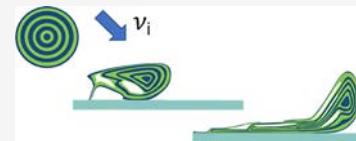


1 Layered Thin-Film Deposition via Extreme Inter-Brush Slip in a 2 Lamellar Block Copolymer

3 Wenpeng Shan, Inbal Weisbord, Xueyan Feng, Jinho Hyon, Gkreti-Maria Manesi,
4 Apostolos Avgeropoulos, Tamar Segal-Peretz,* and Edwin L. Thomas*

Cite This: <https://doi.org/10.1021/acs.macromol.2c01496>

Read Online


ACCESS |

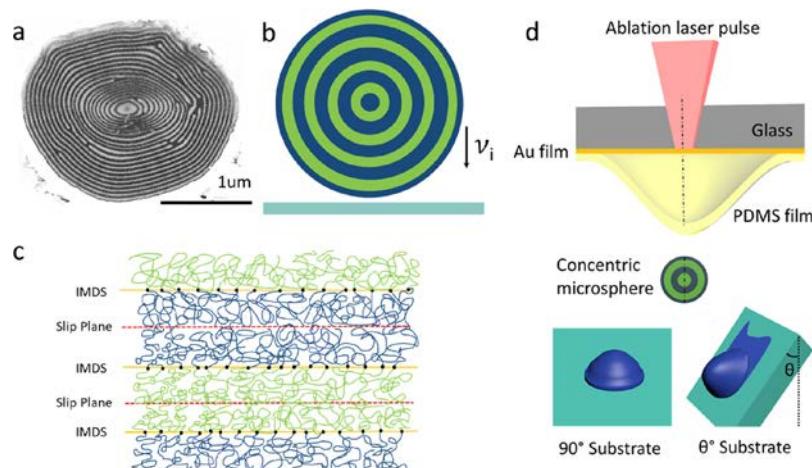
Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: Creating ultrathin films via ballistic impact-induced frictional material transfer
6 could be a new approach for additive manufacturing compared with current solvent-assisted
7 polymer coatings. The covalently bonded A block brushes and B block brushes are robust
8 mechanical units in A/B lamellar diblock copolymers (BCPs). The parallel brush–brush
9 interfaces with low entanglement density present a unique set of slip planes that can undergo
10 extreme deformation by shearing and delamination by tensile forces. Impact of microspheres
11 comprised of concentric glassy–rubbery brush layers against a rigid substrate at ballistic strain rates causes adiabatic shock heating
12 that permits compressional thinning of the bottommost layers via slip over both types of BCP brushes. In cooler regions, the
13 mechanical contrast between the glassy A blocks and rubbery B blocks induces extensive slip across the rubbery block brushes. For
14 angled impacts, the increased shear stress enhances brush slip and the particle slides across the substrate accompanied by
15 delamination across the slip planes and unique frictional transfer of discrete A-block-B B-block-A layers.

16 ■ INTRODUCTION


17 Nanometer thin 2D layered materials such as graphite readily
18 transfer to substrates via mechanical forces due to the low
19 friction between the atomically flat layers.^{1–3} Solvent-swollen
20 polymer brushes also exhibit very low friction that is essential,
21 for example, in the articulation of bone joints.^{4,5} Lamellar block
22 copolymers (BCPs) are a type of layered material having a
23 smectic A liquid crystal structure with 1D translational order.
24 Subjecting a bulk lamellar BCP sample to low-rate, high-
25 temperature, large amplitude oscillatory shear results in global
26 alignment with the lamellar normal parallel to the velocity
27 gradient due to easy shear as well as delamination across the
28 mid-layer brush–brush slip planes.^{6,7} When subjected to forces
29 normal to the layers, a chevron pattern of sharp kink
30 boundaries forms parallel to the force axis.^{8–11} For glassy–
31 rubbery lamellar BCPs deformed at quasi-static strain rates and
32 room temperature, the lamellar normal tilts away from the
33 force direction with increased strain. When the applied force is
34 at 45° to the lamellar normal, asymmetric kink boundaries
35 form parallel to the force axis, while for tensile deformation
36 parallel to the layers, the glassy layers fragment via a necking
37 process.^{9,10} Whether these various deformation mechanisms
38 can take place in a lamellar BCP at the extreme rates
39 characteristic of ballistic impact and how the relative
40 magnitude of the normal vs the tangential stresses on the
41 slip plane can affect the various deformation modes and
42 whether material transfer of layers to a substrate can take place
43 are essentially unexplored to date.

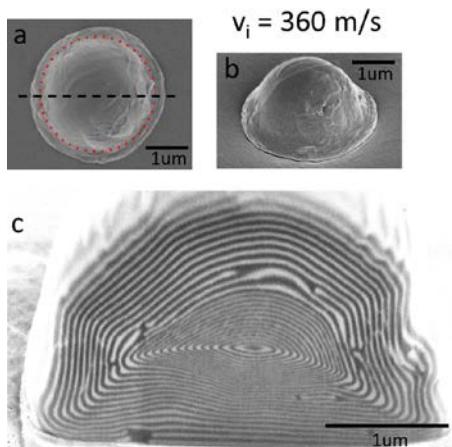
44 The laser-induced projectile impact test (LIPIT) has
45 recently emerged as a useful small-scale ultrahigh strain rate
46 test.¹² LIPIT has several loading configurations including

