Empirical Software Engineering (2022) 27: 59
https://doi.org/10.1007/510664-021-10109-y

®

Check for
updates

Why secret detection tools are not enough: It’s not just
about false positives - An industrial case study

Md Rayhanur Rahman' @ . Nasif Imtiaz' - Margaret-Anne Storey? - Laurie Williams'

Accepted: 13 December 2021/Published online: 17 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Checked-in secrets in version-controlled software projects pose security risks to software
and services. Secret detection tools can identify the presence of secrets in the code, commit
changesets, and project version control history. As these tools can generate false posi-
tives, developers are provided with mechanisms to bypass the warnings generated from
these tools. Providing this override mechanism can result in developers sometimes exposing
secrets in software repositories. The goal of this article is to aid software security practi-
tioners in understanding why* secrets are checked into repositories, despite being warned
by tools, through an industrial case study of analysis of usage data of a secret detection
tool and a survey of developers who bypassed the tool alert. In this case study, we analyzed
the usage data of a checked-in secret detection tool used widely by a software company and
we surveyed developers who bypassed the warnings generated by the tool. From the case
study, we found that, despite developers classified 50% of the warning as false positive,
developers also bypassed the warning due to time constraints, working with non-shipping
projects, technical challenges of eliminating secrets completely from the version control his-
tory, technical debts, and perceptions that check-ins are low risk. We advocate practitioners
and researchers to investigate the findings of our study further to improve secret detec-
tion tools and related development practices. We also advocate that organizations should
insert secondary checks, as is done by the company we studied, to capture occasions where
developers incorrectly bypass secret detection tools.

Keywords Secret detection tool - Hardcoded secrets - Secrets in repositories - Credentials
in repositories

Communicated by: Sigrid Eldh and Davide Falessi

This article belongs to the Topical Collection: Software Engineering in Practice

P< Md Rayhanur Rahman
mrahman@ncsu.edu

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10109-y&domain=pdf
http://orcid.org/0000-0003-4980-7350
mailto: mrahman@ncsu.edu

59 Page2of29 Empir Software Eng (2022) 27: 59

1 Introduction

Software developers use secrets (also known as credentials) for performing authentication
among software artifacts. Secrets refer to information, such as user identifiers, passwords,
and API tokens, SSH, and encryption keys used for authentication to remote services.
Although security best practices suggest the use of secret stores, such as Amazon AWS
KMS (Amazon 2020), the use of these practices may be difficult for new or inexperienced
developers. Alternatively, developers may insert the secret in the text which can result in
secrets being stored in a version control system (VCS), either inadvertently or expressly
for ease of sharing and distribution. The presence of plaintext secrets in repositories leaves
the software vulnerable to security breaches. The presence of plaintext secrets in soft-
ware artifacts is also reported as a common software security weakness (CWE-798: Use of
Hard-coded Credentials) (MITRE 2020).

Secret key leakage in VCS repositories is a persistent problem that needs to be
addressed (Meli et al. 2019). For example, in 2020, approximately 200K patient records
were leaked due to a development mistake persisting hard-coded secrets of software arti-
facts in public repositories (Montalbano 2020). In 2019, Starbucks API keys were found in a
public GitHub! repository which could have been used to gain unauthorized access to Star-
bucks’ internal systems (Ilascu 2020; Kumar 2020). Meli et al. (2019) found approximately
200K API keys and tokens checked into public GitHub repositories, which also substantiate
the case of checked-in secrets in repositories.

Software engineering researchers (e.g., Meli et al. 2019; Rahman et al. 2019; Rahman
et al. 2020; Rahman et al. 2019) and tool vendors have developed automated tools to check
for secrets in repositories, which can be used to alert developers prior to checking in a secret.
Automated tools, such as TruffleHog? and GitLeaks>, can detect the presence of plaintext
secrets in repository branches and version history. GitHub has also added features* to help
prevent fraudulent use of accidentally committed secrets.

Despite the availability of these automated tools, developers continue to check secrets in
repositories. Overall, these phenomena indicate that the availability of secret detection tools
may not be enough to prevent developers from checking in secrets. There could be other
contributing factors. For example, not all developers use these tools consistently throughout
their development activities. Moreover, secret detection tools can also generate a high num-
ber of false positives (Saha et al. 2020) which may cause developers to lose confidence in
the use of the tool. Research efforts are underway to lower false positive rates (e.g., Sinha
et al. 2015; Saha et al. 2020; Ding et al. 2020). However, our experience indicates that true
positive warnings reported by tools might also be bypassed and secrets might be persisted
in the VCS. Hence, in this case study, our focus is on understanding the actions, behavior
and decisions of developers responding to secret detection.

The goal of this article is to aid software security practitioners in understanding why
secrets are checked into repositories despite being warned by tools through an industrial
case study of analysis of usage data of a secret detection tool and a survey of developers
who bypassed the tool alert. In this study, we ask these following research questions (RQs):

— RQ1: How often do developers bypass the warning generated by secret detection tools?

Thttps://www.github.com

Zhttps://trufflesecurity.com/trufflehog

3https://github.com/zricethezav/gitleaks

“https://docs.github.com/en/github/authenticating-to- github/removing- sensitive-data- from-a-repository

@ Springer

https://www.github.com
https://trufflesecurity.com/trufflehog
https://github.com/zricethezav/gitleaks
https://docs.github.com/en/github/authenticating-to-github/removing-sensitive-data-from-a-repository

Empir Software Eng (2022) 27: 59 Page30f29 59

— RQ2: What is the concentration of checked-in secrets in source code artifacts?

— RQ3: What is the distribution of checked-in secret activity among the developers inside
the organization?

— RQ4: Why do developers check in potential secrets despite tool warnings?

Overall, answers to these RQs could help practitioners identify factors that are respon-
sible for persisting secrets in VCS despite tool warnings. These factors could help
practitioners improve secret detection tools and related development practices. To answer
these RQs, we study an internal secret detection tool used broadly and consistently within
a software company named XTech’(see Section 3.1). Throughout this article, we refer to
this tool as the XTech Secret Detection Tool (XSDT) (See Section 3.2). The tool checks for
the existence of plaintext secrets in artifacts. The tool is applied as part of a gif® commit
and can block developers from pushing changes to a repository.” When blocked, developers
have the choice of extracting the offending file from the push and committing the other files
into git, or continuing to check-in by explicitly bypassing the XSDT warning.® The detected
secrets or the offending file(s) can be subsequently deleted, including its git history, or the
file can remain in git. Analysis of plaintext string literals to identify secrets is complex and
can generate false positives. Here, false positive refers to the incident where the XSDT tool
identifies a string literal as a potential secret, however, that string literal has nothing to do
with authentication/authorization. Due to these false positives, XSDT offers developers a
bypass mechanism. However, XTech has a secondary process to capture the occurrence of
true secrets that developers have checked in to git. The focus of the analysis in this article
is the developer activity on the first security check and identifying the potential factors that
may influence the developers to bypass the tool warning.

We analyze data from XSDT usage and its associated VCS over the period from June 1,
2019 to May 31, 2020. We then conduct a survey on a set of developers who have recently
(at the time of the survey) bypassed XSDT warnings and checked in potential secrets in
repositories.

We list our contributions as follows:

1. A quantitative analysis of

(a) developer actions regarding checked-in secrets (Section 5.1),
(b) source code artifacts associated with developer actions of checking-in secrets
(Section 5.2),

SWe anonymize the actual name of the company in this study. XTech is a surrogate name for the actual
company

Ohttps://git-scm.com/

7XTech addresses the problem of exposed plaintext secrets in engineering artifacts in multiple ways, starting
with the required company-wide training to build security awareness and communicate relevant XTech poli-
cies. Developers are advised to avoid checking in any actual secret to an engineering artifact, no matter what
the perceived risk is. In the event that a secret is exposed due to developer error or another reason, teams
must invalidate and replace the secret within a time window set by the project’s security experts. To help pre-
vent exposure and drive remediation in the case of error, security scans are integrated in multiple phases of
the engineering process, including code authoring, peer code review, and automated build pipelines. XTech
additionally maintains a centralized system that scans all developer changes on a regular basis. All these sys-
tems may block a process (such as a check-in or build) or schedule a remediation effort as a work item or
servicing ticket

8 All bypassed secrets will continue to be tracked and reported by complementary downstream XSDT scan
systems that are not part of this study

@ Springer

https://git-scm.com/

59 Page4of29 Empir Software Eng (2022) 27: 59

2. An analysis on distribution of developers inside the organization who checked in secrets
(Section 5.3),

3. an evaluation of developer rationales for bypassing secret detection warnings
(Section 6),

4. recommendations on how to reduce the occurrence of checked-in secrets (Section 8).

5. dataset used for conducting the study”.

The rest of the article is organized as follows. In Section 2, we discuss the related stud-
ies. In Sections 3 and 4, we discuss the XSDT tool and our methodology. We report our
findings in Sections 5 and 6. Finally, in Sections 7, 8 and 9, we include additional discus-
sions, recommendations, limitations, and threats to the validity of our study, followed by
the conclusion in Section 10.

