
What are the Practices for Secret Management in
Software Artifacts?

Setu Kumar Basak∗, Lorenzo Neil†, Bradley Reaves‡ and Laurie Williams§
North Carolina State University, USA

Email: ∗sbasak4@ncsu.edu, †lcneil@ncsu.edu, ‡bgreaves@ncsu.edu, §lawilli3@ncsu.edu

Abstract—Throughout 2021, GitGuardian’s monitoring of pub-
lic GitHub repositories revealed a two-fold increase in the
number of secrets (database credentials, API keys, and other
credentials) exposed compared to 2020, accumulating more than
six million secrets. A systematic derivation of practices for
managing secrets can help practitioners in secure development.
The goal of our paper is to aid practitioners in avoiding the
exposure of secrets by identifying secret management practices
in software artifacts through a systematic derivation of practices
disseminated in Internet artifacts. We conduct a grey literature
review of Internet artifacts, such as blog articles and question
and answer posts. We identify 24 practices grouped in six
categories comprised of developer and organizational practices.
Our findings indicate that using local environment variables and
external secret management services are the most recommended
practices to move secrets out of source code and to securely
store secrets. We also observe that using version control system
scanning tools and employing short-lived secrets are the most
recommended practices to avoid accidentally committing secrets
and limit secret exposure, respectively.

Index Terms—secret management, practices, empirical study,
grey literature, secure development

I. INTRODUCTION

In March 2022, GitGuardian stated that the number of

secrets exposed on public GitHub repositories doubled in 2021

when compared to 2020, reaching a total of over six million

secrets [1]. Software uses external web services for essential

functionality. APIs for payment systems, location services, and

social networking platform integration, to name a few, are all

examples of external web services. To perform authentication

across software artifacts as part of system integration, software

developers need secrets (database credentials, API keys, and

other credentials). During software development, these secrets

may need to be shared by developers working on a team, and

after deployment may need to be distributed to applications.

In 2019, Meli et al. studied a 13% snapshot of public

GitHub repositories and found over 200K API keys and

tokens checked into the repositories [2]. Secrets are not only

pushed into version control system (VCS) repositories by

developers but they are also kept in Android and iOS appli-

cation packages. One in every 200 Android apps is leaking

sensitive information, such as Twitter and AWS API keys [3],

according to a security research firm that reverse-engineered

approximately 16K Android apps. Secrets in software artifacts

(CWE-798: Use of Hard-coded Credentials [4]) have also

been identified as a CWE Top 25 Most Dangerous Software

Weaknesses [5].

The presence of software secrets in VCS repositories neces-

sitates the integration of adequate secret management practices

for secure development. However, such integration may be

difficult due to the lack of a comprehensive set of practices

related to managing secrets. For example, developers seem

to query online forums to find the best practices for storing

secrets [6]. Secret management practices can be derived sys-

tematically to help practitioners in limiting the exposure of

secrets. In addition, the derived set of practices can be utilized

by practitioners as a comparison point for their existing secret

management practices.

Analyzing Internet artifacts, such as blog articles and online

forum question and answer (Q&A) posts, is one way to derive

secret management practices in software artifacts. In previous

studies, the importance of Internet artifacts has also been

recognized in determining security practices [7], [8].

The goal of our paper is to aid practitioners in avoiding
the exposure of secrets by identifying secret management
practices in software artifacts through a systematic derivation
of practices disseminated in Internet artifacts.

We answer the following research question: RQ: What are
the practices used by practitioners for secret management
in software artifacts?

We conducted a grey literature review [9] and collected 54

Internet artifacts, such as blog articles and Q&A posts. From

the collected Internet artifacts, we conducted a qualitative

analysis approach called open coding [10] and determined

practices that are specific to secret management in software

artifacts.

Our contribution is a set of practices that practitioners can

follow to avoid exposure of secrets in software artifacts.

The rest of our paper is structured as follows: The method-

ology used in our work is described in Section II. We provide

our findings in Section III. Section IV summarizes previous

research findings that are pertinent to our paper. The implica-

tions and limitations of our paper are addressed in Section V

Finally, Section VI draws the paper’s conclusion.

II. METHODOLOGY

To identify practices used by practitioners for secret man-

agement in software artifacts, two authors conduct a grey

literature review independently. Grey literature is defined as

“... literature that is not formally published in sources, such as

books or journal articles” [9]. A grey literature review differs

from a systematic literature review (SLR) or a systematic

69

2022 IEEE Secure Development Conference (SecDev)

978-1-6654-7182-4/22/$31.00 ©2022 IEEE
DOI 10.1109/SecDev53368.2022.00026

20
22

 IE
EE

 S
ec

ur
e

De
ve

lo
pm

en
t C

on
fe

re
nc

e
(S

ec
De

v)
 |

 9
78

-1
-6

65
4-

71
82

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SE

CD
EV

53
36

8.
20

22
.0

00
26

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An overview of our grey literature review methodology.

mapping study (SMS) as researchers leverage peer-reviewed

literature indexed in scholar databases in the case of SLR or

SMS. Grey literature review, on the other hand, makes use

of non peer-reviewed artifacts such as online videos, blog

articles, and Q&A posts that are available on the Internet [11].

