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hadrons. The future holds more surprises for us, thanks to new-generation experiments.
Understanding the signals and determining the properties of the states requires a parallel
theoretical effort. To make full use of available and forthcoming data, a careful amplitude
modeling is required, together with a sound treatment of the statistical uncertainties,
and a systematic survey of the model dependencies. We review the contributions made
by the Joint Physics Analysis Center to the field of hadron spectroscopy.
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1. Introduction

In the last two decades the quark model lore of baryons with three quarks and mesons with a quark–antiquark
air has been challenged by the many unexpected exotic hadron resonances found in high-energy experiments. Many
etraquarks, pentaquarks, molecules, hybrids and glueball candidates have sprung forth and revitalized the field of hadron
pectroscopy [1–9]. Discovering and characterizing an exotic resonance is not a goal in and of itself, but is a necessary
tep in identifying complete multiplets and studying the emerging patterns and properties of the spectrum. We still lack a
omprehensive and consistent picture of this sector of the QCD spectrum, as many of the candidates have been identified
n a single production or decay channel. Nevertheless, this research needs to be pursued as this kind of knowledge would
rovide insight not only into the nature of said exotics, but also into the inner workings of the nonperturbative regime
f QCD, especially since an analytic solution of QCD in this regime will not be available in the foreseeable future.
Current experiments such as LHCb, COMPASS, BESIII, GlueX, and CLAS, are providing datasets with unprecedented

tatistics. With the forthcoming data from Belle II [10], we expect to have enough data to properly analyze some exotic
hannels at lepton colliders, which were previously limited by insufficient statistics. However, the measurements often
epict multibody final states, which make it a challenge to perform a model-independent determination of an exotic
andidate.
On the theoretical front, Lattice QCD provides the most rigorous, albeit computationally expensive, tool to calculate ob-

ervables from first principles [11,12]. However, it cannot explain the emergence of confinement and mass generation, or
hy quarks and gluons organize themselves in the observed hadron spectrum. Functional methods [13,14], sum rules [15],
odels of QCD (as the quark model [16–18], Hamiltonian formalisms [19,20], holography-inspired descriptions [21,22]),
r quark-level Effective Field Theories [23–25] are employed to fill in that gap.
Together with these top-down approaches, bottom-up strategies are also feasible: one can write ansätze for the

mplitudes that respect the fundamental principles as much as possible, at least in a given kinematical domain, and fit
o data. If the amplitude model space is large enough, the resonance properties obtained will be as unbiased as possible.
2
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Once the theoretical modeling of a reaction amplitude has been achieved, it can be combined with a sound statistical
ata analysis. For example, one can use clustering methods to separate the physical resonances from the artifacts of
he amplitude parametrizations. All these studies allow one to give a robust determination of resonances and of their
roperties. These analyses are computationally expensive and require high-performance computing resources, but they
ill become mandatory for the interpretation of present and future high-precision data.
One can gain additional information by studying the production rates and the underlying mechanisms of resonances. In

articular, the dual role of resonances as particles and forces implies that one can probe their properties in both regimes.
hese ideas motivate a program to impose duality constraints to the standard amplitude analysis.
In this review we summarize the contributions of the Joint Physics Analysis Center (JPAC) to the field. JPAC started

n 2013, impulsed by Mike Pennington, originally to provide theory support to the most delicate spectroscopy analyses
t Jefferson Lab (JLab). In the following years, it has become a model example of collaboration between theorists and
xperimentalists, developing amplitude analysis tools and best practices for hadron spectroscopy. The methods require
omplementary sets of skills in QCD, reaction theory, computer science, and experimental data analysis. The group
as a strong record of interactions with experiments: JPAC members have contributed to analyses by BaBar, BESIII,
LAS, COMPASS, GlueX, and LHCb, and to several proposals of future spectroscopy experiments and facilities. The tools
mplemented are publicly available [26]. The review is organized as follows. In Section 2 we discuss the physics of
esonances: the generalities of the QCD spectrum, the methods, and some practical applications, both to the light and
eavy sectors. Section 3 is devoted to the study of three-body physics, a quickly developing topic within Lattice QCD
ith important applications in the experimental analyses. The production of resonances is discussed in Section 4. A brief
ummary is presented in Section 5.

. Resonance studies

.1. The S-matrix and amplitude parametrizations

The excited spectrum of QCD is composed of states with lifetimes ≲10−21 s, which need to be reconstructed from the
nergy and angular dependence of their decay products. The measured rates are proportional to the modulus squared
f the reaction amplitude, which encodes the information about these states at the quantum level. While the reaction
mplitude’s angular dependence is determined by the spin of the particles involved, the energy behavior is dynamical.
The S-matrix theory traces back to the late 50 s, as a possible formalism that circumvented the apparent inconsistencies

f perturbative quantum field theory. The idea was that, even if no theory of strong interactions was available, the
nderlying S-matrix must satisfy certain properties. Lorentz invariance requires that the S-matrix elements, and therefore
mplitudes, depend on particle momenta only through Mandelstam invariants. In particular, Landau argued that causality
f the interaction implies that the amplitudes must be analytic functions of the invariants [27]. Similar analyticity
equirements were argued by Regge, studying the Schrödinger equation for complex values of angular momentum [28].
nalyticity, unitarity, and crossing symmetry, constitute the so-called S-matrix principles. Here, unitarity stems from
robability conservation, and crossing symmetry relates particles and anti-particles and is proper of relativistic quantum
heories. The hope was that these principles were sufficient to uniquely determine the strong interaction S-matrix,
nce proper additional assumptions and initial conditions were given. The main additional hypothesis was the maximal
nalyticity principle, i.e. that the only singularities appearing in an amplitude are the ones required by unitarity and
rossing symmetry. This was verified at all orders in perturbative field theory, but has not yet been proven to hold
onperturbatively. Chew led the so-called bootstrap program, which, using an input model for resonances exchanged in
he cross-channel, allowed one to recover self-consistently the same resonances in the direct channel. The main obstacle
o this was that the dispersion relations one derives suffer from Castillejo–Dalitz–Dyson (CDD) ambiguities [29], and
he solution cannot be determined uniquely. In modern terms, the S-matrix principles are not specific to the strong
nteractions, and the information about what theory they are applied to must be encoded in these ambiguities. When
CD was established as the underlying theory of strong interactions, it was proposed that CDD poles reflect the presence
f bound states of quarks, about which the S-matrix theory knows nothing a priori, and must be imposed from data. With

the discovery of J/ψ and the triumph of quantum field theory, the bootstrap program was abandoned. Fifty years later,
we still do not have a constructive solution of QCD. There is no simple connection between the interaction at the quark-
and hadron-level, so there is a renewed interest in what one can learn from amplitude properties alone, and if possible,
to constrain the space of feasible solutions rather than to look for a unique one. The new program is thus to postulate
ansätze for the amplitudes that depend on a finite number of parameters and fit them to data. Ideally, one requires the
amplitudes to fulfill the constraints given by the S-matrix principles, to obtain physical results as sound as possible. It
should be stressed, however, that implementing all the constraints simultaneously is extremely difficult, and the problem
has to be approached on a case-by-case basis in order to enforce the constraints that are most relevant for the physics at
hand.

We review here the basics of 2 → 2 scattering and 1 → 3 decay, that will be used in the rest of the paper. Consider a
2 → 2 scattering process of scalar particles a(p1) b(p2) → c(p3) d(p4), and the 1 → 3 decay a(p1) → b̄(p̄2) c(p3) d(p4) one
btains by crossing particle b, as depicted in Fig. 1. The Mandelstam variables, for scattering, are defined through

s = (p + p )2 = (p + p )2 , (1a)
1 2 3 4

3
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Fig. 1. (left) Representation of the decay a(p1) → b̄(p̄2) c(p3) d(p4) and the kinematical variables involved. (right) Representation of the scattering
process a(p1) b(p2) → c(p3) d(p4) and its kinematical variables.

t = (p1 − p3)2 = (p2 − p4)2 , (1b)

u = (p1 − p4)2 = (p2 − p3)2 , (1c)

s + t + u = m2
1 + m2

2 + m3
3 + m2

4 ≡ Σ , (1d)

where for the 1 → 3 decay, p̄2 = −p2. In order to describe the s-channel center of mass frame it is convenient to introduce
the initial- and final-state 3-momenta,

p(s) =
λ

1
2 (s,m2

1,m
2
2)

2
√
s

q(s) =
λ

1
2 (s,m2

3,m
2
4)

2
√
s

, (2)

where λ(x, y, z) = x2+y2+z2−2(x y+y z+z x) is the triangle or Källén function [30]. The four-momenta in the s-channel
center-of-mass frame read

p1 =

(
s + m2

1 − m2
2

2
√
s

, p(s)ẑ
)
, p3 =

(
s + m2

3 − m2
4

2
√
s

, q(s)n̂
)
, (3a)

p2 =

(
s + m2

2 − m2
1

2
√
s

,−p(s)ẑ
)
, p4 =

(
s + m2

4 − m2
3

2
√
s

,−q(s)n̂
)
, (3b)

here ẑ is the direction of particle a, usually taken as the z-axis, and n̂ the direction of particle c , usually taken in the
half xz-plane containing the positive x-axis. The cosine of the scattering angle zs is defined by ẑ · n̂ ≡ zs. It is given as a
function of the Mandelstam variables as

zs =
s(t − u) +

(
m2

1 − m2
2

) (
m2

3 − m2
4

)
4s p(s) q(s)

. (4)

Similar expressions can be obtained for the scattering angle zt and zu of the crossed processes in the respective center-
of-mass frame. We will omit its s-, t-, and u-dependence when no ambiguity can arise. For simplicity, we consider the
spinless case. The customary partial wave expansion of the amplitude T (s, t, u) is

T (s, t, u) =

∞∑
ℓ=0

(2ℓ+ 1)Pℓ(zs) tℓ(s) , (5)

where Pℓ(zs) are the Legendre polynomials, tℓ(s) are the partial waves of angular momentum ℓ. Note that for symmetry
and compactness reasons we have left the explicit u-dependence in Eq. (5), although the sum of the three Mandelstam
variables is constrained, and as a result the full amplitude T (s, t, u) depends only on two of them. The partial waves tℓ(s)
can be obtained from the full amplitude by inversion of the aforementioned equation

tℓ(s) =
1
2

∫
+1

−1
dz Pℓ(z) T (s, t(s, z), u(s, z)) . (6)

The physics of the unstable states we are interested in is encoded in these partial waves. A resonance of spin ℓ appears
n tℓ(s) as a pole located at complex values of energy, the real and imaginary parts being the mass and half-width of the
esonance, respectively. It is thus necessary to consider amplitudes that can be analytically continued from the physical
eal axis—where data exist—to the complex plane. The partial waves diagonalize unitarity, i.e. they transform an integral
quation into a tower of uncoupled algebraic equations,

Im t (s) = t (s) ρ(s) t (s)† , (7)
ℓ ℓ ℓ

4
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Fig. 2. Typical application of Cauchy theorem and dispersion relations. The integral across the cut can be given in terms of the imaginary part. The
ntegral over the circle at infinity vanishes if the integrand goes to zero fast enough.

here ρ(s)ij ∝ δij qj(s)/
√
s is the diagonal matrix of the phase space of all possible two-body channels.1 The physical

heet is protected by analyticity: No dynamical singularity can appear in the complex plane, although poles on the real
xis associated with bound states may appear.2 Unitarity provides us with the means to continue our partial waves
nto the next contiguous Riemann sheets, where resonances live. The existence of a non-zero imaginary part due to this
rinciple produces a multi-valued complex function, which has a physical branch cut produced by s-channel unitarity. A
arametrization that fulfills this principle is the customary K -matrix formalism [35,36],

tℓ(s) = Kℓ(s) [1 − iρ(s)Kℓ(s)]−1 , (8)

here Kℓ(s) is a real symmetric matrix. The simplest parametrizations for K ij
ℓ (s) = g ig j/(M2

− s) contain the ‘‘bare’’
nformation about the resonance: Formally Eq. (8) can be expanded as

tℓ(s) ≃ Kℓ(s) + Kℓ(s)iρ(s)Kℓ(s) + Kℓ(s)iρ(s)Kℓ(s)iρ(s)Kℓ(s) + . . . . (9)

n this limit, the resonance basically behaves like a quasi-stable particle of mass M propagated between different initial
i) and final (j) states, and acquires a width due to the couplings with the continuum. However, the physical objects are
he poles of tℓ(s), not of Kℓ(s). As we will see in the following sections there is no one-to-one correspondence between
he two, and so this interpretation of Kℓ(s) must be taken with a grain of salt.

Finally, in order to describe the data by means of analytic functions, we will make use of the Chew–Mandelstam
ormalism [37], in which the ordinary phase space ρ(s) is replaced by its dispersive form.

In addition to right hand cuts produced by unitarity, the partial waves can exhibit more complicated structures, like
eft-hand cuts as a result of crossing symmetry and unitarity in the crossed channels (we refer the reader to [31] for a
eference textbook on the topic). The N/D formalism [37–40] makes the splitting between these left and right hand cuts
xplicit. The partial wave can be recast as

tℓ(s) = Nℓ(s)D−1
ℓ (s), (10)

which is designed to separate the constraints coming from unitarity in the direct (D) and cross-channels (N). The latter can
be often interpreted in terms of the intensity of the produced resonances. Although the two functions should be related
through complicated dispersive equations, in practice we will use a simple functional form for N . The main reason for
this is that we mostly study energy regions far from crossed channel cuts.

A fundamental tool to impose analytic properties is given by dispersion relations. Let us call F (s) a function that
is analytic everywhere in the complex plane, except for a right-hand cut, and fulfills Schwartz reflection principle,
F (s∗) = F∗(s). Its value at any point in the complex plane is given by Cauchy theorem, F (s) =

1
2π i

∮
ds′ F (s

′)
s′−s , where the

path can be any closed curve that does not cross the cut. By choosing the path represented in Fig. 2, the integral can be

1 For the specific normalization of partial waves given in Eq. (6), ρ(s)ij = δij qj(s)/8π
√
s for distinguishable particles. However, in most of the

applications discussed further, the normalization of ρ(s) can be reabsorbed in other model parameters, and different values will be used.
2 In partial waves, a kinematical circular cut appears in the complex plane for the unequal masses case [31]. While this important for the most

precise amplitude determinations [32–34], it will be largely ignored in the following.
5
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ecomposed as

F (s) =
1

2π i

∫
∞

sth

ds′
F (s′ + iϵ) − F (s′ − iϵ)

s′ − s
+

∫
R
ds′

F (s)
s′ − s

, (11)

here the second term is the integral over a circle of infinite radius (R → ∞) in the complex plane. The first term is
1
π

∫
∞

sth
ds′ Im F (s′)/(s′ − s), and for example one can use unitarity to relate the imaginary part to other quantities. For the

heorem to be useful, the integral over the contour at infinity must vanish, which happens only if the integrand goes to
ero fast enough. If not, one can perform subtractions in s = s0 to the dispersion relation, i.e. apply Cauchy theorem to
F (s) −

∑N−1
k=0 F (k)(s0)(s − s0)k/k!

)/
(s − s0)N , and get

F (s) =

N−1∑
k=0

F (k)(s0)
(s − s0)k

k!
+

(s − s0)N

π

∫
∞

sth

ds′
Im F (s′)

(s′ − s0)N (s′ − s)
. (12)

y choosing N large enough, one can always make the integral converge if the function has no essential singularities.
he price to pay is that there are N undetermined constants.3 More detailed introductions to dispersion relations can be
ound e.g. in Refs. [31,41].

When looking at the final state of 1 → 3 decay products, one must consider that there are several processes that could
roduce a local enhancement in the cross section. We first focus on the study of Dalitz plot distributions, fixing the mass
f the decaying particle. A resonance in a two-body subchannel generally produces broad structures when projected onto
nother channel, so no confusion usually arises. However, besides poles, if the kinematics overlap, a resonance of the
rossed channel could rescatter into these final products, enhancing the cross section and mimicking a resonance in the
irect channel. At leading order these rescattering processes are called triangle singularities, as named by Landau [27].
hese singularities appear in the integrand of the corresponding Feynman diagram and ‘pinch’ the integration domain,
roducing a logarithmic branch point as a result. The implications of this on phenomenology have been widely discussed
n the literature, see for example [7]. We will discuss examples of these processes in Sections 2.5.1 and 2.5.3. When one
ocuses on the dependence on total energy, for example to study the line shape of a resonance decaying into a three-body
inal state, different complications arise. We will discuss examples of these processes in Section 3.3.

