛
≤ 1

2

.

Assuming that 𝑀/𝐾 ≥ 𝑐2/log(𝑛𝑞), by choosing 𝑐2 to be a suffi-

ciently large constant, we get that

𝑅
4

𝑀 (11𝛽)
4𝑀+4𝐾
𝑀

𝑛𝑞
≤ 1

2

.

Finally, assuming that 𝐿 ≤ 𝑐6
√
𝑛𝑞 and 𝜌2 > 𝛼 , by choosing 𝑐6 to be

a sufficiently small constant, we conclude that

1 + 2𝐿2

𝜌2𝑛𝑞
≤ 1

2

completing the verification of (20).

For (22), under the assumption 𝐿 ≤ 𝑐1
log𝑛

log log𝑛
, 𝐿𝐿 ≤ 𝑛𝑐1 . Thus,

under the assumptions that 𝐾 +𝑀 ≤ 𝑐4 log𝑛, and 𝑅 = exp(𝑐5𝐾),
by choosing 𝑐1, 𝑐4 to be sufficiently small constants, we get that

4
𝐿+3𝐿2𝐿∧(4𝐾+2) (11𝛽)8(𝐾+𝑀 )𝑅2 (2𝑁 + 1)3 ≤ 𝑛

2

,

hence the desired(22).

Now we are ready to prove Theorem 1 by applying Propositions

1 and 3. Define

𝐹 = {𝑖 : |Φ𝑖𝑖 − 𝜇 | > (1 − 𝑐)𝜇} ⊃ {𝑖 : Φ𝑖𝑖 < 𝜏} , (31)

in view of 𝜏 = 𝑐𝜇. Applying Proposition 1, Proposition 3, and

Chebyshev’s inequality, we get that for any 𝑖 ≠ 𝑗 ,

P
{
Φ𝑖 𝑗 ≥ 𝜏

}
= P

{
Φ𝑖 𝑗 − E

[
Φ𝑖 𝑗

]
≥ 𝑐E [Φ𝑖𝑖 ]

}
≤

Var

[
Φ𝑖 𝑗

]
𝑐2E [Φ𝑖𝑖 ]2

= 𝑂

(
1

|T |𝜌2𝑁

)
. (32)

Note that

|T |𝜌2𝑁 =

(
|J |
𝐿

)
𝜌2𝑁 ≥

(
|J |
𝐿

)𝐿
𝜌2𝐿 (𝐾+𝑀 )

≥
(
1

𝐿

)𝐿 (
𝜌2

𝛼

)𝐾𝐿/4
≥ 𝑛𝑐3/4−𝑐1 = 𝜔 (𝑛2) , (33)

where the second inequality holds due to (29); the last inequality

holds due to the assumptions that 𝐿 ≤ 𝑐1 log𝑛/log log𝑛 and 𝐾𝐿 ≥
𝑐3 log𝑛/log(𝜌2/𝛼); the last equality holds by choosing 𝑐3/4−𝑐1 > 2.

Hence, applying union bound together with (32) yields that

P
{
∃𝑖 ≠ 𝑗 ∈ [𝑛] : Φ𝑖 𝑗 ≥ 𝜏

}
= 𝑜 (1) . (34)

It follows that with probability at least 1 − 𝑜 (1), Φ𝑖 𝑗 < 𝜏 for all

𝑖 ≠ 𝑗 ∈ [𝑛], which, by our construction of 𝐼 and 𝜋 , further implies

further implies 𝐼 ⊃ [𝑛] \ 𝐹 and 𝜋 = 𝜋 |𝐼 .
By Chebyshev’s inequality and our choice of 𝜏 = 𝑐E [Φ𝑖𝑖 ] ≥ 0,

for any 𝑖 ∈ [𝑛],
P {|Φ𝑖𝑖 − 𝜇 | > (1 − 𝑐)𝜇} = P {|Φ𝑖𝑖 − E [Φ𝑖𝑖 ] | > (1 − 𝑐)E [Φ𝑖𝑖 ]}

