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Chromopolarizabilities of fully heavy baryons
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We compute the chromopolarizabilities of the fully heavy baryons Qupop (Q,Q' =b, ¢) in the
framework of potential nonrelativistic quantum chromodynamics. At leading order, the fully heavy hadrons
are considered as ground chromo-Coulombic bound states. We find that the chromopolarizability o of a
fully heavy baryon QQQ is 2.6 times the chromopolarizability f3, of the quarkonium 00 with the same
heavy quark flavor Q. This result is accurate up to the correction of the order 0.3 for Q = b and provides an
order-of-magnitude estimate for Q = c. We discuss the dependence of the ratio g/, on the heavy quark
mass ¢ and the strong coupling constant o, as well as on the ratio of the masses m /m,, in the case not

all quarks in the baryon are identical. Since the chromopolarizability of heavy hadrons defines the strength
of their interaction at low energies mediated by soft gluons, which at long range hadronize into pairs of

pions and kaons, our findings argue in favor of the existence of near-threshold states composed of pairs of

fully heavy baryons.

DOI: 10.1103/PhysRevD.107.034020

I. INTRODUCTION

Light-meson exchanges are important as binding forces
in nuclei and other hadrons as well as in extended objects
like hadronic molecules. The Okubo-Zweig-lizuka (OZI)-
allowed light-meson exchanges are only possible between
hadrons containing light quarks as constituents while fully
heavy hadrons can interact and, in some cases, form
bound states through soft-gluon exchanges. Theoretical
foundations of such soft-gluon-driven interactions in
heavy-quark systems were discussed in Ref. [1]. At the
hadronic level, this mechanism corresponds to exchanges
of pairs of light hadrons which are formally OZI sup-
pressed, when the isospin or SU(3) breaking is switched
off. A typical example of such a situation is provided by the
double-J/y system studied experimentally by the LHCb
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Collaboration [2] and more recently by the ATLAS [3] and
CMS [4] Collaborations. In particular, a theoretical coupled-
channel analysis of the LHCb data for the J/w.J /y invariant
mass distribution indicates the possible existence of a
resonance near the double-J/y threshold [5-7] with a
large molecular component in its wave function [5,6].
Furthermore, it is argued in Ref. [8] that soft-gluon
exchanges, hadronized in the form of correlated two-pion
and two-kaon exchanges, might be strong enough to provide
a sizable attraction between two J/y’s, consistent with the
existence of a near-threshold pole on the first or second
Riemann sheet of the energy complex plane.

Then a natural question arises that whether or not similar
mechanisms could be operative in the systems composed of
two fully heavy baryons to result in the creation of dibaryon
bound or virtual states. Interestingly, recent simulations
using lattice quantum chromodynamics (QCD) indeed indi-
cate that both double-Q,... and double-£2;;,;, systems may be
bound. In particular, the binding energy of the double-Q2,...
system in the 'S, channel is computed by the HAL QCD
Collaboration to be —5.684_“&'923 MeV (with the electric
Coulomb interaction ignored; the statistical and systematic
errors have been added in quadrature) [9] while the double-
Q,,,, system was found to be deeply bound in the 'S
channel, with a binding energy of —89f1126 MeV [10].
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These results suggest that theoretical studies of the inter-
actions in the systems formed by fully heavy hadrons are
quite important and timely.

Crucial information on such interactions is encoded in
the chromopolarizability—the parameter which is deter-
mined by the intrinsic properties of a given fully heavy
hadron and defines the strength of its interaction with soft
gluons.

The underlying idea of the approach stems from the fact
that the effective field theory (EFT) Lagrangian for an S-
wave heavy field H in the external chromoelectric field E¢
(with a the color index) can be written in the form [11,12]

\§
L = / BXH (1, X){iao +2—X

mp
1
+§,8Hg2Ea2+...}H(t,X>, (1)

where the scales my, a;my, and a2my (with my for the
heavy hadron mass and «, for the strong coupling constant)
are integrated out, so the ellipsis denotes higher-order
operators, g is the strong coupling, and the coefficient
Py is the chromopolarizability mentioned above. If the size
of a hadronic system is small compared with a typical
length scale of the fluctuations in the nonperturbative
QCD vacuum, then, to the leading order in the ratio of
these scales, the interaction of the heavy hadron with the
soft gluons can be considered as generated by two
instantaneous color dipoles [1]. Formally, this picture is
obtained by matching the Lagrangian in Eq. (1) with
the one of weakly coupled potential nonrelativistic QCD
(pPNRQCD) [13-15]. In this way one can derive an
analytical expression for the chromopolarizability; see,
for example, Ref. [12] where such an approach was applied
to the ground-state bottomonium. Equipped with the value
of the chromopolarizability, one can use it as a building
block to establish the strength of the interaction potential
between the corresponding fully heavy hadrons.

The electromagnetic interaction between neutral com-
posite particles is known as the van der Waals force. Two
cases can be distinguished depending on the distance
between the particles compared with their intrinsic
scales [16]. On the one hand, the London potential arises
if the time interval between the emission of the two
photons is much larger than their travel time between the
neutral particles. On the other hand, in the case of the
Casimir-Polder interaction, the two photons are emitted
almost simultaneously compared with their travel time. The
interaction between two heavy quarkonia or two fully
heavy baryons mediated by two-gluon exchanges can be
viewed as a QCD analog of the van der Waals force.
One such interaction is generated by the polarizability
operator in the Lagrangian (1) and corresponds to the
Casimir-Polder type since the two gluons are emitted
simultaneously. In most practical cases, the latter are

nonperturbative, and it is necessary to consider their
hadronization when constructing the van der Waals poten-
tial. The long-distance part of the potential is dominated by
pairs of pions—the determination of the corresponding
matrix elements of the operator E“> can be found in
Refs. [17,18]. An analytic expression and plots of the
two-pion exchange potential are provided in Ref. [12]. At
medium distances, the two-kaon contribution and the
formation of the two-pion resonance, the f(500), play a
role. In this case, the potential can be constructed employ-
ing a dispersive technique [8]. Heavier resonances, quark
exchanges and other short-range interactions are encoded in
the contact term which renders the resulting potential well-
defined and provides cutoff-independent predictions, as
required by the renormalization group analysis. Further
discussions of the regularization procedure and a typical
shape of the potential which arises can be found in Ref. [8].
In any case, the shape of the potential is independent of
the value of the chromopolarizability, which enters as an
overall multiplicative factor.

