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Abstract—Stragglers, Byzantine workers, and data privacy are
the main bottlenecks in distributed cloud computing. Some prior
works proposed coded computing strategies to jointly address all
three challenges. They require either a large number of workers,
a significant communication cost or a significant computational
complexity to tolerate Byzantine workers. Much of the overhead
in prior schemes comes from the fact that they tightly couple
coding for all three problems into a single framework. In
this paper, we propose Adaptive Verifiable Coded Computing
(AVCC) framework that decouples the Byzantine node detection
challenge from the straggler tolerance. AVCC leverages coded
computing just for handling stragglers and privacy, and then
uses an orthogonal approach that leverages verifiable computing
to mitigate Byzantine workers. Furthermore, AVCC dynamically
adapts its coding scheme to trade-off straggler tolerance with
Byzantine protection. We evaluate AVCC on a compute-intensive
distributed logistic regression application. Our experiments show
that AVCC achieves up to 4.2× speedup and up to 5.1% accuracy
improvement over the state-of-the-art Lagrange coded computing
approach (LCC). AVCC also speeds up the conventional uncoded
implementation of distributed logistic regression by up to 7.6×,
and improves the test accuracy by up to 12.1%.

Index Terms—coded computing, verifiable computing, machine
learning, straggler mitigation, Byzantine robustness, privacy

I. INTRODUCTION

Distributed machine learning using cloud resources is

widely used as it allows users to offload their compute-

intensive operations to run on multiple cloud servers [1].

Distributed computing, however, faces several challenges such

as stragglers and compromised systems. Execution speed

variations are commonly observed among compute nodes

in the cloud, which can be up to an order of magnitude

resulting in straggler behavior. These variations are due to the

heterogeneity in server hardware, resource contention across

shared virtual instances, IO delays, or even hardware faults [2].

Stragglers hamper the end-to-end system performance [3]. The

second challenge is that hackers routinely compromise some

machines in the cloud. These compromised nodes cause two

problems. The first problem is that users’ data privacy may be

compromised when some hacked cloud instances collude to

extract private information. In the other words, hacked workers

may collude to glean information about the data that a user

does not want to disclose. Second, hacked nodes may act as

Byzantine nodes and return incorrect computational results to

the client that may derail the training performance [4]. The

goal of this work is to provide a unified efficient framework

that jointly tackles stragglers, provides data privacy and elim-

inates Byzantine nodes.

Most prior works rely on replication to provide straggler re-

siliency [3], [5]–[9]. Replication, however, entails significant

overhead. Since it is unknown which node may be a straggler a

priori, replication strategies may pro-actively assign the same

task to multiple nodes. Alternatively, reactive strategies may

wait for a straggler delay to appear and then relaunch the

straggling task on another node, which delays the overall

execution. Coded computing based approaches are known to

be more efficient when stragglers are not known a priori [10],

[11]. In such approaches, a primary server encodes the data

and distributes the encoded data over the workers. The workers

then perform the computations over the encoded data and the

desired computation can be recovered from the fastest subset

of workers. For instance, the coding-theoretic approach of [10]

uses a maximum distance separable (MDS) (N,K)-code for

encoding the data. With (N,K) MDS coding, the data is split

into K pieces and then encoded into N pieces and distributed

to N workers to perform linear operations, such as matrix-

vector multiplication. If a subset of K nodes (K ≤ N ) returns

the result to the primary server, it can decode the full result.
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More advanced encoding strategies mask the data with

random noise with the joint aim of mitigating stragglers,

ensuring data privacy as well as tackling Byzantine nodes.

Specifically, Lagrange coded computing (LCC) [11] provides

straggler resiliency, Byzantine robustness and privacy protec-

tion even if a subset of workers, up to a certain size, collude.

LCC guarantees that the colluding workers cannot learn any

information about that data in the information-theoretic sense.

However, the cost of tolerating Byzantine workers with LCC

is twice as the cost of tolerating stragglers. For instance,

tolerating two Byzantine workers requires an additional four

workers while tolerating two stragglers only requires two

additional workers. As we describe in more detail later, recent

works reduced the cost of tolerating Byzantine workers to be

the same as the cost of tolerating stragglers at the expense

of increasing the communication cost significantly [12] or a

significant computation complexity [13], [14].

Inspired by the prior coding based approaches, and moti-

vated by the large overheads faced by these approaches, we

propose the Adaptive Verifiable Coded Computing (AVCC)

framework that jointly addresses stragglers, Byzantine workers

and data privacy. Unlike LCC, the cost of tolerating Byzantine

workers in AVCC is the same as the cost of tolerating

stragglers. AVCC achieves this improvement through a unique

decoupling of the data encoding for tackling stragglers and

privacy, and an orthogonal information-theoretic verifiable

computing approach that uses Freivalds’ algorithm [15] to

detect Byzantine workers. This decoupling enables AVCC to

tolerate stragglers and tackle untrusted nodes in any distributed

polynomial computations. AVCC further adapts to the dynam-

ics of the system by changing the coding strategy at runtime

depending on the straggler or Byzantine prevalence.

The basic intuition behind AVCC can be provided with

the following example. Consider the case when AVCC uses

(N,K)-MDS coding to tolerate stragglers. MDS coding can be

considered as a simplified version of LCC that can be used for

linear computations. The primary server encodes the data and

sends it to N workers. It then receives and decodes the fastest

K out of the N worker results to compute the final result.

However, AVCC ’s verification process checks the integrity

of the computation provided by each of the K workers

(Byzantine Workers). If any one of the K workers fails the

verification process, AVCC tags such a worker as a Byzantine

node and discards the results provided from that node. It

then has to wait for additional workers whose results can be

verified before decoding the full computational output. Thus,

AVCC trades-off straggler tolerance for Byzantine detection

and correctly computes the result. Our experiments show that

AVCC speeds up the state-of-the-art LCC implementation of

distributed logistic regression by up to 4.2×, and improves the

test accuracy by up to 5.1% accuracy. AVCC also achieves

up to 7.6× speedup and up to 12.1% accuracy improvement

over the conventional uncoded approach of distributed logistic

regression.

