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HASSE PRINCIPLES FOR QUADRATIC FORMS OVER FUNCTION FIELDS

CONNOR CASSADY

ABSTRACT. We investigate the Hasse principles for isotropy and isometry of quadratic forms over
finitely generated field extensions with respect to various sets of discrete valuations. Over purely
transcendental field extensions of fields that satisfy property <7 (2) for some ¢, we find numerous
counterexamples to the Hasse principle for isotropy with respect to a relatively small set of discrete
valuations. For finitely generated field extensions K of transcendence degree r over an algebraically
closed field of characteristic # 2, we use the 2"-dimensional counterexample to the Hasse principle
for isotropy due to Auel and Suresh to obtain counterexamples of lower dimensions with respect to
the divisorial discrete valuations induced by a variety with function field K.

INTRODUCTION

The Hasse-Minkowski Theorem states that a quadratic form defined over a global field is isotropic
if and only if it is isotropic over all completions of the field, and is one of the first examples of a
local-global principle for quadratic forms. This local-global principle for isotropy implies the local-
global principle for isometry of quadratic forms over global fields. That is, two quadratic forms
over a global field are isometric if and only if they are isometric over all completions of the field.
For other fields, these local-global principles can be phrased in terms of discrete valuations on the
field.

For any field k of characteristic # 2, let V' be a non-empty set of non-trivial discrete valuations
on k. We say that a quadratic form ¢ over k satisfies the Hasse principle for isotropy with respect
to V if ¢ being isotropic over the v-adic completion k, for all v € V implies that ¢ is isotropic over k.
Given a pair of quadratic forms ¢; and gs over k, we say that ¢; and o satisfy the Hasse principle
for isometry with respect to V if ¢; and ¢o being isometric over k, for all v € V implies that ¢
and g9 are isometric over k. Two quadratic forms ¢g; and g9 are isometric if and only if they have the
same dimension and g; L —qo is hyperbolic, so the Hasse principle for isometry with respect to V'
is satisfied if and only if every even-dimensional quadratic form over k£ that is hyperbolic over k,
for all v € V is also hyperbolic over k.

In this article, we investigate whether or not these Hasse principles hold with respect to various
sets of discrete valuations on function fields of characteristic # 2. The main result is the following
(see Section 3 for terminology):

Theorem (3.4). Let k be an algebraically closed field of characteristic # 2 that is not the algebraic
closure of a finite field. Let K be any finitely generated field extension of transcendence degree
r > 2 over k, and let V be any non-empty set of non-trivial divisorial discrete valuations on K that
satisfies the finite support property. Then for any integer m # 3 such that

2l <m <2,

there exists an m-dimensional quadratic form over K that violates the Hasse principle for isotropy
with respect to V.
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Previously, Auel and Suresh [AS22] showed that if K is any finitely generated field extension
of transcendence degree r > 2 over an algebraically closed field k of characteristic # 2 that is not
the algebraic closure of a finite field, then there is a quadratic form over K of dimension 2" that
violates the Hasse principle for isotropy with respect to the set of all discrete valuations on K. This
field has w-invariant 2", so this dimension is a natural first place to look for counterexamples to
the Hasse principle for isotropy, as any quadratic form of dimension > 2" is isotropic over K, thus
automatically satisfies the Hasse principle for isotropy. Theorem 3.4 partially generalizes [AS22,
Theorem 1] by finding counterexamples of dimension < 2", but not with respect to the set of all
discrete valuations on K. An example of a set of discrete valuations on K /k to which Theorem 3.4
applies is the set of discrete valuations on K induced by prime divisors on a projective integral
regular k-scheme with function field K.

As one might expect, the smaller the set of discrete valuations is, the easier it is to violate these
Hasse principles. However, over rational function fields, the Hasse principle for isometry does in fact
hold with respect to a small set of discrete valuations (relative to the set of all discrete valuations on
the field; see Proposition 2.1a). Despite that, there are numerous examples of quadratic forms over
these fields that violate the Hasse principle for isotropy with respect to this same set of discrete
valuations. Indeed, in Section 2, we prove the following result (see Section 1 for notation and
terminology):

Theorem (2.3). Let ¢ be a field of characteristic # 2. Assume { € <7;(2) for some i > 0 and
u(l) = 2'. For any r > 1 let L, = l(x1,...,2.), and for r > 2 let V,. be the set of discrete
valuations on L, that are trivial on L._1. Then for r > 2 and any integer m # 3 such that

2i+7‘—1 <m< 22'4-7“7

there exists an m-dimensional quadratic form over L, that violates the Hasse principle for isotropy
with respect to V.

1. NOTATION AND PRELIMINARIES

All of the fields we consider will have characteristic different from 2, and all quadratic forms
(occasionally referred to just as forms) considered will be nondegenerate (or regular). Our notation
and terminology follows [Lam05], and we assume familiarity with basic notions of quadratic form
theory (see [Lam05, Chapter I]).

Let ¢ be an n-dimensional quadratic form over a field k. Since char k # 2, we can diagonalize ¢
over k, and write ¢ = (aq,...,ay), with each a; € k*. The set of elements of k™ represented by ¢
over k will be denoted by Dy(q). If K/k is any field extension, gx will denote the quadratic form ¢
considered as a quadratic form over K. We write ¢ ~ g9 to denote that the quadratic forms ¢;
and ¢y over k are isometric, and we say that ¢; and g9 are similar if there exists some a € k* such
that g1 ~ a-q2 := (a) ® q2. Given forms g, ¢ over k, we say that ¢ is a subform of ¢, denoted ¢ C ¢,
if there exists some quadratic form 1 over k such that ¢ >~ q L .

The hyperbolic plane (1,—1) over k will be denoted by H, and we say that an even-dimensional
quadratic form ¢ over k is hyperbolic if ¢ ~ mH for some positive integer m, where mH denotes the
orthogonal sum of m copies of H.