In this paper, we employ weakly coupled pNRQCD to
calculate the chromopolarizability fo of a fully heavy
ground-state baryon Q' consisting of two heavy quarks
of the same flavor Q and mass m, and the third quark of
possibly (but not necessarily) a different flavor Q' of the
mass mg. Therefore, for Q, Q' = ¢, b, we study the three-
quark systems, ccc, ccb, cbb, and bbb, simultaneously.
In particular, we obtain the relation between the chromo-
polarizabilities of a QQQ’ baryon, S, and that of a QQ
meson, f,, and establish the dependence of the ratio
Pa/P, on the ratio of the masses my /my. We treat the

heavy hadrons (QQ meson or QQQ' baryon) as purely
Coulombic systems thus neglecting the nonperturbative
dynamics inside of them. This approximation is valid if the
ratio of the nonperturbative and perturbative contributions
to the energy of the system,

Ep _ (o)

2
o ©)
E pert

(as/r)  aimpy’

is small. Here () denotes averaging, the string tension o,
which introduces the nonperturbative scale related with
confinement, was roughly estimated as ¢ ~ AéCD, and the
mean size of the hadron was taken as (r~!) ~ (r)™! ~ a;my,
which is valid for a purely Coulombic system. For Agcp =
300 MeV and a, = 0.35 (see also Eq. (28) below and the
discussion around it) the ratio (2) takes values of the order
unity and 0.1 for the ¢ and b quarks, respectively. In other
words, the approximation of a fully heavy hadron by a purely
color-Coulombic system predictably works well for the
ground-state meson or baryon composed of the bottom
quarks. In the meantime, corrections may appear comparable
with the leading term for the ground-state charmonium and
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Q... baryon. In the latter case we are aimed at an order-of-
magnitude estimate.

The paper is organized as follows. In Sec. Il we consider
a heavy quarkonium and present a numerical computation
of its chromopolarizability based on placing the system in a
finite box. We compare our results with the analytical ones
contained in the literature and find a good agreement.
Therefore, equipped with the investigation method, we
proceed to Sec. III and evaluate the chromopolarizability
of a fully heavy baryon. We conclude in Sec. IV. Various
details related to the calculations performed in this paper
are collected in appendices. In particular, generalized
Jacobi coordinates for a three-body system are introduced
in Appendix A; in Appendix B we provide some details of
numerical calculations of the fully heavy baryon chromo-
polarizability; Appendix C is devoted to calculations for a
three-quark system in a finite box; finally, in Appendix D
we discuss the effect of the mixing of the octet representa-
tions for a fully heavy baryon.

II. CHROMOPOLARIZABILITY
OF A HEAVY QUARKONIUM

A. Derivation of g,

In this section, as a warm-up and to introduce the
necessary essentials, we reproduce the results for the
chromopolarizability of a heavy quarkonium QQ. We
follow the lines of Ref. [12]. The underlying idea of the
approach is a multipole expansion performed to the order
O(r) (with r for the interquark separation) in the non-
relativistic Lagrangian for the given heavy hadronic sys-
tem. Since the QQ pair can be either in the color-singlet or
color-octet state, the Lagrangian is written in terms of the
effective fields S (for the singlet) and O (for the octet).
Up to leading and next-to-leading order in the heavy quark
mass and multipole expansion the Lagrangian of the
interacting singlet and octet fields takes the form [13,14]

L%kocp = / BrTr[S (id — hg)S
+ 0% (idy — h)O* + (S'r- gE*0* + H.c.)),
(3)

where the potential which appears in front of the singlet—
octet mixing term has been set to unity at the given level of
matching. Further details on pNRQCD can be found in the
reviews [19,20].

In the Lagrangian (3) h s and fzo are the singlet and octet
Hamiltonians, respectively,

hs =T(p) +Vs(r) = =—— Vi — 2= (4)

ho =)+ Volr) =———Vi+ =2 (5)

where mg is the mass of the quark and only the terms
responsible for the relative motion in the system are retained.

The heavy quarkonium QQ (for brevity we denote it
as y) of a mass M, is identified with the ground state of the
Hamiltonian (4),

],:lS|l//> = El// |l//>7 (6)

with E, = M, —2m, for the binding energy. The wave
function |y) in the coordinate space can be decomposed
into the radial and angular parts,

() = u(r) Yoo ), )

where the radial wave function u(r) is normalized as

JARGCIE ®)
0

and obeys the radial Schrédinger equation

<_L0_22_§%>u(r) — E,u(r). (9)

At the same time, the spectrum of the octet Hamiltonian
pLL)

h from Eq. (5) consists of the continuum states
such that

il0|p’l’lz> :Ep|p7l?lz>’ (10)
where p is the 3-momentum while / and [, are the orbital

angular momentum and its projection, respectively. In the
coordinate space one has

(r

with the radial wave function v, ,(r) normalized as

PLLY =0, ()Y (), (1)

[ artvyanp =1 (12)
0

and obeying the eigenstate equation

1 * I(I+1) la
<_m—QW+ mg? 67 Opa(r) = Epvp (). (13)

Unlike Ref. [12] where the exact Coulombic eigenfunc-
tion (r|p, 1) was used, in this work we place the system in a
finite box of the size L, in the radial direction and impose
the boundary conditions
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M(O) = M(Lbox) =0, Up.l(o) = ”p,l(Lbox) =0. (14}
Matching weakly coupled pNRQCD quoted in Eq. (3) to
the EFT defined by the Lagrangian in Eq. (1), with H =y,

one can obtain the chromopolarizability as

1 1
By = <W|"hoj rly). (15)

This expression can be understood as a double emission of
soft gluons with an octet state propagating between the two
emission vertices.