47 particle-specimen impacts onto rigid substrates.^{13–16} Quantitative studies are performed by monitoring the changes in the specimen-projectile speed and shape along with post-impact cross-sectional imaging of the specimen interior morphology. A simple initial microstructural state allows detailed analysis of the deformation mechanisms via post-impact microscopy of the deformation texture and displacement field of the material. In LIPIT, the impact event time scale is on the order of 10–100 ns. At this short time scale, the rapid heating from adiabatic shock can bring the polymer to temperatures well above the glass transition temperature (T_g) of the glassy component allowing visco-plastic flow, resulting in large deformations.¹⁵ Fast cooling below the T_g arrests the material in a highly deformed state. A recent study of polystyrene-*b*-polydimethylsiloxane (PS-*b*-PDMS) impacted a specimen projectile at an angle Θ into a rigid substrate. This test, called Θ -LIPIT,¹⁷ probed the tribological response by the addition of a tangential shear loading component, resulting in an increase in the frictional forces. Despite impacting at $\Theta = 45^\circ$ at high velocities, all particles rebounded from the substrate without any noticeable polymer deposition. This behavior was likely due to the highly irregular microdomain structures, resulting in the lack of a set of well-defined slip planes in the PS-*b*-PDMS projectiles.¹⁷

Received: July 19, 2022

Revised: September 3, 2022

Figure 1. Initial microparticle specimen projectile. (a) A cross section of a microparticle made using FIB and imaged by SEM showing the concentric layers of PS (dark) and PDMS (bright). (b) Cross-sectional schematic. PS layers are dark blue and PDMS layers are light green in this and all other schematics. (c) Enlarged schematic of the molecular packing within the undeformed layers. The covalent junctions (dots) connecting the PS and PDMS blocks are located on the IMDS. The two sets of polymer brushes come into contact at the respective mid-layer slip planes. (d) Θ -LIPIT schematic of 90° and Θ° LIPIT impacts of BCP concentric microspheres.

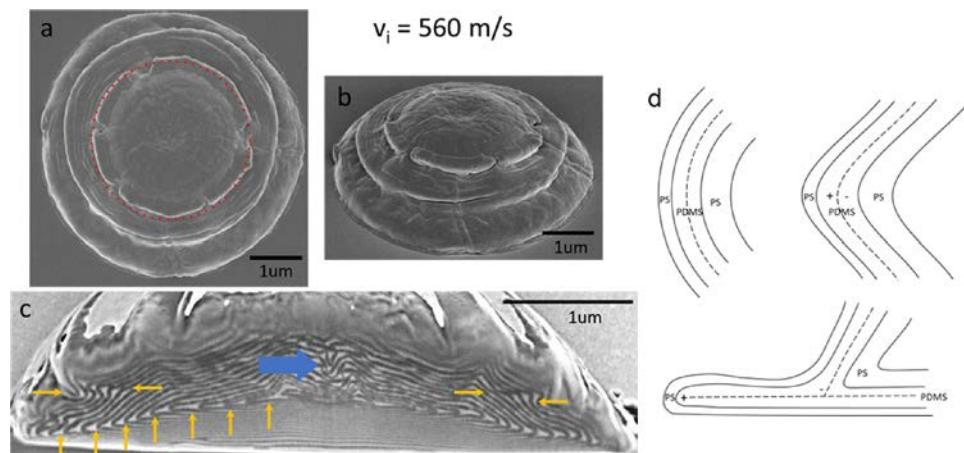

71 Here, we show that concentric layered particles having well-
 72 defined slip planes can transfer a thin, continuous multi-
 73 stepped lamellar film onto the substrate when undergoing
 74 angled impact at high velocity. The precisely structured
 75 microparticles are created by 3D confinement of a lamellar-
 76 forming BCP in micron-sized spherical emulsion droplets. The
 77 solvent-BCP solution droplets are suspended within an
 78 immiscible fluid matrix¹⁸ (see Methods), and very slow solvent
 79 dissolution into the surrounding water matrix results in a PS-
 80 PDMS concentric glassy ($T_{g-PS} \sim 105^\circ\text{C}$) and rubbery
 81 ($T_{g-PDMS} \sim -125^\circ\text{C}$) layers. Microspheres are 2–3 microns
 82 in diameter, consisting of about 20–30 shells with an average
 83 shell thickness (lamellar period, d_0) of 50 nm. Individual
 84 microparticles were launched at velocities v_i from 300 to 600
 85 m/s using Θ ranging from 90° to 45° to impact gold-covered
 86 silicon substrates. Incident projectile velocities were deter-
 87 mined from images of the sphere taken just prior to impact
 88 superimposed onto a CCD camera using two laser pulses with
 89 a known time delay between them. Focused ion beam (FIB)
 90 milling and low-voltage scanning electron microscopy (SEM)
 91 of the cross sections of impacted and adhered particles along
 92 with SEM and atomic force microscopy (AFM) transferred
 93 films (Figure S1) permit detailed mapping of the changes in
 94 the thicknesses and shapes of the lamellar brush layers and
 95 insight into the conditions for material transfer at ultrahigh
 96 strain rates.