Organization. The rest of this paper is organized as follows.

Section II provides a background about coded computing,

Fig. 1: An illustration of a distributed computing system using (3, 2)
MDS code is depicted. The goal is to compute the matrix-vector
multiplication Xb, where X = [X�

1 ,X
�
2 ]

� while tolerating one
straggler. In this example, the first worker is a straggler and only
the results from worker 2 and worker 3 are available.

discusses the closely-related works and our contributions. In

Section III, we describe our system, the threat model, and

our guarantees. Section IV introduces our adaptive verifiable

coded computing framework. In Section V, we describe our

experimental setup followed by extensive experiments to eval-

uate our method in Section VI. Finally, concluding remarks

and future directions are discussed in Section VII.

II. BACKGROUND AND RELATED WORKS

In this section, we provide a brief background about coded

computing, verifiable computing and the closely-related works.

A. Coded Computing

In the past, coding was used mainly to tolerate data losses

during communication and data storage. However, coded

computing has extended this concept to enable tolerating

stragglers while performing computations. In a system with

dataset X ∈ F
m×d
q , where m is the number of samples

and d is the feature size, the goal of distributed computing

is to compute a multivariate polynomial f : V → U over

X = (X�
1 ,X

�
2 , · · · ,X�

K)�, where Xi ∈ F
m/K×d
q and V and

U are vector spaces of dimensions v and u, respectively, over a

finite field Fq . That is, the goal is to compute f(Xi), ∀i ∈ [K]
using a distributed collection of compute nodes. We describe

two approaches for encoding data: MDS which is used for lin-

ear computations, and LCC which can handle any polynomial

computations.

MDS Coding. MDS coded computing is a computing

paradigm that enables distributed computing on encoded data

to tolerate stragglers. Fig. 1 illustrates the idea of computing a

matrix-vector multiplication Xb using 3 workers with a (3, 2)
MDS code. The data matrix X is evenly divided into 2 sub-

matrices X1 and X2, then encoded into 3 coded matrices

X̃1 = X1, X̃2 = X2 and X̃3 = X1 + X2, and assigned

to worker 1, 2, and 3, respectively. Worker i then receives the

coded matrix X̃i and the vector b and starts computing X̃ib,

where i ∈ [3]. The final result can be recovered when the

results from any 2 out of the 3 workers are received, without

the need to wait for one straggler. Assume that results from

worker 2 and worker 3 are received. Then X1b can be decoded

by subtracting X2b from (X1+X2)b, and the final result can

be obtained by concatenating X1b and X2b. In general, for an
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(N,K) MDS code, the data matrix X is divided into K equal

size sub-matrices X1, . . . ,XK , for K ≤ N . Then N encoded

matrices X̃1, . . . , X̃N are generated by applying (N,K)-MDS

code to the sub-matrices. If a systematic MDS code is used

for encoding, then X̃i = Xi, for 1 ≤ i ≤ K. Once any K
out of the N results are received from the workers nodes, the

master node can decode the final result using these K results.

Lagrange Coded Computing (LCC) [11]. MDS-coded

computing can inject redundancy to tolerate stragglers in linear

computations. LCC extends this idea for any polynomial-based

computation. LCC provides a single framework to tolerate

stragglers, Byzantine nodes and to protect privacy against

colluding workers. LCC encodes the dataset into N coded

datasets X̃1, X̃2, · · · , X̃N ∈ V, where N is the number

of worker nodes, and the i-th node computes f(X̃i) ∈ U.

Specifically, LCC requires that

N ≥ (K + T − 1) deg f + S + 2M + 1, (1)

to tolerate S stragglers, M Byzantine workers and to ensure

privacy of the dataset against any T colluding workers, where

deg f is the degree of the polynomial f . We refer to this

scheme as (N,K, S,M) LCC. The overall computation results

in LCC can be then recovered when at least N − S nodes

return their computations through a Reed-Solomon decoding

approach [16]. This approach has an encoding complexity of

O(N log2(K) log log(K)v) and results in a decoding com-

plexity of O((N − S) log2(N − S) log log(N − S)u), where

v is the output size of the encoder and u is the input size of

the decoder. That is, the encoding complexity is almost linear

in O(Nv) and the decoding complexity is almost linear in

O((N − S)u). We observe from (1) that handling Byzantine

workers are twice as costly as stragglers in LCC. Hence,

Byzantine node detection is resource-intensive in LCC.

Broader use of coded computing. LCC [11] provides

coded redundancy for any arbitrary multivariate polynomial

computations such as general tensor algebraic functions, inner

product functions, function computing outer products, and

tensor computations. Polynomially coded computing [17] can

tolerate stragglers in bilinear computations such as Hessian

matrix computation. Recent works [18]–[22] have also demon-

strated promising results for extending coded computing to be-

yond polynomial computations such as deep learning training

and inference.

B. Verifiable Computing

Verifiable computing is an orthogonal paradigm that has

been designed to ensure computational integrity [15]. The

basic principle behind verifiable computing is to allow a

user to verify whether a compute node has performed the

assigned computation correctly. While there are a variety of

approaches to verify computations, in this work we adapt the

approach proposed in [15]. Consider the problem where a

user is interested in computing the matrix-vector multiplication

y = Xb by offloading it to a worker node, where X ∈ F
m×d
q

and b ∈ F
d
q . The user chooses a vector r ∈ F

m
q uniformly at

random and computes s � rX as a private verification key.