Grey literature provides better coverage of emerging research

topics [7], [12]. We are inspired by academics who have

analyzed Internet artifacts to determine security practices that

can be used in the software development process [7], [8]. We

hypothesize that by collecting and analyzing Internet artifacts

systematically, we can find practices for secret management

in software artifacts.

Figure 1 shows a summary of our grey literature review

methodology. The following is a breakdown of each stage in

our methodology.

A. Search Internet Artifacts

Using a set of search strings, we collect Internet artifacts.

As our research study focuses on the practices for managing

secrets in software artifacts, we begin with the search string

“practice for managing secrets in source code”. Next, we

choose the top 100 results determined by Google search

engine’s page rank algorithm as a search stopping criteria [12]

and collect the results. We observe practitioners referring to

“secrets” as “credentials”, “passwords” and “sensitive informa-

tion” based on a manual examination of the 100 search results.

Based on the observations above, we include these keywords

as part of the search construction process and conduct our

search procedure using four search strings, which are stated

below:

• practice for managing secrets in source code

• practice for managing credentials in source code

• practice for managing passwords in source code

• practice for managing sensitive information in source

code

Altogether, we collect 400 Internet artifacts, 100 for each

of the four search strings. To avoid a conflict with the authors’

browsing history, we search in incognito mode of the Google

Chrome browser.

Fig. 2. Application of inclusion criteria on our grey literature dataset to collect
the set of 54 Internet artifacts that we use in our study. Grey literature dataset
is available online [13].

B. Apply Inclusion Criteria

To find Internet artifacts relevant to our research study, we

use the following inclusion criteria:

• The artifact is not a duplicate of another artifact;

• The artifact is available for reading;

• The artifact is written in English; and

• The artifact discusses at least one practice for secret

management in software artifacts

We determine 54 Internet artifacts after applying the inclu-

sion criteria. Three Q&A posts and 51 blog articles comprise

our collection of 54 Internet artifacts. Figure 2 depicts a

detailed breakdown of our filtering procedure.

C. Find Secret Management Practices

We apply open coding [10] to our collected grey literature

artifacts. Open coding is a qualitative analysis technique that

can reveal the underlying theme from unstructured textual

information [10]. Open coding is widely utilized to identify

patterns from Internet artifacts [7], [14]. The first and second

authors review each Internet artifact and extract the stated

practices as part of the open coding process. After the first

and second authors finish their open coding individually, the

identified practices are cross-checked by both authors. We

use a negotiated agreement [15] to resolve the disagreed-upon

practices. Negotiated agreement is an approach to discuss the

disagreements among the raters in an effort to resolve disagree-

ments when two or more raters code the same artifacts [15].

We resolve disagreements either by discarding practices that

are not suitable for managing secrets or combining similar

practices into one practice. We group each identified practice

into a category that solves a specific issue of secret man-

agement, such as developer practices for avoiding accidental

70

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

secrets commit or organizational practices to enforce policies

for secrets protection.

III. RESULTS

Based on our findings, we identified 24 practices classified

into six categories. In the following subsections, we provide

the details of the identified practices of each of the six

categories and the number of Internet artifacts that discuss

the practices. For example, the ‘Practices for Keeping Secrets

Out of Source Code (OSC)’ category has four practices, and

18 of the 54 Internet artifacts mention the ‘OSC-1: Use Local

Environment Variables’ practice.

A. Practices for Keeping Secrets Out of Source Code (OSC)
Beyond allowing developers to set permissions on their

accounts, VCS does not ensure the security of secrets to

remain in a secured and controlled environment. Practitioners

recommend the below four practices to keep secrets out of

source code or VCS repositories.

1) OSC-1: Use Local Environment Variables (18): Local

environment variables, which are dynamic objects defined

outside of the application and used to avoid storing secrets in

VCS or configuration (config) files, are recommended by prac-

titioners. The Twelve-Factor App methodology [16] is a set

of 12 language-agnostic guidelines for building software-as-a-

service applications with portability and resilience. The third

factor, Config principle of the Twelve-Factor App method-

ology, also states that config information should be kept as

environment variables and injected into the application at

runtime [16]. Libraries, such as dotenv [17], can be used

to load variables into the running process. Without modify-

ing any code, environment variables can easily be changed

between released versions. On the other hand, practitioners

also advise avoiding local environment variables for client-

side applications as secrets can be extracted using the browser

dev tools [18].