2 Related Work

Software engineering researchers have focused on investigating the presence of secrets in
VCS repositories. Meli et al. (2019) conducted the first large-scale, longitudinal study of
checked-in secrets over software project repositories (13% of all public Github repositories).
This study demonstrated that the problem of checked-in secrets is vast: thousands of new,
unique keys are being leaked each day.

Researchers have also led to improvements in the performance of secret detection
tools (Sinha et al. 2015), including false positive reduction and introducing detectors for
additional languages. Viennot et al. (2014) published a set of regular expressions for detect-
ing API keys of seven service providers, including Amazon AWS, Facebook, LinkedIn and
Twitter. Saha et al. (2020) created a generalized framework to detect secrets with a low
false positive rate through a combination of an extensive regular expression list and machine
learning models. Ding et al. (2020) use known production secrets as a source of ground
truth for detecting secret leaks in code and differential code revisions with a reduced false
positive rate.

Rahman et al. (2019, 2020) proposed static analysis tools (SLIC and SLAC) to detect
security smells, including hardcoded secrets and empty passwords, in infrastructure-as-
code (IaC) scripts such as Puppet, Ansible, and Chef. Rahman et al. (2019) conducted
a study of 5,822 code snippets shared on GitHub Gist and found 714 empty or hard-
coded passwords, demonstrating that developers may inadvertently propagate secrets while
intentionally sharing code. Bunyakiati and Sammapun (2019) examined approaches for
managing and handling secrets when developing mobile applications, including the devel-
opment of pedagogy, tool support and design patterns for secret management and handling.
Meanwhile, researchers also focused on developers’ perceptions of static analysis tool use.
For example, Johnson et al. discussed the challenges that cause miscommunication and
confusion among developers while using program analysis tools (Johnson et al. 2016).

Overall, these studies discuss the prevalence of checked-in secrets, secret detection tools,
and the associated challenges developers face while using the tools. However, there has been
little research to understand the behavior of developers and the decisions they make related
to checking in secrets. This study addresses this gap and provides insights on developer
behaviour when using secret detection tools.

9the dataset are included as supplementary information files

@ Springer

Empir Software Eng (2022) 27: 59 Page 50f29 59

3 XTech and XTech Secret Detection Tool (XSDT)
3.1 XTech

We conduct our study on a US-based software company having the anonymized name of
XTech. We present information about XTech in this subsection without providing specific
details to protect the anonymity of the company. Software and services development is the
primary business activity of this company for more than ten years. Most of their products
are developed in-house. The number of full-time software developers/engineers is more than
one thousand, and they are from various countries and cultures working both in in-house
and remote capacities.

3.2 XTech Secret Detection Tool (XSDT)

Once a secret in an engineering artifact is pushed to a VCS, the secret is exposed to all
engineers having access to the repository. A complete fix requires purging the secret entirely
from VCS history, invalidating and replacing the secret. To reduce this remediation cost,
the XTech Secret Detection Tool (XSDT) analyzes all check-ins (also known as a push in
git terminology) submitted by developers to the VCS. XSDT is integrated with the internal
VCS services that store the majority of XTech project code. XSDT automatically scans each
check-in and blocks persisting them to the VCS if one or more potential secrets are detected.
Developers are notified when their submission is blocked using the same mechanisms that
report errors provided by the VCS (such as error messages shown in git bash). In this study,
we refer to the notification generated by XSDT as a warning. Developers can choose one of
the following actions when they receive an XSDT warning:

— Remove: remove the secret from the code artifact and commit history.

— Abandon: remove the offending file from the check in, or abandon working on the
branch where the potential secret is embedded!”.

— One-time bypass: include a special string in the commit message after which XSDT
will allow the developer to bypass its scan and persist the check-in to the repository'!.

— Permanent bypass: suppress the XSDT warning by putting a special string in a spec-
ified metadata file or in the files where the potential secrets are embedded. When
subsequently scanning the artifact, XSDT will detect the special strings and will not fire
warnings for the suppressed potential secrets. Thus, developers can permanently bypass
XSDT warnings for a specific occurrence of a pattern in the code containing potential
secrets. Because permanent bypasses are rendered in the source or as part of a separate
metadata file under source control, they serve as documentation for the security review
process.

The potential developer actions can be categorized into two action types:

— prevention of the potential secrets detected by XSDT from being persisted to the VCS
— bypass of the XSDT warning

10XSDT considers a branch abandoned if there is no further activity on the warning within the next three days
1 All bypassed secrets will continue to be tracked and reported by complementary downstream XSDT scans
that are not a part of this study.

@ Springer

59 Page6o0f29 Empir Software Eng (2022) 27: 59

Removing potential secrets or abandoning the check-in process fall into the prevention
category. One-time bypass or permanent bypass fall into the bypass category. The final
outcome of a XSDT warning, thus, is one of the following:

— Blocked. No potential secret is checked in to the repository because the developer
removes the blocked code pattern (code patterns containing potential secrets) or aban-
dons the check-in. The outcome is the elimination of risk, if any, associated with the
warning

— Exposed. A potential secret is checked in to the repository if the developer chooses a
one-time bypass or permanent bypass. Risk is increased for these actions (in the case
of a true positive) because the secret is exposed to anyone with access to the repository.
The cost to remediate is also significantly increased, as the exposed secret (in the case
of a true positive) must be invalidated and replaced, rather than simply removed from
the commit history.

XSDT can be deployed to comprehensively scan all artifacts in a code base. When ana-
lyzing check-ins on pushes, however, XSDT reporting is intended to be constrained to
potential secrets that are newly introduced by a developer (to prevent the corresponding
increase of risk due to any new exposure). XSDT should not, by design, report on the
presence of potential secrets that already existed in the VCS. These secrets, when true posi-
tives, are already compromised and should be invalidated and replaced. XTech implements
other scanning systems as a supplemental security activity that reports XSDT warnings for
already checked-in code. This secondary process captures secrets that developers bypass in
the original check. This study focuses solely on the initial XSDT scanning of incremental
changes to code.

4 Methodology

The research methodology of our study is embedded in a close collaboration among
researchers and organizational members to gain insight on the problem of checked-in
secrets, how the secret detection tools can help mitigate the problem, and what actionable
solutions can be derived to motivate the developers to stop checking in secrets. The first and
second authors participated in this collaboration along with two organizational members.

The usage data of the XSDT and associated VCSs are collected and stored as snapshots
in internal databases. This usage data can be a source for insights on how developers use
the tool and factors that contribute to the checked-in secret problem. As all developers are
XTech employees and the XSDT tool is consistently applied to nearly all check-ins, their
feedback on these warnings are solicited through a survey which provides a diverse and
valuable source of information on how to potentially improve the tool and to mitigate secu-
rity problems. We discuss our methodology regarding the usage data analysis and survey in
Sections 4.1 and 4.2 respectively.

4.1 Usage Data Analysis

The data we used in our study consist of the usage data of XSDT and the VCSs with which
the tool is integrated. This data is captured from the XSDT and VCS logs. XSDT produces
telemetry on every push where the telemetry includes these following information: (i) file(s)
url, (ii) repository, (iii) organization, (iv) commit identifier, (v) branch, (vi) user identifier,
(vii) session identifier, (viii) alert identifier, (ix) timestamps, (x) developer action associated

@ Springer

Empir Software Eng (2022) 27: 59 Page 7 of 29 59

with the alert.. Telemetry is analyzed to create a view of a developer session (which may
consist of multiple pushes to finalize a contribution to a branch and/or resolve a detection).
The data is stored in internal databases which are updated approximately every 10 minutes.
Metadata for repositories, branches, and pushes are also ingested from internal VCS APIs,
processed, and eventually stored in databases as well. We queried the following database
tables: warning, commit, push, repository, and authors. Information related to XSDT warn-
ings, developer action, timestamps, files, commits, versions, projects, developers, teams,
and organization are queried from this data to answer our research questions (RQ1 - RQ3),
as reported in Section 5.

4.2 Developer Survey

To answer RQ4, we conducted a survey with developers who recently bypassed a XSDT
warning. We designed the survey in an iterative manner, seeking feedback on early drafts
from both the XSDT product team and its parent team about which questions should be
included and how they should be worded. The survey was also refined based on five
informal interviews conducted with developers who have used the XSDT tool. In these
interviews, we inquired about their perceptions of the effectiveness of the XSDT tool for
identifying checked-in secrets, and how they deal with the secrets identified by the tool
during development.

We conducted two pilot surveys to improve and refine the survey. By coding open-ended
answers in the pilot surveys, we identified closed-answer responses for the survey questions
to facilitate faster survey completion and to quantify the survey results. During the pilot
surveys, we also learned that developers occasionally felt nervous responding to the survey
and worried they may be blamed for introducing security vulnerabilities in their project
code. Hence, we made the final survey anonymous.