We recall that more complications arise from particle spin, even though they are purely kinematic in nature. For
xample, consider a 1 → 3 decay of particles with spin. The Legendre polynomials discussed above will be promoted
o Wigner D-matrices. Writing helicity amplitudes for the three two-body subchannel in the different resonance frames
equires boosts that do not conserve the helicity of the various particles. To add the various contributions coherently,
ne has to take into account the so-called Wigner rotations (crossing matrices) associated with precession of particle
pins when moving from one frame to another. There is a recent interest in this, motivated by the fact that the practical
mplementation of such rotations is highly nontrivial [42,43]. A proposal to write the 1 → 3 reaction as a sum over
ubchannels in the same reaction plane, and then rotate the whole sum together, was given in [44], and is referred to as
‘Dalitz plot decomposition’’. In this way, the dependence of the Wigner rotations on the relevant Mandelstam variables
s apparent. Explicitly, the amplitude factorizes in

TΛλ2,λ3,λ4 =

∑
λ1

Dj1∗

Λ,λ1
(α, β, γ ) Aλ1,λ2,λ3,λ4 (s, t, u) , (13)

here Dj1∗

Λ,λ1
(α, β, γ ) is the Wigner D-matrix that takes into account the alignment of the reaction plane in the laboratory

rame in terms of the Euler angles α, β , γ , and

Aλ1,λ2,λ3,λ4 (s, t, u) =

∑
j

A(23),j
λ1,λ2,λ3,λ4

(s, t, u)+

∑
j

A(34),j
λ1,λ2,λ3,λ4

(s, t, u)+

∑
j

A(42),j
λ1,λ2,λ3,λ4

(s, t, u) . (14)

his decomposition looks like a partial-wave expansion, but is performed over all the two-body subchannels, and is known
s isobar representation. This will be discussed further in Section 3.1. The isobar amplitude A(xy),j

λ1,λ2,λ3,λ4
contains resonances

n the (xy)-channel of spin j, with particle z as spectator. The situation in the reaction plane is represented in Fig. 3.
The unaligned isobar amplitude reads:

T (xy),j
λ′
1,λ

′
2,λ

′
3,λ

′
4

= h(z),j
λ′
z+λ

′
1,λ

′
z
(σxy) (−1)jz−λ

′

z′ dj
λ′
1+λ′

z ,λ
′
x−λ

′
y
(θxy) h

(xy),j
λ′
x,λ

′
y
(σxy) (−1)jy−λ

′
y Rj(σxy) . (15)

here θxy is the decay angle in the subchannel (xy) rest frame, precisely, the angle between p⃗x and the z axis set by
pz . Assuming the cascade process for the three-body decay, the energy-dependent part of the isobar amplitude is

actorized into a product of two vertex functions, h(z),j
λ′
z+λ

′
1,λ

′
z
, and h(xy),j

λ′
x,λ

′
y
, corresponding to 1 → (xy), z, and (xy) → x, y

ecays, respectively, and the isobar lineshape function, common to all helicity combinations. Here, we have made
xplicit the phases (−1)j−λ due to the Jacob–Wick particle-2 convention, that leads to the natural matching with the

3 In Quantum Field Theories, this can be considered as a renormalization procedure, where a number of observables must be sacrificed to reabsorb
the divergences.
6
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Fig. 3. Demonstration of the spin alignment problem for the decay 1 → 2, 3, 4 with the particles 1 and 2 having a non-trivial spin. The three rows
how the angles in the amplitude construction in different decay chains. The double arrows stand for active transformations (boosts and rotations).
ource: Figure adapted from [44].

S decomposition [44,45]. Eq. (15) for different chains can be added together once they are all aligned to the common
efinition of the helicity indices as in Eq. (14). The difference in the definition of the helicity states for different chains is
vident from Fig. 3.

A(xy),j
λ1,λ2,λ3,λ4

=

∑
λ′
1,λ

′
2,λ

′
3,λ

′
4

T (xy),j
λ′
1,λ

′
2,λ

′
3,λ

′
4

dj1
λ1,λ

′
1
(ζ 1z(r1)) d

j2
λ′
2,λ2

(ζ 2z(r2)) d
j3
λ′
3,λ3

(ζ 3z(r3)) d
j4
λ′
4,λ4

(ζ 4z(r4)) , (16)

here the index r for every particle indicates the frame where the unprimed helicities of this particle is defined. The
lignment angles ζz(r) depend on s, t, u and they are trivial if r = z. The explicit expressions for the general case are
ound in [44]. A practical method to validate the spin alignment is suggested in Ref. [42].

Another consequence of spin is the presence of kinematical singularities, that must be removed before studying
ispersion relations. One can argue what the simplest factors needed to control these singularities are, and what the
inimal energy dependence is that one therefore expects. This was done in the context of B̄0

→ J/ψπ+K− and
0
b → J/ψpK− in [46,47].
As a final remark, when dealing with all these different reactions, exploring a number of possible parametrizations

elps to reduce the model dependence. It allows one to assess systematic uncertainties in one’s results. Furthermore,
xploring these parametrizations, combined with a proper statistical analysis, allows one to distinguish the poles
orresponding to physical resonances from model artifacts. This will be shown in detail in Section 2.2.3. Hence, we
ill adopt this approach for our analyses in this review. Alternatively to this procedure, other model-independent
nalytic continuation methods have been pursued. We mention here Padé approximants [48,49], Laurent–Pietarinen
xpansion [50], the Schlessinger point method [51,52], or Machine-Learning techniques [53,54].

.2. Statistics tools

The determination of the existence of each resonance and its properties relies on fitting experimental data accompanied
y an uncertainty analysis. We review the general strategy and some of the techniques employed by JPAC. This is
articularly relevant for pole extraction, where the error propagation through standard means is complicated. In doing
o we mostly take a frequentist point of view [55,56]. It is also possible to perform similar analyses from a Bayesian
erspective. For an introduction to Bayesian statistics we refer the reader to [57] and for the specific case of its application
o high energy physics to [58].
7
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.2.1. Fitting data
The standard approach to fitting data is through maximizing the likelihood,

L({θ}|{y}) =

N∏
i

Pi(yi|θi) , (17)

here Pi(yi|θi) stands for the probability density function at fixed parameter θi and yi is the experimental datapoint. If
hosen as Gaussian for binned data,

Pi(yi|θi) =
1

√
2πσi

exp

[
−

1
2

(
fi({θ}) − yi

σi

)2
]
, (18)

here yi is the binned experimental datapoint value and σi its uncertainty. fi({θ}) is the objective function to be fitted.
his expression assumes each bin to be statistically independent, as is customary. Maximizing the likelihood is equivalent
o minimizing the χ2 function,

χ2({θ}) =

N∑
i

(
fi({θ}) − yi

σi

)2

. (19)

he choice of a Gaussian distribution is standard in many physical problems, and is adequate if the experimental
ncertainties are of statistical origin. However, there are situations where other probability densities should be chosen.
or example, in the case that the y observable is positively defined (e.g. an intensity) and, because of the values of yi and
i there is a significant overlap with unphysical negative values, a Gamma distribution may be more appropriate,

H(yi|θi) =

(
yiθi
σ 2
i

) θ2i
σ2i

exp
(
−yiθi/σ 2

i

)
θiΓ

(
y2i /σ

2
i

) . (20)

his was used for example in [59,60]. Another common issue occurs when the observable is periodic, for example when
ealing with a relative phase. A simple solution is to redefine the difference in Eq. (19) to take the periodicity into account,

χ2({θ}) =

N∑
i

min
k∈Z

(
fi({θ}) − yi − 2kπ

σi

)2

, (21)

s is done in [60,61]. However, using a von Mises distribution may be more rigorous,

M(yi|θi) =
1

2π I0(κi)
exp [κi cos (fi({θ}) − yi)] , (22)

where I0(κi) is the modified Bessel function. The concentration parameter κi is the reciprocal measurement of the
ispersion. If the uncertainty is small, a Gaussian distribution with σi equal to the experimental uncertainty is almost
quivalent to a von Mises distribution with κi = 1/σ 2

i . For larger values of the uncertainty, Gaussian and the von Mises
distribution with κi = 1/σ 2

i are quite different, and it is better to refit the concentration parameter to the (yi, σi) Gaussian
distribution as done in [62] and shown in Fig. 4. Of course, in such a case χ2 is no longer the correct estimator to
maximize the likelihood. The best strategy here would be to compute the logarithm of the likelihood from Eq. (17) using
the appropriate distributions, and maximize the obtained function. For example, if a partial wave is to be fitted with
experimentalists providing Npw phase shifts and intensities, some of them compatible with zero within uncertainties, the
ikelihood in (17) can be computed by defining the probability distributions Pi(yi|θi) for the phase shifts through the von
ises distribution in (22) and the intensities through the Gamma distribution in (20). In this case the likelihood for a
ingle energy bin reads:

L({θ}|{y}) =

Npw∏
i

M(yφi |θi)
Npw∏
i

H(yIi |θi) , (23)

here the yφ and yIi stand for the experimental phase shifts and intensities, respectively. and the quantity to minimize
ould be − log L({θ}|{y}).
The standard likelihood function as presented in Eq. (17) suits many data analysis. However, a special situation happens

hen we need to fix the normalization in a fit to events. In that case the likelihood function needs to be modified to
ncorporate such constraints, producing the so-called extended maximum likelihood method [63–65]:

L({θ}|{y}) =

N∑
[fi({θ}) − yi log fi({θ})] , (24)
i

8
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Fig. 4. Comparison between the Gaussian and von Mises distributions for small (left) and large (right) phase shift uncertainties, centered in µ = 0.
n the upper plot the Gaussian distribution has σ = 0.28 (dotted blue), and von Mises has κ = 1/σ 2

= 12.82 (solid red). In the lower plot the
aussian has σ = 1.69 (solid blue), von Mises has κ = 1/σ 2

= 0.35 (solid red), and another von Mises has κ = 0.56 (solid gold) obtained by fitting
o the Gaussian distribution. The gray bands hide the region outside the [−π, π] range.
ource: Figures from [62].

s was employed in [62]. In the extended maximum likelihood formulation, the normalization of the probability
istribution function is allowed to vary, and, thus it becomes applicable to problems in which the number of samples
btained is itself a relevant measurement. As normalization correlates all the datapoints, one has to be careful on how
he D’Agostini bias might impact the fit [66].

The minimization is usually performed using a gradient-based optimization method such as MINUIT [67] or Levenberg–
arquardt [68,69]. Unfortunately, multiple local minima can appear, preventing the optimizer from finding the physically
ensible minimum. The typical strategy is to try many initial values for the parameters at the beginning of the optimization
rocess and then compare all the minima obtained. Another approach is to explore the parameter space using a genetic
lgorithm [70–72], and then improve the result with a gradient-based method. Knowing about the existence of nearby
ocal minima is necessary to have a better interpretation of the results. Also, a good set of initial parameters is required
o apply the bootstrap method detailed below.

.2.2. Uncertainties estimation with bootstrap
The fit needs to be accompanied by an error analysis, as well as a method to propagate the uncertainties from

he fit parameters to the physical observables, whose relationship may be highly nontrivial. A standard approach is
o use the covariance matrix obtained from the Hessian of the likelihood as given by, for example, MIGRAD [67]. This
elies on the parabolic approximation of the likelihood function around the minimum, which always provides symmetric
ncertainties for the fitted parameters. The main advantage of this is that this process is computationally cheap, and in
any circumstances this approximation is good enough. For more refined determinations of the uncertainties, the high-
nergy physics community usually relies on MINOS, which samples the likelihood in the neighborhood of the minimum
nd is able to provide asymmetric uncertainties for the fit parameters. However, propagating errors from parameters to
bservables using MINOS is unattainable for nontrivial functions like pole extractions. To overcome this, we can use the
ethod of bootstrapping, a Monte Carlo based method [73,74]. Although computationally expensive, its results are robust
nd rigorous.
For pedagogical reasons we explain the technique through a linear fit example, and benchmark with the results of

IGRAD and MINOS.4 We consider a model y = 0.5 + 2 x. We generate N = 40 datapoints uniformly in x ∈ [0, 20],
nd for each of them generate an uncertainty ∆yi extracted from a Gaussian distribution with zero mean and σ = 1.5.
hen, we compute the noise νi = ν̂ × ∆yi where ν̂ is generated from a Normal distribution. Finally, the datapoint is
i = 0.5 + 2 xi + νi with associated error ∆yi. Fig. 5 shows the computed datapoints. We use MINUIT χ2 minimization
o fit these data to a linear model y = θ1 + θ2 x. The best fit found (BFF) has χ2

BFF/dof = 36.75/ (40 − 2) = 0.967,
θ1 = 0.495± 0.004, and θ2 = 2.09± 0.07. The error is computed using MIGRAD, but MINOS gets the same results, as the
likelihood is symmetric by construction.

We repeat the fit with bootstrap. We find the best fit by minimizing the χ2. We can resample each datapoint, generating
a new one from a Gaussian distribution having by mean the original yi value and σi = ∆yi. In this way we generate a
new pseudodata set {ỹ} that is compatible with the experimental measurement. The uncertainties of the new pseudodata

4 The Python code for this example and a simplified version of the analysis in [75] can be downloaded from [76].
9
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Fig. 5. Datapoints and BFF for the linear fit example.

Fig. 6. (left) Theoretical noncentral χ2 distribution vs. the histogram from the bootstrap fits for χ2
BS . (center) Theoretical Gaussian distribution vs.

the histogram from the bootstrap fits for θ1 parameter. (right) Theoretical Gaussian distribution vs. the histogram from the bootstrap fits for θ2
parameter.

set are fixed to original ones {∆y}. The new pseudodata set can be refitted with the original model, obtaining a set of
parameters {θ}1 and the associated

[
χ2
BS

]
1. Then, we repeat the procedure until we have acquired the desired statistical

significance. We call each fit to one pseudodata set a bootstrap (BS) fit. The results of the process are the histograms of
he parameters {θ} and the {χ2

BS}. Since ∆yi is assumed Gaussian, the {χ2
BS} follow a noncentral χ2 distribution,

χ2
nc(x|k, λ) =

1
2
exp

[
−
λ+ x
2

]( x
λ

)(k−2)/4
I(k−2)/2

(√
λx
)
, (25)

here λ = χ2
BFF, k the number of degrees of freedom. Fig. 6 shows the comparison between Eq. (25) and the {χ2

BS}

istribution from the M = 104 BS fits, which approximately peaks at ∼2χ2
BFF. Fig. 6 also shows the {θ1} and {θ2}

istograms, which are Gaussian and give θ1 = 0.495 ± 0.004, and θ2 = 2.09 ± 0.07, the same result as MIGRAD. The
xpected value of the parameters is computed as the mean of the {θ1} and {θ2} histograms, and the 1σ uncertainties
68% confidence level) from the 16th and 84th quantiles. Any desired confidence level can be computed selecting the
ppropriate quantiles, given that enough BS fits are computed, since the accuracy scales as 1/

√
M . For example, ifM = 103

S fits are performed, the accuracy of our results would be 3.2%; not good enough to claim a 2σ (95.5%) confidence level.
The covariance and correlation matrices are straightforward to compute from the BS fits,

cov(θi, θj) =

M∑
k=1

([θi]k − ⟨θi⟩)
([
θj
]
k −

⟨
θj
⟩)

M
; corr(θi, θj) =

cov(θi, θj)
√
cov(θi, θi)

√
cov(θj, θj)

. (26)

he covariance and correlation matrices are very similar to the ones obtained with MIGRAD.

cov(θ0, θ1)Hessian =

[
55.7 −3.27

−3.27 0.19

]
× 10−4

; corr(θ0, θ1)Hessian =

[
1 −0.996

−0.0996 1

]
;

cov(θ0, θ1)Bootstrap =

[
54.8 −3.22

−3.22 0.19

]
× 10−4

; corr(θ0, θ1)Bootstrap =

[
1 −0.996

−0.0996 1

]
;

as expected in this simple example. Hence, we showed how bootstrap and a standard Hessian method are equivalent,
given enough BS fits are computed.
10
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Fig. 7. Examples of a realistic case from [62] where one parameter histogram is well behaved (left) and follows a Gaussian-like behavior while
another has two nearby minima (right).

The calculation of any observable g({θ}) and the propagation of the uncertainties is straightforward. For each set of
parameters [{θ}]i obtained from a BS fit, we compute the observable gi = g([{θ}]i), obtaining M values of gi. From the
istogram we can compute the expected value ⟨g⟩ and the uncertainties as done for the parameters {θ}. This procedure
s independent of the functional form of g and fully propagates the uncertainties in the parameters and their correlations
o the derived observable.

For simplicity we explained the method using data from a linear model who are statistically independent and whose
ncertainties follow Gaussian distributions. Hence, there was only one minimum for the BFF and the histograms of {θ}
nd the {χ2

BS} were Gaussian and noncentral χ2-distributed, respectively. Extending the method to any other distribution
s straightforward, both at the level of the likelihood function and at the generation of the pseudodata sets. If the
xperimental datapoints are correlated, one can generate the pseudodata according to the correlation matrix. Similarly,
ne can incorporate correlated errors, as systematic uncertainties. The only disadvantage is that systematic and statistical
ncertainties propagate together, so they cannot be disentangled in the observables.
If the BFF has a local minimum nearby, it is possible for the bootstrap to jump from the global minimum to the local

ne. In that case, the parameter distribution can follow a two peak structure (see Fig. 7) and the expected value, the
ncertainties, and any other computed quantities have to be taken with a grain of salt. It is possible to analyze and study
ach minimum separately by computing uncertainties and comparing the solutions, but choosing one minimum over
thers and the resulting conclusions would depend on the separations of the peaks in the parameter histograms, on the
orrelations of the parameters of the model, and on whether the fits leading to the different minima have systematically
ifferent likelihoods. There is no simple general recipe to follow and each case must be studied independently.
Bootstrap results can be exploited to compare two models of apparently similar quality in terms of the {χ2

BFF} and {χ2
BS}

istributions. Given the two models, for each pseudodata set we can fit both and compare them for each BS fit. If one
odel systematically outperforms the other, it is of better quality. This was exploited in [62] for the case of extended
egative loglikelihood [Eq. (24)] fits to η(′)π data from the COMPASS collaboration. The results for ηπ are shown in Fig. 8,
here two models with the same amount of parameters provided similar best likelihoods and likelihood distributions,
ut when bootstrap fits were individually compared, a systematic pattern emerged favoring a particular model. In this
ase, for each bootstrap fit one of the models provides a better likelihood more of 90% of the instances. Hence, we can
tate that this minimum is favored.