Given any aq,...,a, € k*, we let ((a1,...,a,)) denote the n-fold Pfister form

<<a17 s 7an>> = <1,CL1> X ® <17an>-

A Pfister form is isotropic if and only if it is hyperbolic [Lam05, Theorem X.1.7]. If ¢ is a Pfister form
over k, we can write p ~ (1) L ¢/, and ¢ is called the pure subform of p. We will use this notation
for any quadratic form that represents 1, i.e., if ¢ >~ (1,as,...,a,), then we let ¢’ := (aq,...,ay),
which is well-defined up to isometry by Witt Cancellation [Lam05, Theorem 1.4.2].
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A certain measure of the complexity of quadratic forms over a field k is the u-invariant of k,
denoted by u(k), which is defined as the maximal dimension of an anisotropic quadratic form over k
[LamO05, Definition XI.6.1]. If no such maximum exists, then u(k) = oo (e.g., u(R) = u(Q) = c0).
For fields considered in this paper, the u-invariant is known.

First, there are C; fields (see, e.g., [Pfi79, Definition, §2]). If k is a C; field for some ¢ > 0, then
u(k) < 2¢. By [PfiT9, Propositions 2, 3], if k is a C; field for some i > 0, and K is a finitely generated
field extension of transcendence degree 7 over k, then K is a Cy, field, thus u(K) < 27,

More generally, there are non-C; fields for which the u-invariant is known, like Q,. For any
prime p, u(Q,) = 4, but Q, is not a C; field. However, Q, does satisfy property <% (2) considered
in [Leel3], which we now recall. For any integer ¢ > 0, a field ¢ of characteristic # 2 satisfies
property <7(2) (written £ € 7(2)) if every system of s quadratic forms over £ in n > s-2¢ common
variables has a nontrivial simultaneous zero in an extension field of £ of odd degree.

By [Pfi79, Proposition 1], if k is a C; field, then k € <7(2). According to [Leel3, Proposition 2.2],
if ¢ € o(2) for some i > 0, then u(¢) < 2!. Moreover, much like C; fields, if ¢ € «(2) for some
i >0, and L is a finitely generated field extension of transcendence degree r over ¢, then by [Leel3,
Theorems 2.3, 2.5], L € <7,(2). For such a field L/¢, we conclude that u(L) < 2/*".

When discussing the Hasse principle for isotropy over a field k, it is beneficial to know how
quadratic forms behave over the residue fields of the completions of k. For a field k£ equipped
with a discrete valuation v, we consider the valuation ring O, of v with maximal ideal m,. We
let k, = O,/m, be the residue field, and let k, be the v-adic completion of k. For a quadratic
form ¢ defined over k, we write g, for the quadratic form gi,. Over the field K = k(t), each
monic irreducible polynomial 7 € k[t] induces a discrete valuation v, on K, and the completion
and residue fields corresponding to v, will be denoted by K and k. = k[t]/(r), respectively.

Throughout the manuscript, we will repeatedly use Springer’s Theorem on quadratic forms over
complete discretely valued fields [Lam05, Proposition VI.1.9], which we will refer to as Springer’s
Theorem. Springer’s Theorem states that, over a field K that is complete with respect to a discrete
valuation v, with uniformizer m and residue field k, such that char k, # 2, a quadratic form
q ~ q1 L - g2 is anisotropic over K if and only if both residue forms g, and g, are anisotropic
over K.

Lastly, we make a small observation about Hasse principles over a field k& with respect to different
sets of discrete valuations on k. Let V and W be two non-empty sets of non-trivial discrete
valuations on k, and suppose that V' C W. If quadratic forms over k satisfy the Hasse principle
(for isotropy/isometry) with respect to V, then they also satisfy the Hasse principle with respect
to W. Equivalently, if a quadratic form ¢ over k violates the Hasse principle with respect to W,
then ¢ also violates the Hasse principle with respect to V.

2. A SMALL SET OF DISCRETE VALUATIONS

Let us first focus on rational function fields in one variable over a field k of characteristic # 2.
Let K = k(t), and let & be the set of monic irreducible polynomials in k[t]. Then if Vi, is the
set of all discrete valuations on K that are trivial on k, by [EP05, Theorem 2.1.4], we know

Vi = Ve U{vs},

where Vp = {v; | m € £} and v is the degree valuation with respect to ¢. Relative to the set of
all discrete valuations on K, the set Vi, is small, but provides enough local data for the Hasse
principle for isometry to hold, and for certain quadratic forms over K to satisfy the Hasse principle
for isotropy (see Proposition 2.1). However, the main result of this section (Theorem 2.3) shows
that there are numerous counterexamples over K to the Hasse principle for isotropy with respect
to Vi y for certain ground fields k.
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Before proceeding, we recall that a quadratic form ¢ over a field k is a Pfister neighbor if q is
similar to a subform of a Pfister form ¢ over k with dim¢ < 2dimgq (see, e.g., [Lam05, Defini-
tion X.4.16]). In this situation, ¢ is unique up to isometry by [Lam05, Proposition X.4.17], and is
called the Pfister form associated to q.

The assertions in the following proposition are well-known to experts, but the proofs do not
seem to be written explicitly in the literature, so we include the ideas of the proofs for the sake of
completeness.

Proposition 2.1. Let k be any field of characteristic # 2, let K = k(t), and let Vi, be the set of
discrete valuations on K that are trivial on k. Then

a) the Hasse principle for isometry holds over K with respect to Vi,

b) Pfister neighbors over K satisfy the Hasse principle for isotropy with respect to VK ks

¢) Pfister forms over K, reqular quadratic forms of dimension 2 or 8 over K, and regular four-
dimensional quadratic forms over K with trivial determinant satisfy the Hasse principle for
isotropy with respect to Vi k-

To prove Proposition 2.1q, it suffices to consider Vi C Vi i, and the statement follows from
using the Milnor exact sequence on Witt groups [Mil69, Theorem 5.3] together with the injectivity
of the map W (k) — W(k((t))) on Witt groups (see, e.g., [EKMO8, Exercise 19.15]).

Proposition 2.1b6 then follows from Proposition 2.1a by using the fact that a Pfister neighbor is
isotropic if and only if its associated Pfister form is isotropic (see, e.g., [Lam05, Proof of Propo-
sition X.4.17]), and the fact that a Pfister form is isotropic if and only if it is hyperbolic [Lam05,
Theorem X.1.7]. Finally, Proposition 2.1¢ is a particular case of Proposition 2.1b, since all the
quadratic forms considered in Proposition 2.1c¢ are Pfister neighbors by [Lam05, Examples X.4.18].