We sent the final survey to full-time developers who had bypassed warnings in the last
seven days. We only considered developers bypassing in last seven days because our expe-
rience with the pilot surveys indicated that if we ask developers about bypass activity which
occurred many days ago, such as two weeks ago, the possibility of getting noisy response
from the developers increases. For example, the developer may forget the exact reason of
bypassing the secret. Hence, we chose seven days to limit the effect of recall bias. The
developers who participated in the final survey did not participate in any other prior pilot
surveys.

We sent each recipient a URL pointing to the potential checked in secret so that the
developer could revisit the details of the warning. The expected time to complete the survey
was less than five minutes. Although in the company, there were other employee types such
as interns and contractors, we only considered full time employees to maintain consistency
among the surveyed developers.

In Table 1, we list the questions and closed-answer response options for the survey, where
we refer to the questions as Sx and the answers as Ax.y. The objective of the survey was
to understand if the developers felt the bypass was related to a deficiency in the tool (i.e.,
a tool-related factor) or for development practices (i.e., a development-related factor. The
first question (S1) asks the developers if they believe the bypassed XSDT warning is false
positive, and if not, whether they have already or will in the future remove the identified
secret. If the developers respond that the warning is false positive (Al.1), the survey then
asks them to provide further explanations about the false positive warning in S2. If develop-
ers respond that they will not go back and remove the secret later (A1.2), the survey prompts
them to share the reasons behind their decision (S3). If the developers state that they will

@ Springer

Empir Software Eng (2022) 27: 59

59 Page8o0f29

SUaMSUD papua-uad(S
‘parep
-I[EAUT U9q Apeale sey Jo uoos sandxo I eV
*("919 ‘paroorord
-promssed st a1y ay3 ur paydAIoud st 1 ‘3-9)
suonoojold [euOnNIppE SBY [eNUIPAId Y, A4
“on[eA AJLINJAs JUBOIIUSIS YIIM €039 ‘9OTA
-19s ‘ejep Aue 309)01d 1,US20p [eNUIPAID Y], eV
‘(edKy0301d ‘Al dde
Surddiys-uou e J0J [enuopard e s1) ‘9rd e (e YooyD ‘SuIXij yom Jou SI 191098
TV -wex9 J10j) [enuapard uononpoid e jou SI I sV payoo[q 9y Aym puejsiepun sn djoy osea[q +€S
*$onssI JoYJo Jo
'y StaMSUp papua-uadQ 12V soantsod os[ey oY) IJnoqe dIoul sn [[9) AL 8
SUaMSUD papua-uad(9TV
*(9onp
-onul J0U PIP [YOIYm) 9pod Y} Ul PASIXd
KpeoIfe jey) Suryiowios I0J payoo[q sem | SIV
*9AOWIAI
0] PUAIUT 9M JBY) [BNUIPAID [ENIOE UL SBM I] IV
)1 POAOWIAI Apealfe
OABY oM pUE [EIJUOPAIO [emjoe U Sem] IV
*J1 9A0WAI 0} Yoeq 03
JOU [[IM 9M PUB [BUSPAIO [BNJOR UB SBM I] TV
aanisod
os[ej e 10 (9apisod onn e) djeInode sem
possedAq A[Juedar noA jey) Jnsar Juruueds
QUON * [eIUSPAIO [ENIOE UE JOU St J] 'V 10100S U} JoyJayMm puelsiopun sn djoy asea[q «IS
‘puoddag JIMsuy PI'V uonsanQ) PIO

sosuodsar Jomsue-paso[d pue suonsanb LoaIng | a|qel

pringer

A's

Page 9 0of 29 59

Empir Software Eng (2022) 27: 59

121038 10J WAUOUAS © SI [BIUIPAID ‘A9AINS SIY) UT L

K1oyepuBW QIR () MSLISISE UL YIIM PIyIew suonsand)

“MOUY SN J9[
aseard ‘joo3 sty Suraoxdwir 10§ suonsa3Ins 10
s[enuapad pasodxa Surtaowar pue 3unoop

QUON A2MSUD papua-uadQ 1SV Jo wvrqoid ay) uo sjuaWWOod Aue dARY NOA JT GS
A20ASUD papua-uad() 9PV
‘pey T 1By} oW} 9Y) UT Op 0} J[NOTIJIP 00 Sem
J1 INq [BNUSPAID Y} dA0wRI 0) paydwane | SV
Y31y 00 a1e A[o)eIpawwI
[[e Wyl dAOWI 0} SJS0d oY) pue jooford
INO Ul S[BNUIPAId Pasodxa ISYI0 dABY I R a4
su
je sourfpeap Ino ind pinom mou os Surop Inq
[BTIIUSPAIO Y} SAOWIAI 0} MOY PUBISIOPUN AN IR
‘wopqoxd
9} SA[OSAI 0 SN ULD dM UOTN[OS JOY)O/JUIUL
-afeuBW JOI09S JEUM AINS JOU QI9M I R a4
‘Aidde yey [[e Yooy "A[orerpawwut
*SuIea) I9Y30 0} Su0Taq Jey) 039 "SAJIAIIS 101008 oy} Sutaowar woxj nok pajuesad jey)
IV JeaIq P[NOM MOU [BIIUIPAID Y FurAowY I'vV SUOT)BIDPISUOD) puejsiopun sn djay asea|q S
‘pPuodI JMsuy PL'V uonsanQ) P1I°O
L 31qeL

pringer

A's

59 Page 10 0f 29 Empir Software Eng (2022) 27: 59

remove the secret later (A1.4), then the survey probes for the considerations that prevented
them from removing the secret immediately (S4). In S3 and S4, a respondent can provide
multiple answers. We did not probe respondents further when they chose A1.3 and Al.5.
Finally, S5 asks for optional additional feedback on the tool. We consider Al.1 as well as
A1.5 to represent tool-related issues, and A1.2-A1.4 to relate to development-related issues.
We report our findings on the survey in Section 6.

5 Findings from XSDT Usage Data Analysis

In this section, we report our findings on RQ1 - RQ3. These findings are derived from XSDT
usage data analysis. Overall, the usage data from 06.01.2019 to 05.31.2020 contains infor-
mation on 43M commits, 18M pushes, 98M scanned files, and 75K repositories. Throughout
this entire section, we report the findings on potential secrets identified by XSDT as our
analysis did not include a confirmation of true positives in the data set. We will discuss the
false positive rate as attested by developer feedback in Section 6.1.

5.1 RQ1: How Often do Developers Bypass The Warning Generated by Secret
Detection Tools?

We report developer actions responding to XSDT warnings that a check-in to a repository
contains one or more potential secrets. From Table 2, we observe that XSDT warnings block
potential secrets or are bypassed at similar rates. Developers removed the potential secrets
26.2% of the time and abandoned the check-in 22.4% of the time, respectively. As a result,
48.6% of the time, XSDT was successful'? in blocking the potential secret from being stored
on the server and security risk was reduced. On the other hand, developers used a one-time
bypass 44.2% of the time and a permanent bypass 7.2% of the time. Overall, in 51.4% of
the cases, the tool believes potential secrets were exposed in the repositories'>.

Our observation regarding the 44.2% bypass rate leads us to further investigate why
developers are inclined to bypass XSDT warnings. Hence, we calculate the number of sub-
sequent check-in attempts (or pushes) made by developers until the XSDT tool generates
no subsequent warning on the corresponding commit changeset. In Fig. 1, we report the
average attempt counts for each of the action types. We also report the median, 251, 75t
and 95" percentile in the table. We observe that the average count of pushes when remov-
ing secrets from the source code is 6.6, while abandonment occurs after an average of 2.5
pushes. The average attempt count of one-time bypass and permanent bypass are 2.6 and
0.6. The average attempt counts of the actions suggests that developers needed the most
attempts to remove the secret, on average. The average and median of permanent bypass
suggest that a subset of developers use permanent bypass proactively when they introduce
potential secrets for the first time.'*

12The success of preventing secrets from getting into VCS is indicated by the warning generated (detecting
a string literal as a secret).

I31f these are actual secrets, there will be additional engineering costs required to invalidate and replace the
secrets.

4Proactive bypasses may indicate circumstances when a developer is running XSDT against their local
changes in advance of pushing to the VCS, and has already therefore reviewed and produced permanent
bypass data for false positives.

@ Springer

Empir Software Eng (2022) 27: 59 Page 11 0f29 59

Table2 Actions taken by developers when prompted by XSDT warning

Action Type Action Count Percentage Total Outcome

Prevention Remove 37K 26.2 48.6% Blocked
Abandon 32K 224

Bypass One Time Bypass 63K 44.2 51.4% Exposed
Permanent Bypass 10K 7.2

Compared to the 25" percentiles and 75 percentiles, the attempt counts at 95™ per-
centiles are much higher for the remove action compared to other actions, approximately
two times higher than the count of one-time bypass, and five times higher than that of per-
manent bypass. In Fig. 2, we also report the box-plot of the attempt counts where we observe
that there are long tails denoting alerts associated with very higher attempt counts (eg.
400). Such higher number of attempts are associated with alerts where a commit changeset
detected to have secrets came from a mirrored repository Overall, we observe that develop-
ers make several attempts to check-in after first getting blocked, and then appear to give up
and abandon the branch or bypass the warning. This seems to indicate that developers may
have challenges in removing or fixing the issue.