97 ■ RESULTS AND DISCUSSION

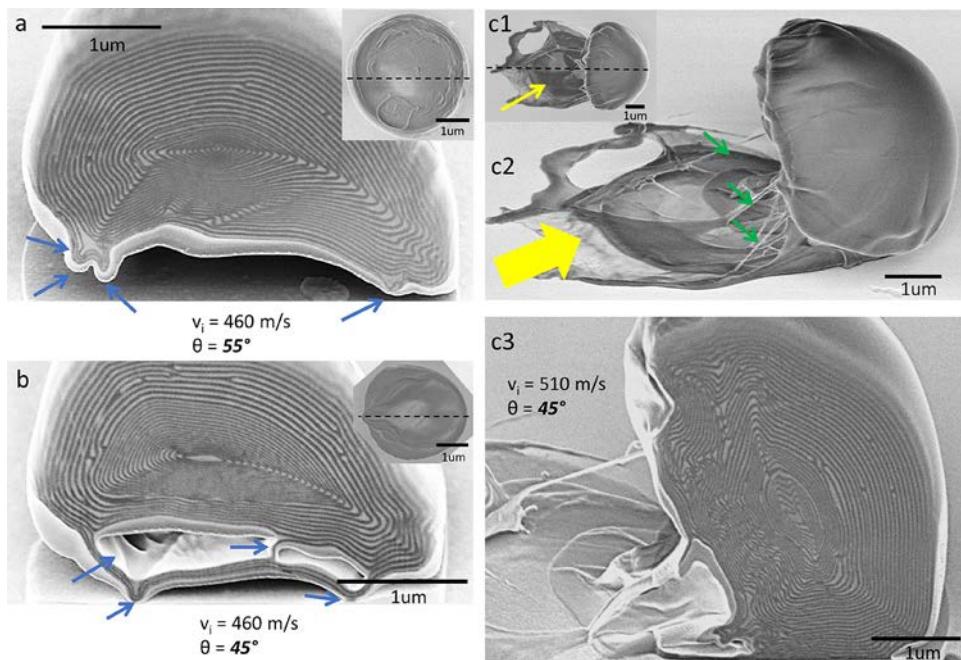
98 **Initial Spherical Projectile Morphology.** The SEM
 99 image in Figure 1a shows a near-diametrical cross section of
 100 a microparticle exhibiting alternating concentric layers of PS
 101 (dark) and PDMS (bright). The idealized concentric spherical
 102 shell model is shown in Figure 1b with the corresponding
 103 molecular-scale schematic of the brushes with the covalent
 104 junctions between blocks located on the inter-material dividing
 105 surface (IMDS) and the two types of brush-brush mid-layer
 106 slip planes, shown in Figure 1c. The emulsion fabricated
 107 micron-sized spheres can have either PS or PDMS centers but
 108 always have a $1/2$ layer thickness of PS at the particle external
 109 surface due to the favorable surface interaction of the PS block

110 with the polyvinyl alcohol surfactant–water matrix during
 111 sphere formation. Deformation by layer slip, kink boundary
 112 formation, and delamination depend on entanglements. There
 113 are two types of entanglements possible for each block. Intra-
 114 brush entanglements occur near the IMDS between adjacent
 115 blocks, and inter-brush entanglements can occur in the
 116 interdigitated mid-layer region.^{19,20} By choosing a 42–32
 117 kDa PS–PDMS diblock, we limit the number of entangle-
 118 ments across the slip planes. For these molecular weights, there
 119 would be approximately three entanglements per block,
 120 assuming that the respective blocks were in their homopolymer
 121 melts.²¹ However, in the microphase-separated BCP, the
 122 entanglements are predominately intra-brush types, located
 123 closer to the IMDS with relatively few inter-brush entangle-
 124 ments near the mid-plane of each bilayer,²² suggesting that the
 125 covalently bonded PS brushes and PDMS brushes will be
 126 robust units in the deformation and yet afford easy brush–
 127 brush slip across their mid-layers.^{6,7,23}

128 **Impacted Sphere Morphologies.** Deformation depends
 129 on the particle's incident velocity v_i and angle of impact Θ to
 130 the substrate. For particles with a $v_i < 350$ m/s, the BCP
 131 microsphere bounces off regardless of the impact angle,
 132 consistent with the behavior of many materials impacting a
 133 rigid substrate at low velocity and the earlier Θ -LIPIT
 134 investigation on PS-*b*-PDMS.¹⁷ For $v_i = 360$ m/s, 90° impact,
 135 the particle adheres and deforms into an axisymmetric bell
 136 shape (Figure 2) with a smooth, round, upper surface that
 137 transitions to a broad flattened bottom region. Cross-sectional
 138 images show that the layers in the top portion of the projectile
 139 remain approximately concentric and circular with an average
 140 layer period d_0 equal to that of the original material, consistent
 141 with the external profile shape of the top portion as an
 142 undeformed spherical cap. The deformation creates a sharp
 143 axisymmetric mechanical tilt boundary from the original sphere
 144 center extending along the diagonal to the outermost
 145 peripheral edge and separating the highly deformed bottom
 146 portion from the less deformed upper region (Figure 2c). Since
 147 a particular shell volume and shell IMDS area strongly decrease
 148 with a decrease in the shell radius, the shells nearer the particle
 149 center must deform more extensively. Thus, the greatest layer
 149


Figure 2. Spheres impacted at 90° for $v_i = 360$ m/s. Top (a), tilted (b), and cross-sectional SEM images (c) showing gradients in layer thickness and in spacing of the layers along the kink boundary that extends from the sphere center to the outer bottom periphery.

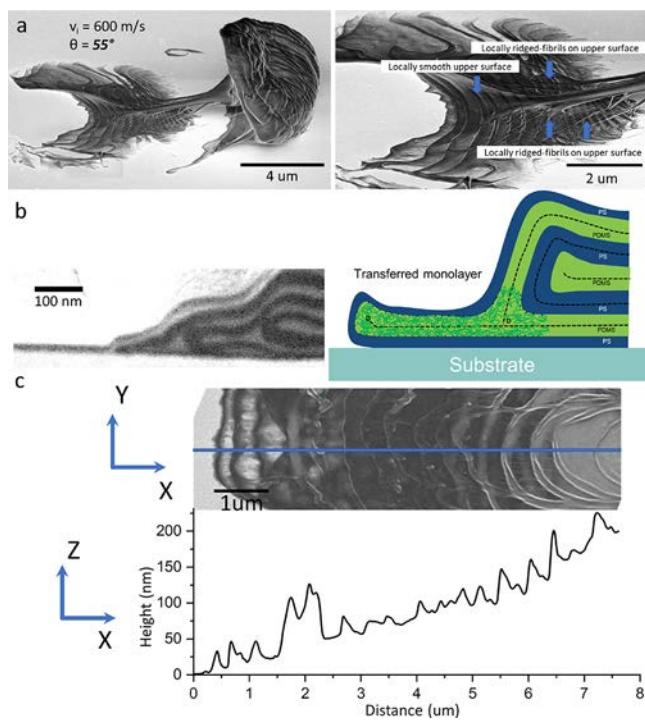
150 thinning takes place in the region just below the particle center.
 151 Depending on the impact velocity and location within the
 152 particle, the deformed layer period d can be as small as ~ 20
 153 nm, indicating a very large compression ratio (d_0/d) over
 154 $\sim 250\%$. Strong gradients in layer thickness, layer shape, and
 155 layer orientation develop due to the variation of the local
 156 loading state and the systematic variation of the layer
 157 circumference and orientation of the concentric shells.