This verification key generation is done only once. The worker

node then returns the outcome ŷ, where ŷ = Xb if the node

performed the computation correctly. The user then performs

the following verification check: r · ŷ = s · b. If the worker

node passes this verification check successfully, then the user

accepts this computation result. Note that this verification step

is done in only O(m+ d) arithmetic operations and is much

faster compared to computing y = Xb on the server, which

incurs a complexity of O(md). That is, through this step,

the user performs substantially fewer operations compared to

the original computation to identify any discrepancy in the

computations with high probability.

C. Related Coding Strategies for Byzantine Detection

Numerous works considered the problem of tolerating

Byzantine workers in distributed computing and learning

settings. For instance, Draco [23] and Detox [24] introduce

algorithmic redundancy that tackles the Byzantine problem

in isolation without dealing with stragglers. Coding-theoretic

approaches beyond LCC and Polynomial codes have been

proposed recently to tolerate Byzantine nodes in distributed

settings [12]–[14]. In [12], two schemes have been proposed

to improve the adversarial toleration threshold of LCC based

on decomposing the polynomials as a series of monomials.

This decreases the effective degree of the polynomial, but

increases the communication cost significantly. In [13], this

problem was also considered for the Gaussian and the uniform

random error models. Our work, however, considers the worst-

case error model. More recently, a list-decoding approach

with side information has been developed in [14] which uses

the folding technique in algebraic coding to tolerate more

Byzantine nodes. This approach, however, has a significant

decoding complexity that is quadratic in the number of workers

while it is almost linear in LCC.

Another line of work focused on detecting Byzantine be-

havior through verifiable computing. An information-theoretic

verifiable computing scheme for polynomial computations was

proposed in [25], [26] in the single user-server setting based

on Freivalds’ algorithm. Leveraging verifiable computing in

machine learning has also been considered in many works

such as [27]–[29]. In particular, Slalom [28] uses Trusted

Execution Environment (TEE)-GPU collaboration for privacy-

preserving and verifiable inference. Because of the hardware

limitations of TEE and consequently its lower performance,

Slalom offloads the linear operations to an untrusted GPU and

uses Freivalds’ algorithm for verification [15] which is less

compute-intensive than the original computation. However,

this scheme is designed for a single GPU system and cannot

scale to the distributed system. Also, it does not support

training and it does not mitigate stragglers.

D. Contributions

The question we pose in this work is whether there is

a way to exploit verifiable computing in conjunction with

coded computing to get the best of both worlds. That is to

use coded computing to tolerate stragglers and ensure data
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privacy, while using verifiable computing to tolerate Byzantine

workers. Such a decoupled approach will lower the cost of

tolerating Byzantine workers compared to LCC. We consider a

general scenario in which the computation is distributed across

N nodes, and propose Adaptive Verifiable Coded Computing
(AVCC), a new framework to simultaneously mitigate strag-

glers, provide security against Byzantine workers and provide

data privacy. Unlike LCC, AVCC only requires that

N ≥ (K + T − 1) deg f + S +M + 1. (2)

Compared to (1) in LCC, note that in (2) the cost of tolerating a

Byzantine node is the same as that of a straggler node. Hence,

instead of the 2M nodes required in LCC, AVCC only needs

M nodes, as we demonstrate in Section IV.

The key idea of AVCC is to use separate mechanisms for

mitigating straggler effects and for tackling Byzantine nodes.

AVCC ensures the computational integrity by verifying the

computation of each node independently using node’s own

compute results until it gets the minimum number of verified

results required for decoding. This verification step can start

as soon as the first node responds, unlike LCC which requires

N − S workers to respond before starting to decode. Hence,

AVCC is also highly parallelizable.

In principle, AVCC can be applied to the distributed com-

putation of any polynomial f . However, AVCC is particularly

suitable for matrix-vector, matrix-matrix multiplications and

in machine learning applications such as linear regression and

logistic regression, as verifying such computations is highly

efficient [15].

III. PROBLEM SETTING

In this section, we describe our setting, the threat model

and our guarantees.

A. System Setting and Threat Model

We consider a distributed system with N nodes and a main

server, denoted as master, that distributes the data among the

worker nodes. Given a dataset X = [X�
1 ,X

�
2 , · · · ,X�

K ]�, our

final goal is to compute Yi = f(Xi), ∀i ∈ [K]. To this end,

the main server first encodes that data into N coded datasets

denoted by X̃1, X̃2, · · · , X̃N . The i-th worker then receives

X̃i, computes Ỹi = f(X̃i) and sends the result back to the

main server for verification and decoding. The main server

collects all computations from the non-straggling workers, first

verifies them as we explain in the following sections and

finally recovers the computation outcome Y1, · · · ,YK from

the fastest workers that passed the verification.

We assume that the system has up to S stragglers that

have higher latency compared to the other workers. While the

main server is trusted, the worker nodes can be dynamically

malicious. Therefore, adversaries on the workers can have full

control (root access) and design any attack. As a result, at

any given time, some of the worker nodes can send arbi-

trary results to the main server to sabotage the computation.

In addition, some workers may send incorrect computations

unintentionally. Specifically, we assume that up to M worker

nodes can return erroneous computations with no limitation

on their computational power. Finally, we assume that up to

T curious workers can collude to learn information about the

dataset.

B. Guarantees

Our goal is to design a scheme that provides the following

guarantees.

1) S-Resiliency. The computation outcome must be recov-

ered even in the presence of S stragglers.

2) M -Security. This means that the system can tolerate up

to M workers sending erroneous computations, with no

limitations on their computational capability, with an ar-

bitrarily high probability based on verification overhead.

3) T -Privacy. The workers must remain oblivious to the

dataset in the information-theoretic sense even if T of

them collude. That is, for every set of at most T workers

denoted by T ⊂ [N ], we must have

I(X; X̃T ) = 0, (3)

where I(.; .) denotes the mutual information [30] and

X̃T denotes the encoded datasets at the workers in T .