Before we proceed to the numerical calculations of the
chromopolarizability f3,,, we notice that Eq. (15) allows one
to make some general conclusions about the behavior of f,,
as a function of m, and a,. Indeed, in the Coulombic
system at hand the following simple relations hold (as
before, () stand for the averaged values):

1
(p) T T e E, ~aimyg, (16)
which imply that
C
By = 4 W% ’ (17)
agmy,

with C,, a constant independent of «, and mgp. The
expression for f, quoted in Eq. (17) was obtained
analytically in Ref. [12], and the factor C,, was evaluated
to be 0.93.

Since the chromopolarizability demonstrates such a
strong dependence on my and ay, its numerical value
depends significantly on the renormalization scale and
scheme used to obtain these two quantities. In principle,
the physical observables should be independent of the
renormalization scale and scheme used, however, working
in perturbation theory some dependence is unavoidable. In
particular, the expressions for the chromopolarizability
used in this work are derived at leading order, so a strong
dependence on the renormalization scale has to be antici-
pated. Therefore, to sidestep this issue, we provide the
results for the constant C,, and quote some representative
values of the chromopolarizability £, in Table I below.

TABLE 1. The mean radii and chromopolarizabilities of the
ground-state heavy QQ mesons with Q = ¢, b evaluated in this
work. See the main text for the discussion of the uncertainties.

State cc bb
(r) [fm] 0.851023 0.2610%4
B, [GeV73] 1913 0.5470%

B. Numerical evaluation of 3,

Here we recalculate the factor C,, by putting the system
in a finite box; see Eq. (14). The same technique will be
applied later to the fully heavy baryon case where analytical
expressions are not available.

In order to proceed with the numerical calculations, we
use the completeness condition for the continuum spectrum
to write

Z > Wwinilp. L) -

pll ri=X,Y,2

I )P )

<p,l L|rilw)

where the integration over the momentum is transformed to
a summation as the system is put in a finite box. The
function 1()(p) is defined as

(r)(p) = /oo rdr u(r)v,,,l(r), (19)

0

where only the term with / = 1 contributes since the octet
field is a P-wave operator, and the following easily
verifiable matrix elements were used in the calculation:

1
(wlx|p,L,1;) = F 51,1511,i1761(r)(19),
i
whylp,L.1.) = =61.10) 41 %1(”(19),
1
(wlzlp.L.1) = 8,18,0—=1"(p).

V3

A direct numerical computation performed according
to Eqgs. (18) and (19) demonstrates a perfect agreement of
the result obtained with the scaling behavior described in
Eq. (17) with

C, ~0.93. (20)

This result applies both to charmonium (¢¢) and bottomo-
nium (bb) systems. Moreover, the value in Eq. (20) is in a
good numerical agreement with the result for the chromo-
polarizability of a bottomonium reported in Ref. [12].
Before we come to a numerical evaluation of the
chromopolarizability f3,,, let us compare the exact result
(20) with a simple estimate which will also be convenient
for the discussions of the baryons below. To this end we
notice that, in the Coulombic system at hand, the energies
of the bound states are negative while the eigenenergies in
the continuum spectrum are positive. Therefore, recon-
structing the identity from the closure relation and then
setting E,, = 0 in Eq. (18), we arrive at an upper bound,
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B, < () (21)
Y 9IE,|

where () stands for averaging over the ground state |y) of
the Hamiltonian (4). Then, with the help of the easily
verifiable relations,

4 27
E, =——a’my, N =, 22
v 9a5mQ <r > 4(mQas)2 ( )
we finally arrive at the inequality
27
C,<s—=~17. 23
VT 23)

The exact result (20) complies well with the upper
bound (23).

Notice that Eq. (15) can be approximately rewritten in
the form

1 (?)
T9(T(p)) + (Vo(r)) - E,

where (V(r)) = a?my/9. Then it is easy to check that the
exact result (20) is rather accurately reproduced for the
averaged kinetic energy (7'(p)) ~ |E,|/2.

Let us now estimate the correction to the chromopolar-
izability f3, due to a possible contribution of the non-
perturbative interaction in the system. To this end we treat
the confining interaction or as a perturbation to arrive at the
correction,

Py (24)

1 1

5Py = 5 (wlr=

1
=— Or = rly), 25
5 w. @)

ho - E,

that allows one to find the ratio,

2
%y —A;?CZD : (26)
Py aymy

Quite naturally, the ratio (26) is defined by the same
combination of the scales involved as provided in Eq. (2),
so that the numerical estimates made after Eq. (2) are valid
here as well. Clearly, the same conclusion holds for the
ground-state fully heavy baryons to be studied below. Thus,
for the chromopolarizabilities of the ground-state charmo-
nium and Q... baryon we pretend to provide order-of-
magnitude estimates which nevertheless are expected to lie
in the right ballpark, especially given the large uncertainties
they have (see the discussion below). On the other hand, the
corrections to the chromopolarizability of the ground-state
bottomonium and €, baryon due to the nonperturbative
dynamics are expected to be at the level of about 10%.

Now, to provide numerical estimates for the chromopo-
larizabilities of the ground-state hb and ¢c quarkonia, we
use the following values of the heavy quark masses:

mRS' (1 GeV) = 1.496(41) GeV,
miS (1 GeV) = 4.885(41) GeV, (27)

obtained in the renormalon-subtracted scheme (RS’) of
Ref. [21] which improves the convergence of the pertur-
bative expansion while keeping the leading order potential
unchanged. The strong coupling constant is taken at the
renormalization scale v, = 1.5 GeV, which is large enough
for a reasonable convergence of perturbation theory
while minimizing contributions of logarithms associated
with the soft scale. Using the RunDec routine at the 4-loop
accuracy [22,23] we find

a,(v, = 1.5 GeV) = 0.3485. (28)

The uncertainty of the chromopolarizabilities associated to
picking the renormalization scale is estimated by varying v,
between 1 and 2 GeV, which corresponds to the following
boundary values of the strong coupling constant:

a,(v, = 1 GeV) = 0.4798,
a,(v, =2 GeV) = 0.3015. (29)

The results for the mean radii and chromopolarizabilities of
the heavy QQ mesons with Q = c, b are listed in Table 1.
The large uncertainties, especially for f,,, stem from a large
spread in the values of a; quoted in Eq. (28) and (29) and
the a;* scaling of §,, in Eq. (17).