158 With increased v_i at 90° impact, the particle becomes even
 159 more flattened, with greater lateral area and an overall lens-like
 160 shape (see Figure 3). As occurs for the lower-velocity impacts,
 161 a prominent kink boundary spans from the sphere center
 162 radially outward to the bottom periphery. The upper surface
 163 shows one or sometimes two step-like features, usually
 164 asymmetrically shifted off-center, arising from additional pairs
 165 of kink boundaries (orange arrows in Figure 3c). At the highest
 166 velocity ($v_i \sim 600$ m/s), there are strong gradients in the shell
 167 thickness along the normal to the substrate and along the kink
 168 boundary. The average strain rate (see the SI, Section 5) is
 169 estimated to be $\sim 10^7$ s $^{-1}$. The impact severely compresses the

170 layers approaching the particle center, making it difficult to 170
 171 distinguish individual layers in the SEM image, while closer to 171
 172 the substrate, the thicker layers can be resolved (Figure 3c). 172
 173 The layer repeat along the kink boundary near the center has 173
 174 increased by $\sim 500\%$, while at the periphery, the increase is 174
 175 $\sim 30\%$. Due to the greater mechanical contrast between the PS 175
 176 and PDMS in regions where the temperature rise due to 176
 177 adiabatic heating and viscous work is more modest, increased 177
 178 deformation along the kink boundary occurs by lateral 178
 179 separation of sets of nested shells due to mid-brush 179
 180 delamination exclusively within the more mobile, low T_g 180
 181 PDMS layers. The separation takes place by the successive 181
 182 pulling apart of the PDMS bilayer brushes, followed by fusing 182
 183 of the remaining PDMS brush to reform the PDMS bilayer. 183
 184 The pulling apart occurs via nucleation of pairs of $+\frac{1}{2}$ and 184
 185 $-\frac{1}{2}$ circular disclination loops within a given PDMS layer (see 185
 186 Figure 3d). Due to the successively smaller shell circumference 186
 187 approaching the particle center, the slip distance between the 187
 188 opposite sign disclination cores must increase approaching the 188
 189 particle center. In the upper region of the deformed particle 189
 190 where the temperature rise is relatively lower, the PS layers 190
 191 show local thinning characteristic of necking. At the top center 191
 192 of the deformed particle associated with the small dimple 192
 193 region, layer buckling appears, likely due to the partial 193
 194 retraction of the expanded, necked layers after particle arrest 194
 195 (see the large blue arrow in Figure 3c). Annealing of impacted 195
 196 particles (150 °C, 1 h) demonstrates that the highly 196
 197 compressed blocks reorganize into considerably fewer shells 197
 198 having the original ~ 50 nm period thickness, but since the 198
 199 overall particle shape stays as a flattened disc, the kink 199
 200 boundary remains (Figure S7a,b). Overall, at sufficient impact 200
 201 velocity, the spheres deform and adhere to the substrate but 201
 202 present a relatively thick, nonuniform structure. 202

203 To enhance the possibility for layer transfer and film 203
 204 formation on the substrate, spheres were impacted at Θ of 70, 204
 205 55, and 45° . Now, the deformed shape of the particle is no 205
 206 longer axisymmetric due to the increased tangential velocity 206
 207 component inducing more unidirectional shearing (Figures 207 f4f6
 208 f4f5f6 and Figure S2). Since the compressional forces are lower, 208
 209 lateral spreading and particle adhesion are less and the tensile 209

Figure 3. Spheres impacted at 90° for $v_i = 560$ m/s. Top (a), tilted (b), and cross-sectional SEM images (c). The surface steps evident in the topmost particle region (a, b) are due to the formation of pairs of kink boundaries, as observed in (c) (denoted by pairs of horizontal orange arrows). The cross section in (c) shows the prominent radial kink boundary (vertical orange arrows) with the expanded layer spacing along the boundary greatest near the particle center. PS layer buckling and necking occur due to partial layer recovery in the central top region (blue arrow). (d) Schematic depicting the nucleation of $+\frac{1}{2}$ and $-\frac{1}{2}$ disclination loop pairs within the PDMS layers along the kink boundary.


Figure 4. Θ -LIPIT particle impacts and friction-induced stepped layer transfer to the substrate. Top views (small insets) and cross-sectional SEM images of impacted spheres for Θ of 55° (a) and 45° (b, c). Particles exhibit a kink boundary running from the center to the periphery. The blue arrows in (a, b) point to the bottom regions of the particle that were or are still adhering to the substrate and, as the particle tried to rebound, caused tensile stresses accompanied by delamination–cavitation within the bottommost PDMS layers. (c) At higher impact velocities, $\Theta = 45^\circ$ particles slide over the substrate depositing ultra-sheared layers (yellow arrows). The layers are connected to the mushroom-shaped particle cap by long fibril ribbons (green arrows) drawn from the layers. (c3) Higher magnification cross-sectional image of the rotated cap region showing the formation of multiple kink boundaries. The bottom layers successively experience compression and strong shear and then tension as the particle tries to rebound from the surface.