IV. ADAPTIVE VERIFIABLE CODED COMPUTING (AVCC)

In this section, we present our adaptive verifiable coded

computing (AVCC) framework, which consists of five key

components: 1) Data encoding; 2) Verification key generation;

3) Integrity check; 4) Decoding; 5) Dynamic coding. We start

with an example to illustrate the key components of AVCC.

A. Illustrating Example

We focus on the logistic regression problem to illustrate how

AVCC works. Given a dataset X ∈ R
m×d of m data points

and d features and a label vector y ∈ R
m, the goal in logistic

regression training is to find the weight vector w ∈ R
d that

minimizes the cross entropy function

C(w) =
1

m

m∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)), (4)

where ŷi = h(xi · w) ∈ (0, 1) is the estimated probability of

label i being equal to 1, xi is the i-th row of X, and h(·)
is the sigmoid function h(θ) = 1/(1 + e−θ). The gradient

descent algorithm solves this problem iteratively by updating

the model as

w(t+1) = w(t) − η

m
X�(h(Xw(t))− y), (5)

where η is the learning rate and the function h(·) operates

element-wise on the vector Xw(t). In this example, we provide

a two-round protocol as follows.1

In the first round, an intermediate vector z(t) = Xw(t) is

computed, which is then used to compute the predicted proba-

bility h(z(t)) and the prediction error vector e(t) = h(z(t))−y.

1The dataset and the weight vector at each round are quantized and
represented over the finite field to guarantee information-theoretic privacy
[31].
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In the second round, the gradient vector g(t) = X�e(t) is

computed.

We now illustrate how to compute this logistic regression

task in a distributed setting in the presence of stragglers and

compromised compute nodes as depicted in Fig. 2.

1) Data Encoding. Before starting the computation, the

main server partitions the dataset X into K sub-matrices

and encodes them using (N,K)-MDS coding. As stated

earlier, MDS encoding is a special case of LCC encoding

when the computations are only linear. The main server

then sends the coded sub-matrix X̃i to the i-th worker,

where i ∈ [N ].
2) Verification Key Generation. The main server also

computes a one-time verification key that helps in ver-

ifying the computation results returned by the worker

nodes afterwards. Specifically, the main server chooses a

vector r(1)i ∈ F
m/K
q and a vector r(2)i ∈ F

d/K
q uniformly

at random for each worker i ∈ [N ].
The main server then computes the following private

verification keys as in the Freivalds’ algorithm [15] as

follows

s(1)i � r(1)i X̃i, (6)

s(2)i � r(2)i X̃�
i . (7)

The main server then keeps these private verification

keys for the two rounds along with r(1)i and r(2)i , ∀i ∈
[N ].

3) Integrity Check. At the first round of iteration t, when

the i-th worker returns its result z̃(t)
i , which is X̃iw(t)

if this worker is not Byzantine, the main server checks

the following equality

s(1)i · w(t) = r(1)i · z̃(t)i . (8)

At the second round of iteration t, when the i-th worker

returns g̃(t)
i which is X̃�

i e(t) if this worker is not

Byzantine, the main server checks the equality

s(2)i · e(t) = r(2)i · g̃(t)
i . (9)

These verification steps are done in only O(m + d)
arithmetic operations and are much faster compared to

computing z̃
(t)
i and g̃(t)

i which requires O(mK d) arith-

metic operations. Through these verification steps, the

main server can identify the Byzantine workers with

high probability that depends on the finite field size q
[25] as follows

Pr[r(1)i · z̃(t)i = r(1)i · z̃′
i] ≤

1

q
, (10)

Pr[r(2)i · g̃(t)
i = r(2)i · g̃′

i] ≤
1

q
, (11)

for any z̃′
i �= z̃(t)i and g̃′

i �= g̃(t)
i .

4) Decoding. The main server decodes the results in each

round using the MDS decoding process with the addi-

tional constraint that each of the K results it uses has

been verified first as explained in step 3.

The decoding starts when the main server collects K
verified results. Following the property of MDS coding

that any K ×K sub-matrix formed by any K columns

of the K×N encoding matrix is invertible, the decoding

algorithm is simply to multiply the result matrix formed

by concatenating the returned results from K verified

workers, with the inverse of the matrix formed by the

K columns of the encoding matrix corresponding to

the indices of the K verified workers. Thus, the main

server can decode and recover the final output using K
verified results, instead of just using the first K results.

For Byzantine workers that fail the verification, they are

effectively treated as stragglers and their results are not

used for decoding.

5) Dynamic Coding. Ignoring a Byzantine worker’s result

comes at the cost of reduced straggler tolerance as

the main server has to wait for an additional verified

result. In the original MDS coding strategy, N − K
stragglers can be tolerated. If the original MDS straggler

tolerance is still desired, the main server changes the

coding strategy to (N − 1,K − 1) to account for this

Byzantine worker. In this coding strategy, each worker

now performs more work but only K − 1 results are

needed to decode. Thus, this dynamic coding approach

enables the main server to trade-off redundant work with

Byzantine tolerance.

Remark 1. (AVCC Improvements over LCC). AVCC has two

key improvements over LCC. First, AVCC relies on LCC for

straggler tolerance and ensuring privacy only but it depends on

verifiable computing to identify the Byzantine workers. This

verification process can be done independently for each worker

node without waiting for the results of other workers. LCC, in

contrast, has to wait for the results of a sufficient number of

workers before identifying the Byzantine workers. This allows

AVCC to use less number of workers compared to LCC. Sec-

ond, AVCC uses a dynamic coding approach to automatically

trade-off straggler tolerance for higher Byzantine protection

and vice-versa.