Remarks 2.2. a) For any field k of characteristic # 2 equipped with a non-empty set V' of non-
trivial discrete valuations with respect to which the Hasse principle for isometry holds, the
same ideas as above show that Pfister neighbors over k satisfy the Hasse principle for isotropy
with respect to V.

b) For any r > 1, let K, = k(z1,...,x,) be a purely transcendental field extension of transcen-
dence degree r over a field k of characteristic # 2. Let V, be the set of discrete valuations
on K, that are trivial on K,_; (here taking Ky = k). Then K, = K,_1(z,), so with respect
to V,., the Hasse principle for isometry is satisfied, and Pfister neighbors over K. satisfy the
Hasse principle for isotropy.

The following result shows that, even when the Hasse principle for isometry holds over purely
transcendental field extensions of fields ¢ € «7(2) for some i (defined in Section 1), the Hasse
principle for isotropy can fail in several dimensions.

Theorem 2.3. Let £ be a field of characteristic # 2. Assume 0 € o;(2) for some i > 0 and
u(l) = 2'. For any r > 1 let L, = l(x1,...,2,), and for v > 2 let V, be the set of discrete
valuations on L, that are trivial on L._1. Then for r > 2 and any integer m # 3 such that

2’i+7”—1 <m S 27;"1‘7“’

there exists an m-dimensional quadratic form over L, that violates the Hasse principle for isotropy
with respect to V.

The proof is constructive and uses several lemmas which leverage both Springer’s Theorem and
the explicit description of Vi, for K = k().

Lemma 2.4. Let q be an anisotropic quadratic form over a field k of characteristic # 2. Then for
any r > 1, the quadratic form ((x1,...,x.)) ® q is anisotropic over k(x1,...,x,). In particular, the
Pfister form ((z1,...,x.)) is anisotropic over k(x1,...,x;.).
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Proof. The second statement of the lemma follows from the first by taking ¢ = (1), so it suffices to
prove the first statement, which we do by inducting on r > 1.
First, suppose r = 1. Then by working over k((z1)) and writing

((z1))®@qg=qLz1-q,

we see that both the first and second residue forms are equal to ¢, which is anisotropic over the
residue field k& by assumption. So by Springer’s Theorem, ((z1)) ® ¢ is anisotropic over k((z1)),
which contains k(x1), thus proving the base case.

Now suppose that for some r > 1, the form ((z1,...,2,)) ® ¢ is anisotropic over k(x1,...,z;).
Over k(z1,...,%p, Try1), we can write ((z1,...,2,41)) ® q as

({1, 2r1) @ ¢ = (({2rpa)) @ (21,00 20))) @ ¢ = ((@r41)) @ (21,5 20)) @)

By the induction hypothesis, ((z1,...,z,)) ® q is anisotropic over k(z1,...,,), so by the base case
(with k(x1,...,z,) replacing k and x,; replacing x1), ((x,41)) @ ({{(z1,...,2,)) ® q) is anisotropic
over k(x1,..., 2. )(xr+1) = k(x1,...,2r, 2r41), completing the proof of the lemma by induction. [

Now, recall from Section 1 that for a quadratic form ¢ over k that represents 1, ¢’ denotes the
quadratic form over k such that ¢ ~ (1) L ¢'.

Lemma 2.5. Let k be any field of characteristic # 2, and let g be an anisotropic quadratic form
over k that represents 1. Then the quadratic form

p=(r2+1,—xg—x1) L(1,—22) @¢" Ly ({({x2)) ® )
is anisotropic over k(xy,x2).

Proof. We actually show that ¢ is anisotropic over the field k(x2)((z1)) which contains k(x1, z2).
By Lemma 2.4, the second residue form of ¢ is anisotropic over the residue field k(z2). So by
Springer’s Theorem, the lemma is proven if we show that the first residue form of ¢,

@1 = (r2 +1,—w9) L (1,-22) ® ¢,
is anisotropic over k(x2). Rewrite ¢ as
pr=(x2+1) Lg L —z2-((1) L¢) = ({z2+1) L) Lza-(—0q)

and consider ¢1 over k((z2)). The first residue form of ¢ over k is ¢, and the second residue form
of 1 is —q. By our choice of ¢, both residue forms of ¢; are anisotropic over k. This implies that
is anisotropic over k((z2)), which contains k(x2), and thus completes the proof of the lemma. [

Remark 2.6. If ¢ is any diagonal quadratic form over a field k, then scaling ¢ by its first entry
results in a quadratic form over k£ that represents 1. Moreover, if ¢ is anisotropic, then ¢ remains
anisotropic after scaling by its first entry, and we can therefore apply Lemma 2.5.

Lemma 2.7. Let { be a field of characteristic # 2. Assume { € 2%(2) for some i > 0 and u(f) = 2°.
Let Ly = {(x1,z2), and let Vo be the set of discrete valuations on Lo that are trivial on Ly = €(x1).
Let q be an anisotropic 2'-dimensional quadratic form over £ that represents 1, and let ¢ be the
212 _dimensional quadratic form over Lo defined by

o= (ro+1,—20 — 1) L (1, —29) @ ¢ L a1 ({{(x2)) @q).
If v is any subform of ¢ such that dimv > 21 and
(xo + 1, =22 — 21,21, 7122) C O,

then 1) is isotropic over Lo, for all v € V5.



Proof. We prove the lemma by considering several cases for v € V3.

Case 1: v = vy is the degree valuation with uniformizer x; L

The form v contains the subform (xo+1, —xo —x1) = x2- <1 + :1:2_1, —-1- $1l‘2_1>. Scaling by :172_2,
we have

(xg +1,—x9 — 1) :xgl . <1—|—x2_1,—1 —x1:172_1>,
whose second residue form is (1, —1), which is isotropic. The second residue form of v is therefore
isotropic over the residue field L, hence v is isotropic over Ls, by Springer’s Theorem.

Case 2: v = vy, where m = x3, 2 + 1, or x9 + 1 is a divisor of at least one entry of .