210 rebound force normal to the flattened bottom layers can
 211 induce local detachment of the particle from the substrate,
 212 along with layer expansion, delamination, and cavity formation
 213 (observed exclusively between the PDMS brushes (Figure
 214 4b)). However, most interestingly, for 55 and 45° impacts at
 215 the highest velocities, large regions of the substrate become
 216 covered with a thin polymer film. Here, frictional shear forces
 217 cause layers to adhere to the substrate via slip and pull out of a
 218 complete PS bilayer with its surrounding upper and lower
 219 PDMS brushes (i.e., one lamellar repeat unit: PDMS-*b*-PS PS-
 220 *b*-PDMS). As a result, the substrate becomes covered with a
 221 stepped multilayer film with discrete, individual deformed layer
 222 period steps in height (Figure 5c and Figure S9). This unique
 223 deformation behavior is very different from that of quasi-static
 224 deformation of lamellar BCPs^{9,10} as well as the prior LIPIT
 225 research.¹⁷ Indeed, in the previous research on PS-*b*-PDMS
 226 particles (with approximately $2\times$ higher molecular weight
 227 blocks and disorganized, irregularly shaped microdomains),
 228 100% of the 45° impacts at similar v_i rebounded from the
 229 substrate without leaving any adhering polymer due to the lack
 230 of well-defined slip planes within the projectiles. On the other
 231 hand, with particles having well-defined slip planes and low
 232 entanglements across these slip planes, layer transfer and
 233 continuity readily occur.

234 Numerous highly drawn ribbon fibrils extend from the
 235 adhered film and arrest the (often rotated) particle (Figures 4c
 236 and 5a and Figure S8). Figure 5b shows the cross-sectional
 237 schematic of the nested and laterally displaced shells with the
 238 appearance of the positive and negative $1/2$ disclination lines
 239 due to the delamination of adjacent PDMS brushes and
 240 subsequent extensive slip (e.g., in Figure 5b, the PDMS layer is

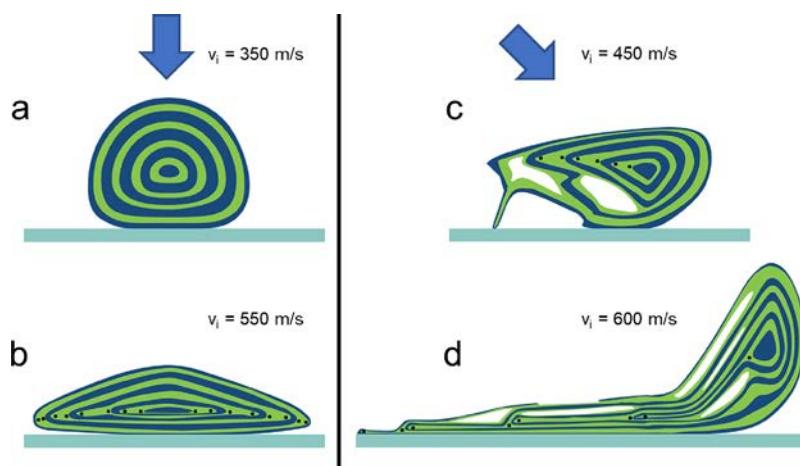
241 pulled away and typically slips a fraction of a micron distance 241
 242 over the neighboring PDMS brush, allowing the upper and 242
 243 lower parts of the PDMS layer to fold toward each other and 243
 244 fuse together). Surprisingly, the ribbon fibrils are comprised of 244
 245 thinned but unmixed PS and PDMS layers, suggesting that the 245
 246 pair of A and B block brushes covalently connected across the 246
 247 IMDS act as a robust unit in the deformation (Figure S4). This 247
 248 behavior is contrary to that accepted for quasi-static room 248
 249 temperature deformation of glassy BCP lamellae where a craze 249
 250 fibril morphology forms in the plane of the lamella with the 250
 251 chains assumed to have become mixed and oriented parallel to 251
 252 the fibril axis with fibril extension ratios of around 400%.²⁴ 252
 253 These novel layered ribbon fibrils can exhibit high (many 100 s 253
 254 %) extension ratios and with only a small amount of recovery, 254
 255 as evidenced by their small retraction after failure (Figure S5). 255

256 Whether a homogeneous and oriented mixture of the two 256
 257 blocks occurs within the ribbon fibrils and the deposited layers 257
 258 depends on the nature of the deformation units and on the 258
 259 degree of segregation. The segment–segment interaction 259
 260 parameter $\chi(T)$ between PS and PDMS is quite large, and 260
 261 for the 42–32 kDa BCP, the equilibrium order–disorder 261
 262 transition temperature (T_{ODT}) is estimated to be $\sim 1000^\circ\text{C}$ 262
 (calculation in the SI), suggesting that block mixing during 263
 264 deformation is highly unfavorable. However, the effective T_{ODT} 264
 265 during an impact event also depends on the pressure²⁸ as well 265
 266 as the imposed mechanical strain to the specimen.²⁹ Hydro- 266
 267 static pressure generally raises the ODT due to an increase in 267
 268 the system volume upon mixing, while extensive layer 268
 269 deformation lowers the ODT due to the unfavorable chain 269
 270 conformations. Hydrocode simulations of particle impact to a 270
 271 glassy homopolymer PS at these velocities show that the 271

Figure 5. Friction-induced slip steps via layer deposition. (a) (Left) Top view SEM image of the arrested particle with ribbon fibrils connecting the adhered layers to the particle cap. (Right) Higher magnification showing details of the stepped surface of the deposited layers. (b) (Left) Cross-sectional SEM image of a set of deposited layers. (Right) Schematic of the laterally sheared peripheral region of the lamellar BCP showing the formation of a Grandjean terrace-like structure.^{25–27} As a result, a $s = +\frac{1}{2}$ disclination is located at the initial delamination position, and a $s = -\frac{1}{2}$ disclination is positioned where the PDMS brushes rejoin. (c) SEM image and corresponding $z(x)$ height profile from an AFM image of the laterally displaced and drawn concentric layers deposited on the substrate via ultra-shear in the outer regions of a particle for 580 m/s impact at 45°. Drawn fibrils and elongated voids aligned along the shear direction are evident within the leftmost initial deposited layers.