III. CHROMOPOLARIZABILITY
OF A FULLY HEAVY BARYON

A. Derivation of fq,

As was discussed in the Introduction, we consider a
baryon made of two quarks of the same flavor (with the
mass m,p) and the third quark of potentially another flavor
(with the mass m ). The interactions between three heavy
quarks in an EFT context incorporating the heavy quark and
multipole expansions have been worked out in Ref. [15].

The three heavy quark fields can be decomposed into a
singlet (S), two octets (0“4, 0%) and a decuplet (A) in the
color space,

3@3®3=10808® 10, (30)

however, only the octet fields can couple to the singlet via a
single chromoelectric field insertion. These fields depend
on the three Jacobi coordinates. The choice of the latter is
not unique, and for the future convenience we stick to the
following relations (see Appendix A for further details on
the Jacobi coordinates in a three-body system):
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mo(xy +x3) + mgyx;

X = ,
M
2
=g (2w
p =X — X, (31)

where x;, x,, and x; are the positions of the quarks
with the masses mgy, mgy, and my, respectively,
M = 2mQ + mQ«, and

{=\/M/my. (32)

The case of my = mg corresponds to { = /3. Then

1 : .
— mQ(ﬂ,z + p2)

1 ) 1.
—mQ/x_% = EMXZ —+ 4

1 . .
EmQ(x% +X3) + 5

and, therefore, the kinetic energy of the relative motion in

the baryon is

py+p; 1
mo mo

T(p/)’p/l) (V2 + Vz) (34)

where the hat stands for a differential operator in the
coordinate space, with the eigenenergy

pp + P/l
mg

Epp Py

(35)

The Hamiltonian in a given color representation
(R € {S, 05, 0"}) reads

I = T(p,.ps) + Vrip. 2), (36)

with

2a 1 2 2
Ve= -2 (—+ + . (37
5573 <|,,| PENZ] |p—cx|) (37)
a 2 5 5
Vs = 2 (= - - . (38
¢ 6( Ip—&I) (38)

ol lp+ Al
a, (4 1 1
Vor = —— | —— - . (39)
M (\pl o+ I —CM)
For the chromopolarizability of the baryon Qg0 we
consider the dipolar couplings of the singlet with other

fields. In particular, there are two such couplings to the
octet fields,

1
£59 = /d3 d3/1{ STp - gE*O%¢ + H.c.
PNRQCD P 2\/—[ P9 ]

- f[su gE“OA“—i—Hc]} (40)

where, similar to the case of heavy quarkonium, the
potentials which appear as the coefficients in front of each
term in Eq. (40) are set to unities at the tree level of
matching.

Strictly speaking, the octet fields O° and O* can
mix [24], however the effect of such mixing on the chromo-
polarizability is negligibly small, so we disregard it here
and check the validity of this neglect a posteriori—see
Appendix D for the details. The (small) effect of mixing is
then treated as a source of the systematic uncertainty.

We can now define the chromopolarizability fq in the
same way as it was done for the quarkonium, with the only
difference that now there are two terms corresponding to
two different dipoles in Eq. (40). We, therefore, proceed
along the lines of Ref. [12] and define a lower-energy EFT for
the ground state Qg, interacting with gluonic fields
assuming that the typical energies are smaller than the
binding energy of the 2, baryon. Then the Lagrangian
again takes the same form as given in Eq. (1), with H = Q,
mqo = M + Eq, and E, for the ground-state binding energy.

Thus, one can derive an explicit expression for the
chromopolarizability g by matching Egs. (40) and (1),

o =Py + b3 (41)
where
py = : (Qlp —9|Q),
12 hos — Eq
G S Te T (@)

36 hoA - E_Q
The ground state |Q) is defined through the Schrodinger

equation

hs|Q) = Eo|Q). (43)

B. Evaluation of S

1. Some generalities
Consider first the matrix element

@ ———pl), (44)

os — Eq
where the operator , is given by Egs. (36) and (38). To
proceed we employ the completeness of the continuum
eigenstates of the operator flos,

034020-6
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hos|W5) = EJ|¥5), (45)
where the quantum number v includes both the discrete
angular momenta and the continuous quantum numbers,
that is, momenta; see Eq. (62) below for details.

Then, for the matrix element (44) we find

1
(Qlp=———p|Q)

os — Eq

1
=3(Qlp, ———
( |ﬂzhos_Eg

P2|Q)

1

S @l ) Bl 1 ) o)
Q

v

Q ‘PS 2

where we have used that the x, y, and z directions contribute
equally. Applying the same approach to the matrix element

), (47)

hoA - EQ

(Qla

we finally arrive at the following expressions for the two
contributions to the chromopolarizability fq:

0 _ 1 Qo))
b _42; ES—Ey

& Q2P0
e

where E4 and W4 are the eigenenergy and the correspond-
ing eigenfunction of the Hamiltonian szA,

hos| 1) = EJ¥Y). (49)

2. The singlet wave function

To proceed with the bound state spectrum of a heavy
baryon we introduce a hyperspherical basis [25,26],
p = Rcos9, A = Rsiné, (50)

so that a complete 6-dimensional set of variables in the
coordinate space reads

{R,0,p,A} = {R, 05}, (51)

where p and A are the unit vectors in the directions of the
Jacobi coordinates p and A, respectively, and

/2 ~
/d05 :/ sin2900529d6/dﬁ/dl:7r3. (52)
0

Since the spin variables are factorized out, they are not
considered here. Then the bound-state wave function can
be decomposed in a set of K-harmonics [27-29],