The form 1) contains the subforms (—xz9 —x1, 21), (x1, z122), and (zo + 1, 21, x122), each of which
reduces to an isotropic form over the respective residue field k.. So the first residue form of ¢ is
isotropic over the residue field, hence 1 is isotropic over Lo ;.

Case 3: v = vg, where m € Lq[z2] is a monic irreducible polynomial different from o, z9 + 1,
and xs + 1.

Let m = dim . In this case, each entry of ¢ is a unit in O,_, so ¥ reduces to an m-dimensional
quadratic form over the residue field k. Since k, is a finite extension of Lq, it satisfies property
i 1(2), thus u (k) < 2771 < m (see Section 1). So the first residue form of ) is isotropic over f,
which implies that v is isotropic over Lo .

This covers all cases of v € V&, so the proof is complete. O

We can now prove Theorem 2.3.

Proof of Theorem 2.3. We first observe that if » > 2, then L, = #(x1,...,x,) is isomorphic to
Uxyy. . xp_2)(Tro1,2,). If £ € o7(2), then £(x1,...,2,—2) € ;1,—2(2), and by Lemma 2.4, if ~
is an anisotropic form over ¢, then the form ((x1,...,z,_2)) ® 7y is anisotropic over ¢(x1,...,Ty_2).
Hence u (£(x1,. .., 2,—2)) = 20772, It therefore suffices to prove the theorem for r = 2.

By assumption, u(f) = 2¢, so there exists a 2-dimensional anisotropic quadratic form ¢ over /,
which we can assume represents 1. By Lemmas 2.5 and 2.7, if ¢ is the 2*2-dimensional form over
L5 defined by

o=(ro+1,—x9 —21) L (1,—22) ®¢ Lz ({x2)) ®q),
then any subform ¢ of ¢ such that m = dimv¢ > 2% and (z9 + 1, —x2 — x1, 21, 7122) C 7, in
particular ¢ itself, violates the Hasse principle for isotropy over Lo with respect to V5. O

Examples 2.8. The following are special cases of Theorem 2.3.

a) For any prime p # 2, the field F, € % (2) and u (F,) = 2. Then for any o € F) \ F)?, the
five-dimensional quadratic form over F,(x1, z2) defined by

(g + 1, —x9 — 21, —00, T1, T122)

violates the Hasse principle for isotropy with respect to V5.

b) By [Leel3, Corollary 2.7], for any prime p, the field Q, € <%4(2) and u (Q,) = 4. Let u be a
lift of a non-square in FS to Q,. Then the nine-dimensional quadratic form over Q,(z1,%2)
defined by

(x9 + 1, —x9 — 1, —p, —U, ToU, T, T1 T2, —T U, —T1T2U)

violates the Hasse principle for isotropy with respect to V.

Remarks 2.9. a) If i = 0 and r = 2, the assumption that m # 3 in Theorem 2.3 is neces-
sary. Indeed, by Proposition 2.1¢, three-dimensional quadratic forms over Lo satisfy the
Hasse principle for isotropy with respect to V5.

b) In some instances, the assumption in Theorem 2.3 that r > 2 is necessary. For example, if
p # 2 is a prime, then ¢ = [F, € ¢/(2), and the Hasse-Minkowski Theorem says that the
Hasse principle for isotropy holds over F,(x) with respect to all discrete valuations on Fp(x).
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Any discrete valuation on [, is trivial, so the conclusion of Theorem 2.3 is false if £ = F,
and r = 1.

3. DIVISORIAL DISCRETE VALUATIONS

Let K/k be a finitely generated field extension of transcendence degree r > 1. A normal model
of K/k is a normal k-variety 2~ with function field K. A discrete valuation v on K, trivial on k,
is divisorial if there exists some normal model 2" of K/k and some prime divisor D on 2~ such
that v is equivalent to the discrete valuation on K induced by D. Because K has transcendence
degree r over k, if v is a divisorial discrete valuation on K, then its residue field k, is a finitely
generated field extension of transcendence degree r — 1 over k.

Given a field k equipped with a non-empty set V' of non-trivial discrete valuations, we say that V'
satisfies the finite support property if, given any a € k*, the set

{veV|v(a)#0}

is finite. Sets of discrete valuations that satisfy the finite support property arise naturally, and
have also been considered in [CRR19, RR22]. If 2 is a projective integral regular k-scheme with
function field K, then by [Har77, Lemma II1.6.1], the set Vg of discrete valuations on K induced
by prime divisors on 2~ satisfies the finite support property. We saw a particular example of this
in Section 2 for K = k(t): if 2 = IP’,lg, then Vy- = V. Much like what we saw in Section 2, for
certain ground fields k& and k-varieties 2~ with function field K, the Hasse principle for isometry
over K is satisfied with respect to Vy (Proposition 3.1), but numerous counterexamples exist
over K to the Hasse principle for isotropy with respect to V4 (Theorem 3.4).

3.1. The Hasse principle for isometry. Let k be any field of characteristic # 2, and for any
r>1,let K, = k(x1,...,x,) be a purely transcendental field extension of transcendence degree r
over k. We saw in Section 2 that the Hasse principle for isometry holds over K, with respect to the
set V, of discrete valuations on K, that are trivial on K,_; (here taking Ky = k). Consequently,
for any set V of discrete valuations on K, that contains V,., the Hasse principle for isometry holds
with respect to V; in particular, with respect to the set of all discrete valuations on K.

By [KMRT98, Example VII.29.28]|, we know that, given an n-dimensional quadratic form ¢
over a field k, the pointed Galois cohomology set H!'(k,O,(q)) is in bijection with the set of
isometry classes of n-dimensional quadratic forms over k, with (the isometry class of) ¢ being
the distinguished element. By [KMRT98, Example VII1.29.29], the pointed Galois cohomology set
H'(k,S0,(q)) is in bijection with the set of isometry classes of n-dimensional quadratic forms
over k with the same discriminant as ¢, again with ¢ being the distinguished element. If W is a
non-empty set of non-trivial discrete valuations on k, then a quadratic form ¢ over k is isometric
to q over ky, for all w € W if and only if (the isometry class of) ¢ belongs to the kernel of the
global-to-local map

H'(k,0n(q)) = [] H"(kw, On(q)).
weW

The kernel of this global-to-local map gives a measure of the failure of the Hasse principle for
isometry with respect to W.