≤ Var [Φ𝑖𝑖 ]
(1 − 𝑐)2E [Φ𝑖𝑖 ]2

≜ 𝛾 ,

Applying Proposition 2 yields that

𝛾 = 𝑂

(
𝐿2

𝑛𝑞
+ 𝐿2

𝜌2(𝐾+𝑀 ) |J |

)
. (35)

It follows that E [|𝐹 |] ≤ 𝛾𝑛. For any constant 𝛿 ∈ (0, 1), we can
choose the constant𝐶 (𝜖, 𝛿) large enough, so that when𝑛𝑞 ≥ 𝐶 (𝜖, 𝛿),
the assumption 𝐿 ≤ 𝑐6

√
𝑛𝑞 holds for a sufficiently small constant

𝑐6 and consequently 𝛾 ≤ 𝛿 . Thus, E [|𝐼 |] = 𝑛 − E [|𝐹 |] ≥ (1 − 𝛿)𝑛.
If 𝑛𝑞 = 𝜔 (1), then by choosing 𝑐6 = 𝑜 (1) we get 𝛾 = 𝑜 (1).

Therefore, by Markov’s inequality,

P
{
|𝐹 | ≥ √

𝛾𝑛
}
≤ √

𝛾 = 𝑜 (1) .
It follows that with probability at least 1 − 𝑜 (1), |𝐹 | ≤ √

𝛾𝑛 and

hence |𝐼 | ≥ (1 − √
𝛾)𝑛 = (1 − 𝑜 (1))𝑛.

4 APPROXIMATED SIMILARITY SCORES BY
COLOR CODING

In this section, following [32], we provide a polynomial-time algo-

rithm to approximately compute the similarity scores {Φ𝑖 𝑗 }𝑖, 𝑗∈[𝑛]
in (3) when T is the family of chandeliers

8
of size 𝑂 (log𝑛), using

the idea of color coding [2, 3].

Approximate signed rooted subgraph count. Let 𝐻 be a rooted

connected graph with 𝑁 + 1 vertices. For each 𝑖 ∈ [𝑛], we first

approximately count the signed graphs rooted at 𝑖 that are isomor-

phic to 𝐻 . Specifically, given a weighted adjacency matrix 𝑀 on

[𝑛], we generate a random coloring 𝜇 : [𝑛] → [𝑁 + 1] that assigns
a color to each vertex of𝑀 from the color set [𝑁 +1] independently
and uniformly at random. Given any 𝑉 ⊂ [𝑛], let 𝜒𝜇 (𝑉 ) indicate
that 𝜇 (𝑉 ) is colorful, i.e., 𝜇 (𝑥) ≠ 𝜇 (𝑦) for any distinct 𝑥,𝑦 ∈ 𝑉 . In
particular, if |𝑉 | = 𝑁 + 1, then 𝜒𝜇 (𝑉 ) = 1 with probability

𝑟 ≜
(𝑁 + 1)!

(𝑁 + 1)𝑁+1 . (36)

Define

𝑋𝑖,𝐻 (𝑀, 𝜇) ≜
∑︁

𝑆 (𝑖 )�𝐻
𝜒𝜇 (𝑉 (𝑆))

∏
(𝑢,𝑣) ∈𝐸 (𝑆 )

𝑀𝑢𝑣 . (37)

Then E
[
𝑋𝑖,𝐻 (𝑀, 𝜇)

]
= 𝑟𝑊𝑖,𝐻 (𝑀), where𝑊𝑖,𝐻 (𝑀) is defined in (1).

Hence, 𝑋𝑖,𝐻 (𝑀, 𝜇)/𝑟 is an unbiased estimator of𝑊𝑖,𝐻 (𝑀).
When 𝐻 is a tree, the color coding together with the recur-

sive tree structure enables us to use dynamic programming to

count colorful trees and compute 𝑋𝑖,𝐻 (𝑀, 𝜇) efficiently. This is

summarized as [32, Algorithm 2] for unrooted trees and the same

algorithm with minor adjustments also works for rooted trees.