.2.3. Physical and spurious poles
Once the data have been fitted and the poles extracted, the question of whether the found poles are truly physical

esonances or artifacts of the parametrization must be considered before attempting any physical interpretation. This is
ecause: (a) We fit a given energy range and poles can appear far away from the fitting region; (b) Data have statistical
oise, so an apparent signal can be compatible with statistical fluctuations; and (c) The amplitude models are incomplete,
.e. they do not encompass the full physics of QCD, and sometimes are unwillingly biased. If data are cut in a certain
nergy range, poles whose real part is outside or at the edge of the fitting region can allow the model to reproduce
he behavior of the data at the edge, acting as an effective background, and their physical meaning is highly debatable.
ther poles can be forced by features of the model. For example, the unitarization of left-hand singularities can create
oles in the unphysical Riemann sheets close to threshold. Without a careful examination of the model, of the data and
f the uncertainites, these poles can be mistakenly hailed as new resonances, when they are not really demanded by
he data. Fig. 9 shows an example of a spurious pole in the extraction of the a1(1260) resonance parameters from the
− − + −
→ π π π ντ decay [78], discussed in Section 3.3.1. First of all, we note the presence of a branch cut starting at the

11
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Fig. 8. Example from [62]. (top plot) Extended negative log-likelihood for two models. (bottom row) Difference in negative log-likelihood at every
one of the first 1000 pseudodata sets (left) and frequency for the 104 computed pseudodata sets (right). The purple line represents the mean, the
band the 68% confidence level. The distribution sits mostly above the zero difference (gray line).

Fig. 9. Example of a spurious pole in the pole extraction of the a1(1260) resonance form the τ−
→ π−π+π−ντ decay. The brown curve represents

he ρπ wholly cut.
ource: Figure from [77].

omplex ρπ threshold [79–81]. While the position of the branch point is fixed by the ρ mass and width, the cut location
nd shape is determined by the integration path one chooses for the three-body phase-space. The choice in [78] allows
ne to rotate the cut as shown in Fig. 9, to discover another pole. This pole cannot affect sizeably the real axis, as it is
idden behind the branch cut. It is likely that such poles are not required by data, but rather artifacts required by the
odel. While in general distinguishing the two can be complicated, in this case the model is simple enough that this
econd pole can be related to the functional form of the phase space function, which by construction contains an extra
ingularity in the second sheet, rather than a resonance pole required by data.
We have found that the error analysis based on the bootstrap method, besides providing a proper uncertainty analysis,

ften helps discerning true resonant poles from those which are artifacts of the parametrization or due to statistical noise,
12
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Fig. 10. Poles clusters generated by bootstrap for the P- (left) and D-waves (right). The π1 , a2(1320), and a′

2(1700) resonances are labeled.

aka spurious poles, reducing the possibility of signal misinterpretation. Moreover, it also helps to assess the reliability of
the extracted pole, i.e. if it truly represents a resonance or it is an spurious effect. As an example, in Section 2.4.2 we
describe an actual physics example from the analysis of COMPASS η(′)π P- and D-waves in the resonance region [61].
The BFF in this analysis has four poles in the P-wave and three in the D-wave. Fig. 10 shows the pole positions of the
(105) BS fits. The three clusters that appear in the D-wave are associated to each one of the three poles found in the BFF.

The two higher mass clusters are Gaussian, and stable against statistical fluctuations. However, the lowest mass cluster
has a nongaussian shape, with the mass close to threshold and the width as deep as 1 GeV. Given their position, it is
intuitive that these poles cannot have a direct influence on data. Nevertheless, the cluster is relatively narrow and well
accumulated, as if the data were actually constraining it. The reason for this is that this pole is actually built in the model,
for similar reasons as were discussed above. This pole is, therefore, not demanded by the data. For the single channel
analysis in [82], we could track down the pole’s origin by turning off the imaginary part of the amplitude, finding that
it arises from a left-hand pole in the model that mimics these effects due to the left-hand cut. Hence, it is an artifact
consequence of the model.

In the P-wave we find four clusters. Only the one labeled as π1 has the correct behavior and is the one we associate
to an exotic resonance. We deem the other three spurious. The heavier cluster is at higher masses than the fitted data
(2 GeV). This pole appears right above the fitted region, and the model tries to overfit the last few data points by placing
a pole. When the bootstrap is performed, the pole position is completely unstable, showing its unphysical origin as an
artifact of the data selection. The lowest mass one is equivalent to the left-hand pole found in the D-wave, as its mass is
very close to threshold. The remaining cluster at ∼1.2 GeV, that did not appear in the BFF is unstable against bootstrap
as it often escapes deep in the complex plane, so it is associated with statistical fluctuations. However, it could have
happened that the BFF found such a pole, say at a width of 500 MeV, and could have misidentified that pole as a new
state. This type of analyses allows us to distinguish such artifacts from physical states. Additional examples can be found
in Section 2.4.1 and Ref. [60] for the J/ψ radiative decays. The procedure sketched here is not a rigid algorithm, and has
to be adjusted to the physics problem at hand. While on one hand a proper algorithmic definition could be given with
k-means clustering [83], especially in its unsupervised version [84], it is still important to study the clustering on a case
by case basis, in particular to compare the results of different systematic studies.

2.3. Machine Learning for hadron spectroscopy

There are two factors which have allowed Machine Learning (ML) to thrive in recent years: The first is an enormous
progress in hardware, related mostly to the use of massive parallel GPU processors [85]. This development makes
it significantly easier to tackle problems involving ‘‘big data’’. The second factor is related to rapid and multifaceted
development of architectures, algorithms and computational techniques like convolutional neural networks [86], rectified
linear unit (ReLU) [87,88], improved stochastic gradient optimization [89] or batch normalization [90]. ML in nuclear
and high-energy physics has already quite a long history: Applications to experimental studies include event selection
[91–93], jet classification [94,95], track reconstruction [96,97], and event generation [98,99]. On the theory front, ML
has been extensively used for fitting [70,71,100–102] and to provide model-independent parametrizations of structure
and spectral functions [101–104], as well as of solutions of Schrödinger equations [105,106]. Several reviews cover these
applications extensively [107,108].

In hadron spectroscopy, ML methods have not been explored so thoroughly. Among the many techniques available,
we focus on classifiers, which are a kind of discriminative models. These are designed to capture the differences between
groups of data (e.g. canonical ‘‘cat vs. dog’’ classification) and estimate a conditional probability of the output to belong

to a class given the input. Recently, the use of classifiers has been proposed as a method to identify the nature of a given
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Fig. 11. The neural network architecture of the classifier used in [109]. In the input layer, the feature vectors contain the intensity of the amplitude
in each energy bin. The output layer is composed of the four classes which correspond to the various interpretations of the Pc (4312).
ource: Figure from the Supplemental Material of [109].

adron state [109–112]. The idea is that different natures of the states reflect into different lineshapes, and ML can be
sed to discriminate the interpretation which is most favored by data. In particular, this has been applied to the Pc(4312)
entaquark candidate in [109]: Since the peak appears very close to a two-body threshold, the amplitude can be expanded
odel-independently, and the resulting simple form permits a direct characterization of the Pc . Details about the physics

hat determines the different classes will be presented in Section 2.5.2, while here we focus on the methodology.
Formally, the classification problem can be stated as seeking the function f which maps the space of input data x ∈ XN

aka feature vectors) into a set of target classes t ∈ T .5 Here the feature vectors consist of 65 intensity values in bins of
nergy, and labels were four possible interpretations of the Pc(4312). The problem lies in the choice of f [113–115]. In
hat follows we focus on the simplest version of a neural network classifier, a dense feed-forward network in which the
rained parameters are encoded in weights of the network node (neuron) connections. The typical architecture of such
network is depicted in Fig. 11. The values read in the output layer are obtained by passing the values of the feature
ectors through consecutive hidden layers. For this process to be more than mere matrix multiplication (thus allowing
s to model arbitrary nonlinear input–output dependencies), the output value of each neuron is obtained by subjecting
he weighted values from all nodes of the preceding layer to an activation function σ . Thus the output value of the mth
euron of the nth layer can be expressed as

xm,n = σ

(
N∑
i=1

wimxi,n−1 + bm,n

)
, (27)

here N is the dimension of the (n−1)th layer and b is known as the bias vector of the nth layer. Nonlinearities of the σ
unction can be modeled in many different ways (step function, sigmoid, tanh, etc.), but ReLU was employed in [109]. By
ontinuing this procedure for all nodes in all layers, we finally obtain the values at the output layer that can be compared
ith ground truth labels (classification) or values (regression). To measure the quality of this comparison one uses a cost

unction, e.g. a cross entropy or a χ2 (aka mean squared error). Thus, ‘learning’ is basically the minimization of the cost
unction by varying the model parameters, in this case the weights of the neural network. This is a difficult optimization
roblem and, along with the discussion of what the proper choice of the cost function is, it has a large body of literature
evoted to it [116–118]. For our example, the network must be trained on the line shapes one gets from the four classes.

5 With this definition, the only difference between classification and regression tasks is that the target set is finite for classification and continuous
for regression.
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Fig. 12. Training sets projected onto 2D space using PCA, compared with the values obtained from the LHCb datasets. Experimental data are located
n a region well represented in the training set. In the b|2, b|4, v|2, and v|4 labels, the b stands for bound, the v for virtual, and the number for
the Riemann sheet where the pole appears (see Section 2.5.2).
Source: Figure from the Supplemental Material of [109].

To do so, we calculate the line shapes for 105 uniformly sampled model parameter sets, described in Section 2.5.2 in
etail. In this way we effectively scan the space of line shapes. For each sample one can calculate the pole position, and
hus what class the line shape belongs to. The feature vectors can be matched with these ground truth labels. It is clear
hat the stability of the optimization process and the precision of eventual inference are largely impacted by the size of
he training dataset.

As said, the feature vectors in this example have 65 elements. This is less than in typical ML problems and far less than
he amount of data input to Convolutional Neural Networks. But even here one expects substantial correlation which is
elated to information redundancy. Moreover, the system is governed mainly by threshold dynamics, so there should only
e a few relevant features. Last but not least, working in a smaller dimensional space allows us to plot 2D projections
o represent the data and to acquire a better intuition on the properties of the training set and the data we might
ant to classify. To isolate the relevant features, one customarily employs the Principal Component Analysis (PCA) [119],
hich boils down to extracting the eigenvectors and eigenvalues of the covariance matrix built from the standardized

eature vectors (see Fig. 12). The covariance matrix expressed in terms of eigenfeatures is diagonal with diagonal elements
umming up to the total variance. So, in the PCA, one retains those diagonal elements (and associated features) which
‘explain most of the variance’’.

Tracing the path that leads the classifier to assign the input to a particular class is impossible, except for in the simplest
f models. This makes the ML tools function as black boxes, whose decisions we are bound to trust rather than understand.
his is uncomfortable not only in physics where we aim at understanding the dynamics that leads to a given choice, but
lso in other fields, like medicine or economics. However, we can at least select the features used for the classifier to
ake its class assignment. Partially, PCA already address this task by selecting ‘‘principal directions’’, expressed in terms
f combinations of the underlying features. These in turn may be difficult to interpret, and may be better to use SHapley
dditive exPlanations (SHAP) values [120]. This approach originates in game theory, and it shows whether an individual
eature favors (positive) or disfavors (negative) a certain classification.

The SHAP values in Fig. 13 show that most of the class assignment explanation comes from the v|4 class in the
ear-threshold region. This conclusion is both expected and valuable: It confirms the conjectured dominance of the
hreshold effects in shaping the experimental signal, thus providing an ex post justification of the assumed scattering
ength approximation. Also it narrows the interval of energies relevant for the analysis to those neighboring the resonance
eak.
Having established that our training set covers the region of the feature space where the experimental data are situated,

nd having identified the energy region of importance for the class assignment, we are ready to infer the nature of the
c(4312) from the experimental data. A probabilistic interpretation of the classification can be obtained by subjecting the
ignal t produced by the neurons of the output layer to a softmax function,

softmax(ti) =
exp(ti)∑4
j=1 exp(tj)

, (28)

here i, j run over the four classes. Obviously, this function is positive definite and normalized to 1. We obtain a probability
y resampling the data with the bootstrap procedure explained in Section 2.2.2. Alternatively, one can apply the Monte
arlo dropout to the trained layers [121], which approximates the Bayesian inference in the deep Gaussian process.
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Fig. 13. (left) SHAP values for the four classes overlaid on the experimental intensity plot. It is evident that the threshold region is the one impacting
the decision. (right) Dropout and bootstrap classification probability densities for the predictions on one of the LHCb datasets for each of the four
classes. The x axes are equally cut for the purpose of visibility and comparison. Class notation as in Fig. 12.
ource: Figures from [109].

he results of these two procedures are shown in Fig. 13. Both the dropout and bootstrap distributions show the clear
ominance of the v|4 class (virtual pole on the IV Riemann sheet, as explained later in Section 2.5.2). In other words,
ased on the experimental data, the neural network assigns the highest probability for the Pc(4312) to have a v|4 nature.
s said, the meaning of the different classes will be given Section 2.5.2.
One of the benefits of using Machine Learning and Artificial Intelligence at large is that of generalization: One hopes

hat, using ML or AI, it is possible to classify features the network was not explicitly trained on. Realistically speaking,
his generalization ability is rather modest. Still, in the context of hadron spectroscopy, one may ask what would be
he recognition rate for the classifier trained on the Pc(4312) if applied to other resonances. One can speculate that, for
esonances emerging due to similar threshold dynamics, this recognition ability may still persist. This brings us to the
oncept of transfer learning, which is widely used in Convolutional Neural Networks as applied to image recognition
122–124]. One typical application of this is the transfer of ImageNet pretrained convolutional layers to a model one is
nterested in [125]. In hadron physics, there is no such pretrained ‘‘amplitude database’’. Still, the potential to generate
he training sets from amplitudes describing typical situations like a near-threshold peak is practically unlimited. Details
f the resulting line shape would depend on the production mechanism, particle masses, detector resolution, etc., but
ost of the information enabling the translation of the line shape into class assignment comes from a small region, as
iscussed above. Therefore, identifying layers of the CNN which extract this region and transfer them to other models may
esult in satisfactory classifier performance. Of course, the transferred layers will have to be supplemented with additional
rainable layers (either dense or convolutional), to account for non-transferable properties.

Finally, other categories of ML methods can also find applications to spectroscopy: Generative models, as Variational
utoencoders (VAE) [126], Restricted Boltzmann Machines (RBM) [127] or Generative Adversarial Networks (GAN) [128]
an be used as well. Technically the difference between discriminative and generative models is that the former are
esigned to capture the differences between groups of data, while the latter compute the joint probability of input and
utput. In particular GANs recently found application as an alternative to Monte Carlo Event Generators like PYTHIA [129],
erwig [130] or SHERPA [131]. Contrary to these conventional event generators, which are biased by the underlying
hysical models, the GAN-based generator might learn directly from experimental data. They seem effective in generating
nclusive electron–proton scattering events and operated in the range of energies, even beyond those they were trained
n [132]. The application of these to exclusive channels of interest for spectroscopy is presently ongoing [133,134].

.4. Light hadron spectroscopy

The light hadron sector has been subject to fierce debate for many decades. Resonances are generally broad and overlap
ach other; experimental analyses were limited by statistics, and often implemented simplistic methods. All these issues
indered the extraction of reliable information. The natures, and in some cases even the existences, of some states are
till under debate.
Quark models play a crucial role in guiding analysis, and in predicting the number and properties of states to search

or [17,18]. However, since we are entering an era of high-statistics experiments, we are now facing the limits of such
odels. A complementary path was followed with effective field theories having hadrons as degrees of freedom, in
articular Chiral Perturbation Theory (χPT) [135–147]. The low energy constants at a given order can be fixed from
xperimental [136,137,139] or lattice QCD [148,149] data. However, fixed order effective theories respect unitarity only
erturbatively, and cannot produce resonance poles if not explicitly incorporated. This problem was circumvented by
arious unitarization methods (UχPT) [39–41,150–157], at least in the low-energy region. Nevertheless, these methods
16
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till suffer from several model dependencies and approximations. This becomes particularly clear when dealing with light
calars, where all the S-matrix principles play a significant role. This is the main reason why dispersive approaches have
een gaining attention in recent years [33,34,158–173]. The combination of dispersion relations with experimental data
s able to provide us the most robust information about the lightest mesons [174–177]. In particular, both the σ/f0(500)
nd κ/K ∗

0 (700) mesons showcase a successful implementations of such approaches, achieving very high accuracy. These
esults triggered their acceptance by the Particle Data Group (PDG, for recent reviews we refer the reader to [34,178]).
nfortunately, partial wave dispersive analyses are usually applicable only up ∼1 GeV. At a practical level, most of the
ata at higher energies come from photo-, electro- and hadroproduction, heavy meson decays, peripheral production, or
+e− annihilations. Furthermore, the large number of open channels available make the rigorous application of unitarity
nfeasible. For these reasons, loosening the S-matrix constraints, and studying a number of phenomenological amplitudes
o assess the systematic uncertainties and reduce the model bias seems the appropriate path to follow.