Let K, = k(x1,...,x,) be as above, let 2 be a smooth projective integral model of K,./k, and let
V4 be the set of discrete valuations on K, induced by prime divisors on 2. For an n-dimensional
quadratic form q over K, let

Iy (K, On(q)) =ker | H'(K,,0n(q)) = ] H'(Kru,On(q)) | .
veEV g
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Iy (K, S0,(q)) = ker | H'(K;,SOn()) = [[ H'(Krw,SOu(9)) |,

vEVy

HITQ//.(KT7/’L2) = ker HZ (KT7ILL2) — H Hi(KT,U7M2) ) Z 2 1

veEV g

Since ps = {£1} is contained in K,, for any j we can identify the Galois modules uo and ,ug@j ,
which allows us to identify H* (KT,, ,u?j) and H' (K, uo) for all 4.

For any discrete valuation v on K. with residue characteristic # 2, we have well-defined residue
homomorphisms (see [GMS03, II, §7])

617; : HZ (KMMQ) — Hi_l (/{07/‘2) .

Let V, i, be the set of all discrete valuations on K, that are trivial on k. Then for any v € Vi, 4,
since char k # 2, the residue field £, has characteristic # 2 as well. Moreover, the set Vg, /. equals
the set of discrete valuations on K, with residue characteristic # 2 whose valuation ring contains k,
as this last condition forces invertible elements of k to have valuation 0. For any ¢ > 1, we consider
the following unramified cohomology groups:

H), (K /kypo) = () kerdl,

UEVKT/k

H' (Ky,p2) 9 = ﬂ ker 0.

vEVy

Once again, the following result is well-known to experts, but does not seem to be written explicitly
in the literature. We include a proof using unramified cohomology for the sake of completeness.

Proposition 3.1. Let k be any field of characteristic # 2, and for anyr > 1 let K, = k(x1,...,x;).
Let Z be a smooth projective integral model of K, /k, and let Vo be the set of discrete valuations
on K, induced by prime divisors on Z . Then for any n-dimensional quadratic form q over K,
the set I 9 (K., Oy (q)) is trivial; i.e., the Hasse principle for isometry holds over K, with respect
to Vyf.

Remark 3.2. If V. C Vg, this follows from Proposition 2.1a, so there is nothing to prove. However,
V4 does not necessarily contain V.. For example, consider IP’,IC X IP’,IC with coordinates x1,xo. Let P
be the point given by 71 = x5 = 0, and let L be the line zo = 0. By blowing up P} x P} at P, then
blowing down the proper transform of L, we arrive at a smooth projective model 2~ of Ky/k such
that the zo-adic valuation, which belongs to V5, is not contained in Vg .

Proof of Proposition 3.1. The long exact cohomology sequence arising from the short exact se-
quence of groups 1 — SO, (q) = O,(q) — p2 — 1 yields the 3-term short exact sequence

(1) Iy (K;,S0,(q)) = Uy (K, 0n(q)) — I (K, pa) .

Therefore, to prove Proposition 3.1, it suffices to show that the first and third terms of (1) are
trivial. For the third term of (1), we show more: III’,-(K,, y2) is trivial for all i > 1.

For any i > 1, % (K,, o) C H' (K, jt2) 5 by the definition of IT%) (K,, u2) and unramified
cohomology. By [CT95, Theorems 4.1.1, 4.1.5], for any i > 1,

Hi (KTMLQ)% l> H;:LT’ (KT/k"nLQ) :> Hz(kinu2)

So we may view III%- (K, pu2) € H'(k, p2). Since 2 is rational, there is a codimension one point
x on 2 whose induced discrete valuation v, has residue field isomorphic to K,_;. The map
8



Yy He(ky p2) — HY(K,,, p2) factors as
Hi(ky,UQ) ; Hyi”«(Kr—l/k7N2) — Hi(KT’—17N2) ; Hyilr(Kr,vx7N2) — Hi(Kr,vx7N2)'

Here, the first isomorphism follows from [CT95, Theorem 4.1.5]; the second and fourth maps are
inclusions; and the third map is an isomorphism by the Gersten conjecture (see, e.g., [CT95, pp. 27])
and [Art62, Theorem II1.4.9]. The restriction of the injection 1, to III%)-(K,, ua) C ker 1, is trivial
by the definition of III. Hence III%- (K, p12) is trivial.

The triviality of III') (K, uz) for all i > 1 then implies, by [CRR19, Theorem 3.4], that
I 5 (K,,SO.(q)) is trivial as well. This completes the proof of Proposition 3.1. O

Remark 3.3. The statement of [CRR19, Theorem 3.4] assumed that dim ¢ > 5, but this assumption
was not used in the proof.

3.2. The Hasse principle for isotropy. In this section, we prove the main theorem:

Theorem 3.4. Let k be an algebraically closed field of characteristic # 2 that is not the algebraic
closure of a finite field. Let K be any finitely generated field extension of transcendence degree
r > 2 over k, and let V be any non-empty set of non-trivial divisorial discrete valuations on K that
satisfies the finite support property. Then for any integer m # 3 such that

41 <m<2,

there is an m-dimensional quadratic form over K that violates the Hasse principle for isotropy with
respect to V.

Example 3.5. Let K = k(x,y, 2), where k is an algebraically closed field of characteristic # 2
that is not the algebraic closure of a finite field, and let 2" = ]P’z. Since Vg contains the set of
discrete valuations on k(z,y, z) that are trivial on k(z,y), by Proposition 2.1a, the Hasse principle
for isometry holds over K with respect to V3. Moreover, by Proposition 2.1¢, quadratic forms
over K of dimensions two and three satisfy the Hasse principle for isotropy with respect to Vg, as
do four-dimensional quadratic forms over K with trivial determinant. In particular, we see that in
some instances the assumption in Theorem 3.4 that m # 3 is necessary. By Theorem 3.4, there
are counterexamples to the Hasse principle for isotropy over K with respect to V4 in dimensions
five through eight. Since u(K) = 8, quadratic forms of dimension > 8 over K are isotropic, thus
automatically satisfy the Hasse principle for isotropy. The case of four-dimensional quadratic forms
over K with non-trivial determinant remains open.