First, since 𝐻 is already a rooted tree, the step of assigning an ar-

bitrary vertex of 𝐻 as its root is not needed and thus the rooted

8
In fact, the algorithm does not rely on the chandelier structure and works for any

trees.
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tree 𝑇𝑁 constructed is exactly 𝐻 itself. Second, as an intermedi-

ate step, [32, Algorithm 2] computes 𝑌 (𝑖,𝑇𝑁 , [𝑁 + 1], 𝜇), which
is the same as aut(𝐻 )𝑋𝑖,𝐻 (𝑀, 𝜇). Hence, we can simply output

1

aut(𝐻 )𝑌 (𝑖,𝑇𝑁 , [𝑁 + 1], 𝜇) as the rooted tree count 𝑋𝑖,𝐻 (𝑀, 𝜇).
Finally, we generate independent random colorings 𝜇1, . . . , 𝜇𝑡

and average over 𝑋𝑖,𝐻 (𝑀, 𝜇𝑚)’s to better approximate𝑊𝑖,𝐻 (𝑀),
where we set

𝑡 ≜ ⌈1/𝑟⌉ .

Approximate similarity scores. To approximate Φ𝑖 𝑗 ≡ ΦT
𝑖 𝑗
in (3),

we apply the above idea to each chandelier𝐻 ∈ T . Generate 2𝑡 ran-

dom colorings {𝜇𝑎}𝑡𝑎=1 and {𝜈𝑎}𝑡𝑎=1 which are independent copies

of 𝜇 that map [𝑛] to [𝑁 + 1]. Define

Φ̃𝑖 𝑗 ≜
1

𝑟2

∑︁
𝐻 ∈T

aut(𝐻 )
(
1

𝑡

𝑡∑︁
𝑎=1

𝑋𝑖,𝐻 (𝐴, 𝜇𝑎)
) (

1

𝑡

𝑡∑︁
𝑎=1

𝑋 𝑗,𝐻 (𝐵, 𝜈𝑎)
)
.

(38)

Then E
[
Φ̃𝑖 𝑗 | 𝐴, 𝐵

]
= Φ𝑖 𝑗 . Moreover, the following result bounds

the approximation error under the same conditions as those in

Propositions 2 and 3 for the second moment calculation.

Proposition 4. For any 𝑖 ∈ [𝑛], if (20) holds,
Var[Φ̃𝑖𝑖 − Φ𝑖𝑖 ]
E [Φ𝑖𝑖 ]2

= 𝑂

(
𝐿2

𝜌2𝑛𝑞
+ 𝐿2

𝜌2(𝐾+𝑀 ) |J |

)
; (39)

for any 𝑖 ≠ 𝑗 , if (22) holds,

Var[Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ]
E [Φ𝑖𝑖 ]2

= 𝑂

(
1

|T |𝜌2𝑁

)
. (40)

Finally, we show that the approximate similarity scores Φ̃𝑖 𝑗 can
be computed efficiently using Algorithm 2.

Algorithm 2 Approximate similarity scores via color coding

1: Input: Centered adjacency matrices 𝐴 and 𝐵 and integers

𝐾, 𝐿,𝑀, 𝑁, 𝑅.

2: Apply the algorithm for generating rooted trees in [7, Sec. 5]

to list all non-isomorphic rooted trees with 𝐾 edges, compute

aut(𝐻 ) for each rooted tree using the automorphism algorithm

for trees in [11, Sec. 2], and return J as the subset of rooted

trees whose number of automorphisms is at most 𝑅.

3: Generate (𝐾, 𝐿,𝑀, 𝑅)-chandeliers using J to obtain T per Def-

inition 3.

4: Generate i.i.d. random colorings {𝜇𝑎}𝑡𝑎=1 and {𝜈𝑎}
𝑡
𝑎=1

mapping

[𝑛] to [𝑁 + 1].
5: for each 𝑎 = 1, · · · , 𝑡 do
6: For each 𝐻 ∈ T , compute {𝑋𝑖,𝐻 (𝐴, 𝜇𝑎)}𝑖∈[𝑛] and

{𝑋 𝑗,𝐻 (𝐵, 𝜈𝑎)} 𝑗∈[𝑛] via [32, Algorithm 2] with adjustments de-

scribed after (37).