There are several interesting topics in the light sector. The most fundamental questions concern the existence of
esonances where gluons play the role of constituents, as glueball or hybrid mesons [179–181]. The analysis of isoscalar
calar and tensor mesons in the 1–2.5 GeV region—where the lightest glueball is expected—is presented in Section 2.4.1.
he η(′)π channel, where the a(′)2 and the exotic π1 are seen, is discussed in Section 2.4.2. The a1 and π2 states, for which
he three-body dynamics plays a major role, will be discussed later in Sections 3.3.1 and 3.3.2. In the list of states that
have received lots of attention in the past, we recall the η(1405) as a pseudoscalar glueball candidate [182], the X(1835)
that appears at the pp̄ threshold [183–185], and the poorly known strangeonium sector.

The baryon sector is even more difficult, despite the efforts by a larger community. We will just mention the
longstanding puzzles about the Roper and the Λ(1405) [186,187]. A collective discussion of several baryon resonances
[including the Λ(1405)] is performed by identifying the Regge trajectory they belong to, in Section 2.4.3.

2.4.1. J/ψ Radiative decays
As mentioned, the isoscalar–scalar mesons, and -tensor mesons to some extent, have played a central role in

spectroscopy. They can mix with the lightest glueball with the same quantum numbers. In pure Yang–Mills, the spectrum
is populated by glueballs, the lightest one expected to be around 1.5–2 GeV [188–196]. In nature, glueball production is
expected to be enhanced in processes where quarks annihilate into gluons, like pp̄ collisions or J/ψ radiative decays.

Most of the literature traces the existence of a significant glueball component with the emergence of a supernumerary
state with respect to how many are predicted by the quark model [179,180,197]. The PDG lists seven inelastic scalar–
isoscalars. In particular, among the f0(1370), f0(1500), f0(1710) in the 1.2–2 GeV there is one more resonance than is
expected by the quark model, which stimulated intense efforts to identify one of them as the glueball [198–205]. The
f0(1710) couples mostly to kaon pairs [206–208]. Since photons do not couple directly to gluons, the poor production of
f0(1500) in γ γ suggests it may be mainly a glueball. On the other hand, the chiral suppression of the matrix element of a
scalar glueball to a qq̄ pair point to the f0(1710) as a better candidate [204,209]. Although this result is model-dependent,
it is supported by a quenched Lattice QCD calculation [192].

The tensor resonances are better understood. The f2(1270) and f ′

2(1525) are identified as uū + dd̄ and ss̄ mesons,
respectively. Indeed, the former couples mostly to ππ , and the latter to KK̄ [1,165]. Both resonances are narrow and
have also been extracted from lattice QCD [210].

In this section we summarize our efforts to determine these inelastic scalar and tensor resonances from J/ψ radiative
decays [60]. We consider the data from the nominal solutions of the J/ψ → γπ0π0 [211] and → γK 0

S K
0
S [208] mass-

independent analyses by BESIII. Bose symmetry requires JPC = (even)++; and the isospin zero amplitude is dominant for
both channels. We fit the intensities and relative phases of the 0++, 2++ E1 multipoles between 1–2.5 GeV.

As mentioned, we use a variety of parametrizations that fulfill as many S-matrix principles as possible in order to keep
the model dependencies under control. We follow the coupled-channel N/D formalism [36–39],

aJi (s) = Eγ pJi
∑
k

nJ
k(s)

[
DJ (s)

−1
]
ki
, (29)

ith i = hh̄ the hadron index, s the hh̄ invariant mass squared and pi the breakup momentum in the hh̄ rest frame. Gauge
nvariance requires the inclusion of one power of photon energy Eγ .

The nJ
k(s) incorporate exchange forces in the production process and are smooth functions of s in the physical region.

t is parametrized by an effective polynomial expansion, possibly including background poles. The matrix DJ (s) represents
the hh̄ → hh̄ final state interactions, and encodes the resonant content of the η(′)π system. A customary parametrization
is given by [36]

DJ
ki(s) =

[
K J (s)

−1
]
ki

−
s
π

∫
∞

4m2
k

ds′
ρN J

ki(s
′)

s′(s′ − s − iϵ)
, (30)

where ρN J
ki(s

′) is smooth in the physical region, and describes the crossed-channel contribution to the scattering process.
For the K -matrix, we consider

K J
ki(s)nominal =

∑ g J,R
k g J,R

i

m2
− s

+ c Jki + dJki s, (31a)

R R
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Fig. 14. Best 3-channel fits to ππ (top) and KK̄ (bottom) final states. The intensities for the S- (left), D-wave (center), and their relative phase
right) are shown. The red lines correspond to the central value of each one of the different fits. All these fits have χ2/dof ∼ 1.1–1.2.
ource: Figures from [60].

ith c Jki = c Jik and dJki = dJik. Alternatively, we may parametrize the inverse K -matrix as a sum of CDD poles [29,82],[
K J (s)−1]CDD

ki = c Jki − dJki s −

∑
R

g J,R
k g J,R

i

m2
R − s

, (31b)

where c Jki = c Jik and dJki = dJik are constrained to be positive. These coefficients are also referred to as ‘‘the CDD pole at
infinity’’. For a single channel, this choice ensures that no poles can appear on the physical Riemann sheet.6 Even in the
case of coupled channels their occurrence is scarce, and when they do occur they are deep in the complex plane, far from
the physical region. Moreover, they can be mapped one into the other if a suitable background polynomial of the K -matrix
is considered.

Initially, we performed a 2-channel analysis using only data on the π0π0 and K 0
S K

0
S final states. However these

models are too rigid and cannot fully reproduce the local features of the data. Indeed, many of these resonances couple
substantially to 4π . For this reason, we extend our model with an unconstrained ρρ channel, using the previous results
as starting point for the new fits. We identify 14 best fits with different parametrizations, shown in Fig. 14. We perform
the bootstrap analysis as discussed in Section 2.2.2, generating O(104) pseudodata sets per parametrization.

Since our amplitudes respect analyticity and unitarity, we can look for resonant poles in the complex energy plane.
Considering the 14 models and the bootstrap resampling, we have O(105) ‘‘points’’ per pole, as shown in Fig. 15. As
discussed in Section 2.2.3, this analysis allows us to distinguish the spurious model artifacts from the physical ones. We
found a total of 4 scalar and 3 tensor stable clusters that can be identified with physical resonances. The four lighter
states produce a reasonably Gaussian spread, while the heavier ones have more complicated structures. The results are
summarized in Table 1. The scalar resonances are compatible with other recent extractions [213,214]. We found no
evidence for a f0(1370) in these processes. However, it is customarily accepted that this is a qq̄ state that couples mostly
to 4π , so that our findings do not challenge its existence.

Finally, we also studied the production and scattering couplings of these resonances. The tensor sector look fairly
simple, with the f2(1270) and f ′

2(1525) coupling almost entirely to ππ and KK̄ , respectively. This result is roughly

6 This is ensured by the fact that D(s) satisfies the Herglotz–Nevanlinna representation [212]. A direct check can be made: we write the CDD
arametrization for single channel in the unsubtracted form (a single subtraction can still be done, as it just shifts the real parameter c).

D(s) = c − d s −

∑
R

(gR)2

m2
R − s

−
1
π

∫
∞

sth

ds′
ρN(s′)
s′ − s

e calculate the imaginary part in the upper s plane. We thus write s = x + iy with y > 0.

ImD(s) = −d y − y
∑
R

(gR)2⏐⏐m2
R − s

⏐⏐2 − y
1
π

∫
∞

sth

ds′
ρN(s′)
|s′ − s|2

,

so it is a sum of negative terms, provided that c ∈ R, d > 0, and ρN(s′) ≥ 0 for s′ ≥ sth . That implies that D(s) can never vanish in the upper plane.
By the Schwartz reflection principle, it cannot vanish in the lower plane either.
18
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Table 1
List of final pole position and uncertainties resulting from the combination of the different fits to the data. The errors
correspond to the variance of the full samples, by assuming that the spread of results, shown in Fig. 15, resembles a
Gaussian distribution.
Source: Table from [60].
S-wave

√
sp (MeV) D-wave

√
sp (MeV)

f0(1500) (1450 ± 10) − i(106 ± 16)/2 f2(1270) (1268 ± 8) − i(201 ± 11)/2
f0(1710) (1769 ± 8) − i(156 ± 12)/2 f2(1525) (1503 ± 11) − i(84 ± 15)/2
f0(2020) (2038 ± 48) − i(312 ± 82)/2 f2(1950) (1955 ± 75) − i(350 ± 113)/2
f0(2330) (2419 ± 64) − i(274 ± 94)/2

Fig. 15. Shown in different colors are the final results for the pole positions, superimposed for the 14 models used in the analysis. A point is drawn
for each pole found in each one of the O(104) bootstrap resamples. Gray points are identified as spurious resonances. For each physical resonance
and systematic, gray ellipses show the 68% confidence region. Colored ellipses show the final average of all systematics.
Source: Figures from [60].

compatible to those listed by the PDG [1].7 The results for the scalar resonances are more involved. Although the scattering
couplings are not well constrained, the couplings to the whole radiative process show that the coupling of the f0(1710)
s larger than the f0(1500), in particular for the KK̄ channel, where it becomes almost one order of magnitude greater.
As mentioned above, this favors the interpretation for the f0(1710) to have a sizeable glueball component. One might
ask if this could instead be explained by an ss̄ component. However, the f0(1710) is not seen in B0

s → J/ψ K+K− decay,
here the ss̄ pair is produced by the weak vertex, and enhances the production of f0(980) [213]. This non-observation
lso supports a glueball assignment.

.4.2. η(′)π− Spectroscopy at COMPASS
Although the η(′) belong to the same pseudoscalar nonet as the pion, it is too short-lived to permit measurement

n any scattering experiment. The information about its interactions comes solely from production experiments, which
timulated an intense theoretical effort to obtain information about their interaction (see e.g. [216–218]). The η(′)π system
is particularly interesting, as its odd waves have exotic quantum numbers, and could be populated by hybrid mesons.
Furthermore, its D-waves could contain the a′

2(1700) resonance, which does not seem to often decay to two-body final

7 One must be cautious when comparing our results with those of the PDG: While we quote amplitude poles, the results listed by the PDG
combine both amplitude poles and Breit–Wigner parameters. However, for narrow isolated resonances, the difference is not large.
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Fig. 16. Intensity distribution and fits to the JPC = 2++ wave for different number of CDD poles, (a) using only CDD∞ and (b) using CDD∞ and the
CDD pole at s = c3 . Red lines show the fit results. Data is taken from Ref. [215]. The inset shows the a′

2 region. The error bands correspond to the
3σ (99.7%) confidence level.
Source: Figures from the single-channel analysis of [82].

Fig. 17. Location of pole positions with two CDD poles. The various ellipses represent the 2σ confidence level for the several model variations for
sR . The fixed parameter sR describes the initial positions of the left-hand cut.
Source: Figure from the single-channel analysis of [82].

states, making its precise determination challenging. The first reported hybrid candidate was the π1(1400) in the ηπ final
state [219–223]. Another state, the π1(1600), was claimed to appear ∼200 MeV heavier in the ρπ and η′π channels [224,
225]. More refined extractions were not conclusive [226]. Both peaks were confirmed by COMPASS [227,228]. While the
π1(1600) is closer to the theoretical expectations, having two nearby 1−+ hybrids below 2 GeV is problematic [229–231].
Establishing whether there exists one or two exotic states in this mass region is thus a stringent test for our understanding
of QCD in the nonperturbative regime.

A high statistics dataset of diffractive production πp → η(′)π−p, with pbeam = 190 GeV, has been measured by the
COMPASS collaboration [215]. In this section we will focus on the analyses of the lowest waves in the resonance region
by [61,82], while we will discuss the high energy region in Section 4.6.

High-energy diffractive production is dominated by an effective Pomeron exchange (P), which allows us to factorize
this process into the nuclear target/recoil vertex and the πP → η(′)π process.8 In the Gottfried–Jackson (GJ) frame [232],
the P helicity equals the η(′)π total angular momentum projection M , and the corresponding helicity amplitude aM (s, t, t1)
can be expanded into partial waves aJM (s, t). Here, s is the invariant mass squared of the η(′)π system, t1 is the invariant
momentum transfer squared between the η(′) and π , t is the invariant momentum transfer from the π beam to the nuclear
target, and J is the total angular momentum of the η(′)π system.

8 As we will discuss in Section 4.6, the contribution of the f2 is also needed. For the sake of extracting the resonances, the details of the exchanges
re not relevant: For example, no information on the trajectory enters the analysis. We will consider here a ‘‘Pomeron’’ exchange that effectively
ncludes all the other ones, whose effective spin one dominates the φ distribution.
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Fig. 18. Fits to the ηπ (upper row) and η′π (lower row) data from COMPASS [215]. The intensities of P- (left), D-wave (center), and their relative
hase (right) are shown. The inset zooms into the region of the a′

2(1700). The solid line and green band show the result of the fit and the 2σ
onfidence level provided by the bootstrap analysis, respectively. The best fit has χ2/dof = 162/122 = 1.3.
Source: Figures from the coupled-channel analysis of [61].

At low transferred momentum, the P has a predominant coupling to |M| = 1 waves, indicating an effective vector
coupling to the nuclear vertex. Since the COMPASS analysis integrates over t ∈ [−1.0,−0.1] GeV2, we will consider a fixed
ffective teff = −0.1 GeV2 value in our analysis, and we will vary it to assess systematic uncertainties. The production
mplitude can be parametrized following the N/D formalism,

aJi (s) = qJ−1pJi
∑
k

nJ
k(s)

[
DJ (s)

−1
]
ki
, (32)

here the kinematic prefactors assure proper angular momentum barrier suppression. The πP momentum is represented
y q, with the (J − 1) power coming from an additional momentum factor from the nuclear vertex as explained in [233].
he parametrizations of nJ (s) and DJ (s) are similar to the ones discussed the previous Section 2.4.1.
As a first study, we perform a single-channel analysis of ηπ in the JPC = 2++ wave and determine the spectral content

of this channel [82]. This serves both as a test for the model, since the tensor wave is the strongest, and an opportunity to
investigate radial excitations of the a2. For DJ (s) the reference parametrization is CDD, which forces a zero in the amplitude
that must be divided out from n(s).

For the elastic case at hand, we choose CDD parametrizations as a reference as they automatically enforce that no poles
can occur in the first sheet. K -matrix parametrizations were used for the coupled-channel fits as a systematic check. One
can show that the two parametrizations are equivalent up to smooth background terms.

As seen in Fig. 16, the COMPASS data shows a dominant peak around
√
s ∼ 1.2–1.3 GeV, and a small enhancement

round
√
s ∼ 1.7 GeV. To assess whether this is actually due to a resonance, we try and fit with just the CDD pole at

infinity, and also by adding a second one. In the former case the fit captures the dominant a2 peak, but for reasonable
descriptions of the production model the secondary bump cannot be described (see Fig. 16(a)). In contrast, if we allow
both CDD poles, we can resolve both the dominant and subdominant peaks in the spectrum, providing a good description
of the data with a χ2/dof = 1.91. The results for the pole positions of this single-channel analysis are shown in Fig. 17.

With this 2++ channel under control, we extend the analysis to a coupled-channel study where we investigate the π1
ybrid candidate with the η(′)π data from COMPASS. To use the information on the relative phase, we have to fit the P-
nd D-wave data simultaneously. We also include the η′π data in order to understand both of the π1(1400) and π1(1600)
eaks. We will neglect any other possible decay channels other than the two at hand, even though these are not expected
o be the dominant ones [234]. Our reasoning for this, as explained above, is that adding new channels should not produce
significant displacement of the pole positions in this analysis, as the missing imaginary parts will likely be absorbed by
he existing channels. However, residues and thus couplings are clearly affected by this assumption, so we do not study
hem.

The best fit for our nominal model makes use of only a single P-wave K -matrix pole, and it is shown in Fig. 18, where
he global χ2/dof = 162/122 = 1.3. The statistical uncertainties shown correspond to the 2σ confidence level associated
o bootstrapping the sample data. This result is remarkable, considering the high precision data on the D-wave, and all
he degrees of freedom exhibited on the data. As seen in the figure, all local features are nicely described by the fit. In
articular both P-wave peaks, and even the elusive a′ (1700) peak are neatly captured.
2
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Fig. 19. Positions of the poles identified as the a2(1320), π1 , and a′

2(1700). The inset shows the position of the a2(1320). The green and yellow
ellipses show the 1σ and 2σ confidence levels, respectively. The gray ellipses in the background show, within 2σ , the different pole positions
produced by each of the model variations as explained in [61].