5.2 RQ2: What is the Concentration of Checked-in Secrets in Source Code Artifacts?

We sort the files scanned by XSDT into five categories based on file extensions to under-
stand if developer behavior resolving XSDT warnings varies by file type. Configuration files
contain package deployment and run-time configuration information. Program files contain
the source code. Script files contain instructions written in scripting languages or shell pro-
grams. Key files comprise keys and certificates. Document files contain text, web, and word

H Remove Abandon One-time Bypass m Permanent Bypass

2.62

AVERAGE MEDIAN P25 P75 P95

Fig. 1 Count of check-in attempts by the developers between the first XSDT warning and final action

@ Springer

59 Page 120f29 Empir Software Eng (2022) 27: 59

Fig.2 Boxplot of the count of

check-in attempts by the ¢ ¢
developers between the first .
XSDT warning and final action 4001 M .
¢
300 A M ¢
¢
. ' :
f=
3
o
“ 200 4 ¢

>

100 4 $ ‘

T

Removed Abandoned One-time BypassPermanent Bypass
Resolution

- e

processing content. However, repositories may contain other file types, such as .jpg or .ico,
that are not scanned by XSDT as those file types are not expected to contain secrets. In our
study, non-scanned file types comprised 27% of the contents across all repositories.

In Table 3, we report the analysis on artifact types containing potential secrets. In the
table,

— «is the percentage of the quantity of files of a certain type with XSDT warnings relative
to the quantity of all files containing XSDT warnings,

— P is the percentage of the quantity of files of a certain type relative to the quantity of all
the files in the repository scanned by XSDT,

— v is the relative ratio of issues among the total scanned files which is equivalent to &/,
and

— A is the difference between the percentages of blocked and exposed potential secrets
in each artifact type. For example, if the bypass rate of an artifact type is b, then the
fix rate will be f = 1 — b. The value of A is b — f. The A value is the measure that
denotes whether a specific artifact type is associated with more exposure of potential
secrets than prevention. A negative value of A indicates that developers are preventing
more exposure in the corresponding artifact type than permitting it. A positive value
of A indicates that developers are bypassing more XSDT warnings on the artifact type
than removing the potential secrets.

From Table 3, we observe that 62.1% of the potential secrets containing files are config-
uration files, even though configuration files account for 14.6% of the total files scanned.

Table 3 Analysis on Program Artifacts found having secrets

Artifact types o B y=o/f A
Configuration Files 62.1 14.6 43 4.2
Program Files 21.4 344 0.6 0.8
Script Files 9.8 9.4 1.0 -2.6
Key Files 3.6 0.1 36.0 15.4
Document Files 3.0 41.5 0.1 -9.2

@ Springer

Empir Software Eng (2022) 27: 59 Page 130f29 59

Configuration files are often used to manage specific assets (e.g., data, service) and often
contain multiple properties relevant to asset security. The y, having a value of 4.3, indi-
cates that configuration files are overrepresented (by a factor of 4.3) in the set of potential
secret-containing files based upon their prevalence in the full set of files. Key files are the
most overrepresented (y = 36.0), accounting for 3.6% of the potential secret-containing
files even though key files are only 0.1% of the population. However, key files are different
from other artifact types as these files are themselves secret (and generally should not be
checked in to a repository at all). Hence, they are low in number among all scanned files but
overrepresented in XSDT warnings.

The A value of the configuration and program files suggests that developers can be
more prone to bypassing and therefore exposing potential secrets to VCSs for these file
types. These observations may reflect tool accuracy issues when scanning these file types
or indicate there is a particular time and technical complexity specific to removing secrets,
which motivates developers to bypass warnings. Overall, there are workarounds to avoid
using secrets in the configuration and program files, such as using environment variables
or secret managers. Still, program files («=21.4) have the second greatest concentration of
potential secrets. Developers might be prone to bypass if the coding patterns in program
files do not already include the use of a secret manager. Configuration files (¢=62.1) are
most likely to expose potential secrets in repositories given the fact that configuration files
typically contain multiple secrets relevant to their associated services or software.

Developers might also bypass warnings due to the increased costs to remove all secrets
in the file when XSDT detects a newly introduced potential secret. The A value for key
files is the highest (A = 15.4) compared to other types. Developers may password-protect
key files, motivating the check-in of a key file even after detection by XSDT. Development
teams may also generate self-signed certificates which are used strictly for testing and not
a security purpose. Negative A values for script and document files suggest that developers
eliminate the potential secrets more often than exposing them in VCSs.

5.3 RQ3: What is the Distribution of Checked-in Secret Activity Among
the Developers Inside the Organization?

In Fig. 3, we report the Pareto property for the count of potential secrets exposed due to
bypass actions of unique developers who were blocked by at least one XSDT warning over
the study period. The Pareto property states that 20% of the causes are responsible for
roughly 80% of the effects (Box and Daniel Meyer 1986). In the figure, the x-axis shows
the percentage of unique developers, and the y-axis shows the percentage of total exposed
secrets from the accounts. Observing the Pareto property, we identify that 85% of the
potential secret exposures originate from 20% of the developers, which indicate that some
developers may work more with aspects of the system that relate to secret-containing files,
have less security awareness, work on a team unusually subject to time pressures, are main-
taining consistency with existing (potentially insecure) patterns in code, work on projects
that disproportionally trigger tool false positives, or other factors. However, these factors
are speculated from organizational experience in XTech and are needed to be tested which
is out of scope for this study.

5.4 Summary of Findings for RQ1 - RQ3

— 51.4% of the time, potential secrets reported by XSDT were eventually exposed on the
VCS, the rest of those were blocked. However, the survey discussed in Section 6.1, will

@ Springer

59 Page 14 0f 29 Empir Software Eng (2022) 27: 59

100 P m e

95 I

% of Exposded Secrets
w1
(=}

0 10 20 30 40 50 60 70 80 90 100

% of Unique Developers (all these developers experienced at least one XSDT warning)

Fig.3 Pareto property for secret exposure from unique developers who triggered at least one XSDT warning

demonstrate that at least 50% of the time these exposures are false positives from the
developers’ point of view.

— Removing the secrets required multiple push attempts from the developers, indicating
that the developer might have difficulties with removing the secrets from the artifacts.

— Developers are most likely to attempt to check in potential secrets in key and
configuration files.

— Numerically, the greatest number of potential secrets are exposed in configuration files
and program files.

— The majority (85%) of bypasses are contributed by 20% of the developers who faced
at least one XSDT warning, indicating that there might be a set of developers who are
subject to a high amount of XSDT warnings due to various untested but potential factors
(such as technical debt, backward compatibility, security awareness).

6 RQ4: Why do Developers Check in Potential Secrets Despite Tool
Warnings?

In this section, we report the results of our survey which asked why developers checked in a
potential secret despite receiving a warning from XSDT. We sent the survey to 451 full-time
developer employees at XTech and received responses from 113 developers (a response rate
of 25.1%). The average completion time for the survey was 4 minutes.

6.1 Developer Perceptions on True and False Positive Warnings

The first question of the survey was Please help us understand whether the secret scanning
result that you recently bypassed was accurate (a true positive) or a false positive. This

@ Springer

Empir Software Eng (2022) 27: 59 Page 150f29 59

question was mandatory. We report the closed-answer response counts in Table 4 and list
our observations below:

Tool-related, false positive (A1.1, 50 respondents, 44%) The detected secret is not an
actual secret, and hence the developer bypassed the warning and considered the warning a
false positive. For example, one developer states, “It was a test input to verify end to end
flow in test pass”. In Question S2, developers provide more information on false positives,
as discussed later in this section.

Development-related, true positive, has been or will be removed, (A1.3, 16 respon-
dents, 14%), and A1.4, 9 respondents (8%) The warning is accurate and although the
developers bypassed the warning, they had already removed the secret at the time of the
survey or intend to remove the credential in the future. One developer expressed, “I deleted
the entire branch, created a new one”.

Development-related, true positive, will not be removed (A1.2, 16 respondents, 14%)
Developers bypassed a warning despite acknowledging the warning was accurate and stating
they will not remove the secret in the future. For example, one developer wrote, “It was an
actual credential, but only for unit test purposes, so we will not remove it”. In Sections 6.3
and 6.4, we will discuss more survey results related to bypassing activity.

Tool-related, legacy secret (A1.5, 7 respondents, 6%) The detected potential secrets were
already exposed in the repositories, and the developers did not introduce them. One person
explained, “I rearranged the code to sort config keys in alphabetical order. I didn’t introduce
any new secret.”