272 compressive shock wave creates a several GPa step jump in
 273 pressure that is released within ~ 100 ps¹³. The initial jump in
 274 temperature due to shock compression slightly lags that of the
 275 pressure rise. Importantly, the temperature can continue to rise
 276 with heating persisting for much longer times due to the
 277 substantial amount of visco-plastic work occurring in the
 278 deforming particle. Together, the initial shock compression
 279 and visco-plastic work rapidly heat the particle to an average
 280 particle temperature estimated to be ranging from 150 to 370
 281 °C (SI, Section 2). High pressure also raises the T_g of the
 282 blocks, but due to the short high-pressure duration compared
 283 with the duration of the temperature increase, the T_g of each
 284 block will drop back to its ambient pressure value well before
 285 the specimen temperature falls. Thus, in regions of high
 286 deformation, both blocks will have good mobility during most
 287 of the impact event. The block polymer chains will tend to
 288 partially relax to relieve the strong alteration of the chain
 289 conformations, but the higher T_g PS domains freeze-in the
 290 highly deformed structure. The cross-sectional images showing
 291 the strongly altered domain dimensions and shapes within the
 292 adhered particle and across the transferred film (Figures 2–5
 293 and Figures S2–S4) suggest that the blocks do not mix during
 294 deformation and film transfer. Moreover, without PS

continuity and purity, a (partially) mixed and highly fragmented block structure could not resist the relaxation that would occur from a rather low effective T_g and/or discontinuous PS domains.


CONCLUSIONS

As evident from the analysis of the SEM micrographs and the AFM images of Θ-LIPIT experiments, the pair of block brushes covalently connected across the IMDS constitute a robust layered deformation unit that can undergo extensive shear over the lamellar brush–brush slip planes and undergo tensile delamination across the rubbery brush–brush layers under ultrahigh strain rate conditions. The primary deformation processes that take place are schematically depicted in Figure 6. The state of stress depends on v_i and Θ and on location and time. Impact of the particle results in initial adiabatic shock compression that elevates the sample temperature above the T_g of the PS block, allowing visco-plastic particle flattening and layer shear thinning over the intra-layer slip planes of both PS and PDMS. At normal incidence, the approximately axisymmetric lateral spread of the particle is accompanied by the formation of a radially oriented kink boundary, allowing the layers to flatten and become more parallel throughout the particle. The kink boundary exhibits a strong gradient in the length of the PDMS layers due to nucleation and lateral separation of pairs of $+ \frac{1}{2}$ and $- \frac{1}{2}$ disclination loops within each rubbery PDMS layer. At low impact velocities, the kink boundary separates a more highly deformed lower region from a less deformed upper region (Figure 6a,b). Importantly, for off-normal impact, the enhanced lateral forces trigger large unidirectional shear by lateral displacement of the $- \frac{1}{2}$ disclination defects across the PDMS brush–brush slip planes. Additionally, tensile forces due to particle recoil and friction-induced particle rotation cause brush–brush delamination exclusively within the PDMS layers (Figure 6c,d). For high-velocity impacts at $\Theta = 55$ and 45°, the facile brush–brush layer slip enables successive detachment of discrete PDMS-*b*-PS PS-*b*-PDMS layers from the particle as it slides across the substrate, leading to transfer of an ultrathin film with an initial thickness of a single lamellar period (~ 50 nm) and steadily increased thickness in discrete single period steps across the substrate (Figures 5c and 6d and Figure S6). Overall, adiabatic heating-induced thermal softening during LIPIT enables the activation of the mid-layer brush slip planes, resulting in extensive energy dissipation via visco-plastic shear, tensile delamination, frictional deposition of layers, and drawing processes during impact without the usual deformation-induced chain orientation typical of polymeric materials. The possibility to use such particles with well-defined and easy slip planes for cold spray deposition of uniquely structured polymer coatings seems promising.

METHODS

Materials. The PS-*b*-PDMS diblock copolymer was synthesized by Dr. G.-M. Manesi in the group of Professor A. Avgeropoulos (Ioannina University, Greece) using sequential anionic polymerization of styrene and hexamethylcyclotrisiloxane according to procedures already reported in the literature.³⁰ The number average molecular weights are PS 42 kg/mol and PDMS 32 kg/mol, and the volume fraction of PDMS is approximately 45%, with a dispersity (D) of 1.04. The 5.1 μ m pore diameter SPG (Shirasu Porous Glass) membrane was purchased from SPG Technology Co., Ltd.

Concentric Lamellar BCP Microsphere Fabrication. To form uniform-size microspheres, a microemulsion procedure established by

Figure 6. Schematics depicting the particle deformation. The morphological evolution of the concentric layered structure during impact of a microsphere depends on impact velocity and angle. (a, b) Normal impacts at ~ 350 and 550 m/s. (c, d) 45° impacts at ~ 450 and 600 m/s. For impacts at 90° , the layers undergo slip and the sphere takes on a flat bottom shape with highly thinned layers and an axisymmetric kink boundary. Pairs of disclination line loop defects (denoted by the black points) are nucleated exclusively in the PDMS layers and move apart by lateral slip over the brush-brush interfaces. For 45° impacts, a stepped polymer layer deposit is transferred to the substrate via friction (d). This results from PDMS (green) layer delamination, ultra-shearing across the PDMS brush slip planes (evidenced by the large lateral separation of the disclination pairs in the green layers). Ribbon fibrils drawn from the adhered layers arrest the particle. Unmixed PS and PDMS layers are maintained throughout the deformation.

357 Kim et al. was employed.¹⁸ We used a 0.3 wt % block copolymer
 358 solution in chloroform to form the dispersed phase in DI water with
 359 polyvinyl alcohol (PVA; MW = 13–23 kg mol⁻¹, 87–89%
 360 hydrolyzed, purchased from Sigma-Aldrich) as the surfactant. With
 361 the help of nitrogen gas, the polymer and solvent (2 mL) were forced
 362 through a 5.1 micron pore diameter SPG membrane, forming a
 363 narrow size distribution of microspheres stabilized by the surfactant.
 364 Subsequently, the beaker containing the particles was left open for at
 365 least 12 h at 30 °C to completely remove the chloroform via slow
 366 dissolution into the water and then evaporation from the water
 367 surface. To remove the PVA surfactant, the solid microspheres were
 368 washed, centrifuged at 11,000 rpm for 8 min, and redispersed in DI
 369 water three times.