B. Generalized AVCC
As explained in Section IV-A, AVCC is particularly suitable

for matrix-vector and matrix-matrix multiplications as the

information-theoretic verification schemes of such computa-

tions are efficient [25]. Such computations are essential in

several machine learning applications such as linear regression

and logistic regression. However, in principle, AVCC can be

applied to any polynomial f . We now explain the encoding,

the verification and the decoding of AVCC.

1) Data Encoding. In AVCC, the dataset X =
(X�

1 ,X
�
2 , · · · ,X�

K)� is encoded as in LCC, but AVCC

requires less number of workers. Specifically, the encod-

ing is as follows. First, a set of K+T distinct elements

denoted by B = {β1, · · · , βK+T } are chosen from Fq

and an encoding polynomial of degree at most K+T−1
is constructed such that u(βj) = Xj for j ∈ [K] and

u(βj) = Wj for j ∈ {K + 1, · · · ,K + T}, where Wj

632

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 28,2023 at 11:53:27 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: An overview of the Adaptive Verifiable Coded Computing (AVCC) framework is shown. In AVCC, the main server (master) verifies
the computation of each worker individually as soon as this worker sends its computation result using the initially computed verification
keys. The main server then reconstructs the final output using the results of the fastest and verified workers.

is chosen uniformly at random. Such a polynomial can

be constructed as follows

u(z) =

K∑
j=1

Xj�j(z) +

K+T∑
j=K+1

Wj�j(z), (12)

where �j(z) is the Lagrange monomial defined as fol-

lows

�j(z) =
∏

k∈[K+T ]\{j}

z − βk

βj − βk
, (13)

for j ∈ [K + T ]. Next, another set of N distinct points

denoted by A = {α1, · · · , αN} is selected from Fq . If

T > 0, then the sets are selected such that A ∩ B = ∅.

The main server then sends X̃i = u(αi) to the i-th
worker which is required to compute f(X̃i) = f(u(αi)),
where we note that

deg f(u(z)) ≤ (K + T − 1) deg f. (14)

The main difference between the encoding in LCC and

the encoding of AVCC is that LCC requires that N ≥
(K + T − 1) deg f + S +2M +1, whereas AVCC only

requires that N ≥ (K + T − 1) deg f + S +M + 1.

It is also worth noting that when T = 0 and deg f = 1
in AVCC, we can encode the dataset using an (N,K)
MDS code as illustrated in Subsection IV-A.

2) Verification Key Generation. The main server also

computes a random private verification key Vi for each

worker i which depends on X̃i and the polynomial f .

3) Integrity Check. When the main server receives the

result of the i-th worker, it verifies the correctness of this

result using the private verification key Vi. We denote

the binary output of the verification algorithm for the

i-th worker by pi, where pi = 1 if this worker passes

the verification test and pi = 0 otherwise.

If the i-th worker returns the correct computation result

Ỹi = f(X̃i), then the main server accepts the result

with probability 1. Otherwise, the main server detects

this malicious behavior regardless of the computational

power of this worker with high probability [25]. Specif-

ically, we have

Pr(pi = 0, Ỹ
′
i �= f(X̃i)) ≥ 1− o(1), (15)

where the term o(1) is a term that vanishes as the finite

field size q grows.

4) Decoding. Once the main server collects (K + T −
1) deg f + 1 verified results, it then interpolates the

polynomial f(u(z)) and reconstructs the computation

outcome by evaluating the polynomial f(u(z)) at βi

∀i ∈ [K] as f(u(βi)) = f(Xi).
5) Dynamic Coding. The main server may decide to dy-

namically reconfigure the coded data distribution, based

on the observed system behaviour in the previous itera-

tion(s). Assume our system has N workers and initially

uses (N,K) MDS coding, where N = K+M +S+T .

We claim that the system tolerates up to S stragglers,

M Byzantine workers and T colluding workers. Our

strategy changes the dimension of the code and the code

length dynamically based on the history. We denote the

dimension of the code at time t by Kt and the number

of workers in the system at time t by Nt. That is, we

use (Nt,Kt) MDS code at iteration t. Suppose that at

iteration t, we detect St stragglers and Mt malicious

workers, and there are potentially Tt colluding workers

in the system, where St ≤ S, Mt ≤ M and Tt ≤ T . We
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define a parameter At that shows how many additional

stragglers we can tolerate in the future iterations before

we suffer from the tail latency as follows

At = Nt −Mt − St −Kt − Tt. (16)

This parameter determines that the new coding scheme

at iteration t+ 1 should be as follows

(Nt+1,Kt+1) =

{
(Nt −Mt,Kt) if At ≥ 0,

(Nt −Mt,Kt +At) if At < 0.

(17)

That is, our strategy is as follows. If At ≥ 0, we do

not have to wait for any stragglers to complete the

computation. However, when At < 0 this indicates that

we already suffer from stragglers and we need to adapt

our coding scheme with the available nodes we have.

To do so, we need to reduce the dimension of the code

as well as the code length. But re-encoding the data

and verification keys based on the new coding scheme

can be a performance bottleneck. For this reason, in

the preprocessing phase before the application starts,

we generate encoded data as well as verification keys

of different coding configurations offline. Therefore, we

have the flexibility to use them dynamically.

Similar strategy can be applied with minor modification

when the system encodes using Lagrange coding. In the

case of using Lagrange coding, we set At as follows

At = Nt −Mt − St − (Kt + Tt − 1) deg f, (18)

and the new coding scheme at iteration t+1 is as follows

(Nt+1,Kt+1) =

{
(Nt −Mt,Kt) if At ≥ 0,

(Nt −Mt,Kt + � At

deg f �) if At < 0.

(19)

Theorem 1 characterizes the set of all feasible S-resilient, M -

secure, and T -private schemes that AVCC achieves.