Finally, 13% of the survey respondents chose option Al.6 and provided open-ended
answers. We summarize their input, classified as either tool related (TR) (73%) or
development related (DR) (27%), in Table 5.

In summary, we observe 50% false positive warnings being generated from the tool
(Al.1, and A1.5). We also learned that XSDT warnings, which are bypassed, can be asso-
ciated with tool-specific factors (such as emitting false positives) or development-specific
factors (such as perceiving true positives as low risk or being subject to unusual time pres-
sure). Secret detection tools are known to generate false positive warnings (Saha et al. 2020).
However, from Table 4, we observe that developers can bypass a warning which is not false
positive and could be related to development-related factors. These development factors will
be discussed in Sections 6.3 and 6.4.

Table 4 Response counts from the closed-answer options for S1

Id Answer Count(%)
Al.l It was not an actual credential 50 (44%)
Al.2 It was an actual credential and we will not go back to remove it 16 (14%)
Al3 It was an actual credential and we have already removed it 16 (14%)
Al4 It was an actual credential that we intend to remove 9 (8%)
AlS I was blocked for something that already existed in the code 7 (6%)
(and which I did not introduce)
Al.6 Open-ended Answer 15 (13%)

@ Springer

Empir Software Eng (2022) 27: 59

59 Page 16 0f 29

G TV SB 124038 £o0SFT ¢ Y S 2AUDULIID 421]2q ON ‘40412 42d0]242(] ‘T TV S 19SSD 1521 40f

124028 ‘T°TV St PAJeal) AIe Ja.122s D JON PUe “4apjoyaov)d 124038 ‘saanisod asip.g ‘Su1isaj 40f 124038 Kuun(J “Smo[oJ se pajaIdiojur ore saLI05a1ed o) ‘osn [BUINUI S, YL X 10«

(BL) 1

(BL) 1

(BL) 1

(BL)1

(»ED T

(»ED T

(»ED T

(%€¢€) §

M
uey) 19Jes 910U Ou ST ixdure(d woiy
yede [*] 0y piomssed ay) ur ssed
0] sAem QJeUId)[E AY) A[SjeUniIojun
pUE ‘[EUOPAIO [EMIOE UB SeM I,

.ssedAq 31 pey [0s “asa1 pey [ey}
99s 0y Surprey sem [1SX] wySnoy)
] "e10joq ASueyd Ay UBY) Ioyjer
‘apewt pey | 9Sueyo JsI1j Y} 0) JsaI
pey T oyelsru & opewr A[[enjoe [,

. JAIOAS © JOU ST INQ Jo10dS
© O)I| paYyoo] pa3sel AIND YL,
Jey) AJLe[o 0y 1x9)

Jop[oyaderd,, ay) epnpour 1.upip
1 Inq ‘[eNUIPAId [enIOB Ue JON],,
Ao

pilomssed pIlom 9y} Sururejuod
Sus Jo Sweu d[qeLIeA B SeM I,

103 9eard ano oyur odax
qnyo 221nos uado orqnd e woiy
parnd [enuapaid sqssod e sem Iy,

1 9AOWAI JOU [[IM
am os ‘sasodind 3s9) J1un I10j Afuo
Nq ‘[ErUOPAIO [eMjOBR UB Sem [,

.ssed 1s9) ur mo[j pue
0] pud AJuroA 03 Indur 159} € sem I,

191095
oY) SulNdAs I0J UONN[OS 19)32q B
oA1e012d Jou prp 1adofeasp dyg,

‘A[Teuonjuajurun
possedAq sem 3jo100s [enuojod v

321095 J19p[oyadeld 10 Aurwunp
‘[emo€ UB JOU ST 9POd PAJOAP Y],

*QuIf}-Uni Je pouLIoy
-sue1) 10 popuedxd SI jey) onfeA e
“9'1 “ropoyade(d B sem uonoddRqg

*010 ‘Awwinp ‘ropjoyaoerd
se AJIsse[d 0} [relop JuedIInsur
s 2AnIsod as[e) B sem uondA(

‘peonponur Amau jou ‘pasodxa
Apeale sem 12I09S [eNUIO]

‘S)asse
1S9) 2INJ3S 0] PIasn S$JAIIAS [endy

'SOSBO
189) AJINO9S QALIp O} pasn ele

(M) eAnIRUION[E 10139q ON

(M) ro110 19dOJRAS(

(¥.L) 121938 B 10N

(Y.L) Toproyaoed 101098

(L) 2anisod asyeq

(Y.L) 121095 Koe3o]

(M) 19SS® 159) 10J 119§

(Y.L) Sunsa) 10§ 3121098 Awrwun(g

(9%)uno)

ordwrexg

uondrsaq

«A103918D

(9'1V) saanisod as[ej ‘sa anx) SurJIsse[d uo sasuodsar papus-uado jo Arewung g djqel

pringer

&H's

Page 17 of 29 59

Empir Software Eng (2022) 27: 59

(%9) ¢

(%8) ¥

(o) 11

(BT 11

(%82) ¥1

JuaydAy e yim

S1Ie3S JT JOU JO IOYIOUM SUTULINOp
0) 121098 (parddns-1asn) e jo 19108
-Ieyd JSITJ Y} J8 PIYOO[9p0Od AL,
. TenuapaId oy} oy eyl ANud j[nea
Aoy oy jo owreu ayy sem pagdepy
sem Jey) onfea oyJ, jnea Koy e
Ul paJo)s SI [eNUIPAIO [ENIoe A,
Joproyooerd

e pey isn[pue piomssed [enoe
9y} 9ARY JOU PIP YOIym SuLns uon
-00uuo0d & Ioy oedwo) B sem Iy,

Suruuess oy Sur
-ssedAq InoOYIIM IpOd Y} UI YYD
01 9[qE JOU SeM | PUE SPING MIJ sure)
-u0d yorym uosf 3s9) & paodyo I,,

Jenuaparo
[emioe ue Jou s9) Jun € 10§ SI I,

*$19I09S S PANISUOISTUI
ArM Aypeuonouny A)1noas
osudwod jey) SPNNSUOd PO

“an[eA 191098 € st pajaid
-IOJUISIW JOID9S © IOJ JIOINUIPI Uy

*QWM-UNT J8 PIULIO]
-suen} 10 papuedxa ST jey) anfea e
“o'1 ‘Topjoyooed © sem uonoleg

121095 19p[oyadeld 1o Aurwunp
‘[enjoe ue J0U ST 90D PAJOAIP AL,

EN:A)
159) AJIND9S QAHp 0] pasn eje(

(4.L) sermeady Ayunoes Sunuowaduy

(Y.L) paSSey) sem sweu 121095

(Y.L) Ioproyaoerd 301008

(Y.L) 121038 B 10N

(Y.L) Sunsa) 10§ 101098 Awwun(g

(9%)uno)

ordwrexyg

uondrosaq

«K103918D

(7S) seanisod asyej uo sasuodsar papud-uado jo Arewrwuing 9 ajqep

pringer

A's

Empir Software Eng (2022) 27: 59

59 Page 18 0f 29

O3 X 1 SISA[BUR [BUIUI JOJ ‘A[9A1I0dSAI ‘G [V pue 7'V St pajardiojur are saL10391ed pasodxa Kppad]y pue 1a.40aS 33 YL

(%O 1

(%O 1

(%O 1

(C739K4

(%Y T

Jrnoqe Sururerd

-woo 3day [LasX] 11ms nq “ Yd 2ys
WOIJ POAOWAI AIIM [BTJUIPAIO Y],

A3essowr yrwwod [1SX] oy

Jo A10)STY 9SO] am JT Sumsa) sem T,
. Jenuaparn

SIY) SUIBJUOD IPOd Js3) asoym []
a3eyoed ay) [reIsur 03 NN pesn ,,

101098
Jolenud [edo[[] oy sem I,

‘uoneu
-e[dxa ue apraoid jou pip 1adofaraq

*KI0)STY JIWWOD S A WOIJ PIAOWT
K1o19]dwIod 10U SeM 19109 PR30

‘101
-AeYaq Sutuueds JSX 159} 0 s1asn
£q paysnd sjonnsuod apod Awwun(g

‘paonponur A[mau jou ‘pasodxa
Apeal[e sem JAIOdS [eNUO]
"sjosse

1S9) 2INO3S 0} Pasn S)AIAS [ENJOY

umouun)

(4Q) A10ISTY UT S[QISIA [[1S 391098

(4Q) Joraeyeq LASX Sunsal,

(Y.L) 191095 Koego]

(Y Q) 19SSE 189) 10J 12199S

(%)uno)

odwrexg

uonduosaq

+A103918D)

(panunuoo) 93jqeL

pringer

A's

Empir Software Eng (2022) 27: 59 Page 190f29 59

6.2 Observations on False Positives

In Question S2, 50 respondents who classified the XSDT warning by selecting Al.1 pro-
vided more details about the false positives through an open-ended response. We read the
open-ended answers and identified seven categories of XSDT warnings that developers have
stated are not an actual secret or false positives. We present these categories in Table 6.
Each classification is suggestive of improvements specific to minimizing false positives in
the category. XSDT has a feature, for example, that allows developers to entirely avoid
‘Secret placeholder’ false positives by encoding specific values in the contents of the place-
holder. XSDT may need to be improved to make this capability more discoverable (we see
more evidence that feature discoverability is a general problem in Section 6.5). Minimiz-
ing ‘Dummy secret for testing’ related false positives through heuristics is also possible.
Augmenting analysis with machine learning might reduce detections that clearly do not
comprise a secret (whether actual or which have the intentional ‘shape’ of one).