®)(R, 05) = Rs/zzwka )Vka(Os).  (53)

where (%) and ) are the radial and angular parts of the
wave function. The latter are known as the hyperspherical
harmonics, and their explicit form can be built through
spherical functions and Jacobi polynomials; see, for exam-
ple, Ref. [30]. Here

a={L.L, 1,1}, (54)

with /,, 1, and L for the angular momenta (L being the total
one). Then K =2n,+1,+1[; is a non-negative integer
number and 7, is the radial excitation quantum number.
The wave functions of the form (53) are normalized as

(PO |p®)y = /RSde05|u/§f,)a|2 =1, (55)

with wggl(R) obeying a system of coupled Schrodinger

equations,

SR (P i S R
mQ ( dR2 R2 )V/K,a( )
+ 3 (K.aVIK &l ) (R) = Ex e h(R).  (56)

Ko

where Ly = K + 3/2, and

(K.a|VIK' ') = / 05V ,(05)V(R. 05) Vi 0 (05).
(57)

For the spherically symmetric ground-state solution
which represents the Qo baryon studied in this work,
we have, in coordinate space,

1
<p,},|Q> 3/2R5/2 l//0 (R> (58)
and, aiming at an order-of-magnitude estimate, we simplify
the bound state equation (56) by neglecting all off-diagonal
transitions mediated by the potential and retaining only the
diagonal term,

(V) = / 9Os y (p.2). (59)
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so that, for the ground-state baryon, the Schrodinger
equation (56) reduces to a one-dimensional radial equation

for the wave function y/(()b) (R) formulated entirely in terms

of the hyperspherical radius R = +/p* + A%,

1 d? N
mQ dR2
From the normalization condition (55) it is easy to find

that z;/(() >(R) is normalized as a one-dimensional radial
wave function,

B 0 ol () = By ). (60

7 a1 (61)
0

3. The octet wave function

For the continuum wave function we have

V,(p.4), (62)

where v = {p,.p;.L.L,.1,.1;}, with p, and p, for the
momenta conjugated to the Jacobi coordinates p and A,
respectively. The angular wave function can be represented
in the form

¥, = Yp,.pi (,0, ﬂ)

A LL.
Vo A=Y i

m,+m;=L

Yy ()Y 1, (A).  (63)

The radial wave function y, , (p.4) is found as a
continuum-spectrum solution of the equation

<E05>W]S7”,p4(pv/1) = Ep,,,p,lwgf,,p,l(p’)“) (64)

or

Ep W5, (04, (65)

where the superscript A or S is used to distinguish between
the two octet representations, and

(hor )yt o, (p:2) =

(hos) = / dpdAY (P Yio(M)hosY 10(3) Yoo ().
<E0A> = / dﬁdiy?)o(ﬁ)YTo(i)iloA Yoo(ﬁ)Yw(i)' (66)

The radial Schrodinger equations (64) and (65) are
solved in a finite box with the length L., in both the p
and 4 directions; see Appendix C for further details of the
formalism used. Thus, l//;prl (p,4) (X =4, S) is normal-
ized as

/ AR Ao (0. 2N,y (9. ) = 6, e (6T

4. Numerical evaluation of fiq

Now, with both the bound-state and continuum-spectrum
solutions at hand, the matrix element (Q|p.|¥,) can be
evaluated as

(Qlp|¥5)

/ & pdA s/zRS/zwé RS, (0. DV (p.2)
dpdi 3/12

\/— Rs/z

and, similarly,

1¥)(p,.p;)=

RS, (p.)  (68)

<9|/1 |¥7)

dpdA Py
\/— r2P
Further details can be found in Appendix B

Then the two contributions to the chromopolarizability
Po take the form

1" (p,.p)) =

R)WP P (:0’)') (69)

I ’
i =g 3o el (70)
ppp,l P/IPA_ Q
I 9
(/1) _ Z | Pp Pl ' (71)

pp y 2 P/z N Q

Similar to the case of the QQ quarkonium, the depend-
ence of the chromopolarizability on m, and a, can be
inferred from applying the scalings in Eq. (16) to the
definitions of the chromopolarizability of the Q' baryon
in Eq. (42). For the case of my = mg one finds:

c¥
P (my =mg) = ey (72)
Q s
(4)
C
A
ﬁgz)(mQ’ =mgy) = m3—9a4- (73)
Q K

From these expressions we can expect that ﬂg ) and ﬂg) will
be strongly dependent on the renormalization scale through
the values of m and a,. Therefore, as before, we focus our
attention on the values of the dimensionless coefficients

c¥) and ¢

The Values of Céz) and Céz) are computed numerically by
putting the system in a finite box and for a, € [0.3,0.5] and
mg € [1.5,5.0] GeV. From these numerical computations
we confirm the dependence on a; and m,, in Egs. (72) and
(73) and find the following values for the constants:
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3L
>
2L
1k
oL I I I I I I
0.0 0.5 10 15 20 25 30
me/mg
FIG. 1. Dependence of the correcting function ¢, introduced in Eq.

ﬂg ) and /fg) from Eqgs. (72) and (73) as functions of { (right).

P11, c¥a13, (74)
so that
_ ) D 94
Co=CY +CY ~24~26C,. (75)

Therefore, we conclude that for the same values of m
and a, the chromopolarizability of the QQQ baryon is 2.6
times that of the QQ meson. This results in a stronger
interaction potential from the exchange of soft gluons in the
double-Q, 0, system than in the double-QQ one.

The two main sources of the uncertainty in Cg can be
identified. The first one, of the order of 7%, is related to the
neglect of the mixing of the color-octet representations—
see Appendix D for the details. The second source is the
approximation of the fully heavy hadron by a purely
Coulombic system. As discussed above, this approximation
is accurate up to about 10% for the bottom systems, but
may provide a correction of the order of magnitude of the
central value for the charmed systems.