Theorem 1. Given a number of workers N and a dataset
X = (X�

1 ,X
�
2 , · · · ,X�

K)�, AVCC provides an S-resilient,
M -secure, and T -private scheme for computing {f(Xi)}Ki=1

for any polynomial f , as long as

N ≥ (K + T − 1) deg f + S +M + 1. (20)

Proof. We start by showing that AVCC is S-resilient and M -

secure and then show it is T -private.

• S-resiliency and M -security. Since LCC uses Reed-

Solomon decoder to identify the Byzantine workers,

it requires 2M additional workers in order to tolerate

M malicious workers. Unlike LCC, AVCC mitigates

Byzantine workers by verifying each received worker’s

result independently. If the worker returns the correct

computation result, then the verification algorithm accepts

the result with probability 1. Otherwise, the verification

algorithm rejects the erroneous result regardless of the

computational power of the worker with a probability

at least 1 − o(1), where the term o(1) is a term that

vanishes as the finite field size grows. Hence, AVCC

requires only M additional worker results to tolerate M
Byzantine workers.

Specifically, since AVCC encodes the data the same way

as LCC does as described in Section IV-B, it follows

that AVCC is S-resilient and T -private as LCC. More

specifically, the encoding polynomial u(z) is constructed

with K + T distinct points and hence it is of degree at

most K + T − 1. The computation at the worker side

is to apply f on the encoded data, that is, to evaluate

f(u(z)), and the composed polynomial f(u(z)) satisfies

deg f(u(z)) ≤ (K + T − 1) deg f .

To recover f(Xi), the master first interpolates f(u(z)),
and then evaluates f(u(z)) at {βi}i∈[K]. To interpolate

f(u(z)), the master needs a minimum of deg f(u(z))+1
correct evaluations, that is, deg f(u(z))+1 correct worker

results. Since deg f(u(z)) ≤ (K + T − 1) deg f and

N ≥ (K+T−1) deg f+S+M+1, the master is ensured

to obtain deg f(u(z))+1 correct worker results and then

obtain all coefficients of f(u(z)). This is because the

master has at least (K + T − 1) deg f +1 correct results

without the results of the at most S stragglers and after

discarding the results of at most M malicious workers.

Hence, we have shown that the AVCC scheme is S-

resilient and M -secure.

• T -privacy. We recall that AVCC uses the same encoding

method as LCC. This encoding can be represented as

X̃i = u(αi) = (X1, · · · ,XK ,WK+1, · · · ,WK+T ).Ui,

where U ∈ F
(K+T )×N
q is the encoding matrix,

Ui,j �
∏

k∈[K+T ]\{i}

αj − βk

βi − βk

and Ui is the i-th column of U. Then, it follows

from Lemma 2 in [11] that every T × T submatrix of

the bottom T × N submatrix Ubottom of the encoding

matrix U is invertible. Thus, for every set of T work-

ers denoted by T ⊂ [N ], their encoded data X̃T =
XUtop

T +WUbottom
T , where W = (WK+1, · · · ,WK+T ),

and Utop
T ∈ F

K×T
q ,Ubottom

T ∈ F
T×T
q are the top and

bottom submatrices which is formed by columns in U
that are indexed by T . Since Ubottom

T is invertible, the

added random padding WUbottom
T is uniformly random.

Hence, the coded data XUtop
T is completely masked by

the uniformly random mask. This guarantees that the

AVCC scheme is T -private.

V. EXPERIMENTAL SETUP

In this section, we describe our experimental setup. We

present an empirical study of the performance of AVCC

compared to LCC as well as the uncoded baseline. Our focus is

on training a logistic regression model for image classification,

while the computation load is distributed on multiple nodes on
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the DCOMP testbed platform [32]. In our experimental setup,

we focus on the case where T = 0.

We train the logistic regression model described in Section

IV-A for binary image classification on the GISETTE dataset

[33] to experimentally examine two aspects: the performance

gain of AVCC in terms of the training time and accuracy, and

the trade-off between various dynamic coding strategies. The

size of the GISETTE dataset is (m, d) = (6000, 5000). Our

experiments are deployed on a cluster of 13 Minnow instances

on a DCOMP testbed, where 1 node serves as the main server

and the remaining N = 12 nodes are worker nodes. Each

Minnow node is equipped with a quad-core Intel Atom-E

processor, 2GB of RAM and two 1 GbE network interfaces.

We use (N,K, S,M) = (12, 9, 1, 1) configuration for

the LCC baseline in the experiments. For AVCC we use

(N,K, S +M) = (12, 9, 3). Recall that the encoding process

of AVCC only relies on N,K and hence S,M play no role

in the encoding.

We also implement an uncoded baseline which has no

redundancy and only 9 out of the 12 workers participate in the

computation, each of them storing and processing 1
9 fraction of

uncoded rows from the input matrix. The main server waits for

all 9 workers to return, and does not need to perform decoding

to recover the result.

Quantization and Parameter Selection. Since the La-

grange coding and the integrity check technique work over

a finite field Fq , but the inputs and the weights for the model

training are often defined in real domain, AVCC needs to

quantize the inputs and model weights to integers as

xr = round(2l · x), (21)

where x represents a floating point number and l is the

quantization parameter (number of precision bits). We then

embed these integers in the finite field Fq of integers modulo

a prime q. If the integer is negative, we represent it in the

finite field using the two’s complement representation. When

the computation results of the workers are received by the main

server, q is subtracted from all the elements larger than q−1
2

to restore the negative numbers. The results are then scaled

by 2−l to convert them back to real numbers. There are many

prior works that use quantization schemes in training machine

learning models [34]–[36] without noticeable loss in accuracy.