2) OSC-2: Move Secrets to Configuration File (15):
Practitioners recommend moving secrets to external config

files such as web.config and config.yaml files. Config

files are environment-specific and can be updated at any

time without redeploying the application, as the lifecycle

is independent of the application. Instead of checking the

original config file into VCS, developers are suggested to

add a template config file. The template config files such

as database.sample.yaml file of Ruby on Rails and

web.default.config file of ASP.NET will contain min-

imum configurations with dummy values which developers

will replace in their development environment. Using template

config files reduces the chance of secrets being checked into

VCS, thus preventing potential secret exposure.

3) OSC-3: Ignore Sensitive Files (11): Practitioners rec-

ommend to avoid committing sensitive files, such as .env and

.config files, into VCS repositories. Even a .DS_Store (a

hidden file present in every folder on an OS X system) can

leak the names of the files and folders present on a web

server. A search on GitHub for .DS_Store returns more

than 800K results [19]. To avoid committing sensitive files,

all repositories should include a .gitignore file. GitHub

has published a collection of useful .gitignore templates

for different technologies [20].

4) OSC-4: Add Server-Side Implementation for Client-Side
Applications (2): Secrets present in client-side applications,

such as Javascript and Android applications, can be exposed

by the developer console or by decompiling the binary files

(APK or iPA files) [3]. To avoid keeping secrets in client-

side applications for fetching data from different web services,

practitioners recommend implementing the web service func-

tionality on the server-side. The server will use the appropriate

secrets and fetch data for the client-side, thus removing the

necessity to keep secrets in client-side applications.

B. Practices for Securely Storing Secrets (SSC)
Developers can store secrets insecurely in source code or

VCS repositories. Practitioners recommend the following three

practices to store secrets securely.

1) SSC-1: Use External Secret Management Systems (28):
As emails can be forwarded and messaging applications

can be hacked, practitioners recommend to avoid sending

secrets through emails or any messaging applications, such

as Microsoft Teams or Slack. Only one compromised account

is enough to expose sensitive data. When secrets are ex-

changed through internal networks, bad actors can use secrets

to migrate laterally between services. Instead, practitioners

recommend to use external secret management systems, such

as HashiCorp Vault [21], AWS KMS [22] and Knox [23].

These hardware security modules can safely store secrets

with tightly-controlled access. Developers can be assigned to

groups based on the teams they work on, and secrets can be

shared with the groups by granting proper permissions. If any

developer switches teams or leaves the company, the secrets

used by the developer can easily be invalidated using external

secret management systems. The ability to set up dynamic

secrets, lease-based secret management (limiting access for

a fixed period before automatic revocation), and audit trails,

which allow administrators to check for any breaches, are other

important features. The ability to rotate secrets over time by

giving specific states for secret versions is a unique feature of

Knox that is not found in other systems. A secret version can

be tagged as ‘primary’ to denote that the secret is the current

recommended, ‘active’ to denote that the secret is still usable,

or ‘inactive’ to denote that the secret is disabled. Administra-

tors can use this mechanism to roll secrets across machines

without impacting the service. External secret management

systems minimize human involvement in creating, distribut-

ing, and maintaining secrets. Practitioners have recommended

SSC-1 practice the most among all the practices for managing

secrets, though a significant investment of time and money is

needed.

2) SSC-2: Store Encrypted Secrets (14): Practitioners rec-

ommend avoiding Base64 encoding of secrets as encoded

secrets can be decoded easily. Instead, for a project having

a single developer or a small team, practitioners suggest

71

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

encrypting secrets-containing files in VCS. Several tools such

as git-crypt [24] and git-secret [25] which use GPG

to encrypt content are available for encrypting sensitive files

containing secrets. Technologies, such as Ruby on Rails,

starting with Version 5.1, have included built-in capabilities

to encrypt secrets with VCS [26]. Though developers have

to manage encryption keys securely (keep out of VCS) and

no role-based access control of secrets is present, the benefit

of using encryption tools is that the implementation does not

need additional infrastructure.

3) SSC-3: Private Repositories Are Not Safe (2): One

practitioner stated: “A secret in a private repo is like a
password written on a $20 bill, you might trust the person
you gave it to, but that bill can end up in hundreds of peoples
hands as a part of multiple transactions and within multiple
cash registers” [27]. Since repositories can be forked into new

projects and cloned onto new machines, secrets present in the

history of a repository will be propagated to the forked and

cloned repositories. Only one compromised developer account

or a misconfiguration will be enough to get access to all

secrets present in private repositories. For example, in 2021,

a repository misconfiguration of setting the default username

and password combination of admin/admin resulted in

Nissan source code being exposed online [28].

C. Practices to Limit Secrets Exposure (LSE)
Practitioners recommend below four practices to limit the

exposure of secrets.

1) LSE-1: Use Short-lived Secrets (15): Short-lived secrets,

according to practitioners, prevent previously-undetected data

breaches from becoming a threat by terminating access even

if the breach is not identified. If a validity period cannot be

assigned to secrets, practitioners advise revoking and redis-

tributing the secrets periodically. Practitioners also suggest

rotating and redistributing the secrets correctly to avoid any

failure. For example, in 2021, Microsoft Azure experienced a

14-hour downtime due to an error in secret rotation used for

authentication [29].