Table 2
Pole position from the η(′)π analysis of [61]. The first error is statistical, the second
systematic.
Poles Mass (MeV) Width (MeV)

a2(1320) 1306.0 ± 0.8 ± 1.3 114.4 ± 1.6 ± 0.0
a′

2(1700) 1722 ± 15 ± 67 247 ± 17 ± 63
π1 1564 ± 24 ± 86 492 ± 54 ± 102

For systematic checks, fits with different numbers of K -matrix or CDD poles in P-wave have been implemented. The
ones with no poles are unable to describe the data, and the ones with more than one do not produce any noticeable
difference in the goodness of the fit. In the complex plane extra poles can appear, but they are spread all over the place,
are generally very broad, and behave erratically when the fit parameters are changed even slightly.

Once again, after obtaining a faithful description of the data, we can make use of our analytic parametrizations to
search for poles in the complex plane. The statistical uncertainties are determined via bootstrap. We perform 12 systematic
variations of the nominal model and of its parameters. When continuing to the complex plane they all produce an isolated
cluster in P-wave, that we identify with the π1, together with two poles on the D-wave corresponding to the a2(1320)
nd a′

2(1700) resonances. Their pole positions are listed in Table 2, and their spread of results is plotted in Fig. 19. We
onclude that there is no more than one JPC = 1−+ hybrid meson decaying to both η(′)π− channels. This picture reconciles
xperimental evidences with phenomenological and Lattice QCD expectations.

.4.3. Regge phenomenology of light baryons
The low-lying N∗, ∆, Λ, and Σ resonances, accessible in pion–nucleon and antikaon–nucleon scattering and in

hotoproduction experiments, are a source of insights into the quark model and the inner works of nonperturbative
CD phenomena [186]. One of the many goals of light baryon spectroscopy is to understand the origin and structure of
esonances. In particular, one hopes to identify whether a compact three-quark interpretation holds for these states or if
ther components should be considered.
For example, the nature of the Λ(1405) has been controversial, being a primary candidate for a K̄N and Σπ molecule.

his interpretation has traditionally been favored by chiral unitary approaches [187,235–237], which generally finds two
oles that explain the experimental signal, while a compact interpretation has been favored by quark models [238–241]
nd large-Nc calculations [242,243]. Lattice QCD computations are inconclusive as the resonant nature of the Λ(1405) has
ot been accounted for [244–248].
Often the parameters of these resonances are extracted from experimental data through a partial wave analysis,

ssuming each partial wave independent of the others. Such an approach does not take into account the fact that
mplitudes are also analytic functions of the angular momentum, as described by Regge theory [249–251]. Therefore,
esonances of increasing spin must lie on a so-called Regge trajectory, whose shape can be used to gain insight on
he microscopic mechanisms responsible for the formation of the resonance [252–257]. In QCD, Regge trajectories are
pproximately linear, as first shown by Chew and Frautschi [258] by plotting the spin of resonances Jp versus their mass
quared M2, which is one the strongest phenomenological indications of confinement [259]. Constituent quark model
redictions for baryons fit nicely in the approximately linear behavior [17,18,260–266,266–268] and so do flux tube
odels of baryons [269–271]. The emerging pattern can be used to guide a partial wave analyses, for example gaps

n the trajectories are usually due to missing states.
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Fig. 20. Masses and widths from the Λ (top) and Σ (bottom) resonances.
Source: Figures from [72].

Regge trajectories computed in the Chew–Frautschi plot ignore entirely the resonance widths, i.e. the fact that they
are poles in the complex s-plane. This is partially inconsistent, as unitarity demands the Regge trajectory α(s) to be a
complex function as well [274]. Therefore, one should plot the imaginary part of the pole (i.e. the width times the mass
of the resonance) as a function of the spin, as proposed in [256]. More details about Regge theory and their implications
to study production of hadrons will be given in Section 4.2, while here we focus on using the trajectories as a tool to
organize the existing spectrum.

For baryons, Regge trajectories are classified according to isospin I , naturality η, and signature τ .9 The quantum
numbers identify a given Iη(τ ) trajectory. For example, the nucleon trajectory corresponds to Iη(τ ) =

1
2

+

(+). The Λ and Σ
poles were extracted in [72], fitting the single energy partial waves from [275] of K̄N scattering data with a K -matrix
model that incorporates analyticity in the angular momentum. The results are summarized in Fig. 20. Together with the
two Λ(1405) poles from [237], their leading Regge trajectories were studied in [256].

Fig. 21 plots the spin of the resonance as a function of the real or imaginary part of the pole position. We note that only
one of theΛ(1405) poles lies on the same trajectory as the higherΛs. The linearity of the Chew–Frautschi plot is apparent,
which suggest an interpretation as dominantly three-quark states. The second plot provides additional insight, specially

9 For baryons, τ = (−1)Jp−1/2 , for antibaryons τ = (−1)Jp+1/2 . The naturality is η = Pτ , with P the parity.
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c
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Fig. 21. Leading Regge trajectories for N∗ (top row) and Λ (bottom row) resonances. Left column shows the Chew–Frautschi plots, while the right
olumn plots the spin as a function of the imaginary part of the pole position (mass times width). The Λ poles are taken from [72,237]. The N∗

oles are taken from [272,273] We note that the N∗(1535) (JPp = 1/2− , τ = −, η = +) is not shown, as it belongs to a daughter trajectory.

regarding the two Λ(1405) poles. In [256,276] it is argued that linearity in the Chew–Frautschi plot is not enough for a
three-quark interpretation, but since most of its width should be due to the phase space contribution, a square-root-like
behavior should emerge when plotting spin vs. imaginary part of the pole position. However, only one of the Λ(1405)
follows this pattern. This suggests that the heavier Λ(1405) might be mostly a compact state, while the lightest would
have a different nature, most likely a molecule [256], although no consensus on the topic has been reached yet.

The nonstrange light baryon spectrum can be studied in the same way [276]. The pole extraction can be taken from
several partial wave analyses of meson scattering and photoproduction data available in the literature [272,273,277–281].
In Fig. 21 we show an example of N∗ trajectory. The states nicely accommodate the Regge expectation, except for the
N(1720), which in [272,273] has a large width Γp ∼ 300–430 MeV that would place this state close to the daughter
trajectory. Hence, Regge phenomenology demands the existence of another narrower state.

Such a state was actually claimed to be narrower in other analyses [277,278] with Γp = 120 MeV, but no consensus was
reached [279,281,282]. A recent CLAS analysis finds actually two N(1720) with similar mass and widths, but different Q 2

behavior in electroproduction [283]. The ANL-Osaka analysis finds two poles with masses 1703 and 1763 MeV and widths
70 and 159 MeV, respectively [284]. Since quark models predict several 3/2+ states in this energy region [18,261,262,264],
it is possible that the data analyses are not able to resolve each pole individually. Further research is necessary to establish
the number and properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285]. Experiments
have claimed a long list of states, collectively called XYZ , that appear mostly in the charmonium sector, but do not
respect the expectations for ordinary Q Q̄ states, summarized in Fig. 22. An exotic composition is thus likely required [3,9].
Several of these states appear as relatively narrow peaks in proximity of open charm threshold, suggesting that hadron–
hadron dynamics can play a role in their formation [4,286]. Alternatively, quark-level models also predict the existence of
supernumerary states, by increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy
24
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Fig. 22. Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

T+
cc [287,288] and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive

description of these states will improve our understanding of the nonperturbative features of QCD. Most of the analyses
from Belle and BaBar suffered from limited statistics, and strong claims were sometimes made with simplistic models on
a handful of events. Currently running experiments like LHCb and BESIII have overcome this issue, providing extremely
precise datasets that also require more sophisticated analysis methods and theory inputs. The status of ordinary and exotic
charmonia is summarized in Fig. 22. Depending on their width and the production mechanism, the states can roughly be
classified into the following categories:

1. Narrow (≲50 MeV) states that appear in b-hadron decays: X(3872), Pc(4312), Pc(4440), Pc(4457), . . . , and at e+e−

colliders: X(3872), Y (4230), Z (′)
c,b, . . .

2. Broad (≳50 MeV) states that appear in b-hadron decays: χc0(4140), Z(4430), Zcs(4000), Pc(4380), . . .
3. States produced promptly at hadron machines: X(3872), T+

cc , X(6900), . . .

he narrow signals do not require a thorough understanding of interferences with the background. Since they often appear
lose to some open flavor threshold, they call for analysis methods that incorporate such information. To some extent, it is
ossible to give model-independent statements. The X(3872) is very special. It has JPC = 1++, violates isospin substantially
ecaying into J/ψρ and J/ψω with similar rates, and lies exactly at the D̄0D∗0 threshold. Its lineshape was recently studied
y LHCb, which triggered several discussions [290–292]. The Zc(3900) (with JPC = 1+−) was seen as a peak in the J/ψ π

invariant mass in the e+e−
→ J/ψ ππ process, and as an enhancement at the DD̄∗ threshold in e+e−

→ πDD̄∗. Similarly,
a Z ′

c(4020) with same quantum numbers peaks in hc π invariant mass in the e+e−
→ hc ππ process, and enhances the

cross section at the D∗D̄∗ threshold in e+e−
→ πDD̄∗. The system of two 1+− at the two thresholds seems replicated in

the bottomonium sector, by the Zb(10610) and Z ′

b(10650). The proximity to threshold motivated their identification as
hadron molecules [293–300], but tetraquark interpretations are also viable [301–304].

The discovery of pentaquark candidates in Λ0
b → J/ψpK− decay in 2015 also boosted the field substantially. The LHCb

collaboration reported a narrow and a broad state, the Pc(4450) and the Pc(4380), with likely opposite parities [305]. The
subsequent 1D analysis in 2019, with ten-times higher statistics, reported a composite structure of the narrow peak, that
split into Pc(4440) and Pc(4457), and found a new isolated peak, the Pc(4312) [306]. In light of this new information, the
quantum numbers reported previously are no longer reliable. Again, the signals can be interpreted as compact five-quark
states [307–310], weakly bound meson–baryon molecules [311–318], or triangle singularities [7,319–324].
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Fig. 23. Analytic structure of the Zc (3900) amplitude near the D̄D∗ threshold. The adjacent Riemann sheets are continuously connected along the
axes. Several possibilities for the pole to appear. A pole on the III sheet above the DD∗ threshold (red square) generates a usual Breit–Wigner-like
lineshape, and is likely due to a genuine QCD resonance. A pole on the II sheet below threshold (blue circle) is likely due to a bound state of D̄D∗ .
Similarly, a pole on the IV sheet is not immediately visible on the physical region (orange), but enhances the threshold cusp. This is likely due to a
virtual state. See the text for more details.

We will discuss the examples of the Zc(3900) in Section 2.5.1 and of the Pc(4312) in Section 2.5.2. In some reactions,
it is possible that 3-body dynamics, and in particular triangle singularities can play a role. An example of this will be
discussed in Section 2.5.3.

Broad states are much less evident in data, and can be extracted only with sophisticated amplitude analyses, where
unitarity is usually neglected. Having a full exploration of the systematic model variations on the lines of what was
presented in the previous sections has not been done yet due to limits in computational and human resources. In the open
charm sector, several UχPT-like analyses suggest the D∗

0(2300), D
∗

1(2430), Ds0(2317) and Ds1(2460) to have a molecular
nature. For the D∗

0(2300), a double pole structure similar to the Λ(1405) is suggested [325–328].
In prompt production, the initial kinematics is uncontrolled. While there is no doubt that strong signals exist, there

is a long debate on whether or not one can infer the nature of such states from the production properties at high
energies [329–337]. It is worth mentioning that, with the exception of the X(3872), the XYZ have been observed in one
specific production channel.10 Exploring alternative production mechanisms would provide complementary information,
that can further shed light on their nature. The study of XYZ photoproduction will be discussed later in Section 4.5.

2.5.1. The Zc(3900)
As we previously stated, the Zc(3900) peaks in J/ψ π [339–342], and enhances the DD̄∗ cross section at threshold [343–

345]. Several possibilities are viable: It might be a bound or virtual state of DD̄∗, that moves into the complex plane due to
the coupling to J/ψ π ; it might be a genuine QCD resonance; it might be a mere threshold cusp enhanced by the presence
of a triangle singularity closeby. The best candidate to produce a triangle cusp is the D1(2420) resonance in D∗π .

Each microscopic interpretation reflects into the analytic properties of the amplitude: Bound and virtual states would
likely appear on the II and IV sheet, compact states generally lie on the III sheet. This is schematically represented in Fig. 23.
A more refined classification based also on the sign of the scattering length will be discussed in Section 2.5.2, or can be
given looking at the pole residues according to Weinberg’s criterion, see e.g. [346–348]. Triangle singularities produce a
branch point that can also enhance a peak. Such peaks cancel in the elastic case. Therefore, studying the inelasticities with
a proper coupled channel analysis can constrain the strength of the triangle. Moreover, the details of the line shape are
related to the sheet the physical pole is located, and eventually offer a tool to study the nature of the Zc(3900).

10 Actually, DØ claimed to observe the Zc (3900) also in inclusive b-hadron decays [338]. However, the statistics is still low, and the inclusive
analysis prone to sizeable systematic effects. For this reason, we do not consider this claim to as convincing as the other ones, which justify our
statement above.
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Fig. 24. Channel definitions. In channel 1 we consider the exchange of a D1(2420) in t and of a D̄0(2300) in u in addition to the possible Zc in s.
In channel 2 we consider the exchange of a f0(980) and a σ in t , in addition to the possible Zc in s and u.

The amplitude can be parametrized in the isobar model:

fi(s, t, u) = 16π

⎡⎣a(t)i (t) + a(u)i (u) +

∑
j

tij(s)

(
cj +

s
π

∫
∞

sj

ds′
ρj(s′)bj(s′)
s′ (s′ − s)

)⎤⎦ , (33)

ith i running over the two channels D̄D∗ and J/ψπ , with Mandelstam variables s, t, u as represented in Fig. 24. We
re mostly interested in the distribution is s, where the Zc(3900) is directly observed. Isospin symmetry is assumed, so
hat the neutral and charged datasets are studied together. Little information is available about the angular distributions,
o there is no point in considering spin. Since we are not interested in channels with nonexotic quantum numbers, we
ill the a(t,u)i isobars with simple Breit–Wigners for the D1(2420), D∗

0(2300), and for two effective ππ resonances whose
mass and width are let free in the fit. The s-channel is unitarized à la Khuri–Treiman (see Section 3.1), which gives the
dispersive integral in Eq. (33), in terms of projections of the isobars in the other channels:

bi(s) =
1

32π

∫ 1

−1
dzs

[
a(t)i (t(s, zs))+ a(u)i (u(s, zs))

]
. (34)

he cross channels are not unitarized, so no integral equation has to be solved. The scattering amplitude tij describes the
inal state interactions, and can be parametrized with different functional forms, that allow for different singularities in
he complex plane. We use the K -matrix parametrization that explicitly encodes unitarity tij =

[
K−1(s) − iρ(s)

]−1
ij , and

onsider four scenarios:

1. III: We use Flatté, Kij = gigj/(M2
− s), and force bi(s) ≡ 0. Although unphysical, this choice is the closest to the

parametrization used in the experimental analyses, and eases the comparison;
2. III+tr.: Same, restoring the correct bi(s). These two scenarios naturally produce either a bound state pole below the

D̄D∗ threshold, or a resonant pole above it, depending on the value of M .
3. IV+tr.: K is a symmetric constant matrix, which produces either bound or virtual states.
4. tr.: Same, but forcing the pole to be far from threshold penalizing its position in the fit, to assess whether the

triangle singularity alone is able to generate the observed structure.

We perform a minimum χ2 fit of these models to the e+e−
→ J/ψ ππ [339,342] and → D̄D∗π [344,345], for two

alues of total energy. In Fig. 25 we show an example of how the various models result in different lineshapes.
All the models fit reasonably well the data, with χ2/dof ranging from 1.2 to 1.3. A likelihood ratio test does not give

ejections larger than 3σ [349,350]. We conclude that present statistics prevents us from drawing any strong statements.
In the models where a Zc pole appears, we can quote its position, and estimate the uncertainties using bootstrap. The

esults are summarized in Fig. 26 and Table 3. We observe that:

1. III: The pole appears above the D̄D∗ threshold, on the III sheet, and the width is Γ ≃ 50 MeV, marginally compatible
with the value quoted by the PDG, M = 3886.6 ± 2.4 MeV, Γ = 28.1 ± 2.6 MeV [1].

2. III+tr.: The presence of the logarithmic branching point close to the physical region allows for the pole to be slightly
deeper in the complex plane, Γ ≃ 90 MeV. The mass is still safely above threshold.

3. IV+tr.: In this case the peak is generated by the combination of the logarithmic branching point with the virtual
state pole on the IV sheet. Given that this sheet is not directly connected with the physical region, and that the
triangle singularity contributes to the strength of the signal, the pole position is not well constrained.