Matrix multiplication and vector inner product operations

are performed in the logistic regression application. Hence, it

is necessary to select the field size of each operand to be such

that the worst-case computation output still fits within the finite

field to avoid a wrap-around which may lead to an overflow

error. The Minnow nodes use a 64-bit implementation, and

the number of features in the GISETTE dataset is d = 5000.

Hence, the worst-case operation must satisfy d(q−1)2 ≤ 263−
1. As such, we select the finite field size to be q = 225−39 (the

largest prime number with 25 bits) to satisfy this limitation.

In our experimental setup, the GISETTE dataset values are all

non-negative integers and fit within the selected finite field.

Hence, no quantization is necessary. For the model weights,

we optimize the quantization parameter to l = 5 by taking into

account the trade-off between the rounding and the overflow

error. Note that the bias is implemented as part of the weights,

so it shares the same quantization parameter as the weights.

Byzantine Attack Models. We consider the following

Byzantine attack models that are widely considered in previous

works [13], [37], [38].

• Reversed Value Attack. In this attack, the Byzantine

workers that were supposed to send z ∈ F
m/K
q to the

main server instead send −cz, for some c > 0. We set

c = 1 in our experiment.

• Constant Byzantine Attack. In this model, the Byzan-

tine workers always send a constant vector to the main

server with dimension equal to that of the true result.

End-to-end Convergence Performance. We evaluate the

end-to-end convergence performance of AVCC, under two

setups and the two attack models, and compare it to LCC

and the uncoded approaches. The LCC baseline is designed

for (S = 1,M = 1), so it requires K+S+2M = 12 workers.

AVCC, LCC and the uncoded baseline are all trained for 50
iterations. For AVCC we use two different setups while staying

within the constraints that 12 ≥ 9 + S +M as follows.

1) S = 1,M = 2. In this setup, up to 2 Byzantine nodes

may be tolerated but at the expense of reducing the

straggler tolerance from a maximum of 3 nodes to only

1 node.

2) S = 2,M = 1. In the second setup, we reduce the

Byzantine tolerance to 1 node, while reducing straggler

tolerance to 2 nodes.

VI. EXPERIMENTAL RESULTS

We now present extensive experimental results showing

the performance gain of AVCC over LCC and the uncoded

baselines.

Accuracy. We first consider the reverse value attack. This is

a weak attack, as the small values produced during the matrix-

vector operations when added or subtracted do not derail the

overall training convergence dramatically.

Fig. 3(a) shows the test accuracy under the reverse value

attack when there is only one Byzantine node in the system.

In this case, since LCC is designed for (S = 1,M = 1), it con-

verges to the same accuracy as AVCC under (S = 2,M = 1)

setup, but AVCC reaches this accuracy level faster than LCC,

because LCC by design needs to wait for 11 worker results

before it can start decoding, whereas AVCC requires only 9
verified results. Under (S = 2,M = 1) setup, LCC is bound to

suffer tail latency from the faster of the two stragglers, while

AVCC in the worst-case can start decoding after verifying

results from the 9 honest workers and rejecting the Byzantine

worker’s result, without the need to wait for any of the two

stragglers.

Fig. 3(b) shows how the test accuracy varies with training

time under the reverse value attack when there are two

Byzantine nodes in the system. Recall that LCC is able to

handle only one Byzantine node with N = 12, K = 9 and

S = 1 by design. In order to handle two Byzantine nodes
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(a) Reverse S = 2,M = 1 (b) Reverse S = 1,M = 2 (c) Constant S = 2,M = 1 (d) Constant S = 1,M = 2

Fig. 3: Convergence performance of AVCC, LCC and uncoded methods with (a) S = 2,M = 1 under reverse value attack, (b) S = 1,M = 2
under reverse value attack, (c) S = 2,M = 1 under constant attack and (d) S = 1,M = 2 under constant attack.

(while keeping S = 1), LCC should either increase N to be 14
or decrease K to be 7. In the first case, LCC would use more

worker nodes (two worker nodes) and correspondingly is more

expensive to implement. In the second case, LCC has to assign

a lot more work to each worker node, thereby increasing the

overall execution latency of each worker. However, AVCC can

dynamically adapt to the changing straggler and Byzantine

conditions and automatically adapt to the scenario where there

are more Byzantines by trading-off straggler tolerance. Hence,

with the (S = 1,M = 2) setup, AVCC converges to higher

accuracy than LCC. Note that in both scenarios in Fig. 3(a)

and Fig. 3 (b), the uncoded scheme does not converge to the

same accuracy as AVCC since it is unable to detect and isolate

the Byzantine workers. Hence, the incorrect computations of

the Byzantine workers degrade the overall accuracy.

Fig. 3(c) shows how the test accuracy varies with training

time under the constant attack with one Byzantine node.

Compared to the reverse value attack, the constant attack

is a stronger attack as the malicious behaviour forces all

values to a constant value and often causes a considerable

accuracy degradation. LCC is able to detect and isolate the

one Byzantine node and hence it reaches an accuracy that is

on par with AVCC . AVCC is able to achieve the accuracy at

least 10% faster. However, AVCC shines when the number of

Byzantine nodes increases past one.

With the (S = 1,M = 2) setup shown in Fig. 3(d) with

the constant attack, LCC converges to 90% accuracy whereas

the uncoded scheme converges to a lower accuracy of 83%.

This result is expected for the uncoded scheme, because with

M = 2 there are two Byzantine nodes in the system that drag

the accuracy down when compared to a single Byzantine node

setup. As for LCC, it is designed to tolerate (S = 1,M = 1),

which protects LCC from one malicious node only. Hence, the

accuracy of LCC is lowered by the additional malicious node

existing in the system, and converges only to an accuracy of

90%. As explained earlier, if the number of Byzantine nodes

increases LCC would need either more workers or assign more

work per each worker node, both of which are undesirable.