2) LSE-2: Restrict API Access and Permissions (8):
Because attackers frequently use secrets within their scope,

detecting when they are doing so maliciously may be challeng-

ing. Practitioners suggest that damage and lateral movement

can be limited by restricting access and permissions to secrets.

For example, a leaked AWS S3 key, which had the permission

to spin up AWS EC2 instances, resulted in a $6000 bill

overnight as an attacker spun up 140 instances [30]. IP white-

listing adds another degree of protection against attackers who

try to exploit APIs maliciously. For example, GitHub IP white-

listing [31] can be employed to restrict insecure sources from

accessing the repositories. External service users can set API

key usage restrictions by making API keys accessible from

specific URLs. The key will be useless to attackers if attackers

cannot invoke the service from the allowed URLs. A daily

limit on API key usage should also be set to avoid bill spikes.

3) LSE-3: Revoke Secrets and Sanitize VCS History (6):
Secrets will not be removed entirely by removing them in

another commit, as secrets will remain in the VCS history.

Practitioners advise sanitizing VCS history in two steps.

The first step is to revoke the secrets present in the code.

The second step is to purge and rewrite the VCS history

using tools such as git-filter-branch [32], BFG repo
cleaner [33], or git-filter-repo [34]. GitHub docu-

mentation [35] suggests using BFG repo cleaner instead

of other tools. To avoid anomalies, the best practice is to close

all pull requests before scanning VCS history using the tools.

GitHub suggests contacting them with the repository name to

clear the secrets from their cache and advised to tell the project

collaborators to do git rebase instead of git merge as

merge can introduce some of the tainted history [35].

4) LSE-4: Audit All Code Uploaded to VCS and Review
VCS Audit Logs for Suspicious Activity (4): Practitioners

recommend auditing all code uploaded to VCS on a regular

basis. For example, legacy code may be used as part of an

organization’s new software. The problem with integrating

legacy code is that what was once secure might not be

anymore, as secrets may be present in legacy code. Therefore,

auditing any code uploaded to VCS will be advantageous

for the software’s long-term integrity, even if the procedure

is time-consuming. The administrator of an organization can

also review the activities of other team members using the

audit log feature of VCS. Suspicious activities can be flagged

and tracked by constructing a trace profile based on the user’s

activity, the action’s location, and the time of the event. For

example, GitLab [36] provide the archive of audit logs where

the admin can search for events between any period or any

specific user action.

D. Practices for Avoiding Accidental Secrets Commit (ASC)

Developers can accidentally push secrets into VCS repos-

itories. Practitioners recommend the below three practices to

avoid accidental committing of secrets.

1) ASC-1: Use VCS Scan Tools (16): Though code reviews

can detect logical flaws and maintain coding practices, prac-

titioners do not recommend relying on code reviews to detect

secrets. If secrets are added in one commit and removed in

another commit, the net difference in code changes will be

zero. The reviewer only sees the net difference, but secrets

will remain in the VCS history, thus allowing an attacker

to find secrets from the prior revisions. Practitioners recom-

mend running VCS scan tools such as TruffleHog [37],

Gitrob [38] and git-all-secrets [39] in the VCS

repository to find out the presence of secrets. Via a

pre-commit hook, VCS scan tools can reject any commit

containing secrets that manual searches and reviews will

miss. VCS scan tools can also find secrets buried in logs

and histories. VCS scan tools are also recommended to use

with continuous integration or continuous deployment (CI/CD)

pipelines to actively break build/deploy when secrets are found

in source code. Practitioners also mention that VCS scan tools

will return a lot of false positives, which developers will need

to filter manually [40].

72

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

2) ASC-2: Add Files to the Staging Area Explicitly (5): One

simple practice suggested by practitioners to avoid exposing

secrets accidentally is to add files explicitly in the VCS staging

area. Developers should avoid using wildcard commands (git
add -A, git add . and git add *) when adding files

to have full control over what is committed. One practitioner

also suggested: “Committing early and committing often will
not only help navigate file history and break up otherwise
large tasks, in addition it will reduce the temptation to use
wildcard commands.” [27].

3) ASC-3: Use VCS Hooks to Check Files Prior to
Committing (5): To prevent secrets from pushing into

VCS repositories, practitioners advise implementing VCS

hooks [41] which allow scripts to be executed before or after a

specific action in the VCS repository. The pre-commit and

post-commit hooks can be used to filter and smudge secrets

before commit or after pull, respectively [42]. Each contributor

to the VCS repository needs to set up VCS hooks individually.

According to practitioners, VCS hook scripts need extra effort

to write properly since putting all of the secret behavior in the

script is challenging.

E. Practices for Managing Secrets in Deployment (MSD)
Developers can expose secrets during deployment. Practi-

tioners recommend the following four practices to manage

secrets in deployment securely.