In the general case of my # m, one can parametrize the
heavy quark mass dependence as

C
m3—£;¢(mQ’/mQ)7 (76)
oY%s

Pa =

where the function ¢(x), normalized as ¢(1) =1 and
shown in Fig. 1 (left plot), can be approximated by

with {(x) = /1 +2/x (here x = my /mg), and n, = 1.95
and n, ~ 4.15. Equation (77) comes from the dependence
of the individual contributions to fo on the ratio £, as

Ba(C)/Ba(V3)

(76), on the mass ratio m /m (left) and the scaling behavior of

shown in the right plot in Fig. 1, and is a result of a simple
powerlike fit to a representative set of points calculated
numerically for different values of the ratio mg /m.

The upper bound on the chromopolarizability o can be
estimated by employing the same approach as in the case of
the quarkonium to arrive at the result

upper __ <R2>(§2 + 3) (78)
¢ ME|
which is shown as the dotted-dashed blue curve in Fig. 2
while the exact result (76) is given by the black solid curve.
It is also instructive to derive approximate formulas for
the chromopolarizabilities ﬂg) and ﬁgw of a fully heavy
baryon employing the same technique as in the case of the
quarkonium discussed above. To this end, we consider
approximate expressions following from Eq. (42),

5p e - oy A

..... C;}ZPPTDX .

exact
Cq

w
T

PR
-t
-

FIG. 2. The constant Cgq, as a function of {: the upper bound as
given in Eq. (78) (the blue dotted-dashed curve), the exact result
quoted in Eq. (76) (the black solid curve), and the approximate
value provided by Eq. (79) (the red dashed curve).
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TABLE II. The mean radii and chromopolarizabilities of the
fully heavy QQQ' baryons with Q, Q' = ¢, b evaluated in this
work. See Sec. II B for the discussion of the uncertainties.

State ccc ccb cbb bbb
(R) [fm] 1661026 1.4470% 0651010 0.5108
Po [GeV?] 4913 19113 6.717% 14400
¥ i <P2>
Q= 5 ’
12(T(py.ps)) + (Vos(p.4)) — Eq
2 2
» ¢ (4%
ﬁ( )~ (79)

¢ 736(T(p,.ps) + (Vor(p.d)) — Eq

where () stands for the averaging over the ground state |Q).
Given the empirical relation derived for the quarkonium, it
is natural to expect that each degree of freedom (in p and in
A) will contribute an equal amount |Eq|/2 to the averaged
kinetic energy, so that <T(p/,, D,)) ® |Eq| in total. Indeed,
with this substitution, the approximate result for the
coefficient Cg"" which follows straightforwardly from
Eq. (79) agrees very well with the exact result from Eq. (76)
—see the red dashed and black solid curves in Fig. 2,
respectively.

Similar to the case of the heavy quarkonium studied in
Sec. II, the dependence of the chromopolarizability fqo
from Eq. (76) on m and a; is quite strong. As mentioned
above, the estimate from Eq. (75) is obtained under the
assumption that the same quark mass and strong coupling
constant are used in both cases, for f,, and fi. Numerical
values of the fully heavy baryon chromopolarizabilities for
the values of m,., my, and a, quoted in Egs. (27) and (28)
and discussed in Sec. II B, are listed in Table II.

IV. SUMMARY AND DISCUSSIONS

In this paper we evaluate the chromopolarizability of a
fully heavy ground-state baryon €, and find it to be 2.6
of that for the heavy meson QQ composed of the quark and
its antiquark of the same flavor. To estimate the uncertainty
of this result we notice that the approximation of a fully
heavy hadron by a purely color-Coulombic system
employed in this study predictably works well for the
ground-state heavy quarkonium and baryon composed of
the bottom quarks, that is, for bb and bbb systems. Indeed,
the corresponding mean radii quoted in Tables I and II
appear fairly small compared with the scale r,, ~ 1//c ~
1/Agep ~ 0.7 fm which roughly quantifies the relevance
of the nonperturbative interaction in the hadron. Then, for
such systems, we sum in quadrature the uncertainties which
come from the nonperturbative dynamics (about 10%) and
from neglecting the off-diagonal chromopolarizabilites
(about 7%) to obtain

Bay,,/Bi» = 2.6 £0.3. (80)

In the meantime, corrections from the nonperturbative
interaction may appear at the level of the leading order for
the ¢c charmonium and fully charmed baryon ...
Therefore, for such systems, the ratio above should be
regarded as an order-of-magnitude estimate.

We further extend our analysis to fully heavy baryons
containing different flavors of heavy quarks, Q and Q’, and
discuss the dependence of the chromopolarizability of the
baryon QQ Q' on the mass ratio m g /m . We notice that the
system cbb appears to be rather compact, with the mean
size of the same order as that of the bbb one, so corrections
from the nonperturbative dynamics for such system are
expected to be at the same level of 10% or so. In the
meantime, the ccb system is rather large, like the ccc one,
so we pretend to provide only an order-of-magnitude
estimate for it. Nevertheless, we still expect our results
for the chromopolarizabilities of such baryons to lie in the
right ballpark, especially given the large estimated uncer-
tainty in fq related to those in the quark mass and strong
coupling constant determination.

Our findings imply that the interaction from the exchange
of soft gluons in the double-Q,,, system appears
to be considerably stronger than that in the double-heavy-
quarkonium pair and, as such, provides an argument in favor
of the existence of near-threshold (bound or virtual) states in
such a dibaryon system. It is interesting to notice the fact that
lattice calculations indeed report a possible existence of
bound states in both double-Q.... [9] and double-Q;,;,; [10]
systems, with the binding energies of the order of several
MeV, in the former case (when the electric Coulomb
repulsion is neglected), and several dozen MeV, in the latter.