6.3 The Warnings are not Worth Fixing

The third question of the survey (S3) is Please help us understand why the blocked secret is
not worth fixing. The question is mandatory for those that selected A1.2 in S1, and the devel-
oper can select multiple answer options for this question. We report the answers, response
count, and percentages in Table 7. We describe our observations here:

Not a production credential, (A3.1, 8 respondents, 36 %) Developers may not feel
motivated to remove the secret after triggering an XSDT warning when they are working
with artifacts that do not ship in the production system, as the secrets are not perceived as
an immediate security risk.

No significant security value (A3.2, 6 respondents, 27%) A developer may perceive a
secret as low risk if the secret does not protect any significant data, service or other software
assets. Hence, the developer may choose to bypass the warning.

Additional protection, (A3.3, 2 respondents, 9%) The XSDT warning may also be
bypassed if the secrets have additional protections. For example, we observed a high per-
centage of key files being exposed in repositories. Those key files, however, may be
password-protected and thus developers felt less motivation to remove them.

Expired/invalidated secrets, (A3.4, 1 respondent, 5%) Developers may choose to
invalidate or expire secrets rather than remove them. One respondent asserted that
expired/invalidated secrets are not worth fixing.

Table7 Responses on why the warnings are not worth fixing (S3)

Id Answer Count(%)

A3.1 It is not a production credential (for example, it is a credential for a 8 (36%)
non-shipping prototype)

A3.2 The credential doesn’t protect any data, service, etc., with significant 6 (27%)
security value

A33 The credential has additional protections (e.g. it is encrypted in the file, 2 (9%)
is password-protected, etc.)

A34 It expires soon or has already been invalidated 1 (5%)

A3.5 Open-ended answers 5 (23%)

@ Springer

59 Page 200f29 Empir Software Eng (2022) 27: 59

We also categorized the five open-ended answers provided by the developers to S3, A3.5.
Two responses added clarifying details to supplement the checked answers. Three open-
ended answers were provided with no other answers checked. Two of the remaining answers
suggested that A3.1 could have been selected. For example, one developer said, “These are
test certs that we need to run our tests”. The final answer suggested that A3.2 could have
been checked, as the developer reported, “The VMs do not have any access to any network
resources”.

In summary, we observe that if developers’ perception of the risk associated with a
checked-in secret is low, they are less motivated to remove secrets and may bypass warn-
ings. All secrets are not of equal value and secret detection tools are indifferent to the value
of the asset protected by a secret. The developer likely has an understanding of this, having
an automated mechanism to identify the value of the protected asset would be beneficial.
Secrets for low risk assets can still be dangerous in the hands of an attacker, as they can
often be used as a foothold for lateral movement that leads to sensitive assets.!”

6.4 Why Secrets Cannot be Promptly Removed

The fourth question of the survey (S4) is Please help us understand the considerations
that prevented you from removing the secret immediately. This question is mandatory and
the developer can provide multiple responses. We report the answers, response count, and
percentage in Table 8.

The most reported disincentive for prompt removal is a lack of awareness of an appropri-
ate solution that would enable removing the secrets (A4.2, 4 respondents, 27%). Moreover,
20% (A4.3, 3 respondents) indicate that although developers did understand what solution
to apply, doing so would have compromised a project deadline. Similarly, 20% (A4.5, 3
respondents) indicate that the developer tried to remove the credential after getting the warn-
ing, but faced difficulties in fixing in a reasonable amount of time. Overall, from these three
observations, lack of time and technical complexity are the two factors that need to be con-
sidered for prompt removal. On the other hand, 13% (2 respondents) from both A4.1 and
A4.4 suggest that developers also tend to bypass the XSDT warning when the repository
contains existing technical debt (other exposed secrets) or when they feel that restructur-
ing the code to remove the secret would introduce bugs into other, off-project systems.
In summary, time constraints, workload pressures, and technical challenges contribute to
the developers’ motive to bypass XSDT warnings rather than immediately removing true
positives.

6.5 Additional Insights

The final question of the survey was optional and open-ended to seek further comments on
the challenge of detecting and removing exposed credentials, or suggestions for improving
the tool. We received 37 open-ended responses. We report the main comments we received
below, some of them add to or reinforce our earlier observations.

15X Tech’s policy is that actual secrets which are persisted to engineering artifacts should be invalidated
within a time window set by the project’s security experts. All bypassed secrets will continue to be tracked
and reported by complementary downstream XSDT scan systems that are not part of this study.

@ Springer

Empir Software Eng (2022) 27: 59 Page 21 0f29 59

Table 8 Responses on why secrets cannot be promptly removed (S4)

Id Answer Count(%)

A4.1 Removing the credential now would break services. etc., that belong to 2 (13%)
other teams.

Ad.2 We were not sure what secret management/other solution we can use to 4 (27%)
resolve the problem.

A4.3 We understand how to remove the credential but doing so now would 3 (20%)
put our deadlines at risk.

Ad4 We have other exposed credentials in our project and the costs to 2 (13%)
remove them all immediately are too high.

A4.5 I attempted to remove the credential but it was too difficult to do in the 3 (20%)
time that I had.

A4.6 Open-ended answer 1 (7%)

Appreciation for XSDT. Nine developers expressed that that they appreciate the XSDT
warnings and find the tool useful. For example, one developer wrote, “I think your detec-
tion system is doing great. It’s better to have false positive than true negatives in cases like
this.” Overall, these comments indicate agreement with the overall effectiveness of the
tool in (and the overall importance of) minimizing the occurrence of checked in secrets

Request for features that already exist. Eight developers suggested the addition of fea-
tures that already exist in the tool. Seven of these suggestions requested a suppression
capability that already exists (the permanent bypass mechanism described in Section 3).
For example, one developer said “For my case, it’s actually useful if I can flag the keys
to be skipped”. One developer requested that XSDT output a pointer to supporting doc-
umentation for suppression: “Add a reference to some documentation to learn about the
different options to mark parts of code to skip validation (for instance a comment)”.

Clarification of bypass instance. Eight developers used the open-ended comment field
to provide additional details on the specific detection that was bypassed. One developer
noted: “This detection worked as intended, but the key was a part of a PR and has been
removed with another commit in the same PR”.

Requests for improved accuracy. Seven developers commented on a need to improve
tool accuracy. For example, one developer states, “It seems like it’s identified as a poten-
tial credential because it’s composed by numbers, letters and symbols, which is not the
case a lot of times.”

Requests for improved guidance. Four developers requested expanded or improved
guidance for resolving XSDT warnings. For example, one developer remarked: “Per-
haps there should be better guidance on how to review these kinds of cred scanners
detections”. Another developer commented: “using a standard of examples for creden-
tials would probably help both the exposed credential finder, and remove the friction on
commits”.

Request for new XSDT feature. One developer requested a feature that does not exist in
XSDT today, stating: “you can add manager approvals for these commits to be pushed”.

6.6 Summary of RQ4 Findings

— From Table 4, we observe that developers classified 50% of the warning as false
positives and bypassed the warning. The rest of the warnings are bypassed for other

@ Springer

59 Page 220f29 Empir Software Eng (2022) 27: 59

development-related factors. Hence, focusing on the accuracy of the secret detection
tool may not be able to solve the secret check in phenomenon alone.

— Developers classified 50% of the warnings as false positives. From Table 2, we observe
that 48.6% of the potential secrets did not get exposed. From Table 4, we observe that
14% of the respondents introduced and do not intend to remove a true positive. Adjusted
to include all XSDT warnings, 92.8% of detections are therefore initially blocked or
will be removed after exposure (conforming to XTech policy), the remaining 7.2%
require additional follow-up initiated by supplemental security scans which are not the
focus of this work. These additional checks, comprising at least two more layers of
scanning at later points in the workflow, are an opportunity for XTech’s processes to
identify and eliminate the exposures that were inadvertently committed to the VCS.
These additional systems are not the focus of this work

— Developers may bypass a warning if they think the corresponding secret is not protect-
ing a sensitive asset and hence, the security risk is low. XSDT cannot determine the
value of asset being protected by the secret but the developers have this understanding.

— Developers may view pushing actual secrets for non-production environments such as
test services and prototypes and proof-of-concept projects as low risk. XTech’s pol-
icy is that actual secrets which are persisted in engineering artifacts should always be
invalidated within a time window set by the project’s security experts.