1) MSD-1: Use Secret Variables in CI/CD (6): Practitioners

recommend removing hard-coded secrets from CI/CD scripts,

and use the secret variables of the build/deploy systems, such

as Heroku [43] and Azure Pipeline [44]. VCS such as

GitHub [45] and GitLab [46] have also secret variables which

can be used in the CI/CD pipeline. The secret variables are

set as environment variables in the deployment environment

and hidden from any logs. Practitioners also suggest keeping

secret variables settings disabled for pull requests to avoid

inadvertently passing secrets during builds for pull requests.

2) MSD-2: Use Configuration Management Systems (4):
The configurations of different machines are coordinated

by Configuration Management System (CMS) tools from

a centralized location. Practitioners recommend using se-

cret management systems supported by CMS tools, such

as Chef-Vault [47] and Ansible-Vault [48]. Using

shared secrets, these CMS tools keep secrets out of revision

history and from other machines. Secrets can be distributed to

specific machines using the same mechanism which ensures

each machine receives the correct configuration.

3) MSD-3: Use Different Secrets for Each Environment
(3): Practitioners recommend to avoid using the same secrets

for multiple environments so that exposure to the secrets of

one environment does not compromise other environments.

The secrets of production environments should be different

from development or pre-production environments. Practition-

ers also recommend keeping production environment secrets

limited to a small set of owners to avoid the risk of failure.

4) MSD-4: Keep Dot Files out of Root Directory (2): Dur-

ing deployment, practitioners recommend keeping dot files,

such as .git, .gitignore and .env files, out of the root

directory. Proper access restrictions should be applied to dot

files on production servers to avoid exposing secrets [49]. If

the .git folder is not kept out of the root directory, then the

whole history of committed changes will be exposed to the

attacker. Previous research [2] has also found secrets in the

.gitignore file despite the .gitignore file is designed

to restrict unintended source files committing into VCS.

F. Organizational Practices to Enforce Policies for Secrets
Protection (OEP)

Organizations can adopt general practices to enforce policies

in VCS for developers. These general practices can minimize

vulnerabilities which in turn helps in avoiding exposure of

secrets. Practitioners recommend the below six practices for

enforcing policies.

1) OEP-1: Tightly Manage Developer Permissions (6):
According to practitioners, organizations should follow the

principle of least privilege. Organizations should not give

developers more permissions than the required scope, such as

changing repository visibility and adding external contributors.

If the repository contains secrets, the more developers who

have permission to change the visibility of the repository,

the higher the risk of failure. For example, GitHub has

organization-level settings to restrict the ability to change the

visibility of the repository to anyone with admin access or

organization owners [50]. One practitioner stated: “The higher
the turnover of external contributors, the higher the security
risks” [51]. External contributors can be strictly managed to

reduce the number of redundant developers and their access

to the repositories. Limiting access and permission-granting

privileges to organization owners is one way to handle external

contributors. For example, GitHub has organization-level set-

tings for allowing the permission to add external contributors

to the organization owners only [52].

2) OEP-2: Enforce Two-Factor Authentication (6): To pre-

vent source code leakage via insecure developer accounts,

practitioners recommend enforcing two-factor authentication

(2FA). When logging into VCS, such as GitLab and GitHub,

2FA provides an added layer of security which can be enforced

through organization-level settings [53], [54].

3) OEP-3: Require Commit Signing (3): A malicious user

can push exploitable code into VCS by pretending to be

someone else and remain untraceable by altering the username

and email address in the git config. For verification and

traceability of code merge, commit signing [55], which is a

cryptographic code-signing technique, can be used. Commit

signing is done through GPG, and the signed commit gets

a ‘verified’ badge. A malicious user’s commit can easily be

traced as the commit will not have a ‘verified’ badge.

4) OEP-4: Add a security.md File (3): Practitioners recom-

mend adding a security.md file [56] in a VCS repository

to officially document security-related processes and proce-

dures, such as token accessibility, authentication requirements,

and vulnerability reporting. The security.md file can serve

73

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

as a helpful reference for developers as well as a centralized

space for the organization’s security expectations.

5) OEP-5: Implement Single Sign-On (2): SAML single

sign-on (SSO) [57] is a VCS feature practitioners recommend.

Access to VCS resources, such as specific repositories and pull

requests, can be managed by explicitly providing permissions

to resources by leveraging SAML SSO. SAML SSO also

allows to set up of approved identity providers, which enables

the organization to force the developers to sign in using

the organization’s accounts instead of privately-owned VCS

accounts [57].

6) OEP-6: Disable Forking (1): A Git feature called fork-

ing allows a developer to duplicate a repository and is useful

for testing and sandboxing. However, practitioners recommend

to disable forking. A fork can reveal secrets to the public

though the repository is originally private. With each fork,

the risk grows exponentially, resulting in a chain of security

vulnerabilities. For example, GitHub has organization-level

settings to disallow forking of repositories [58].