It has to be noticed that the current situation with the
experimental studies of the properties of fully heavy
baryons does not look very promising even in the charm
sector at the present stage; the existing experimental data
are limited to some candidates for the singly charmed
baryons [31] and only one doubly charmed baryon reported
by the LHCb Collaboration [32]. However, on one hand,
the integrated luminosity of LHCDb at the end of the planned
Run 5 will reach 300 fb~! [33], two orders of magnitude
higher than 1.7 fb~! of Run 1 from which the observation
of the Ef* was made [32]. According to the calculations
in Ref. [34], it is promising to observe the Q... and Q.. in
the data of future runs of the Large Hadron Collider.
On the other hand, there is some progress in lattice studies
of the mass and electromagnetic form factor of the fully
charmed baryons [35,36] as well as double-Q.... [9] and
double-Q;;, [10] systems. As favored by our findings
reported in this work, further experimental and lattice
searches for near-threshold hadronic molecules of fully
heavy hadrons would look like an appealing and prom-
ising task and are very likely to result in discoveries of
new two-hadron resonances.
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APPENDIX A: GENERALIZED JACOBI
COORDINATES

In this appendix we provide a generalized form of the
Jacobi coordinates in a 3-body system. We follow Ref. [37].
In particular, the center-of-mass coordinate X and the two
relative coordinates, A and p, can be introduced as

pms fiy
x; =X+ A+ ,
: \/M(m1 +my) \/ml(ml +my) ’
Mg Hm,
X, =X+ A — ,
? \/M(m1 + my) \/mz(m1 +my) ’

u(my + my)
M A, (A1)

X3:X—

where x; (i = 1, 2, 3) are the individual coordinates of the
particles, M = m; + m, + ms, and y is an arbitrary param-
eter with the dimension of mass. The inverse of Eq. (A1)
reads

13
X=— m;Xx;,
s
1= (my + my)ms (mlxl T >
ﬂM nmy =+ my 3 )
myn,
P s ) ) A

so that p can be regarded as the relative coordinate of the
particles 1 and 2 while 4 describes the separation between
particle 3 and the center-of-mass of particles 1 and 2.

The nonrelativistic kinetic term in the Lagrangian turns
to be

I~ o, 1 01
Ezmixlgzi X2+§ﬂ(/12+/’2)1 (A3)

i=1

where the arbitrary parameter y plays the role of the mass
for both motions in p and A, which makes the coordinate
transformation (A1) particularly convenient in practical
calculations. The physical observables do not depend on a
particular choice of u, so for convenience, in case of m; =
my =mgy and ms =mgy, we set u=mgy/2, so that
Egs. (A2) and (A3) turn to Egs. (31) and (33), respectively.
As an additional check we have verified that the results
reported in this paper do not depend on a particular choice
of u, as required.

APPENDIX B: DETAILS OF THE fq
CALCULATIONS

In this appendix we collect some formulas used in
Sec. III B to evaluate the chromopolarizability of the fully
heavy baryon fq.

We start from the averaged value of the interaction
potential in the color-singlet representation defined in
Eq. (59) to find that

(V) — zo’s/d05<1+ 2 2 )
® 3 ) 2\l 1Ga+pl " [ch-p]

_ 32a; - 4
~ 9zR V1+22)

where an easily verifiable master formula,

dos 1 16
7 lap + DAl 3zRVa® + b*

was used, which is valid for arbitrary numerical coefficients
a and b. The averaged Hamiltonians for the octet repre-
sentations as defined in Eq. (66) are evaluated as

(ap+ 02 = [

(hos) = / dpdAYio(p)Y o (M) ios Y 10(P) Yoo A)

sy v [dAo
— [P [ hos

L (1e 1F 2
Cmg pdpr A0 p?
aY

(1 5
3 (E " max(p, a>>

and, similarly,

(B2)
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<i10*‘> = /dﬁdiyéo(ﬁ)YTo(i)ﬁoA Yoo(ﬁ)Ym(i)

(e 12
_mQ papzp 1012 2

TN R
3 \p 2max(p,¢A))’

(B3)

m,,nm; My, 1y

where the following master formula was used:

4r |v+w|:2

1L [ aw 171 1
voow

11‘

-[3-3) - ety

Finally, the evaluation of the angular part of the integral
in Eq. (68) is done as

S Cll s [ BEpY1, 0)Y 1, (D) = 425 €L, [ dbAYl5) Yoo )0 0, )Y, B

LL, PN
=4xy i (L=0,L.=0,1, =01 =0[p|L,L,1,1))

m,.m,

= 5L15L1051ﬂ15110<lp = 0|f’z|lp = 1>

dr

=—5;16;1 061 1610,
NG 1101,001,101,0

where it was used that, for an arbitrary 3-vector v,

P —m?
-1, Lmy=y/————(—1 l, (BS
and the reduced matrix element for v, = n, reads
{1 =11 = V1. (B6)

A similar calculation was performed for the integral defined
in Eq. (69).

APPENDIX C: EVALUATION OF THE QQQ'
CONTINUUM SPECTRUM IN A 2D WELL

In this appendix we provide some technical details
related to building the continuum spectrum of the
Hamiltonians izos and floA defined in Egs. (64) and (65).

Employing the same technique as was previously used to
build the continuum spectrum of the Hamiltonian /1, in
Sec. II A, we embed the studied three-quark system in a
finite rectangle box of the size L., in each spatial
direction, so that for 0 < p, 4 < Ly, the potentials (38)
and (39) averaged as defined in Eq. (66) [see also Egs. (B2)
and (B3)] take the form

2 a1 >
Vos(p,4) = mez =+ 3 (; B M) v

and

(B4)

2 2, (1 1
Vou(p.d) = —s (

mol> 3 p_zmax(p,g,l)) (€2)

respectively.

It is convenient then to define a length scale L, =

0.197 fm (1/Ly = 1 GeV) and proceed to the dimension-
less Jacobi coordinates, p = p/Ly 4= 1/Lg, as well as
other quantities relevant for the calculation,
Zbox = LbOX/L()’ ﬁ’LQ(/) = mQ<,)L0, E = ELO (C3)
It also proves convenient to define a radial wave function
y = pAy and its dimensionless counterpart 7 which is
normalized as

Z’box i‘hnx ~ ~
[ [anear=1 ()
0 0
and obeys the radial Schrodinger equation
L (L2 % 901D = Exp ). (C5)
g\ o TV )16 = Ex(p. ).
with
1 1 5
V(p,A) = = +zagng| = — < Co6
0.0 = 5+ g (5 - 2] (€O
or
oo 2 2 1 1
V~,j. :T——ayrh ——————=~_|>» C7
0.5 = =500 (3 -3 (€)

depending on which contribution to fq is considered.
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The boundary conditions imposed on the wave function
j read

7(0.2) = 7(Loox. 2) = (7. 0) = 7(p. Lyox) = 0.
Equation (C5) is then solved numerically using the spec-
trum method of Ref. [38].