370 **Slice and View SEM.** A high-energy Ga⁺ ion beam (30 keV, 80
 371 pA) was used to mill away a section of a particle, and then a low-
 372 energy electron beam (1 keV, 50 pA) was directed at the surface and a
 373 secondary-electron image recorded (Figure S1) via a through-lens
 374 (TLD) secondary-electron detector. The excellent ion milling
 375 behavior and the intrinsic large difference of the low-voltage
 376 secondary electron emission between the silicon-containing PDMS
 377 regions (bright) and the hydrocarbon PS regions (dark) allows for
 378 detailed cross-sectional visualization and analysis of the deformed
 379 microparticles. Before milling the FIB cross sections, the impacted
 380 particle was first coated with a protective layer of Pt-C.

381 **AFM.** Tapping mode on a multimode AFM (Bruker's Dimension
 382 Icon) was used to probe the height profiles of deposited layers and
 383 roughness of the substrate. Data were processed using Gwyddion
 384 software.

385 **Launch Pad Preparation.** The launch pad used for shooting the
 386 microparticle projectiles is similar to previous LIPIT studies.³¹ The
 387 polymer microspheres suspended in water were drop cast onto the
 388 launch pad and spread across the surface via a standard lab wipe
 389 (Kimberly-Clark Kimwipes).

390 ■ ASSOCIATED CONTENT

391 ■ Supporting Information

392 The Supporting Information is available free of charge at
 393 <https://pubs.acs.org/doi/10.1021/acs.macromol.2c01496>.

394 Additional experimental details, related calculations, and
 395 extra schematic, SEM, and AFM images (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

Tamar Segal-Peretz – Department of Chemical Engineering
 Technion, Israel Institute of Technology, Haifa 32000, Israel;
orcid.org/0000-0003-3222-6429; Email: tamarps@technion.ac.il
 Edwin L. Thomas – Department of Materials Science and
 Engineering, Texas A&M University, College Station, Texas
 77840, United States; orcid.org/0000-0001-5911-6524;
 Email: elt@tamu.edu

Authors

Wenpeng Shan – Department of Materials Science and
 Engineering, Texas A&M University, College Station, Texas
 77840, United States
 Inbal Weisbord – Department of Chemical Engineering
 Technion, Israel Institute of Technology, Haifa 32000, Israel
 Xueyan Feng – Department of Materials Science and
 Engineering, Texas A&M University, College Station, Texas
 77840, United States
 Jinho Hyon – Department of Materials Science and
 Engineering, Texas A&M University, College Station, Texas
 77840, United States
 Gkreti-Maria Manesi – Department of Materials Science and
 Engineering, University of Ioannina, University Campus-
 Dourouti, Ioannina 45110, Greece; orcid.org/0000-0002-1225-1515
 Apostolos Avgeropoulos – Department of Materials Science
 and Engineering, University of Ioannina, University Campus-
 Dourouti, Ioannina 45110, Greece; orcid.org/0000-0002-6203-9942

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.macromol.2c01496>

Author Contributions

W.S., I.W., T.S.-P., and E.L.T. conceived the concept and
 designed the experiments. W.S., I.W., X.F., G.-M.M., A.A., and

431 J.H. performed the experiments, and all authors analyzed the
432 data and participated in writing the manuscript.

433 Funding

434 This research was supported by the U.S.–Israel Binational
435 Science Foundation grant no. 2020295 and a grant from NSF
436 DMR-2105296.

437 Notes

438 The authors declare no competing financial interest.

439 ■ ACKNOWLEDGMENTS

440 The authors thank Dr. K. Xiao of Texas A&M University
441 (TAMU) and Professors J.-H. Lee and G. Grason of the
442 University of Massachusetts for useful discussion. Mr. J.
443 Shelton of TAMU contributed the schematic drawings.

444 ■ REFERENCES

445 (1) Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.;
446 O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins,
447 T.; Barwick, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.;
448 Pettersson, H.; Long, E.; Coelho, J.; O'Brien, S. E.; McGuire, E. K.;
449 Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.;
450 Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N. Scalable
451 production of large quantities of defect-free few-layer graphene by
452 shear exfoliation in liquids. *Nat. Mater.* **2014**, *13*, 624–630.

453 (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.;
454 Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field
455 effect in atomically thin carbon films. *Science* **2004**, *306*, 666–669.

456 (3) Peng, D.; Wu, Z.; Shi, D.; Qu, C.; Jiang, H.; Song, Y.; Ma, M.;
457 Aeppli, G.; Urbakh, M.; Zheng, Q. Load-induced dynamical
458 transitions at graphene interfaces. *Proc. Natl. Acad. Sci.* **2020**, *117*,
459 12618–12623.

460 (4) Jahn, S.; Klein, J. Lubrication of articular cartilage. *Phys. Today*
461 **2018**, *71*, 48–54.

462 (5) Lin, W.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.;
463 Goldberg, R.; Klein, J. Cartilage-inspired, lipid-based boundary-
464 lubricated hydrogels. *Science* **2020**, *370*, 335–338.

465 (6) Koppi, K. A.; Tirrell, M.; Bates, F. S.; Almdal, K.; Colby, R. H.
466 Lamellae orientation in dynamically sheared diblock copolymer melts.
467 *J. Phys. II* **1992**, *2*, 1941–1959.

468 (7) Patel, S. S.; Larson, R. G.; Winey, K. I.; Watanabe, H. Shear
469 Orientation and Rheology of a Lamellar Polystyrene-Polyisoprene
470 Block Copolymer. *Macromolecules* **1995**, *28*, 4313–4318.

471 (8) De Gennes, P.; Prost, J. *The Physics of Liquid Crystals*; Clarendon
472 Press: Oxford 1993.

473 (9) Cohen, Y.; Albalak, R. J.; Dair, B. J.; Capel, M. S.; Thomas, E. L.
474 Deformation of oriented lamellar block copolymer films. *Macro-
475 molecules* **2000**, *33*, 6502–6516.