IV. RELATED WORK

Prior work has found that root causes for widespread secret

leakage were insecure developer practices, such as embed-

ding hard-coded credentials [59], [60], organizational issues

influencing software security vulnerabilities [40], [61]–[63],

and compromising security for functionality when managing

software dependencies [64]. Researchers have looked into

instances of such insecure developer practices within open-

source projects [2], [65], [66]. Researchers have discovered

hard-coded secrets as a very common development practice

which has resulted in thousands of repositories on open-source

coding platforms, such as GitHub and OpenStack, leaking

hard-coded secrets [2], [66], [67]. Within Infrastructure as

Code (IaC) scripts, Rahman et al. [67]–[69] looked for security

smells, which are repeating coding patterns that indicate a

security flaw. Results from Rahman’s work conclude that

developers commonly commit multiple security smells within

their development practices, and hard-coded credential is the

most occurring smell. In another study, Rahman et al. [7]

analyzed Internet artifacts and identified 12 secret management

practices related to IaC. The mentioned practices for IaC, such

as separation of vaults from VCS and secret rotation, relate

to the ‘Ignore Sensitive Files (OSC-3)’ and ‘Use Short-lived

Secrets (LSE-1)’ practices, respectively. We take motivation

from the aforementioned studies and concentrate our research

efforts on finding secret management practices for software

artifacts in general, instead of specific technology such as IaC.

V. DISCUSSION

In this section, we discuss the implications and limitations

of our paper.

Implication for Practitioners: Our derivation indicates how

secrets should be kept out of source code or VCS to avoid

being exposed. Insufficient application of practices related to

secret management can result in unfavorable outcomes. The

identified practices can help practitioners manage secrets in

software artifacts and act as a comparison point for practition-

ers with their existing secret management practices.

Implications for Researchers and Tool Developers: Further

research can be conducted in the field of secret management

by leveraging our findings. For example, researchers can

look into how many of the practices specified in Section

III are followed in commercial and open-source software.

We hypothesize that systematic follow of secret management

practices is not prevalent based on the presence of secrets in

software artifacts. If empirical studies support our hypothesis,

researchers can look into the contributing factors to ignoring

secret management practices. Our findings will also assist

tool developers in determining whether to create new tools

or improve existing ones to help practitioners manage secrets

more effectively. The false-positive rate of VCS scan tools, for

example, can be improved.

Limitations: Since the identified practices are bound to the

Internet artifacts which we analyzed in our study, our findings

are subject to external validity and may not generalize to

another collection of Internet artifacts. We account for the

constraint by employing four search strings to collect and filter

Internet artifacts in a systematic way. Manual analysis may

induce bias while identifying practices. We account for this

bias by adding a second rater who identified practices from

the same set of Internet artifacts independently. Finally, the

sets of practices of each rater are cross-checked to mitigate

bias.

VI. CONCLUSION

In addition to users, software also relies heavily on the

use of secrets for authentication and authorization, and the

exposure of secrets is increasing each day. The presence of

secrets in software artifacts substantiates the practitioner’s lack

of knowledge on securely managing secrets. A set of secret

management practices can help practitioners avoid exposing

secrets in software artifacts. To identify practices for secret

management in software artifacts, we conducted a grey lit-

erature review of 54 Internet artifacts. Our analysis identi-

fied 24 practices grouped into six categories and comprised

of developer and organizational practices. According to our

findings, the most recommended practices for moving secrets

out of source code and securely storing secrets include using

local environment variables (OSC-1) and external secret man-

agement services (SSC-1). We also observed that using VCS

scan tools (ASC-1) and employing short-lived secrets (LSE-

1) are the most recommended practices to avoid accidentally

committing secrets and limit secrets exposure. Our findings

can also be beneficial for researchers and tool developers who

can investigate how the secret management process can be

enhanced to facilitate secure development.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-

tion grant 2055554. The authors would also like to thank the

North Carolina State University Realsearch research group for

their valuable input on this paper.

74

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Segura, “The State of Secrets Sprawl 2022,” https://blog.gitguardian.
com/the-state-of-secrets-sprawl-2022, [Online; accessed May 19, 2022].

[2] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS,
2019.

[3] S. Nichols, “Popular mobile apps leaking aws keys, exposing user data,”
https://www.techtarget.com/searchsecurity/news/252500361/Popular-
mobile-apps-leaking-AWS-keys-exposing-user-data, [Online; accessed
March 25, 2022].

[4] “CWE: Common Weakness Enumeration,” https://cwe.mitre.org/data/def
initions/798.html, [Online; accessed April 28, 2022].

[5] “2021 CWE Top 25 Most Dangerous Software Weaknesses,” https://cwe.
mitre.org/top25/archive/2021/2021 cwe top25.html, [Online; accessed
May 16, 2022].

[6] “Best practice for storing sensitive connection data when connecting to
a db,” https://stackoverflow.com/questions/66070209, [Online; accessed
May 16, 2022].

[7] A. Rahman, F. L. Barsha, and P. Morrison, “Shhh!: 12 practices for
secret management in infrastructure as code,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 56–62.