To summarize, we presented a coupled-channel study of the Zc(3900). We write a unitarized model that takes
nto account the possible rescattering with the bachelor particle in both channels. We consider several scenarios that,
epending on the parametrization chosen, produce singularities that favor different physical interpretations, but present
tatistics is not able to distinguish between those. Similar conclusions were reached in [351,352]. In the following Section,
e will present a similar analysis where quality of data is actually able to discriminate between the various hypotheses.
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Fig. 25. (left) Result of the fit for the scenario III and tr.. The colored lines and bands show the fit result with the relative 1σ error, calculated with
bootstrap. Data are the J/ψπ0 projection of the e+e−

→ J/ψπ0π0 at ECM = 4.23 GeV, by BESIII [342]. The errors shown are statistical only. (right)
Loglikelihood ratio test. We histogram the χ2 difference of the III and IV+tr. models, assuming that III (blue) or IV+tr. is the truth. The black line
highlights the value of ∆χ2 obtained from data. One gets a 2.7σ rejection of IV+tr. over III.

Fig. 26. Pole position according to the scenarios which allow for the presence of a pole in the scattering matrix close to the physical region. The
colored regions correspond to the 1σ confidence level.
Source: Figures from [353].

Table 3
Mass and width of the Zc (3900) according to the scenarios which allow for the presence of a pole.
Source: Table from [353].

III III+tr. IV+tr.

M ≡ Re
√
sP (MeV) 3893.2+5.5

−7.7 3905+11
−9 3900+140

−90

Γ ≡ 2
⏐⏐Im√

sP
⏐⏐ (MeV) 48+19

−14 85+45
−26 240+230

−130

2.5.2. The Pc(4312)
As discussed in Section 2.5, the discovery of two pentaquark resonances, Pc(4380) and Pc(4450) in the Λ0

→ J/ψK−p
decay by LHCb in 2015 [305] triggered a frenzy of theory work to determine their nature. Later, with ten times more
events [306], the Pc(4450) signal was resolved into two peaks, Pc(4440) and Pc(4457), and a new Pc(4312) was discovered.
he latter is particularly interesting as it is a very clean isolated structure that peaks approximately 5 MeV below theΣ+

c D̄0

threshold, making it a prime candidate for a hadron molecule composed of the two particles [316,317,354–359]. Such a
Σ+

c D̄0 molecule with JP = 1/2− was predicted in various models [360–365]. However, the opening of a threshold and
the Σ+

c D̄0 interaction can also generate a virtual state [366], where the interaction is attractive and generates a signal
in the cross section, but is not strong enough to bind a state. A well known example is in neutron–neutron scattering,
where the cross section is enhanced at threshold, even though no dineutron bound state exists [367]. The fact that such
a narrow (∼10 MeV) peak appears on top of what seems to be a smooth background permits a simplified analysis of the
one-dimensional J/ψ p invariant mass distribution. This was done in [75] following a bottom-up approach, favoring the
irtual state interpretation.
We consider a two-channel production process, Λ0

b → K−(J/ψ p) and → K−(Σ+
c D̄0). The presence of the bachelor

ntikaon does not create peaking structures, and the three-body effects described in Section 3 can be neglected. Since
e focus on events around the Pc(4312) peak only, far away from the J/ψ p threshold, the phase space is basically

an imaginary constant, and we can claim that this absorbs all the inelastic channels lighter than Σ+
c D̄0. Similarly, the

contributions from heavier channels can be absorbed by the real parameters of the scattering amplitude. The events
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Fig. 27. Analytic structure of the Pc (4312) amplitude near the Σ+
c D̄0 threshold. The adjacent Riemann sheets are continuously connected along the

axes. The four possibilities for a resonant pole structure are depicted. When the J/ψ p and Σ+
c D̄0 channels decouple, the poles move to the imaginary

k2 axis along paths by the arrows. Poles moving to the positive (negative) axis correspond to bound (virtual) states.

distribution is given by [75,79]
dN
d
√
s

= ρ(s)
[
|F (s)|2 + B(s)

]
, (35)

here ρ(s) is a phase space factor. The Pc(4312) signal is assumed to have a well-defined spin and, hence, it appears in a
ingle partial wave F (s). The smooth background B(s) is a linear polynomial that parametrizes all the other partial waves
that can be added incoherently. The amplitude F (s) = P1(s) T11(s) is a product of a smooth production function P1(s) that
encapsulates both the J/ψ p K− production and the cross channel Λ∗ resonances projected into the same partial wave as
Pc(4312), and of the J/ψ p → J/ψ p scattering amplitude T11(s) that contains the details of the Pc(4312). In a P-vector
formalism [36], another term P2(s)T12(s) would also appear, but since it contains the same singularities as P1(s)T11(s), it
can be reabsorbed there. Close to the Σ+

c D̄0 threshold, can be expanded as(
T−1)

ij = Mij − iki δij, (36)

ith i, j = 1, 2. The ki momenta of the two channels are given by k1 =
√
s − (mψ + mp)2 and k2 =

√
s − (mΣ

+
c

+ mD̄0 )2.
The Mij are given by

Mij(s) = mij − cijs + higher order terms, (37)

where cij = 0 under the scattering length approximation. The m11, m12 and m22, are fitted to the data. The analytic
structure of T11(s) is shown in Fig. 27. The amplitude has four poles in the complex s plane. Two of them are a conjugated
pair that appears either on the II or IV sheet near theΣ+

c D̄0 threshold where the scattering length expansion is reasonable.
The other two poles lie far away from the region of interest and are irrelevant. If m12 → 0, the Σ+

c D̄0 channel decouples
from J/ψ p. In this limit, the Pc(4312) pole would become either a stable bound state on the I sheet, or a virtual state on
the II sheet, depending on whether the pole would approach the positive or negative Im k2 axis, as represented in Fig. 27.
This is controlled by the sign of m22, the inverse scattering length of the Σ+

c D̄0 channel: If it is positive (negative) the
resonance corresponds to a virtual (bound) state.

The fit result is shown in Fig. 28 together with the pole position from 104 bootstrap fits. For each bootstrap fit only
one pole appears in this region. The resulting interpretation was a virtual state with MP = 4319.7 ± 1.6 MeV and
ΓP = −0.8 ± 2.4 MeV, where the negative value of the width corresponds to a IV sheet pole. Consistent results are
obtained with the three datasets published by LHCb. Since a virtual pole does not lie in one of the proximal sheets,
one would expect it to enhance the threshold cusp, so that the peak position should be exactly at threshold. However,
convoluting with experimental resolution (roughly 3 MeV in the region of interest [306]) can slightly move the position
of the peak. This is why the fit shown in Fig. 28 peaks below threshold, even if it corresponds to a virtual state.

Still in the scattering length approximation, the nature of the Pc(4312) was also studied using a deep neural network,
employed as described in Section 2.3. The network was trained against four classes of lineshapes: b|2, b|4, v|2, and v|4;
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Fig. 28. (left) Fit to the cos θPc -weighted J/ψ p mass distribution from LHCb in the Pc (4312) region [306]. The theory curve is convoluted with
experimental resolution. The solid line and green band show the fit result and the 1σ confidence level. (right) Pole obtained from the 104 bootstrap
fits. The physical region is highlighted with a pink band. The poles lie on the II and IV Riemann sheets (which are continuously connected above
the Σ+

c D̄0 threshold as shown in Fig. 27). The blue ellipse accounts the 68% of the cluster.
Source: Figures from [75].

Fig. 29. Considered triangle diagram for the B0
s → J/ψ pp̄ in the region where the Pc (4337) signal appears.

where the letter stands for the nature of the state, i.e. bound or virtual, and the number for the Riemann sheet where
the pole is placed. The result for the classification process is shown in Fig. 13. The analysis heavily favors the virtual state
nterpretation [109]. The model can be extended to the effective range approximation, allowing cij ̸= 0 with a similar fit
uality. The Pc(4312) pole is pushed at MP = 4319.8±1.5 MeV and ΓP = 9.2±2.9 MeV on the II sheet, but jumps on the

IV sheet as soon as m12 is made smaller, also favoring a virtual state interpretation. This model by construction contains
two more pairs of conjugate poles. One of the poles is systematically captured on the III Riemann sheet by the bump at
about 4380 MeV, at the edge of the fitted window. Since the fit quality was not meaningfully improved with respect to
the scattering length approximation and it was not possible to claim enough statistical significance, this was not claimed
as a discovery. However, the unitary model of [358], which enforces χPT and heavy quark spin symmetry, finds evidence
of a narrow pole at the same mass. More systematic studies are thus required to assess whether this pole corresponds to
a physical state or not.

2.5.3. An example of triangle singularity: The Pc(4337)
Triangle singularities have been proposed as a possible explanation of several resonances, and in particular of some

of the pentaquark signals [7,321,323,324]. Here we show a simple example of a triangle calculation applied to the new
Pc(4337) pentaquark recently reported by LHCb in the B0

s → J/ψpp̄ decay close to the χc0p threshold [368]. The signal
was found analyzing the Dalitz plot with a significance smaller than 5σ , so discovery was not claimed. A hint of a peak
is visible in the J/ψp(p̄) projections, as seen in Fig. 29, while no clear resonance is seen in pp̄. Hence, one is tempted
to perform an analysis of these mass distributions similar to that of the Pc(4312). The low statistics makes an analysis
of that kind not worth the effort. Also, a proper analysis should be implemented at the Dalitz plot level rather than on
the projections. Nevertheless, we will use these invariant mass distributions to illustrate how a signal can be studied
assuming it is generated by a scalar triangle singularity. The possible triangle is shown in Fig. 29, where the exchanged
f is, in principle, unknown. Here there are two options. One is to search for a suitable state to be exchanged as f among
the known ones. In this case the f2(1950) seem like an adequate candidate. The second option is to let the data decide
the mass and width of the f particle.

The intensity distribution is given by
dN
√ = N0 ρ(s) |M(s)|2 , (38)
d s
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Fig. 30. Fits to the J/ψp and J/ψ p̄ projections from LHCb [368] in the energy region of the χc0 p threshold where the Pc (4337) signal appears. (left)
its using phase space only and a triangle with an exchanged f2(1950). (right) fits using phase space only and a triangle with an exchanged f whose
ass and width are fitted to the data.

Table 4
Summary of χ2/dof for the fits to the Pc (4337) signal in the region of the χc0 p threshold. For the free
f fit we obtain mf = 1774 MeV and Γf = 217 MeV.

Fitted projection Phase space f2(1950) Free f

J/ψp 1.52 1.73 0.76
J/ψ p̄ 1.81 1.31 1.25
J/ψp & J/ψ p̄ 1.6 1.47 0.95

where N0 is the normalization parameter, the phase space is given by ρ(s) = λ1/2(s,m2
B,m

2
p) λ

1/2(s,m2
p,m

2
ψ )/

√
s, and M(s)

is the scalar triangle amplitude in Fig. 29 given by [321]

M(s) =

∫ 1

0

dx
y+ − y−

1
s

[
log

(1 − x − y+)
−y+

− log
(1 − x − y−)

−y−

]
, (39)

here

y∓ =
1
2s

(
−β ∓

√
β2 − 4αs

)
, (40a)

α = xm2
f + (1 − x)2 m2

p , (40b)

β = m2
χ − (1 − x) (s + m2

p) − xm2
B . (40c)

Including particle spins and barrier factors will modify the numerator of the integrand, but will not affect the position of
the triangle singularity. Since the precise form of the numerator is model-dependent anyway, we will not discuss it here
in this illustrative example. To account for the width of the χ0, we use a complex mass mχ → mχ − iΓχ/2. Hence we
perform three different fits: phase space only, f = f2(1950), and f with mass and width as free parameters. These fits are
to three projection sets in the (4.25, 4.40) GeV range: J/ψp, J/ψ p̄, and both combined. The fits are summarized in Table 4.
Fig. 30 shows the fits of the three models to the combined J/ψp and J/ψ p̄ projections. If we take these results at face
value, the phase space alone cannot explain the apparent bump, and the inclusion of the f2(1950) as a triangle improves
the result, although not much. However, the triangle with a fitted mass and with (mf = 1774 MeV and Γf = 217 MeV)
does improve the agreement between theory and experiment. Actually, this exchanged f lies very close to the f0(1710)
shown in Section 2.4.1. However, this result has to be taken as a simple exercise, given that the statistical significance of
the signal is very low.

3. Three-body scattering and decays

3.1. Three-body decay and Khuri–Treiman equations

One of the main issues posed by the presence of hadrons in any reaction is their final-state interactions, which are
formally expressed in terms of the unitarity of the amplitude. In two-body scattering, unitarity is usually imposed in
the direct channel only, as one is not sensitive to the details of the crossed channels. This is certainly not the case for a
three-body decay, where the three possible two-hadron channels are physical, and one ideally wants to impose unitarity
in all channels at once. The Khuri–Treiman (KT) formalism is a dispersive approach which indeed allows one to do so. KT
equations were first written for K → 3π decays [369]. Soon after several papers appeared discussing different aspects of
the formalism [370–374]. For the lightest mesons and lowest waves, KT equations can be justified in chiral perturbation
theory at lowest orders via the so-called reconstruction theorem [375–379]. In Ref. [380] the formalism was applied to
ππ scattering, and it was found to be equivalent to Roy equations [158,163] when both formalisms are restricted to
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- and P-waves. When higher waves are included in KT equations, still good agreement was found with other dispersive
pproaches [165]. We also point out that the KT decomposition of ππ scattering in [380] is compatible with the amplitude
ecomposition obtained in [381] imposing crossing and chiral symmetries. In Ref. [382] we extended it to arbitrary
uantum numbers of the decaying particle, by relating the isobar expansions in the three possible final states with the
ppropriate helicity crossing matrices (see also the discussion in Section 2.1). The decays of vector mesons to three pions
ave been studied with this formalism [383–388], and will be discussed in Section 3.1.1. However, the most important
pplication is the study of the η → 3π decay [389–403], as we will see in Section 3.1.2. Other recent applications include
efs. [218,353,404,405].
As in Section 2.1, the amplitude can be decomposed in

T (s, t, u) =

∞∑
j=0

(2j + 1)Pj(zs)tj(s) , (41)

q. (41) is an infinite sum of partial waves, each carrying both left- and right-hand cuts. The essence of the KT approach
consists in performing instead an expansion of the amplitude into three (one for each two-meson subsystem) finite sums
of isobars or single-variable functions, carrying only a right-hand cut. Explicitly,

T (s, t, u) =

jmax∑
j=0

(2j + 1)Pj(zs)fj(s) +

jmax∑
j=0

(2j + 1)Pj(zt )fj(t) +

jmax∑
j=0

(2j + 1)Pj(zu)fj(u) . (42)

The ‘‘original’’ partial-wave expansion in Eq. (41) is performed in a single channel, namely the s-channel. In other
words, the partial-waves tj(s) depend solely on the s Mandelstam variable. The dependence on t and u of T (s, t, u) enters
only through the Legendre polynomials, which are analytic functions of said variables. However, in practice one can model
only a finite number of partial waves. As a consequence the analytic structure in the t- and u-variables is lost, because
the sum of a finite number of analytic functions is again an analytic function, and the only way in which singularities
(such as poles or cuts) in t and u could appear is if the infinite sum in j diverges. Moreover, crossing symmetry is lost
in truncation. The KT expansion in Eq. (42) solves these issues, by adding isobars fj in the three variables, so the analytic
structure in t and u can be partially recovered.

Furthermore, the application of dispersion relations to the single-variable functions fj(s) allows us to impose exact
(elastic) unitarity to the two-meson subsystems, which can be essential in a three-body decay. Projecting this model
decomposition for the amplitude into partial waves through (6), we find

tj(s) = fj(s) + f̂j(s) , (43)

where f̂j(s) is called the inhomogeneity,11 given by

f̂j(s) =

∑
j′

∫
+1

−1
dz Pj(z) Pj′ (zt (s, tz(s, z), uz(s, z))) fj′ (tz(s, z)) . (44)

The structure of Eq. (43) is thus clear: The partial wave tj(s) receives a direct contribution from the isobar fj(s), plus an
indirect contribution coming from the angular averages of all isobars of the crossed channels. To apply dispersion relations
to the fj(s) functions, one writes its discontinuity,

∆fj(s) = ∆tj(s) = ρ(s) τ ∗

j (s)
(
fj(s) + f̂j(s)

)
, (45)

where τj(s) is the two-meson elastic partial-wave amplitude, and ρ(s) a phase space factor. The solution to the integral
equation stemming from the dispersive representation of fj(s) reads

fj(s) = Ωj(s)
(
P (n)
j (s) + I (n)j (s)

)
, (46a)

I (n)j (s) =
1
π

∫
∞

sth

ds′
( s
s′

)n+1 sin δj(s′) f̂j(s′)⏐⏐Ωj(s′)
⏐⏐ (s′ − s)

, (46b)

Ωj(s) = exp
[
s
π

∫
∞

sth

ds′
δj(s′)

s′(s′ − s)

]
. (46c)

with Ωj(s) and δj(s) the Omnès function and phase shift associated with the amplitude τj(s), respectively, and P (n)
j (s) a

polynomial of nth order. Above, n represents the number of subtractions performed to the dispersion relation. Determining
this number is a rather delicate matter. From a purely mathematical point of view, subtracting the dispersion integral is
simply a rearrangement of the equation. As the integral along the infinite circle should vanish, we just have to subtract
sufficiently often to make this happen, as discussed in Section 2.1. Oversubtracted dispersion relations still satisfy the

11 The name inhomogeneity stems from the fact that if f̂ = 0 then the equation for the discontinuity of the isobar f (s), Eq. (45) is homogeneous.
j j
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Table 5
Dalitz plot parameters α, β , and γ , obtained by previous theoretical [383,384,413] and experimental [414,415] analyses. For the dispersive analyses
[383,384], we show the results obtained with and without KT equations (i.e., with F1(s) proportional to an Omnès function). Also shown are our
results in Ref. [388] for the two solutions found in that work. The quoted uncertainty for Ref. [383] corresponds to the range explored in that work.
The uncertainties quoted for Refs. [414,415] correspond to the experimental statistical one. The first and second uncertainty quoted for Ref. [388]
are statistical and systematic ones, respectively.