476 (10) Cohen, Y.; Brinkmann, M.; Thomas, E. L. Undulation, dilation,
477 and folding of a layered block copolymer. *J. Chem. Phys.* **2001**, *114*,
478 984–992.

479 (11) Makke, A.; Perez, M.; Lame, O.; Barrat, J.-L. Nanoscale
480 buckling deformation in layered copolymer materials. *Proc. Natl. Acad.
481 Sci.* **2012**, *109*, 680–685.

482 (12) Veysset, D.; Lee, J.-H.; Hassani, M.; Kooi, S. E.; Thomas, E. L.;
483 Nelson, K. A. High-velocity micro-projectile impact testing. *Appl.
484 Phys. Rev.* **2021**, *8*, No. 011319.

485 (13) Hyon, J.; Gonzales, M.; Streit, J. K.; Fried, O.; Lawal, O.; Jiao,
486 Y.; Drummy, L. F.; Thomas, E. L.; Vaia, R. A. Projectile Impact
487 Shock-Induced Deformation of One-Component Polymer Nano-
488 composite Thin Films. *ACS Nano* **2021**, *15*, 2439–2446.

489 (14) Chan, E. P.; Xie, W.; Orski, S. V.; Lee, J.-H.; Soles, C. L.
490 Entanglement Density-Dependent Energy Absorption of Polycarbon-
491 ate Films via Supersonic Fracture. *ACS Macro Lett.* **2019**, *8*, 806–811.

492 (15) Hyon, J.; Lawal, O.; Fried, O.; Thevamaran, R.; Yazdi, S.; Zhou,
493 M.; Veysset, D.; Kooi, S. E.; Jiao, Y.; Hsiao, M.-S.; Streit, J.; Vaia, R.
494 A.; Thomas, E. L. Extreme Energy Absorption in Glassy Polymer Thin
Films by Supersonic Micro-projectile Impact. *Mater. Today* **2018**, *21*, 495
817–824.

495 (16) Cai, J.; Thevamaran, R. Superior Energy Dissipation by 496
496 Ultrathin Semicrystalline Polymer Films Under Supersonic Micro- 497
projectile Impacts. *Nano Lett.* **2020**, *20*, 5632–5638.

497 (17) Kim, A.; Müftü, S.; Thomas, E. L.; Lee, J.-H. Extreme 500
500 Tribological Characteristics of Copolymers Induced by Dynamic 501
Rheological Instability. *ACS Appl. Polym. Mater.* **2021**, *3*, 4413–4418.

501 (18) Shin, J. M.; Kim, M. P.; Yang, H.; Ku, K. H.; Jang, S. G.; Youm, 503
503 K. H.; Yi, G.-R.; Kim, B. J. Monodisperse Nanostructured Spheres of 504
504 Block Copolymers and Nanoparticles via Cross-Flow Membrane 505
505 Emulsification. *Chem. Mater.* **2015**, *27*, 6314–6321.

506 (19) Pan, X.; Shaffer, J. S. Onset of Chain Entanglements in Block 507
507 Copolymer Lamellae. *Macromolecules* **1996**, *29*, 4453–4455.

508 (20) Joanny, J. F. Lubrication by molten polymer brushes. *Langmuir* 509
509 **1992**, *8*, 989–995.

510 (21) Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. 511
511 Connection between Polymer Molecular Weight, Density, Chain 512
Dimensions, and Melt Viscoelastic Properties. *Macromolecules* **1994**, 513
513 *27*, 4639–4647.

514 (22) Sethuraman, V.; Kipp, D.; Ganesan, V. Entanglements in 515
515 Lamellar Phases of Diblock Copolymers. *Macromolecules* **2015**, *48*, 516
6321–6328.

517 (23) Polis, D. L.; Winey, K. I. Controlling kink band morphology in 518
518 block copolymers: Threshold criteria and stability. *Macromolecules* 519
519 **1998**, *31*, 3617–3625.

520 (24) Lee, J.-Y.; Crosby, A. J. Crazing in Glassy Block Copolymer 521
521 Thin Films. *Macromolecules* **2005**, *38*, 9711–9717.

522 (25) Friedel, Grandjean, F. *Bull. Soc. Fr. Miner.* **1910**, *33*, 192.

523 (26) Kléman, M. Defects in liquid crystals. *Rep. Prog. Phys.* **1989**, *52*, 524
555.

525 (27) Kleman, M.; Friedel, J. Disclinations, dislocations, and 526
526 continuous defects: A reappraisal. *Rev. Mod. Phys.* **2008**, *80*, 61.

527 (28) Hajduk, D. A.; Gruner, S. M.; Erramilli, S.; Register, R. A.; 528
528 Fetters, L. J. High-Pressure Effects on the Order–Disorder Transition 529
529 in Block Copolymer Melts. *Macromolecules* **1996**, *29*, 1473–1481.

530 (29) Lee, J. H.; Veysset, D.; Singer, J. P.; Retsch, M.; Saini, G.; 531
531 Pezeril, T.; Nelson, K. A.; Thomas, E. L. High strain rate deformation 532
532 of layered nanocomposites. *Nat. Commun.* **2012**, *3*, 1164.

533 (30) Politakos, N.; Ntoukas, E.; Avgeropoulos, A.; Krikorian, V.; 534
534 Pate, B. D.; Thomas, E. L.; Hill, R. M. Strongly segregated cubic 535
535 microdomain morphology consistent with the double gyroid phase in 536
536 high molecular weight diblock copolymers of polystyrene and 537
537 poly(dimethylsiloxane). *J. Polym. Sci., Part B: Polym. Phys.* **2009**, *47*, 538
2419–2427.

539 (31) Lee, J.-H.; Loya, P. E.; Lou, J.; Thomas, E. L. Dynamic 540
540 mechanical behavior of multilayer graphene via supersonic projectile 541
541 penetration. *Science* **2014**, *346*, 1092–1096.