— Developers may experience technical challenges removing secrets. Developers also
indicated that they are more likely to bypass if their deadline is at risk.

— Developer decisions to remove the secrets or bypass the warning may also depend
on development considerations of the projects they are working on. For example, ser-
vices or software of partner teams with shared dependencies may break if secrets are
invalidated without coordination across the organization. The additional time and effort
needed to apply the changes contributes to the developers’ decisions when responding
to XSDT warnings.

7 Discussion

1. Why developers are bypassing? What do we know now? From RQ1 - RQ4, we
observe that developers can bypass a tool warning for these potential factors:

(a) False positive warnings;

(b) Difficulty in removing the secrets from artifacts;

(c) Working with projects where developer has to deal with existing coding pattern
which may trigger warnings;

(d) Developer may have less security awareness;

(e) Developer may be subject to workload/time constraints;

(f) Non-production projects, such as prototype projects, may contain bypassed
secrets; and

(g) Developer may consider a secret not risky to be exposed in a repository as the
asset protected by the secret is of low value

These factors should not be considered an exhaustive list of potential factors. These
identified factors may also be correlated with each other. (For example, less security
awareness may have a correlation with perceived value of an asset protected by the
bypassed secret.) Apart from the tool accuracy factor, the rest of the factors should be

@ Springer

Empir Software Eng (2022) 27: 59 Page 23 0f29 59

tested against a large user study. Our identified factors are derived from one industrial
case study and hence, all of these factors would benefit from additional evaluation from
multiple organizations’ development practices.

2. Could there be any relation between developers’ perception and the identified fac-
tors? Developers perception on the security aspects of the system is expected to have
an impact on the identified factors we stated above. We did not study how develop-
ers evaluate the value of an asset, security risks associated with the asset and trade-off
between accepting the risk (checking in) and mitigating the risk (removing the secret).
Hence, the accuracy of their risk assessment can be studied as well. For example, one
developer may think that a secret for authenticating a local virtual machine is not worth
attention (pushing the secrets in organizational repository so that no public access is
possible), which should be a very low security risk. However, such secrets are not invis-
ible from insider attacks. For designing effective secret detection tools and development
practice around it, how developers evaluate the risk should thoroughly be tested to gain
a holistic understanding of the factors that can influence developers to bypass.

8 Recommendations and Future Work

Based upon our engineering and organizational experience as well as quantitative and
qualitative studies of this issue at XTech, we make the following recommendations:

Incorporating secondary checking. The developers prefer tools that can verify code
early in the development and deployment process, ideally while they are editing the code.
At this early stage in the development process, tools may be less accurate because the tool
may not incorporate the context of the code in its analysis. As a result, tools often pro-
vide bypass mechanisms. As shown in our study, allowing developers to bypass warnings
can result in secrets being exposed. To address this issue, our results suggest that teams,
such as is done by XTech, institute a secondary process for reviewing bypass decisions,
providing a mechanism to correct invalid actions.

Study factors that lead to delayed removal of secrets: We observe a significant per-
centage of bypass decisions for true positives due to time pressure or burdensome costs to
immediately remove the secrets. A deeper understanding of what factors are most preva-
lent would help prioritize investments for improving motivation, increasing ability and
lowering costs to immediately remove secrets from code.

False positive reduction: Other researchers (Saha et al. 2020) show that secret detection
tools may report false positives. We also show this issue and we were able to show that
this is a complex problem. A particular concern identified by our work is the problem
of identifying test data and placeholders, i.e., patterns that have the actual ’shape’ of a
secret but which contain dummy values or values that are transformed at runtime into
actual secrets. Machine learning may assist with this problem and generally improve the
effectiveness of secret detection tools, as suggested by others (Saha et al. 2020).

Study on secret distribution: Our results indicate that the majority of secret detection
tool results in clustering around a relatively small percentage of people, file types, repos-
itories, etc. 1130 repo, 23570 files, 7704 devs Hence, the efficiency and effectiveness
of investments made to lower true positive introduction rates could be improved by
understanding where exposure is most concentrated.

@ Springer

59 Page240f29 Empir Software Eng (2022) 27: 59

Security risk awareness: Developers perceive that checking in secrets for test and other
non-production assets is low risk and acceptable. However, persisting any actual secret
to a VCS creates the risk of data leakage to public or insider threats. Developers appear
to underestimate the risk associated with these secrets. Attackers are skilled at using a
foothold provided by a ‘low risk’ secret for subsequent lateral movement that can lead to
higher-value assets.

Enhanced asset risk metadata: Developers have knowledge of the value and longevity
of an asset protected by a secret. Secret detection tools are indifferent to the relative value
of these assets. Having an automated mechanism to categorize the value of the protected
asset would be beneficial.

Purging secrets. Purging secrets from VCS history is not currently a straightforward
task. VCSs should offer features that facilitate easier removal of sensitive data from
history.

Earlier detection: In order to lower costs (such as the cost of purging secrets from his-
tory), scanning can be moved from the push phase to an earlier phase, such as local
commit. This feature can also be supported by integrated development environments to
report warnings at code authoring time.

Studying the factors responsible for bypassing: For future work, the potential factors
for bypassing the tool warning can be studied across multiple organizations and develop-
ers with different skill-set. The correlation among these factors can also be studied.

Studying the risk evaluation process: Researchers and practitioners can also consider
studying how developers evaluate the risk associated with the secrets, how they estimate
the value of the asset protected by the secret, and the potential correlation between the
perceived risk and actions taken by the developers on the tool warning.

Studying whether some types of projects are more prone to have exposed secrets
Certain classes of projects may be more prone to exposing secrets. For example, projects
having backward compatibility constraints, interoperability with third party constraints,
or specific technical debts may have more exposed secrets. We advocate researchers and
practitioners to investigate whether there are such attributes of projects that can lead
towards exposing more secrets by developers.

9 Limitations and Threats to Validity

1. XSDT telemetry and success of the tool: The findings from RQ1 - RQ3 were derived
from telemetry of XSDT usage. We did not verify whether every detected secret by
XSDT is really a secret or not (which can only be verified by the corresponding
teams/developers working with the project and hence, this verification requires sig-
nificant amount of time which is out of scope for this study). The success of the tool
was also measured solely from the tool’s point of view as verifying individual expo-
sure or block of secrets is also out of scope for this study. From security point of view,
any potential secret checking-in getting blocked can be considered as a lowered or
mitigated potential security risk.

2. Untested hypothesises: From the findings of RQ1-RQ4, we suggested several
hypothesises (such as high attempt count implicates difficulty in removing the secret;
or a specific set of developers are subject to get higher rate of XSDT warning due to

@ Springer

Empir Software Eng (2022) 27: 59 Page 25 0f29 59

10.

11.

technical debt, workload pressure) which are speculated but not tested. We consider
this as a limitation of our study, however, we advocate future researchers to test these
hypothesises to unearth more findings on how to make secret detection tools more
effective and efficient.

Survey focus: We sent the survey only to developers who exhibited a specific behavior
(one-time bypass). We did not investigate what factors prompted developers to take
other actions such as remove or abandon. A complete view would include developers
who disposed of warnings in other ways (removal, branch abandonment, or permanent
bypass). However, the scope of this study was solely focused on the bypass activity
of the developers to identify factors that could lead to the further enhancement of the
XSDT tool and development practices around it. We also advocate future researchers
to investigate the set of developers who took different actions for different alerts (i.e.
removed secrets on an alert however, bypassed another alert).

Subjective responses: The security perception and expertise of the developers we
survey may vary among employees and teams. All survey responses are subjective and
will vary from person to person. We also did not perform an independent analysis on
whether survey responses are correct. We identify this as a source of bias. However,
when we sent the survey emails to the developers, we also sent them the url of the
commit changesets where they chose the bypass actions which helps them recall the
reason they bypassed.

Survey population: Moreover, we only considered full time employees as survey
respondents. We exclude any other type of employees such as contractors and interns
in the survey population. Their perceptions may have been useful.

Response bias: We achieved approximately 25.1% response in the survey however,
74.9% of the audience did not respond to the survey, which may have led to a response
bias.

Recall bias: Although, we choose to send the survey to the developers who bypassed
the warning in the last 7 days, the responses could still have a recall bias.
Generalizability: The findings from the survey should not be generalized as the
response count is small and several tables such as Tables 5 and 8 represents data for a
very low (n = 15) number of developers.

Developer perception: The survey responses came from multiple developers having
different skillset, background and responsibilities. Security risk perception regarding
checking-in a secret or the perceived value of an asset protected by the potential secret
can also vary from developer to developer. Moreover, the development factor related
to bypassing the warning or not going back to resolve the warning may also be a
subject to bias. Independent confirmation of the survey responses was out of scope
for this study. A deeper understanding of what factors are most prevalent for making
decisions (remove secrets or bypass warnings) could have made our findings more
generalizable. We advocate future researchers to investigate these factors further.
Covid-19 pandemic: Finally, the entire study was conducted during the COVID-19
pandemic (Wikipedia 2021), and hence developers may have adopted different ways
of collaborating with each other, new development activities, and lifestyle choices. All
of these factors could introduce a bias in their responses.