7: end for
8: Output: {Φ̃𝑖 𝑗 }𝑖, 𝑗∈[𝑛] according to (38).

Proposition 5. Algorithm 2 computes {Φ̃𝑖 𝑗 }𝑖, 𝑗∈[𝑛] in time𝑂
(
𝑛2 (3𝑒𝛼)𝑁

)
.

Furthermore, when 𝑛𝑞 ≥ 2, under the choice of 𝐾, 𝐿,𝑀, 𝑅 ∈ N as
per (10), the time complexity is𝑂 (𝑛𝑐/𝜖 ), where 𝜖 is from (10) and 𝑐 is
an absolute constant.

Proof of Theorem 2. Note that

Var[Φ̃𝑖 𝑗 ] = Var[Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ] + Var[Φ𝑖 𝑗 ] + 2Cov

(
Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ,Φ𝑖 𝑗

)
= Var[Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ] + Var[Φ𝑖 𝑗 ] , (41)

where the last equality holds because E
[
Φ̃𝑖 𝑗 |𝐴, 𝐵

]
= Φ𝑖 𝑗 and so

Cov

(
Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ,Φ𝑖 𝑗

)
= E

[
E

[
(Φ̃𝑖 𝑗 − Φ𝑖 𝑗 ) |𝐴, 𝐵

]
Φ𝑖 𝑗

]
= 0 .

Under the assumption of Theorem 1, both (20) and (22) hold.

Since E
[
Φ̃𝑖 𝑗

]
= E

[
Φ𝑖 𝑗

]
, applying Proposition 4 yields

Var[Φ̃𝑖𝑖 ]
E

[
Φ̃𝑖𝑖

]
2
= 𝑂

(
𝐿2

𝜌2𝑛𝑞
+ 𝐿2

𝜌2(𝐾+𝑀 ) |J |

)
;

for all 𝑖 and

Var[Φ̃𝑖 𝑗 ]

E
[
Φ̃𝑖𝑖

]
2
= 𝑂

(
1

|T |𝜌2𝑁

)
.

for all 𝑖 ≠ 𝑗 . In other words, Propositions 2– 3 and hence Theorem 1

continue to hold with Φ̃𝑖 𝑗 in place of Φ𝑖 𝑗 . The time complexity

follows from Proposition 5. □

5 SEEDED GRAPH MATCHING
Recall that with high probability Algorithm 1 applied to the class T
of chandeliers finds a set 𝐼 with |𝐼 | = 𝑛−𝑜 (𝑛) and recovers the latent
permutation 𝜋 on 𝐼 . In this section, we develop a seeded graph

matching subroutine (Algorithm 3) that matches the remaining

vertices, thereby achieving exact recovery. Since the seed set 𝐼

depends on graphs 𝐴 and 𝐵, we need to show that Algorithm 3

succeeds even if the seed set 𝐼 is chosen adversarially as long as

|𝐼 | = (1 − 𝑜 (1))𝑛.
Given 𝐼 ′ ⊂ [𝑛] and an injection 𝜋 ′ : 𝐼 ′ → [𝑛], for any vertex 𝑖

in 𝐴 and vertex 𝑗 in 𝐵, denote by N𝜋 ′ (𝑖, 𝑗) the number of common

neighbors of 𝑖 and 𝑗 under the vertex correspondence 𝜋 ′, namely,

the number of vertex 𝑢 ∈ 𝐼 ′ such that 𝑢 is a neighbor of 𝑖 in 𝐴 and

𝜋 ′ (𝑢) is a neighbor of 𝑗 in 𝐵.

Algorithm 3 Seeded graph matching

1: Input: 𝐴 and 𝐵, a mapping 𝜋 : 𝐼 → [𝑛], and 𝛾 .
2: Let 𝐽 = 𝐼 and 𝜋 = 𝜋 .

3: while there exists 𝑖 ∉ 𝐽 and 𝑗 ∉ 𝜋 (𝐽 ) such that N𝜋 (𝑖, 𝑗) ≥
𝛾 (𝑛 − 2)𝑞2 do

4: Add 𝑖 to 𝐽 and let 𝜋 (𝑖) = 𝑗 .