(C8)

APPENDIX D: DIAGONALIZATION
OF THE OCTET FIELDS

In this appendix we discuss the effect of the octet fields
mixing for the fully heavy baryon Q. The effective
Lagrangian at leading order reads

Loxvacn = / BPpd*2{S'[ioy — V]S + A'[idy — V*]A

+ O'[iDy — V°]0}, (D1)
where O = (04, 05) and
Vv Vv
Vo — < o4 oAS ) (DZ)
VoAS VOS

The diagonal octet potentials V1 and Vs are quoted in
Egs. (38) and (39), respectively, and the off-diagonal
mixing term reads [24]

v ‘__\/§a5< 1 )
¢ 2 \p+al lp-cal)

To deal with the octets mixing term one can follow two
equivalent approaches. One possibility is to resum the
mixing potential insertions in the octet propagators [24].
The other possibility, which we employ below, is to
diagonalize the octet potential matrix. Thus we define
the rotation matrix,

(D3)

cosfd, —sind,
R=1| . , (D4)
sinf, cos@,
which diagonalizes the potential matrix,
RTVR = diag(V_,V_). (D5)
Then it is easy to find that
2
sin26, = Vo
\/(VOA - VOS) + 4V0AS
Vor = Vs
c0s20, = o "o (D6)

\/<V0A - VoS) + 4V0A5

and

1

Now we can express the interaction Lagrangian in Eq. (40)
in terms of the rotated octet fields by using O = RO,

ESKI}?QCD:/CP d3/1{ \/_[Slp gE“(cos8,05%

. ¢ -
+sinf,0%%) +H.c.| -—=[STA- gE*(cos 0,04
) I=3 %[ gE“(
—sin@,0%) —l—H.c.]}. (D8)
Then for the chromopolarizability we find
pa =P8 +BS +B5" (D9)
where
1 1 .
ﬂg = <Q|p sinf, ——sin0,
hy, = Eq
1
+ cos @, =————cos Ho)p|£2>, (D10)
hos — Eq
2
. 1
Y = ¢ Q l(cos 0,~——cosb,
/Q 36< | hDA - Eq
1
+ sin QOA—sin90>A|Q>, (DI11)
o5 — Ea
- 1
Y — Q <sm 0, ~———cosf,
/Q 6\/_< |p h@A _ EQ
1
—cos 6§, ————sin 90>/I|Q>, (D12)
ho, = Eq
and the Hamiltonians take the form
i:l() = T(val’&) + V+(ﬂ A)
ho, = T(0,p2) + V_(p.2). (D13)
Consider first the mixed term,
~(p2) _ H(ph ~(pA
0 = B5Y A1 - B3V1s). (D14)
where
% (pi ¢ p - Asin20,
R W ol syl WO
Oy — FQ

with X = A, S. Then, employing the same approximate
approach as in Eq. (79), we can write
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FIG. 3. Left plot: the ratio of the mixed coefficient ng to the full coefficient Cq (the black solid curve) and the individual
contributions to this ratio. Right plot: the approximate coefficient Cq evaluated for the zero (the red dashed curve) and nonzero (the blue
dot curve) mixing compared with the exact result obtained for zero mixing—see Eq. (76) (the black solid curve).

(1) 8]~ — e (p-Asin26,,)
° 12V3(T(p,.p2)) +(V_(p.4) = Eq’
BV A] ~ ¢ (p-Asin20,) (D16)

T 12V3(TP,p) + (Vo A) — Eq

where, as before, () stands for the averaging over the
ground state [Q) and (T(p,.p,)) = |Eq|. The correspond-
ing coefficients Cgi) [S] and Cg’i) [A] are shown in the left
plot in Fig. 3. From this plot one can conclude that the

mixed term Bg”{) provides a contribution to the full
|

chromopolarizability at the level of few percent (see the
black solid curve) and as such can be neglected. This result
should not come as a surprise given that the octets mixing
potential (D3) is antisymmetric with respect to the coor-
dinates inversion, p — —p and A — —A, while we consider
the ground-state baryon made of heavy quarks with the
wave function symmetric with respect to this coordinates
change.

We now turn to the diagonal contributions given in
Egs. (D10) and (D11) and rewrite them using the same
approximation as was used above for the mixed term,

50 1 < (p?sin®0,) N (p*cos®d,) >
¢ T2 \(T(p,p)) +(Vi(p.A) = Ea  (T(p,.ps) + (V_(p.4) = Ea)’
2 2e0s2 2652
,Bg) zé’_( ] (A*cos6,) L (A*sin®6,,) ) (D17)
36 \(T(p,.p,)) + (Vilp.A)) —Eq  (T(p,.ps)) +(V-(p.4)) — Eq
The result of the direct numerical calculation based on Bo ~ 'Bgﬁ +ﬁg) ~ ﬂg> + ﬂg), (D18)

Eq. (D17) is shown in the right plot of Fig. 3 and compared
with both the exact result without octets mixing [for
0, =0; see Eq. (76)] and a similar approximate result
also obtained in neglect of the mixing [see Eq. (79)]. Thus
one can see that the difference between the above three
curves is small and can be regarded as a systematic
uncertainty.

Summarizing the results obtained in this appendix one
can state that

which justifies working in the zero-mixing approximation
in Sec. IIL

The mixing term ﬂg’w is then treated as a source of the
systematic uncertainty; from the left plot in Fig. 3 one can

see that the corresponding contribution Cgl)

exceed about 7% of the total Cgq.

does not
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