[8] A. A. U. Rahman and L. Williams, “Software security in devops: Syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), 2016, pp. 70–76.

[9] C. Lefebvre, E. Manheimer, and J. Glanville, Searching for Studies.
John Wiley & Sons, Ltd, 2008, ch. 6, pp. 95–150. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470712184.ch6

[10] J. Saldaña, The coding manual for qualitative researchers, 2015.

[11] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer, Benefitting
from the Grey Literature in Software Engineering Research. Cham:
Springer International Publishing, 2020, pp. 385–413. [Online].
Available: https://doi.org/10.1007/978-3-030-32489-6 14

[12] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for
including grey literature and conducting multivocal literature
reviews in software engineering,” Information and Software
Technology, vol. 106, pp. 101–121, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584918301939

[13] “Grey literature review dataset,” https://github.com/setu1421/Secret-
Management-Practices-Grey-Literature-Review-Dataset, [Online; ac-
cessed August 23, 2022].

[14] M. M. Hasan, F. A. Bhuiyan, and A. Rahman, “Testing practices
for infrastructure as code,” ser. LANGETI 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 7–12. [Online].
Available: https://doi.org/10.1145/3416504.3424334

[15] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294–320, 2013.

[16] “The Twelve-Factor App,” https://12factor.net/config, [Online; accessed
April 22, 2022].

[17] “dotenv,” https://www.npmjs.com/package/dotenv, [Online; accessed
April 22, 2022].

[18] P. Adajah, “Best practices for managing and storing secrets
in frontend development,” https://blog.logrocket.com/best-practices-
for-managing-and-storing-secrets-in-frontend-development, [Online; ac-
cessed April 22, 2022].

[19] “Scanning the alexa top 1m for .ds store files,” https://en.internetwache
.org/scanning-the-alexa-top-1m-for-ds-store-files-12-03-2018, [Online;
accessed April 20, 2022].

[20] “Gitignore templates,” https://github.com/github/gitignore, [Online; ac-
cessed April 13, 2022].

[21] “HashiCorp Vault,” https://www.vaultproject.io, [Online; accessed
March 3, 2022].

[22] “AWS Key Management Service,” https://aws.amazon.com/kms, [On-
line; accessed March 3, 2022].

[23] “Pinterest Knox,” https://github.com/pinterest/knox, [Online; accessed
March 3, 2022].

[24] “git-crypt,” https://github.com/AGWA/git-crypt, [Online; accessed
March 23, 2022].

[25] “git-secret,” https://github.com/sobolevn/git-secret, [Online; accessed
March 23, 2022].

[26] “Ruby on rails 5.1 release notes,” https://edgeguides.rubyonrails.org/5 1
release notes.html, [Online; accessed April 21, 2022].

[27] M. Jackson, Best practices for managing and storing secrets including
API keys and other credentials, https://blog.gitguardian.com/secrets-api-
management.

[28] C. Cimpanu, “Nissan source code leaked online after git repo
misconfiguration,” https://www.zdnet.com/article/nissan-source-code-
leaked-online-after-git-repo-misconfiguration, [Online; accessed April
12, 2022].

[29] A. Hernandez, “What do we know about the microsoft azure out-
age?” https://www.venafi.com/blog/what-do-we-know-about-microsoft-
azure-outage, [Online; accessed April 20, 2022].

[30] S. Gooding, “Ryan hellyer’s aws nightmare: Leaked access keys re-
sult in a $6,000 bill overnight,” https://wptavern.com/ryan-hellyers-
aws-nightmare-leaked-access-keys-result-in-a-6000-bill-overnight, [On-
line; accessed March 19, 2022].

[31] “Keeping your organization secure,” https://docs.github.com/en/enterpris
e-cloud@latest/organizations/keeping-your-organization-secure,
[Online; accessed March 18, 2022].

[32] “Git filter branch,” https://git-scm.com/docs/git-filter-branch, [Online;
accessed April 7, 2022].

[33] “BFG Repo Cleaner,” https://rtyley.github.io/bfg-repo-cleaner, [Online;
accessed April 7, 2022].

[34] “Git filter repo,” https://github.com/newren/git-filter-repo, [Online; ac-
cessed April 29, 2022].

[35] “Removing sensitive data from a repository,” https://docs.github.com/en/
authentication/keeping-your-account-and-data-secure/removing-
sensitive-data-from-a-repository, [Online; accessed April 10, 2022].

[36] “Audit events,” https://docs.gitlab.com/ee/administration/audit events.ht
ml, [Online; accessed May 13, 2022].

[37] “TruffleHog,” https://github.com/trufflesecurity/truffleHog, [Online; ac-
cessed March 23, 2022].

[38] “Gitrob,” https://github.com/michenriksen/gitrob, [Online; accessed
March 23, 2022].

[39] “git-all-secrets,” https://github.com/anshumanbh/git-all-secrets, [Online;
accessed March 23, 2022].