5: end while
6: Output: 𝜋 .

Algorithm 3 keeps adding vertices as new seeds once we are

confident that they are true pairs based on the current seed set,

in a similar fashion as the percolation graph matching proposed

in [46]. It is a simplified version of [6, Algorithm 3.22], since our

initial seeds are guaranteed to be error-free (thanks to Theorem 1)

and so there is no need to clean up any mismatch. This allows us

to show our Algorithm 3 succeeds under the information-theoretic

necessary condition of 𝑛𝑞(𝑞 + 𝜌 (1 − 𝑞)) ≥ (1 + 𝜖) log𝑛, whereas
their algorithm requires𝑛𝑞(𝑞+𝜌 (1−𝑞)) > log

𝐶 𝑛 for some constant
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𝐶 > 1. Another similar algorithm in prior work is [31, Algorithm 4],

which however requires 𝑛𝑞 ≤
√
𝑛/log𝑛.

The following proposition gives sufficient conditions for our

seeded algorithm to achieve exact recovery. Let

ℎ(𝑥) = 𝑥 log𝑥 − 𝑥 + 1 (42)

for 𝑥 > 0, which is a convex function with the minimum value 0

achieved at 𝑥 = 1.

Proposition 6. Fix an arbitrarily small constant 𝜖 > 0. Suppose
𝐴, 𝐵 ∼ G(𝑛, 𝑞, 𝜌) with 𝑞 ≤ 1

2
, 𝑛𝑞(𝑞 + 𝜌 (1 − 𝑞)) ≥ (1 + 𝜖) log𝑛, and

𝜌 ≥ 𝜖 . Let 𝜋 ≡ 𝜋 (𝐴, 𝐵) denote a mapping: 𝐼 → [𝑛] such that 𝜋 = 𝜋 |𝐼
and |𝐼 | ≥ (1 − 𝜖/16) 𝑛. Let 𝛾 denote the unique solution in (1, +∞) to
ℎ(𝛾) = 3 log𝑛

(𝑛−2)𝑞2 . Then with probability at least 1 − 𝑜 (1), Algorithm 3

with inputs 𝜋 and 𝛾 outputs 𝜋 = 𝜋 in 𝑂 (𝑛3𝑞2) time.

Proof of Theorem 3. Theorem 1 ensures that, with probability

1−𝑜 (1), Algorithm 1 returns a mapping 𝜋 : 𝐼 → [𝑛] in time𝑂 (𝑛𝐶 )
such that 𝜋 = 𝜋 |𝐼 and 𝐼 ≥ (1 − 𝜖/16)𝑛. Furthermore, Proposition 6

implies that, with probability 1 − 𝑜 (1), Algorithm 3 outputs 𝜋 = 𝜋

in 𝑂 (𝑛3𝑞2) time. Hence, Theorem 3 follows. □
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A AUXILIARY RESULTS
The following lemma computes the cross-moments of 𝐴𝑢𝑣 and

𝐵𝜋 (𝑢 )𝜋 (𝑣) from the centered adjacency matrices.

Lemma 1 ([32, Lemma 5]). Let (𝐴, 𝐵) ∼ G(𝑛, 𝑞, 𝜌). Assume 𝑞 ≤ 1

2
.

For any 0 ≤ ℓ,𝑚 ≤ 2 with 2 ≤ ℓ +𝑚 ≤ 4,

E
[
𝜎−ℓ−𝑚𝐴

ℓ
𝑢𝑣𝐵

𝑚
𝜋 (𝑢 )𝜋 (𝑣)

]
=


𝜌1{ℓ=𝑚=1} ℓ +𝑚 = 2

𝜌 (1−2𝑞)√
𝑞 (1−𝑞)

ℓ +𝑚 = 3

𝑞 (1−𝑞)+𝜌 (1−2𝑞)2
𝑞 (1−𝑞) ℓ +𝑚 = 4

. (43)

Moreover,���E [
𝜎−ℓ−𝑚𝐴

ℓ
𝑢𝑣𝐵

𝑚
𝜋 (𝑢 )𝜋 (𝑣)