Reference α (×10−3) β (×10−3) γ (×10−3)

2 par. (α, β)

Ref. [384], w KT 84 28 –
Ref. [384], w/o KT 125 30 –
Ref. [383], w KT 79(5) 26(2) –
Ref. [383], w/o KT 130(5) 31(2) –
WASA-at-COSY [415] 133(41) 37(54) –
BESIII [414] 120.2(8.1) 29.5(9.6) –
Ref. [388], low φωπ0 (0) 121.2(7.7)(0.8) 25.7(3.3)(3.3) –
Ref. [388], high φωπ0 (0) 120.1(7.7)(0.7) 30.2(4.3)(2.5) –

3 par. (α, β, γ )

Ref. [384], w KT 80 27 8
Ref. [384], w/o KT 113 27 24
Ref. [383], w KT 77(4) 26(2) 5(2)
Ref. [383], w/o KT 116(4) 28(2) 16(2)
BESIII [414] 111(18) 25(10) 22(29)
Ref. [388], low φωπ0 (0) 112(15)(2) 23(6)(2) 29(6)(8)
Ref. [388], high φωπ0 (0) 109(14)(2) 26(6)(2) 19(5)(4)

same unitarity equation, with the advantage that the more subtractions are used, the more suppressed the dependence
on the scattering shift at high energies becomes. The price to pay here is that in doing so, one modifies the asymptotic
behavior of the solution if no sum rule is imposed on the extra coefficients. However, this gives us more freedom than
might be required by data. From a physical point of view, the Froissart bound [406,407] is often invoked to control the
asymptotic behavior of the partial waves, hence the number of subtractions.

Eqs. (46) and (44) represent a coupled system that can be solved, for example, iteratively. Things simplify considerably
f one takes into account that the solutions of the dispersion relations are linear in the subtraction constants. This means
hat one can calculate a set of basis solutions that are independent of the numerical values of the latter.

The equations obtained, Eqs. (46), are valid for the scattering regime, and they have to be analytically continued for
asses of the decaying particleM > 3m, wherem is the mass of the light particle in the final state. The proper prescription
as obtained in Refs. [408,409]. After analytically continuing M2

η to its physical value, extra singularities appear, which
ust be treated carefully. Also, depending on the solution method, f̂j(s) could be needed for values of s outside the physical
omain, so singularities in the relation of t with s and cos θ also need to be taken care of. In this case, the integration

path has to be chosen to avoid these extra singularities, see discussions in Refs. [382,402,403].
In the example we have discussed the case for all-scalar particles. In more realistic applications of KT equations details

on the amplitudes or isobar are different, but the essence of the method remains. Further discussions and references can
be found in Refs. [410–412].

3.1.1. ω → 3π And ψ → 3π decays
The ω → 3π decay has been previously studied with KT [383–387], and other dispersive approaches [413]. In

particular, Refs. [383,384] predicted the Dalitz plot parameters (to be defined below) of the decay, either considering
or neglecting KT effects, but using in both cases unsubtracted dispersion relations to solve KT equations. The BESIII
collaboration reported the measurement of the Dalitz plot parameters [414], and found a better agreement with the
theoretical predictions of Refs. [383,384] when the rescattering effects were neglected, as can be seen in Table 5. In view
of this seeming disagreement, in Ref. [388] we have reviewed the application of the KT formalism to this decay.

For a vector decaying into three pions, the differential decay width is proportional to |T (s, t, u)|2 = φ(s, t, u) |F (s, t, u)|2,
where φ(s, t, u) = s t u−m2

π (m
2
V −m2

π )
2 is the Kibble function [416], and F (s, t, u) is an invariant amplitude. The Dalitz-plot

parameters are obtained from a polynomial expansion of |F (s, t, u)|2,

|F (s, t, u)|2 = |N|
2 [1 + 2αZ + 2βZ3/2 sin 3ϕ + 2γ Z2

+ O(Z5/2)
]
. (47)

√
Z cosϕ =

t − u
√
3Rω

,
√
Z sinϕ =

sc − s
Rω

, (48)

here sc =
1
3 (m

2
ω + 3m2

π ) and Rω =
2
3mω(mω − 3mπ ). In Eq. (47), α, β and γ are the real-valued Dalitz-plot parameters

and N is an overall normalization. The experimental determination of these parameters by the WASA-at-COSY [415] and
BESIII [414] collaborations are shown in Table 5, together with the theoretical predictions of Refs. [384] and [218].

The partial wave expansion of the amplitude reads

F (s, t, u) =

∑
(p(s)q(s))j−1 P ′

j (zs)fj(s) . (49)

j odd
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Fig. 31. Transition form factor squared,
⏐⏐fωπ0 (s)

/
fωπ0 (0)

⏐⏐2 . The experimental data are from the A2 collaboration at MAMI [419] and the NA60
collaboration at SPS [420,421]. The results of Ref. [388] are shown by the red and blue bands, corresponding to the high and low φωπ0 (0) phase fits.
he results obtained with the Vector Meson Dominance model (including an explicit ρ pole as an amplitude) are shown with a double-dotted–dashed
rown line, whereas the results obtained when the KT effects are neglected are shown with a dotted pink line.
ource: Figure from [388].

imilarly as explained above, the KT formalism is applied to the amplitude F (s, t, u), and truncating the KT expansion to
jmax = 1 (only ππ I = J = 1 wave), we have:

F (s, t, u) = F1(s) + F1(t) + F1(u) , (50a)

f1(s) = F1(s) + F̂1(s) , (50b)

F̂1(s) = 3
∫

+1

−1
dz

1 − z2

2
F1(t(s, zs)) , (50c)

F1(s) = Ω1
1 (s)

(
a + b s +

s2

π

∫
∞

4m2
π

ds′
sin δ11(s

′) F̂1(s′)
(s′)2

⏐⏐Ω1
1 (s′)

⏐⏐ (s′ − s)

)
. (50d)

he above expression for F1(s) is the solution of the integral equation corresponding to a once-subtracted dispersion
relation.

Together with the ω → 3π Dalitz plot parameters, we also analyze the ωπ0 transition form factor, fωπ0 (s), that controls
the ω → π0γ ∗ amplitude. A once-subtracted dispersion relation for this TFF gives

fωπ0 (s) = |fωπ0 (0)| eiφωπ0 (0) +
s

12π2

∫
∞

4m2
π

ds′

(s′)3/2
p3(s′) FV

π

∗(s′) f1(s′)
(s′ − s)

, (51)

here FV
π (s) is the pion vector form factor, for which we take FV

π (s) = Ω1
1 (s). This approximation does not reproduce all

he details of the pion vector form factor [417]. Nevertheless, it works for the ππ energy region explored here. The Omnès
unction Ω1

1 (s) is computed from the phase shift parametrization in [165], that is valid roughly up to Λ ≡
√
s = 1.3 GeV.

eyond 1.3 GeV we smoothly guide the phase to π through [388,418]

δ∞(s) ≡ lim
s→∞

δ11(s) = π −
a

b +
(
s/Λ2

)3/2 , (52)

here a and b are parameters taken such the phase δ(s) and its first derivative δ′(s) are continuous at s = Λ2

a =
3
(
π − δ(Λ2)

)2
2Λ2δ′(Λ2)

, b = −1 +
3
(
π − δ(Λ2)

)
2Λ2δ′(Λ2)

. (53)

This ensures the expected asymptotic 1/s fall-off behavior of the pion vector form factor.12 Data from the A2
collaboration at MAMI [419] and by the NA60 collaboration at SPS [420,421] for

⏐⏐fωπ0 (s)
⏐⏐2 (normalized at s = 0) for

low ωπ0 invariant mass are shown in Fig. 31. From the NA60 data, we will only consider in our fits the most up to
date analysis [421]. The free parameters in Eqs. (50d) and (51) are the complex constant b, the absolute values

⏐⏐fωπ0 (0)
⏐⏐

12 We have checked that continuation prescriptions different than Eq. (52), e.g. see Ref. [422], have small effects at low-energies, specially in the
decay region of ω → 3π studied here.
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nd |a|, and the relative phase φωπ0 (0) − φa, where φa is the phase of the constant a. We fit these parameters to the
experimental data on

⏐⏐fωπ0 (s)
⏐⏐2, the experimental Dalitz plot parameters, and the ω → 3π and ω → π0γ widths. Two

ifferent best fits are obtained, corresponding to a lower or higher value of the phase φωπ0 (0) [388]. In Table 5 we show
he Dalitz plot parameters obtained as an output of the fit, in good agreement with the experimental ones. In Fig. 31 we
how our calculation of

⏐⏐fωπ0 (s)
⏐⏐2 resulting from the fit, also in good agreement with data. Therefore we conclude that the

KT equations are capable of describing the low-energy experimental information concerning ω → 3π and ω → γ ∗π0,
lthough a further subtraction has to be performed.
The KT description of J/ψ → 3π , proceeds in an identical fashion as the one discussed above. Despite the phase

space here is much larger, so the production of excited states other than the ρ(770) is in principle allowed, this decay is
vastly dominated by the ρ π intermediate state. The ρ bands are clearly visible in the Dalitz plot from BESIII [423], while
almost no events appear in the center. We perform fits to the BESIII mππ invariant mass distribution after solving the KT
quations for J/ψ → 3π [424] and using the phase parametrization of [172], which is valid up to 2 GeV. The unsubtracted
T equation does not provide a good description of the data. In contrast, a satisfactory result can be achieved performing
ne subtraction in F (s), with the subtraction constant fitted to data. The result of the fit yields b = 0.20(1)ei2.68(1) GeV−2.
hile this fit provides an excellent description of the data up to ∼1 GeV, contributions of higher waves seem to be

equired to describe the intermediate energy region around ∼1.5 GeV. The next allowed wave is the F-wave, which can
e modeled by a resonance ρ3(1690). The isobar decomposition of the amplitude including F-waves becomes [383]

F (s, t, u) = F1(s) + F1(t) + F1(u) + κ2(s)P ′

3(zs)F3(s) + κ2(t)P ′

3(zt )F3(t) + κ2(u)P ′

3(zu)F3(u) , (54)

here P ′

3 is the derivative of the Legendre polynomial. The function F3(s) contains the ρ3(1690) contribution, which can
e represented by a Breit–Wigner,

F3(s) = P(s)
m2
ρ3

m2
ρ3

− s − imρ3Γρ3 (s)
, (55)

ith the energy-dependent width given by

Γρ3 (s) =
Γρ3mρ3

√
s

(
pπ (s)

pπ (m2
ρ3
)

)7 (
F ℓR (s)

)2
, pπ (s) =

√
s

2
σπ (s) . (56)

he F ℓ=3
R (s) denotes the Blatt–Weisskopf factor that limits the growth of the isobar [425],

F ℓ=3
R (s) =

√
z0(z0 − 15)2 + 9(2z0 − 5)
z(z − 15)2 + 9(2z − 5)

, z = r2Rp
2
π (s) , z0 = r2Rp

2
π (m

2
ρ3
) , (57)

ith the hadronic scale rR = 2 GeV−1.
The polynomial P(s) in Eq. (55) parametrizes some unknown energy dependence not directly related to the propagation

of the ρ3(1690) resonance. Taking it linear, we add two additional (complex) parameters to the fit producing and improved
description of the data.

The KT description of the partner reaction ψ ′
→ 3π is formally identical to the one of J/ψ → 3π . However, the

experimental situation changes drastically for this decay: The ρ π contribution is subleading and almost all events are
found to be in the center of the Dalitz plot [423]. The significant differences between the J/ψ and ψ ′ decays into three
pions have attracted a lot of interest in the study of the transition mechanism J/ψ and ψ ′

→ ρπ . This is known as
the ‘‘ρπ puzzle’’ and remains to be understood (see e.g. [426–428], and references therein). Other important aspects of
J/ψ → 3π have been considered in [429,430]. A description orthogonal to KT, that takes into account the full tower of
partial waves as given by the Veneziano amplitude, is found in [431].

3.1.2. η → 3π
The process η → 3π is very interesting because since this decay is forbidden by isospin symmetry—three pions cannot

combine to a system with vanishing angular momentum, zero isospin, and even C-parity—it offers an unique experimental
access to the light quark mass ratio

Q 2
=

m2
s − m̂2

m2
d − m2

u
and m̂ =

mu + md

2
. (58)

he origin of isospin breaking can be twofold: From electromagnetic corrections, and from the explicit breaking due to the
ass difference ∆m = md −mu. In general, these two effects are of the same order (for example in the calculation of the
ass difference between proton and neutron [432]). However, due to the Sutherland theorem [433], the electromagnetic
ontribution to η → 3π is suppressed [434,435], so that the decay width gives immediate access to the Q ratio. This
can be extracted from data by comparing the experimental measured decay width with the reduced amplitude M(s, t, u)
integrated over the phase space:

Γ
(
η → π+π−π0)

=
1
4

M4
K (M

2
K − M2

π )
2

3 3 4 4

∫ smax

ds
∫ u+(s)

du |M(s, t, u)|2 . (59)

Q 6912π MηMπFπ smin u−(s)
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he aim is to compute the amplitude M(s, t, u) with the highest possible accuracy. This is not an easy task since
here are strong rescattering effects among the final-state pions. These were initially calculated perturbatively in χPT.
he current algebra result is Γ (η → π+π−π0)LO = 66 eV [436], and receives a substantial enhancement Γ (η →
+π−π0)NLO = 160 ± 50 eV due to chiral one-loop corrections. The result is still far from the experimental value
(η → π+π−π0) = 300 ± 12 eV suggesting a convergence problem. Moreover it has been shown that the two-loop
alculation [379] may lead to a precise numerical prediction only after the low-energy constants (LECs) appearing in the
mplitude are determined reliably. In particular, the role played by the O(p6) LECs is nonnegligible and they are largely
nknown. A more accurate approach relies on dispersion relations to evaluate rescattering effects to all orders [390–393].
his is not completely independent of χPT, because the dispersive representation requires the subtraction constants as
nput, and the latter can be matched to combinations of χPT LECs.

There has been a renewed interest in η → 3π dispersive analysis due to new and more precise measurements of this
ecay. In particular recent measurements of the Dalitz plot of the charged (η → π+π−π0) channel by KLOE [437,438] and
ESIII [439] and of the neutral channel (η → π0π0π0) by A2 [440] have achieved an impressive level of precision. New
easurements are planned by BESIII and at JLab by GlueX [441,442] and CLAS [443], with completely different systematics
nd even better accuracy.
In the application of KT equations to η → 3π decays, one truncates the expansion of the amplitude by neglecting

-and higher single-variable functions, thus writing

M(s, t, u) = M0
0 (s) + (s − u)M1

1 (t) + (s − t)M1
1 (u) + M0

2 (t) + M0
2 (u) −

2
3
M0

2 (s) . (60)

he functions Mℓ
I (s) have isospin I and angular momentum ℓ. As said before, in the context of light mesons this

ecomposition is commonly referred to as a reconstruction theorem [375–378]. The latter relies on the observation that
p to corrections of order O(p8) (or three loops) in the chiral expansion, partial waves of any meson–meson scattering
rocess with angular momentum ℓ ⩾ 2 contain no imaginary parts. Since in Eq. (60) the angular momentum of an isobar
s unambiguously given by its isospin, we will omit ℓ in the following and refer to Mℓ

I by MI . The splitting of the full
amplitude into these single-variable functions is not unique: There is some ambiguity in the distribution of the polynomial
terms over the various MI due to s + t + u being constant.