Before proving Theorem 3.4, we prove several results related to the Hasse principle for isotropy
over finitely generated field extensions of fields ¢ € 2%(2) for some ¢ (defined in Section 1). First
we show that under certain assumptions, if quadratic forms of a particular dimension m satisfy the
Hasse principle for isotropy, then so do quadratic forms of dimension > m.

Proposition 3.6. Let ¢ be a field of characteristic # 2, and suppose that ¢ € <%(2) for some i > 0.
For any r > 1 such that i +r > 2, let L be a finitely generated field extension of transcendence
degree v over £. Let V' be a non-empty set of non-trivial divisorial discrete valuations on L, trivial
on £, that satisfies the finite support property. Then for any integer m such that

2i+7’—1 +2<m< 2i+7“’

if reqgular m-dimensional quadratic forms over L satisfy the Hasse principle for isotropy with respect
to V', then so do regular (m + 1)-dimensional quadratic forms over L.

Proof. This proof closely mirrors the proof of the Hasse-Minkowski Theorem for quadratic forms
of dimension at least 5 found in [LamO05, pp. 172].

Let m be any integer such that 2°7"~! 4+ 2 < m < 2" and suppose regular m-dimensional

quadratic forms over L satisfy the Hasse principle for isotropy with respect to V. Let ¢ be an
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(m + 1)-dimensional quadratic form over L, and suppose that ¢ is isotropic over L, for all v € V.
Write ¢ = ¢1 L qo, where ¢1 = (a1,a2), and g2 = {(ag,...,am+1). Note that dimge = m —1 >
2i+7‘—1 4 1.

Consider the following two disjoint subsets of V', whose union is V:

S = {v eV ‘ g2, is isotropic over LU} ,
T = {U eV ‘ g2,» is anisotropic over LU} .

Claim: T is a finite set.
Indeed, let U C V be the subset defined by

U={veV|uv(as) =v(as) = = v(ams1) =0}.

The set V satisfies the finite support property, so V' \ U is a finite set. For any v € U, each
entry of ¢z, is a unit in O,, so g2, reduces to an (m — 1)-dimensional quadratic form over the
residue field k,. Each such v is a divisorial discrete valuation on L that is trivial on ¢, so &, is
a finitely generated field extension of transcendence degree r — 1 over the field ¢ € 7(2). Hence
u(ky) < 207771 < m — 1 (see Section 1). Therefore, for any v € U, ga, is isotropic over L, by
Springer’s Theorem, hence U C S. This implies that T'=V'\ S is contained in the finite set V' \ U,
proving the claim.

For any v € T', because g is isotropic over L,, there exists some z, € L; such that z, € Dr, (q1,)
and —z, € D, (q2,,). Thus, for any v € T, we can write

2 2
Zy = a1, + a2y = q10(T, Yo)

for some x,, y, € L,. Since T is a finite set, by Weak Approximation we can find z, y € L
sufficiently close to x,, ¥, respectively, for all v € T', so that the element

qi(z,y) = a1z’ + a2y2 =:z€L

is as close as desired to z, # 0 for every v € T. So z # 0, and = and y can be selected so that z,/z
is close enough to 1 in L, to guarantee that z, and z belong to the same square class of L, for all
veTl.

Here z € Dr(q1), so we may write ¢; ~ (z,w) for some w € L*. Let ¢* = (z) L ¢o, so that
q ~ (w) L ¢*. We next observe that the m-dimensional quadratic form ¢* is isotropic over L, for
all v € V. Indeed, if v € S, then g2, is isotropic over L,, so ¢* must be isotropic over L, as well.
For v € T, since z and z, belong to the same square class of L, and —z, € Dy, (g2,,), we see that
—z € Dr,(q2,) for all v € T. Therefore ¢* = (z) L ¢ is isotropic over L, for all v € T'. So ¢* is
isotropic over L, for all v € SUT =V, as asserted. By assumption, this implies that ¢* is isotropic
over L. Thus ¢ ~ (w) L ¢* is isotropic over L as well, completing the proof. O

Corollary 3.7. Let ¢ be a field of characteristic # 2 such that £ € <7(2) for some i > 0, and
let L be a finitely generated field extension of transcendence degree v > 1 over £ such that i +r > 2.
Let V' be a non-empty set of non-trivial divisorial discrete valuations on L, trivial on £, that satisfies
the finite support property, and suppose there exists a 27 -dimensional quadratic form over L that
violates the Hasse principle for isotropy with respect to V. Then for any integer m such that

2i+7‘—1 + 2 S m S 27:4—7‘7

there exists an m-dimensional quadratic form over L that violates the Hasse principle for isotropy
with respect to V.

Proof. If i +r = 2, the result is true by assumption since 2271 + 2 = 22. So for i + r > 2, suppose

by contradiction that the corollary is false. Let m* be the largest integer between 201"~ 4 2

and 21" such that m*-dimensional quadratic forms over L satisfy the Hasse principle for isotropy

with respect to V. By assumption, m* < 2*7. Applying Proposition 3.6, since m*-dimensional
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quadratic forms over L satisfy the Hasse principle for isotropy with respect to V, then so do
quadratic forms over L of dimension m* + 1. This contradicts the definition of m*, and so for
each m such that 27"~1 +2 < m < 2" there must be an m-dimensional counterexample to the
Hasse principle for isotropy over L with respect to V. (]

It remains to investigate the local-global behavior of quadratic forms with dimension 2" 4 1 for
some n > 2. Following [AS22, Section 3], over a field k of characteristic # 2, given any elements
a,...,an,d € kX, let ((a1,...,an;d)) denote the 2"-dimensional quadratic form over k obtained
by multiplying the last entry, a; - - - a,,, of the Pfister form ({(aq,...,a,)) by d. For instance, if n = 2
we have

({a1,a2;d)) = (1,a1,az2,a1azd).
Such a form ((a1,...,an;d)) is a twisted Pfister form in the sense of Hoffmann [Hof96].