Others: Finally, although we iteratively created the survey and pilot tested it, the
questions and closed-option responses may have introduced additional bias.

@ Springer

59 Page 26 of 29 Empir Software Eng (2022) 27: 59

10 Conclusion

Despite using secret detection tools, the tendency to check-in secrets is still evident among
developers. In this work, we analyzed the usage data of XSDT, an internal secret detec-
tion tool used in XTech, and surveyed the developers who bypassed the XSDT warnings.
We found that developers bypassed the tool warnings even if the detections made by the
tool were accurate. From the survey, we observe that, developers may bypass the tool warn-
ing based on their perception of (i) the risk associated with checking-in secrets; (ii) effort;
(iii) the time required to remove the secret; and (iv) technical debts. Based on these obser-
vations, we provide actionable suggestions that may help mitigate the checked-in secret
problem. Overall, we find that, a secret detection tool, despite being accurate half of the
time in detecting secrets in software artifacts, may not be able to mitigate the problem alone
as there could be other potential factors. We advocate for further investigation on develop-
ers’ perception of risk associated with the checking-in secrets, technical debt incurred for
removing secrets/restructuring artifacts and any other potential associated factors which can
have an impact on developers’ decision making while using the tool.

Acknowledgements The authors thank the engineers of XTech for their feedback and technical support.
The authors also thank the developers participating in the survey and providing valuable feedback. Finally,
the authors also thank National Security Agency (NSA) Science of Security Lablet and National Science
Foundation grant 2055554 for supporting the research and the North Carolina State University Realsearch
research group for their feedback.

Funding The work is supported by the company who participated in this research as referred to as “XTech”
in the manuscript. The first and second authors worked as research interns in XTech.

Data Availability Uploaded as supplementary metadata files

Availability of data and material In order to protect the identity and privacy of the company, we cannot
unfortunately share the raw data for this study

Code Availability N/A

Declarations

Conflict of Interests N/A

References

Amazon (2020) Aws key management service https://aws.amazon.com/kms/

MITRE (2020) Cwe-798: Use of hard-coded credentials. https://cwe.mitre.org/data/definitions/798.html
Accessed 16 Sep 2020

Meli M, McNiece M, Reaves B (2019) How bad can it git? characterizing secret leakage in public github
repositories Networked and Distributed Systems Security Symposium (NDSS)

Montalbano E (2020) Medical data leaked on github due to developer errors. https:/threatpost.com/
medical-data-leaked- on-github-due-to-developer-errors/158653/, Accessed 16 Sep 2020

Tlascu I (2020) Starbucks devs leave api key in github public repo. https://www.bleepingcomputer.com/news/
security/starbucks-devs-leave-api-key-in- github-public-repo/, Accessed 16 Sep 2020,

Kumar V (2020) Jumpcloud api key leaked via open github repository. https://hackerone.com/reports/
716292, Accessed 16 Sep 2020

@ Springer

https://aws.amazon.com/kms/
https://cwe.mitre.org/data/definitions/798.html
https://threatpost.com/medical-data-leaked-on-github-due-to-developer-e rrors/158653/
https://threatpost.com/medical-data-leaked-on-github-due-to-developer-e rrors/158653/
https://www.bleepingcomputer.com/news/security/starbucks-devs-leave-api -key-in-github-public-repo/
https://www.bleepingcomputer.com/news/security/starbucks-devs-leave-api -key-in-github-public-repo/
https://hackerone.com/reports/716292
https://hackerone.com/reports/716292

Empir Software Eng (2022) 27: 59 Page 27 of 29 59

Rahman A, Parnin C, Williams L (2019) The seven sins: Security smells in infrastructure as code scripts. In:
2019 IEEE/ACM 41St international conference on software engineering (ICSE), pp 164-175

Rahman A, Rahman MdR, Parnin C, Williams L (2020) Security smells in ansible and chef scripts: A
replication study. ACM Transaction of Software Engineering and Methodology

Rahman MdR, Rahman A, Williams L (2019) Share, but be aware: Security smells in python gists. In: 2019
IEEE International conference on software maintenance and evolution (ICSME), pages 536-540

Saha A, Denning T, Srikumar V, Kasera SK (2020) Secrets in source code: Reducing false positives using
machine learning. In: International conference on COMmunication systems NETworks (COMSNETS),
pp 168-175

Sinha VS, Saha D, Dhoolia P, Padhye R, Mani S (2015) Detecting and mitigating secret-key leaks in source
code repositories. In: 2015 IEEE/ACM 12Th working conference on mining software repositories,
pp 396-400

Ding ZY, Khakshoor B, Paglierani J, Rajpal M (2020) Sniffing for codebase secret leaks with known
production secrets in industry

Viennot N, Garcia E, Nieh J (2014) A measurement study of google play. SIGMETRICS Perform Eval Rev
42(1):221-233

Bunyakiati P, Sammapun U (2019) On secret management and handling in mobile application development
life cycle: a position paper. In: 2019 34Th IEEE/ACM international conference on automated software
engineering workshop (ASEW), pp 77-80

Johnson B, Pandita R, Smith J, Ford D, Elder S, Murphy-Hill E, Heckman S, Sadowski C (2016) A cross-
tool communication study on program analysis tool notifications. In: ACM SIGSOFT International
symposium on foundations of software engineering, pp 73-84

Box GEP, Daniel Meyer R (1986) An analysis for unreplicated fractional factorials. Technometrics 28(1):11-
18

Wikipedia (2021) Covid-19 pandemic https://en.wikipedia.org/wiki/COVID- 19_pandemic

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Md Rayhanur Rahman has started his Ph.D. program in the depart-
ment of Computer Science at North Carolina State University. His
research interest is in the area of Software Engineering and Software
Security. Currently he is working on the research domain of mining
the cyber threat intelligence artifacts.

@ Springer

https://en.wikipedia.org/wiki/COVID-19_pandemic

59 Page 28 0f 29

Empir Software Eng (2022) 27: 59

@ Springer

Nasif Imtiaz is a Ph.D. student at North Carolina State University.
His current research interest lies in the area of software engineering,
software security, and software supply chain security. Contact him at
simtiaz@ncsu.edu.

Dr. Margaret-Anne Storey is a Professor of Computer Science and
Co-Director of the Matrix Institute for Applied Data Science at the
University of Victoria. She holds a Canada Research Chair (Tier 1) in
Human and Social Aspects of Software Engineering and is a member
of the Royal Society of Canada’s College of New Scholars, Artists
and Scientists.

Laurie Williams is a Distinguished University Professor and co-
director of the Secure Computing Institute at North Carolina State
University. Her research area is software security. Laurie received her
PhD in Computer Science from the University of Utah. Contact her
at lawilli3 @ncsu.edu.

Empir Software Eng (2022) 27: 59 Page 29 of 29 59

Affiliations

Md Rayhanur Rahman' © . Nasif Imtiaz' - Margaret-Anne Storey? - Laurie Williams'

Nasif Imtiaz
simtiaz@ncsu.edu

Margaret-Anne Storey
mstorey @uvic.ca

Laurie Williams
lawilli3 @ncsu.edu

1 North Carolina State University, Raleigh, NC, USA

2 University of Victoria, Victoria, BC, Canada

@ Springer

http://orcid.org/0000-0003-4980-7350
mailto: simtiaz@ncsu.edu
mailto: mstorey@uvic.ca
mailto: lawilli3@ncsu.edu

	Why secret detection tools are not enough: It's not just about false positives - An industrial case study
	Abstract
	Introduction
	Related Work
	XTech and XTech Secret Detection Tool (XSDT)
	XTech
	XTech Secret Detection Tool (XSDT)

	Methodology
	Usage Data Analysis
	Developer Survey

	Findings from XSDT Usage Data Analysis
	RQ1: How Often do Developers Bypass The Warning Generated by Secret Detection Tools?
	RQ2: What is the Concentration of Checked-in Secrets in Source Code Artifacts?
	RQ3: What is the Distribution of Checked-in Secret Activity Among the Developers Inside the Organization?
	Summary of Findings for RQ1 - RQ3

	RQ4: Why do Developers Check in Potential Secrets Despite Tool Warnings?
	Developer Perceptions on True and False Positive Warnings
	Tool-related, false positive (A1.1, 50 respondents, 44%)
	Development-related, true positive, has been or will be removed, (A1.3, 16 respondents, 14%), and A1.4, 9 respondents (8%)
	Development-related, true positive, will not be removed (A1.2, 16 respondents, 14%)
	Tool-related, legacy secret (A1.5, 7 respondents, 6%)

	Observations on False Positives
	The Warnings are not Worth Fixing
	Why Secrets Cannot be Promptly Removed
	Additional Insights
	Summary of RQ4 Findings

	Discussion
	Recommendations and Future Work
	Limitations and Threats to Validity
	Conclusion
	References
	Affiliations