[40] M. R. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams, “Why secret
detection tools are not enough: It’s not just about false positives-an
industrial case study,” Empirical Software Engineering, vol. 27, no. 3,
pp. 1–29, 2022.

[41] “Git Hooks,” https://git-scm.com/book/en/v2/Customizing-Git-Git-
Hooks, [Online; accessed March 21, 2022].

[42] “Smudge and clean your git working directory,” https://www.atlassian.
com/git/tutorials/saving-changes/gitignore, [Online; accessed March 21,
2022].

[43] “Heroku Config Vars,” https://devcenter.heroku.com/articles/config-vars,
[Online; accessed March 17, 2022].

[44] “Azure Pipeline Variables,” https://docs.microsoft.com/en-us/azure/devo
ps/pipelines/process/variables, [Online; accessed March 17, 2022].

[45] “GitHub Encrypted secrets,” https://docs.github.com/en/actions/security-
guides/encrypted-secrets, [Online; accessed March 17, 2022].

[46] “GitLab CI/CD variables,” https://docs.microsoft.com/en-us/azure/devop
s/pipelines/process/variables, [Online; accessed March 17, 2022].

[47] “Chef Vault,” https://docs.chef.io/workstation/chef vault, [Online; ac-
cessed March 15, 2022].

[48] “Ansible Vault,” https://docs.ansible.com/ansible/latest/cli/ansible-vault.
html, [Online; accessed March 15, 2022].

[49] “Source code disclosure via exposed .git folder,” https://pentester.land/
tutorials/2018/10/25/source-code-disclosure-via-exposed-git-folder.html,
[Online; accessed March 10, 2022].

[50] “Restricting repository visibility changes in your organization,”
https://docs.github.com/en/organizations/managing-organization-settings
/restricting-repository-visibility-changes-in-your-organization, [Online;
accessed April 08, 2022].

[51] “Security best practices for GitHub,” https://spectralops.io/resources/ho
w-to-choose-a-secret-scanning-solution-to-protect-credentials-in-your-c
ode, [Online; accessed March 23, 2022].

[52] “Setting permissions for adding outside collaborators,” https://docs.gith
ub.com/en/enterprise-cloud@latest/organizations/managing-organization
-settings/setting-permissions-for-adding-outside-collaborators, [Online;
accessed May 08, 2022].

[53] “Requiring two-factor authentication in your organization,” https://docs.
github.com/en/organizations/keeping-your-organization-secure/managin

75

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

g-two-factor-authentication-for-your-organization/requiring-two-factor-
authentication-in-your-organization, [Online; accessed May 04, 2022].

[54] “Enforce two-factor authentication,” https://docs.gitlab.com/ee/security/
two factor authentication.html, [Online; accessed May 04, 2022].

[55] “Managing commit signature verification,” https://docs.github.com/en/au
thentication/managing-commit-signature-verification, [Online; accessed
May 14, 2022].

[56] “Adding a security policy to your repository,” https://docs.github.com/en
/code-security/getting-started/adding-a-security-policy-to-your-repositor
y, [Online; accessed May 03, 2022].

[57] “About authentication with SAML single sign-on,” https://docs.github
.com/en/enterprise-cloud@latest/authentication/authenticating-with-sam
l-single-sign-on/about-authentication-with-saml-single-sign-on, [Online;
accessed May 05, 2022].

[58] “Managing the forking policy for your organization,” https://docs.githu
b.com/en/organizations/managing-organization-settings/managing-the-fo
rking-policy-for-your-organization, [Online; accessed April 19, 2022].

[59] E. Montalbano, Medical Data Leaked on GitHub Due to Devel-
oper Errors, https://threatpost.com/medical-data-leaked-on-github-due-
to-developer-errors/158653.

[60] J. Ursem and DataBreaches.net, No need to hack when it’s leak-
ing, https://www.databreaches.net/wp-content/uploads/No-need-to-hack-
when-its-leaking.pdf.

[61] H. Assal and S. Chiasson, “’think secure from the beginning’ a survey
with software developers,” in Proceedings of the 2019 CHI conference
on human factors in computing systems, 2019, pp. 1–13.

[62] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security
errors?” in 2011 IEEE symposium on visual languages and human-
centric computing (VL/HCC). IEEE, 2011, pp. 161–164.

[63] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering,
2016, pp. 935–946.

[64] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of de-
pendency management and its security implications,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1513–1531.

[65] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 396–400.

[66] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:
Security smells in python gists,” in 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2019, pp.
536–540.

[67] A. Rahman and L. Williams, “Different kind of smells: Security smells
in infrastructure as code scripts,” IEEE Security & Privacy, vol. 19,
no. 3, pp. 33–41, 2021.

[68] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 164–175.

[69] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security smells
in ansible and chef scripts: A replication study,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 30, no. 1, pp.
1–31, 2021.

76

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 28,2023 at 11:17:49 UTC from IEEE Xplore. Restrictions apply.