As observed by Auel and Suresh [AS22], by using a “trick” of Bogomolov, these twisted Pfister
forms can be used to generate counterexamples to the Hasse principle for isotropy over function
fields. Namely, let k be an algebraically closed field of characteristic # 2. Let K be a finitely
generated field extension of transcendence degree r > 1 over k and let W be any non-empty set
of non-trivial discrete valuations on K. According to Bogomolov’s trick (see [Bog95, Proof of
Theorem 1.1], [AS22, Corollary 1.2]), since k is algebraically closed we can present K as an odd
degree extension of k(x1,...,z,) for some transcendence basis z1,...,x, of K/k. As such, any
w € W restricts to a non-trivial discrete valuation on k(x1,...,x,), so let

V= { iy [0 €W}

Suppose we have found a quadratic form ¢ over k(xi,...,z,) that violates the Hasse principle
for isotropy with respect to V. Since K is an odd degree extension of k(z1,...,,), gk remains
anisotropic over K by Springer’s Theorem on odd degree extensions [Lam05, Theorem VII.2.7].
For any v € V, g, is isotropic over k(z1,...,2,)y, and since v is the restriction of some w € W,
k(xy,...,x,), is contained in K,,. Hence qg,, is isotropic over K, for all w € W, and therefore qx
violates the Hasse principle for isotropy over K with respect to W. In particular, these observations
of Auel and Suresh [AS22, Corollary 1.2, Proposition 1.3] prove the following:

Lemma 3.8 (Auel-Suresh). Let K be any finitely generated field extension of transcendence degree
r > 1 over an algebraically closed field k of characteristic # 2. If there is an n-dimensional quadratic
form over the rational function field k(x1,...,x,) that violates the Hasse principle for isotropy
with respect to the set of all discrete valuations on k(x1,...,x,), then there is an n-dimensional
quadratic form over K that violates the Hasse principle for isotropy with respect to the set of all
discrete valuations on K.

Now, for any algebraically closed field k of characteristic # 2 that is not the algebraic closure of
a finite field, let ky C k be a subfield of k equipped with a discrete valuation vg whose residue field
has characteristic # 2. Then if » > 2 and we let

fr= H$z(332 — 1) (s — M),
i=1

where each \; € ko \ {0, 1} satisfies vo(\;) > 0, [AS22, Theorem 4.1] states that over k(z1,...,z,),
the 2"-dimensional twisted Pfister form ({x1,...,z;; f;)) violates the Hasse principle for isotropy
with respect to all discrete valuations on k(x1,...,z,). In particular, [AS22, Theorem 4.1], together
with Bogomolov’s trick, proves the dimension 2" case of Theorem 3.4. We will use variants on the
form ((z1,...,z,; f.)) to prove the case of dimension 2"~ + 1.

Lemma 3.9. Let k be any field of characteristic # 2. Then for any r > 1 the twisted Pfister form
((x1,...,zp;—1)) is anisotropic over k(x1,...,x,).
11



Proof. Let F = k(v/—1). Then over F(x1,...,z,), we have

<<$17 sy Tpg _1>>F(m1,...,mr) = <<$17 s 7:177“>>'

By Lemma 2.4, ({(x1,...,x,)) is anisotropic over F(z1,...,x,) which contains k(z1,...,z,). So the
form ((z1,...,z,;—1)) must be anisotropic over k(z1,...,x,). O

Lemma 3.10. Let k be any field of characteristic # 2, and for any r > 2 let K, = k(x1,...,2,).
For 1 < i <, let gi(x;) € k[z;] be polynomials of positive degree such that g;(0) € kX2, and let
fr =11i—; zigi(z;). Suppose the 2"-dimensional quadratic form g, = ((x1,...,2r; fr)) is anisotropic
over K,. Then the (2" + 1)-dimensional quadratic form

~ 2
&r=q L{—ai —z1-x)
is anisotropic over K,11 = k(x1,...,2r41).

Proof. We first observe that

T
qr = <<x17”-7wr;f7“>> = <17‘T17"'7x7’7"'7x2""TT7Hgi(‘Ti)> .
=1

Moreover, for each i = 1,...,r, since g;(0) # 0, gi(z;) is a unit in Oy, , with reduction g;(0) € xy,.
The form g, is anisotropic over K,, and we may write ¢, ~ (1) L ¢/, so by [Lam05, Theorem IX.2.1],

Ty T, € DKr (q:,,) < $U72n+1 +x-xy € DKT'+1(qT)'

Claim: x1 -z, € Dk, (q).).
The claim implies that g, does not represent a:,% 41 T 12 over Kpp1; or equivalently, the
quadratic form
Go=a L (ot~ i)
is anisotropic over K,y1. It therefore suffices to prove the claim, which is equivalent to showing
that the form ¢ L (—z7---,) is anisotropic over K.

We prove the stronger claim, that ¢. L (—xq---x,) is anisotropic over the zj-adic completion
of K, which is k(z2,...,2z,)((x1)), with residue field k(z2,...,x,). Since

g L {(—xy- 2.~ {(29,...,2,)) L <Hgl(aj2)> Loy ((xo,. .., zp;—1)),
=1

where ((x2, ..., z,)) is the pure subform of ({(xs, ..., x,)), the second residue form of ¢. 1 (—x1 - x,)
is the twisted Pfister form ((z3,...,x,; —1)), which is anisotropic over k(z2,...,x,) by Lemma 3.9.

By Springer’s Theorem, to prove the claim it suffices to show that the first residue form of

q. L (=x1---x,) is anisotropic over k(za,...,z;). The first residue form is

pr = ({22, @) L <91(0)Hgi($i)> =~ ((wa, .. p)) L <H9i(wi)>’
i=3 i=2

where this last isometry follows because g1(0) € k* is a square. We now prove, by induction on
r > 2, that ¢, is anisotropic over k(z2,...,x;).
First, suppose r = 2. Then

2 = ((22))" L (g2(x2)) = (g2(22)) L z2 - (1).