] ���
≤ |𝜌 |1{ℓ=𝑚=1}1{ℓ+𝑚=2} +

√︄
1

𝑞
1{ℓ+𝑚=3} +

1

𝑞
1{ℓ+𝑚=4} . (44)

B A DATA-DRIVEN CHOICE OF THE
THRESHOLD

In this section, we describe a data-driven approach to choose thresh-

old 𝜏 in Algorithm 1 without the knowledge of 𝑞 and 𝜌 . For each

𝑖 ∈ [𝑛], let 𝜓 (𝑖) denote one of the maximizer of Φ𝑖 𝑗 over all

𝑗 ∈ [𝑛]. Let 𝑘 denote the corresponding node such that Φ𝑘𝜓 (𝑘 )

is the median of {Φ𝑖𝜓 (𝑖 ) : 𝑖 ∈ [𝑛]}. Set 𝜏 = 1

2
Φ𝑘𝜓 (𝑘 ) . We claim

that
1

2
𝑐𝜇 ≤ 𝜏 ≤ 1

2
(2 − 𝑐)𝜇 for any constant 0 < 𝑐 < 1 with prob-

ability 1 − 𝑜 (1) when 𝑛𝑞 = 𝜔 (1) and with probability 1 − 3𝛿 for

any constant 𝛿 ∈ (0, 1) when 𝑛𝑞 ≥ 𝐶 (𝜖, 𝛿). Hence by Theorem 1,

|𝐼 | = (1 − 𝑜 (1))𝑛 with probability 1 − 𝑜 (1) in the former case and

E [|𝐼 |] ≥ (1 − 3𝛿) (1 − 𝛿)𝑛 ≥ (1 − 4𝛿) in the latter case.

It remains to show the claim, which reduces to proving 𝑐𝜇 ≤
Φ𝑘𝜓 (𝑘 ) ≤ (2 − 𝑐)𝜇. Without loss of generality, we assume 𝜋 = id.

Let

𝐽 =

{
𝑖 ∈ [𝑛] : 𝑖 ∈ argmax

𝑗
Φ𝑖 𝑗 and 𝑐𝜇 ≤ Φ𝑖𝑖 ≤ (2 − 𝑐)𝜇

}
.

Recall that 𝐹 = {𝑖 : |Φ𝑖𝑖 − 𝜇 | > (1 − 𝑐)𝜇} as defined in (31). By (34),

with probability at least 1 − 𝑜 (1), Φ𝑖 𝑗 < 𝑐𝜇 for all 𝑖 ≠ 𝑗 and hence

𝐽 = [𝑛]\𝐹 . Moreover, we have E [|𝐹 |] ≤ 𝛾𝑛, where 𝛾 is given in (35).

By Markov’s inequality, P {|𝐹 | ≥ 𝑛/3} ≤ 3𝛾 . Note that 𝛾 = 𝑜 (1) if
𝑛𝑞 = 𝜔 (1), and 𝛾 < 𝛿 for any constant 𝛿 ∈ (0, 1) if 𝑛𝑞 ≥ 𝐶 (𝜖, 𝛿).
Hence, we have |𝐽 | ≥ 2𝑛/3 with probability 1 − 𝑜 (1) if 𝑛𝑞 = 𝜔 (1),
and with probability 1 − 3𝛿 if 𝑛𝑞 ≥ 𝐶 (𝜖, 𝛿). Henceforth assume

|𝐽 | ≥ 2𝑛/3. If Φ𝑘𝜓 (𝑘 ) > (2 − 𝑐)𝜇, then there are at least 𝑛/2 nodes
𝑖 with Φ𝑖𝜓 (𝑖 ) > (2 − 𝑐)𝜇, contradicting |𝐽 | ≥ 2𝑛/3. Analogous
argument holds for the case of Φ𝑘𝜓 (𝑘 ) < 𝑐𝜇. Thus, we must have

𝑐𝜇 ≤ Φ𝑘𝜓 (𝑘 ) ≤ (2 − 𝑐)𝜇.
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