Training Time. Applying AVCC leads to significant end-to-

end speedups as shown in Table I. In particular, AVCC leads

to 4.2× speedup gain over LCC and more than 5× speedup

over the uncoded scheme under the constant attack. Under the

reverse value attack, AVCC achieves up to 2.7× speedup over

TABLE I: Speedups of AVCC over LCC and the uncoded scheme
under various settings.

Setting LCC Uncoded
Reverse value attack

S = 1,M = 2
2.66× 5.13×

Reverse value attack
S = 2,M = 1

1.09× 3.22×
Constant attack
S = 1,M = 2

4.17× 5.41×
Constant attack
S = 2,M = 1

1.13× 7.64×

LCC and more than 5.1× speedup over the uncoded approach.

Per Iteration Cost of AVCC. The per iteration cost of

applying AVCC to logistic regression using GISETTE dataset

is shown in Fig. 4; note the logarithmic scale on the Y-axis. We

breakdown the iteration cost into four categories as follows.

1) Compute Time. This is the worst-case latency for

performing the matrix operations at any worker node.

2) Communication Time. This accounts for the time to

send and receive data between the workers and the main

server.

3) Verification Time. This is the time to verify the results.

Note that the cost of encoding and key generation

are one-time costs, which get amortized over multiple

iterations of the model training or inference.

4) Decoding Time. This is the decoding time at the main

server after the verification.

As shown in Fig. 4(a), in a straggler-free and Byzantine-free

environment, the decoding and verification time of AVCC

incurs extra latency. But when there are stragglers in the

cluster, the decoding and verification overhead in AVCC is

dwarfed by the straggler latency as shown in Fig. 4(b) and

Fig. 4(c). Note that LCC has no separate verification cost

since that process is coupled with the decoding process. The

presence of stragglers causes the uncoded execution time to

increase substantially. However, both LCC and AVCC are able

to tolerate stragglers and Byzantine nodes. and AVCC achieves

superior test accuracy even with higher Byzantine node counts.

Dynamic Coding. Recall that AVCC has the ability to

dynamically change the coding strategy if straggler or Byzan-

tine nodes persist in the system by re-encoding the data.

We evaluate the benefits provided by re-encoding the data

over an approach that performs AVCC functions but without

re-encoding the data. We call that approach Static VCC.

636

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 28,2023 at 11:53:27 UTC from IEEE Xplore.  Restrictions apply. 



(a) S = 0,M = 0 (b) S = 1,M = 2 (LCC test accuracy 93.7%,
AVCC test accuracy 95.1%)

(c) S = 2,M = 1 (Test accuracy of both LCC
and AVCC 95.1%)

Fig. 4: Per iteration runtime analysis of AVCC, LCC and uncoded baseline under different numbers of stragglers and Byzantine nodes.
Results under constant attack are similar to that under reverse value attack and thus only results under reverse value attack are shown in (b)
and (c).

Fig. 5: AVCC and Static VCC execution time comparison

Static VCC is a constrained version of AVCC, where the

verification mechanism is still available to mitigate Byzantine

nodes, but the dynamic coding is removed so that the coding

scheme will not change throughout the execution. The primary

disadvantage of dynamic re-coding is that newly encoded data

must be re-sent to the workers once such a decision is made

by AVCC.

Fig. 5 quantifies the benefit of AVCC over Static VCC

in an exemplary scenario. In this scenario we start with the

initial coding scheme of (N = 12,K = 9, S = 2,M = 1).
That means we can tolerate one Byzantine node and two

stragglers. At the start of iteration 1, the system encounters

three stragglers and one Byzantine node. At this juncture,

AVCC can eliminate the one Byzantine node from the group

of workers, but it also recognizes that the coding scheme is

no longer able to handle 3 stragglers. AVCC then re-encodes

the data using (N = 11,K = 8, S = 3,M = 0) setting.

Static VCC, on the other hand, does not re-encode the data.

AVCC incurs a one-time cost of about 41 seconds at the end

of iteration 1, because it sends the encoded matrices with

the updated coding scheme (11, 8) to the workers. In spite

of this re-encoding cost, at the end of the 50 iterations, AVCC

saves about 54 seconds in the overall execution time, compared

to Static VCC. This scenario exemplifies the benefits of the

adaptive nature of AVCC. It is also worth noting that the one-

time cost of re-encoding and data transfer overhead can be

mitigated in different ways. For instance, it is possible for

the main server to generate a priori multiple versions of the

encoded data and send those versions to the workers, where

each version is encoded with a different coding scheme. An

alternative scheme would allow the main server to reactively

encode the data off the critical path.

VII. CONCLUSION

In this work, we presented AVCC, a framework for resilient,

robust, and private distributed machine learning via coded

computing with dynamic coding and verifiable computing.

AVCC is robust to up to M malicious nodes, tolerates up to

S stragglers, and provides privacy against up to T colluding

nodes, while being several times faster than the state-of-the-

art LCC approach. Unlike prior coded computing approaches,

AVCC decouples the computational integrity check from the

straggler tolerance thereby reducing the cost of Byzantine

tolerance.

AVCC opens the door for several interesting future direc-

tions. The encoding, decoding, and data distribution process

is conducted by a trusted central server. The question to pose

next is whether this central server could also be removed from

our trust base. We believe that using a trusted execution envi-

ronment such as an Intel SGX [28], [39], [40] equipped cloud

server, one can move the vulnerable computations such as

encoding and decoding to a hardware assisted secure enclave.

Second, deep neural networks have non-linear computations

that are difficult to decode when such computations are applied

to encoded data. One potential option is to approximate

such non-linearities using polynomials or rational functions

[21], [22], [29], [41]. This approximation comes at the cost

of accuracy loss. However, it can defend against Byzantine

workers attacks.
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