Now consider 9 over k((z2)). The first residue form of ¢ is (g2(0)), and the second residue form
of ¢y is (1). Both residue forms are anisotropic over k, so by Springer’s Theorem, @9 is anisotropic
over k((z2)) D k(z2), proving the base case.
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Now suppose that for some r > 2, ¢, is anisotropic over k(xg,...,z,), and consider ¢, ; over
E(xa,...,2.)((zr+1)), whose residue field is k(z2,...,z,). We have

r+1
Pr41 = <<x27 e 7xr7xr+l>>/ 1 <H gz(xz)>
=2

r+1

= ((zg,...,x.)) L <Hgi(xi)> L @ppr - (22,00 20)).
1=2

The second residue form of ¢, 41 is ((x2, . .., z,)), which is anisotropic over k(zs, ..., z,) by Lemma 2.4.
Since g,+1(0) € k* is a square, the first residue form of ¢, is

{zg,...,z)) L <g,+1(0)]'[gi($i)> ~ ((zg,...,z)) L <Hgi(:ﬂi)> ~ 0.
i=2 1=2

By the induction hypothesis, ¢, is anisotropic over k(xa, ..., x,), so the first residue form of ¢, 1
is anisotropic. Both residue forms of ¢, ;1 are anisotropic over k(x2,...,x;), SO ¢,4+1 is anisotropic
over k(za, ...,z )((xy+1)), which contains k(xs,. .., z,, x,41), completing the proof of the claim by
induction, and the proof of the lemma as a whole. O

Lemma 3.11. Let ¢ be a field of characteristic # 2 such that ¢ € <#;(2) for some i > 2. Let
ai,...,a;,d € £* be elements such that —ay ---a; & €% and the twisted Pfister form over { defined
by ¢; = {{ay,...,a;;d)) is isotropic over £, for all discrete valuations v on £. Then the (2¢ + 1)-
dimensional quadratic form q; over £(x) defined by

Gi=q L {(—2"—a1-a;)
is isotropic over {(x),, for all discrete valuations w on {(x).

Proof. We prove the lemma by considering several cases for the discrete valuation w on ().
Case 1: w is non-trivial on 4.
In this case, if v = w|,, then ¢, is contained in £(x),,, and g¢; is isotropic over £, by assumption.
So g; is isotropic over £(z),,.
The remaining cases cover the situation when w is trivial on 4.
Case 2: w = W is the degree valuation with respect to z. Thus, {(z),, = ¢ ((z7')).

Multiplying the last entry of ¢; by 2, we have

Gi~qL{-1—ai-az"?).

Now —1 —ay ---a;xz~2 is an z~!-adic unit with reduction —1. Since (1) is a subform of g;, the first

residue form of ¢; over k,, contains (1, —1), which is isotropic. Therefore g; is isotropic over £(z),,
by Springer’s Theorem.

Case 3: w = wy is the m-adic valuation for @ = 22 + a;---a;, which is irreducible since
—aj - a; Q €X2.

In this case, over the residue field k; = ¢ (\/—a1 - - - a;) we have

(V=ar - a;)°
_a2...ai :

ap =

The form ¢; contains the subform (aj,as - - - a;), whose residue form mod 7 is
2
- (V=a1 @) N
<a17a2...ai>: —7a2...ai _<—CL2“’CL7;,CL2"'CL7;>,
_a2 ) al

which is isotropic over k. Thus the first residue form of g¢; is isotropic over k,, so ¢; must be
isotropic over ().
13



Case 4: w = wy, where 7 € £[z] is any monic irreducible polynomial different from 22 +ay - - - a;.

In this case, each entry of g; is a unit in O,_, so ¢; reduces to a (24 1)-dimensional form over .
The field s is a finite extension of £ € &%(2), so k. € #%(2). Therefore u (r;) < 2¢. So the first
residue form of g; must be isotropic over k., which implies that g; is isotropic over ¢(z),.

These cases cover all possibilities for discrete valuations on £(z), so the proof is complete. O

We can now prove Theorem 3.4.

Proof of Theorem 3.J. By [AS22, Theorem 1], there is a 2"-dimensional quadratic form over K that
violates the Hasse principle for isotropy with respect to V. This completes the proof if r = 2, so
suppose r > 3. The field & is algebraically closed, so k € %(2). Moreover, any discrete valuation v
on K is trivial on k since any x € k™ has n-th roots for all n € Z, so v(x) € Z must be divisible by
all n € Z, hence v(x) = 0. So by Corollary 3.7, for any m such that 2"~! 42 < m < 2", there is an
m-~dimensional quadratic form over K that violates the Hasse principle for isotropy with respect
to V. It therefore remains to find a quadratic form of dimension 2"~! + 1 over K that violates the
Hasse principle for isotropy with respect to V.

The set V is contained in the set of all discrete valuations on K, so by Lemma 3.8, the proof will
be complete if we can find a (2"~ + 1)-dimensional quadratic form over the rational function field
k(xq,...,x,) that violates the Hasse principle for isotropy with respect to all discrete valuations on
k(xy,...,x.). Let kg C k be a subfield with a discrete valuation vy with residue characteristic # 2,
and for 1 <i<r—1,let \; € ko \ {0,1} be elements such that vo(\;) > 0. If we let

r—1
Jr—1= H zi(z; — 1)(xi — Ai),
i=1

then by [AS22, Theorem 4.1], the quadratic form ¢,—1 = ((x1,...,2,—1; fr—1)) over k(z1,...,2r—1)
violates the Hasse principle for isotropy with respect to the set of all discrete valuations on
k(xy,...,2,—1). That is, ¢,—1 is anisotropic over k(z1,...,2,—1), but is isotropic over the com-
pletion at each discrete valuation on that field. Because the field k is algebraically closed, each \;
appearing in f._; is a square in kX, so by Lemma 3.10, the (2"~ + 1)-dimensional form over
k(xi,...,z,) defined by
Gr—1=¢q—11 <—SE72~ — Ty Tpo)

is anisotropic over k(x1,...,z;). The field k € (2), so k(z1,...,2,-1) € “_1(2) by [Leel3,

Theorem 2.3]. Therefore, by Lemma 3.11 where ¢ = k(x1,...,2z,-1), the form g,_; is isotropic over
k(xy,...,x.), for all discrete valuations v on k(x1,...,z,). Thus ¢,_1 violates the Hasse principle
for isotropy with respect to all discrete valuations on k(z1,...,,), completing the proof. O
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