As discussed above, using analyticity and unitarity allows one to construct dispersion relations for the single-variable
functions MI (s), arriving at

MI (s) = ΩI (s)

{
PI (s) +

snI

π

∫
∞

4m2
π

ds′

s′nI
sin δI (s′)M̂I (s′)

|ΩI (s′)|(s′ − s − iϵ)

}
, (61a)

M̂I (s) =

∑
n,I ′

∫ 1

−1
d cos θ cosn θ cnII ′MI ′

(
t(s, cos θ )

)
, (61b)

which is completely analogous to Eqs. (46). The explicit forms of the coefficients cnII ′ can be found e.g. in Refs. [392]. To
study the convergence behavior of the integrand we have to make assumptions as regards the asymptotic behavior of the
phase shifts. It is usually assumed that

δ0(s) → π , δ1(s) → π , and δ2(s) → 0 , as s → ∞ . (62)

n asymptotic behavior of δ(s) → kπ implies that the corresponding Omnès function behaves like s−k for high s. If the
roissart bound [406,407] is assumed as discussed earlier, this implies M0(s),M2(s) → s and M1(s) → const., thus four
ubtractions are required. Since s + t + u = M2

η + 3M2
π , there exists a five-parameter polynomial transformation of the

ingle-variable functions MI that leaves the amplitude M(s, t, u) in Eq. (60) invariant. Therefore there is some freedom to
ssign the subtraction constants to the functionsMI (s). In Ref. [401] a parametrization is used for Eq. (61a), such that above
.7 GeV the phase shifts δ0(s) and δ1(s) are set equal to π , whereas δ2(s) is set to zero. In other words, the integral is cut at
′
= (1.7 GeV)2, and therefore convergence is no longer an issue.13 We can relax the Froissart bound and oversubtract the
ispersive integrals (61a) with the aim of being insensitive, in the physical region, to the high-energy inelastic behavior
f the phase, which is unknown. The price to pay for this is that one has more subtraction constants to be determined.
n some recent dispersive analyses [394,400,401], 6 subtraction constants have been considered. In Ref. [402] only 4
ubtraction constants are considered in the single channel approximation. The subtraction constants are unknown and
ave to be determined using a combination of experimental information and theory input. Since the overall normalization
ultiplies 1/Q 2, the quantity that should be extracted from the analysis, it cannot be obtained from data alone and one has

o match to χPT. On the other hand, this matching has to be performed in such a way that the problematic convergence
f the chiral expansion is not transferred directly to the dispersive representation. This can be achieved by matching the
mplitude around the Adler zeros. As discussed in Section 3.1, several dispersive analyses have been performed over the
ast few years. All these analyses rely on the same theoretical ingredients described above with some subtle differences.

13 Cutting the integral introduces an unphysical branch point. However, the uncertainties associated with the input phases in the region above
1 GeV were examined, and it was found that this cut barely affects the results.
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Fig. 32. Summary of Q values found in the literature [379,391–394,398,399,401,402,446,448–453]. The gray line is the weighted average of dispersive
→ 3π extractions (red) and the gray band its 1σ uncertainty.

For instance, the analysis of JPAC [398,399] uses a different technique to solve the dispersion relation, called the Pasquier
inversion [373,397,444]. Moreover the left-hand cut is approximated using a Taylor series in the physical region. This
allows to reduce the number of subtraction constants from six to three. The result is then matched to NLO χPT near
the Adler zero to extract a value for Q . The analysis of Refs. [400,401] is a modern update of the approach of Anisovich
and Leutwyler [392]. There a matching to NLO and NNLO χPT has been performed. Moreover electromagnetic and isospin
reaking corrections have been taken into account. Fits to experimental data by KLOE [438], but also to the recent neutral-
hannel Dalitz plot by A2 [440] have been explored. Finally the analysis of Ref. [402] studies the impact of inelasticities
n the dispersive integrals. To this end, the inelastic channels ηπ and KK̄ have been included. Fig. 32 summarizes the
esults on the extraction of Q from the different analyses. In principle, it is also possible to calculate the Q ratio from
Dashen theorem. Since Q−2 depends linearly on ∆m, it is proportional to the difference of the squared masses of the
kaons induced by ∆m only, m2

K+ − m2
K0

⏐⏐
∆m

. For pions, it holds m2
π+ − m2

π0

⏐⏐⏐
∆m

= O
(
∆m2

)
instead [136,137]. According

to Dashen theorem [445], the QED-induced squared-mass difference is the same for kaons and for pions at lowest order in
χPT. Therefore, one can write Q−2 in terms of the experimental squared-mass differences of kaons and pions, obtaining
QDT ≃ 24.3. While this estimate deviates sizeably from the values extracted from η → 3π , the dispersive analyses agree
well, allowing η → 3π to be the golden plate channel to extract the light quark mass ratios. For further discussions, see
also Refs. [394,446–449].

3.2. 3 → 3 scattering

In recent years, the problem of describing multihadron scattering processes has generated significant interest. It is
well-established experimentally that many resonances couple strongly to three- or more particle channels [454]. Some of
the most intriguing particles which do not fit the naïve quark model predictions, like the Roper resonance N∗(1440), the
a1(1420) seen by COMPASS [455,456], and the exotic π1(1600) [227,457], X(3872), and other XYZ states, have significant
three-particle decay modes [1]. Three-body couplings might lead to non-standard line shapes and complicated structure
of the amplitudes [7], allowing for ambiguities in interpretations of the hadron of interest [3,319,458–460]. To parametrize
three-body processes, and in consequence, build and compare phenomenological models properly describing properties
of the QCD states, one needs to establish a general theoretical framework of the three-body processes relying on the
S-matrix principles.
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In addition to phenomenological studies, usually based on particular models and approximations, it is desired to
etermine the properties of the strongly interacting resonances directly from the underlying theory, using Lattice QCD.
he essential challenge to study the resonance physics on the lattice is the fact that resonances are not eigenstates of the
CD Hamiltonian. Moreover, one cannot define scattering processes in a finite volume in the usual sense, since there are
o asymptotic states, and the continuum spectrum becomes a discrete set of bound states in the box. Fortunately, it was
hown by Lüscher [461,462] that the scattering information is hidden in the volume dependence of the lattice spectrum.
n the case of two hadrons being scattered off of each other one can obtain the two-body scattering phase shifts from the
o-called two-body quantization condition [463–475]. This has been applied to many systems of physical relevance [12].
he three-body generalization of the Lüsher’s idea has been developed, leading to different three-particle quantization
onditions [476–481]. They allow one to obtain objects called three-body Kdf matrices, from the three-particle finite-
olume spectrum. They are analogous to the two-body K matrix, however, they do not have a simple interpretation of a

phase shift. Because of the multi-variable nature of the three-body process, formalisms required to describe the scattering
of three hadrons become involved and a three-body Kdf matrix is related to the genuine three-body infinite-volume
amplitude through the set of complicated integral equations. Once they are solved, one obtains the on-shell three-body
scattering amplitude computed directly from QCD. In the last step, it has to be continued to the complex energies, to
identify complex poles corresponding to three-body resonances.

Two main relativistic on-shell 3 → 3 scattering formalisms have been developed and applied to a range of physical
problems: (a) The relativistic EFT (RFET) established by Hansen, Sharpe, and Briceño in Refs. [477,482–484], and (b)
The S-matrix unitarity, also referred to as the B-matrix approach, built by Mai et al. [478,485,486] and the JPAC
group [77,487,488]. All of these works have been shown to be equivalent both in their infinite-volume [489] and finite-
volume [490] versions. In the following, we summarize both approaches and review the relevant results. Supplementary
reviews can be found in Refs. [491,492].

3.2.1. Relativistic three-body formalisms
Description of the three-body unitarity for the 3 → 3 scattering amplitude is considerably more involved than in the

two-body case. Parametrizations satisfying unitarity in the three-body systems have been studied by various authors in
the ’60s and ’70s [38,80,493–506]. The description of three-body states is usually based on the isobar representation, in
which one writes the amplitude as a sum of partial-wave expansions, one for each pair of particles in the external three-
body state [80,494,496,507]. Truncation of the partial wave decomposition leads to the so-called isobar approximation,
which can provide a good description of three-particle final states in the kinematic region, where intermediate two-
body resonances dominate over the scattering process. Moreover, the isobar approximation is capable of reproducing
the threshold singularities in two-body subchannels by including only a finite number of partial waves. In the isobar
representation, the 3 → 3 amplitude is decomposed into Ap′p isobar–spectator amplitudes, where the indices label one
of the particles in the initial and final state. This particle is called the spectator, whereas the other two form an isobar
(also called a pair), corresponding to the given spectator. The isobar–spectator amplitudes can be pictured as describing
a 2 → 2 scattering process of a quasi-particle and a stable spectator.

To highlight the features of this parametrization we consider a simplified elastic scattering process in the center of
momentum frame (CMF), in which the incoming and outgoing states consist of three spinless, indistinguishable particles
of mass m and total invariant mass squared s. Let p = (ωp, p) be the four-momentum of the initial spectator in one
isobar–spectator configuration, where ωp =

√
p2 + m2, and σp is the invariant mass squared of the corresponding

nitial isobar. We denote analogous variables for outgoing particles with a prime, e.g., the outgoing spectator’s four-
omentum is p′

= (ωp′ , p′). Unitarity constrains the 3 → 3 amplitudes on the real energy axis, which restricts the
maginary parts of the partial-wave-projected isobar–spectator amplitudes. Using the notation of Refs. [488,489], the
lastic 3 → 3 scattering amplitude, M, is defined as the three-body element of the T matrix. It is convenient to work
ith the unsymmetrized isobar–spectator amplitude [Mp′p]ℓ′m′

ℓ
; ℓmℓ , written in the so called (pℓmℓ) basis in which it can be

reated as an infinite-dimensional matrix in the isobars angular momentum space. In the simplified case considered here,
he three-body amplitude M becomes a symmetrized sum of 9 identical isobar–spectator amplitudes Mp′p, corresponding
o 9 identical divisions of the final and initial state particles into spectator-isobar configurations. The amplitude depends
n eight kinematical variables: Initial and final isobar invariant masses squared, total invariant mass of the three-body
ystem, the total angular momentum, and angular momenta of isobars (ℓ,mℓ) and (ℓ′,m′

ℓ). The multi-variable nature of
he three-body scattering is the main factor making its description significantly more complicated than in the 2 → 2
ase. The unsymmetrized partial-wave projected three-body amplitude Mp′p is further separated into a connected and
isconnected part, Mp′p = Ap′p + Fp δp′p where δp′p is the properly normalized momentum-conserving δ-function. The
isconnected part is given by the two-body scattering amplitude in the isobar sub-channel. It depends on the isobar
ngular momentum and its invariant mass squared σp. Above the isobar threshold, the disconnected amplitude satisfies
he usual 2 → 2 unitarity relation, ImFp = F†

p ρ̄p Fp, where ρ̄p is the two-body phase space multiplied by the threshold
Heaviside function indicated with the bar. The unsymmetrized connected 3 → 3 amplitude satisfies the three-body
unitarity,

ImAp′p =

∫
A†

p′k ρ̄k Akp +

∫ ∫
A†

p′q Cqk Akp +

∫
F†

p′ Cp′k Akp +

∫
A†

p′k Ckp Fp

k q k k k
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Fig. 33. Diagrammatic representation for the 3 → 3 unitarity relation, Eq. (63), for the connected isobar–spectator amplitude Ap′p . A single external
ine represents a spectator, while a double external line—an isobar. Closed loops yield three-dimensional integrations over the labeled spectator
omentum, and the dashed vertical lines represent placing all three intermediate state particles on their mass-shell. A solid circle with both
xternal isobars and spectators is the amplitude A, and a solid circle only with external isobars is the two-body amplitude F . Momentum flow is

from right to left, as before, and each amplitude on the left of the dashed line is hermitian conjugated.
Source: Figure adapted from [489].

Fig. 34. Diagrammatic representation of (a) the B-matrix representation for the on-shell amplitude, Eq. (64), and (b) the B-matrix which is composed
f the OPE Gp′p , Eq. (65), and the R-matrix.
ource: Figure adapted from [489].

+ F†
p′ ρ̄p′ Ap′p + A†

p′p ρ̄p Fp + F†
p′ Cp′p Fp . (63)

here Cp′p is the recoupling coefficient between a pair in one state to a different pair in the same state, which is defined as
he imaginary part of the amputated one particle exchange (OPE) amplitude Gp′p, see Fig. 33. The recoupling coefficients
are a distinct feature of the three-body scattering unitarity relation. In the unitarity relation, the integrations are performed
over momenta k, q of spectators associated with intermediate three-particle states. Their energies are constrained by the
on-shell condition as indicated by the dashed lines in Fig. 33.

The most general parametrization satisfying these constraints is provided by the so-called B-matrix equation, which
is a linear integral equation, analogous to the Bethe–Salpeter equation. It was introduced first in Ref. [505] and later
revisited in Refs. [485,487,508], which corrected certain deficiencies of the original formulation related to the unitarity of
the formalism above the breakup threshold. In the following, we give a concise overview of the B-matrix formalism, as
described in Ref. [489]. The B-matrix parametrization for the connected part Ap′p of the amplitude Mp′p is given by the
matrix-integral linear equation,

Ap′p = Fp′ Bp′p Fp +

∫
k
Fp′ Bp′k Akp , (64)

as demonstrated in Fig. 34. The B-matrix kernel is written as a sum of two terms,

Bp′p = Gp′p + Rp′p , (65)

where the matrix Gp′p represents the long-range interaction due to one-particle exchange between the isobar and
spectator required by unitarity. The amplitude Rp′p is a real matrix that embodies all short-range interactions. It is not
constrained by unitarity, and it can be incorporated within a specific model allowing for the freedom to describe QCD
resonances. Alternatively, it can be fixed from the lattice data as described below. Similarly to the unitarity relation,
the intermediate particles are on the mass shell; therefore, the integration is performed over momentum k of a spectator
associated with intermediate three-body state, compared to integration over four-momentum in the Bethe–Salpeter equa-
tion. Note that this is not a unique choice, as one may shift the remaining off-shell effects between kinematic functions
and the three-body R function. As long as a given representation satisfies unitarity, it remains a valid approach [489]; the
B-matrix equation being one such parametrization of the on-shell three-body amplitude. The formalism can accommodate
distinguishable spinless particles and was generalized to include two-to-three transitions [488].

The products of amplitudes present in Eq. (64) formally represent multiplications of infinite matrices in the angular
momentum space. For practical use, they are truncated, leading to the finite matrix equation, in which one retains
only contributions from dominating two-body sub-channels. Recall from the previous discussion, that the integration
is restricted to the physical energy domain [487,488]. In principle, this requires one to include only the experimentally
39
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ccessible sub-channel 2 → 2 amplitudes without the need for additional assumptions. Moreover, it might be beneficial
or a description of states which lie close to their decay thresholds and often are interpreted as molecular systems bound
y the nearly physical meson exchanges. However, restricting the integration to be over the physical intermediate state
nergies in the B-matrix construction can result in non-physical analytic properties of the amplitude in the unphysical
egion [487,488]. These arise from the chosen models for the amplitudes below threshold, e.g. smooth form-factors
hich regulate the high-momentum behavior [485,505,508,509]. While these effects do not alter the analytic behavior
f the amplitude in the physical region, they may hinder the study of singularities associated with resonances since
hese occur on unphysical Riemann sheets in which one needs to discriminate between physical pole singularities and
odel-dependent effects. A potential cure for such effects is to write an appropriate dispersive representation for the
mplitude [488].
In the REFT formulation, as developed in Refs. [477,481–483,510–514] the connected part of the unsymmetrized three-

ody amplitude is given as a solution of the equation analogous to Eq. (64). It consists of the sum D+Mdf,3, where D is the
adder amplitude driven by one-particle exchanges between 2 → 2 subprocesses, while Mdf,3 is the separate short-range
mplitude. The ladder amplitude is obtained by setting Rp′p = 0 in the B-matrix equation,

Dp′p = Fp′ Gp′p Fp +

∫
k
Fp′ Gp′k Dkp . (66)

The short-range part is given by an additional double-integral equation, driven by the three-body K matrix called Kdf,3,
epresenting short-distance three-particle interactions,

Mdf,3;p′p =

∫
k

∫
k′

Lp′k′ Tk′k L⊤

kp , (67)

where L is the endcap operator describing incoming and outgoing particles rescatterings, while T is given by the equation,

Tp′p = Kdf,3;p′p +

∫
k

∫
k′

Kdf,3;p′k iρkLkk′Tk′p , (68)

he Kdf,3 is the analog of the R matrix of the B-matrix formalism. In recent lattice studies both the R and Kdf,3 have been
etermined for the realistic three-body systems (see the discussion below). For further details about the REFT formalism,
e refer the reader to Ref. [491].
The B-matrix parametrization can be analytically continued to the complex energy plane. The analytic properties of

he formalism are discussed in Refs. [487]. One of the most unique characteristics of the three-body equations appears
rom a kinematic singularity due to the exchange of a real particle. Analytic structure of the S-wave OPE was studied
n Ref. [487]. This process can be isolated from the full 3 → 3 scattering amplitude and affects the analytic structure
f the interaction kernel. Through a single iteration of Eq. (64) it can be rewritten as a sum of: The bubble (R × R),
he triangle (R × G) and the box (G × G) diagrams. The authors of Ref. [487] discuss explicitly the influence of the OPE
n the B-matrix triangle amplitude, identifying spurious left-hand cuts. They propose a dispersion approach as a way to
liminate these spurious cuts and compare their result with the analytic structure of the covariant Feynman amplitude.
n Ref. [488] the authors perform a comparable analysis, using a model of relativistic three-body scattering with a bound
tate in the two-body subchannel. They focus on the contact interaction approximation in which the exact solution of the
odel can be achieved, being effectively a series of bubble diagrams. They show the emergence of similar singularities
nd eliminate them via the analogous dispersion scheme.
In Ref. [509] the B-matrix equation was applied to the coupled-channel case of the decay a1(1260) → π−π−π+

ith the dominant contribution provided by the ρπ isobar–spectator channel in the S and D waves. The authors solved
he equation by discretizing the particles’ momenta on a complex contour, obtaining a matrix equation, which was
andled numerically. The obtained amplitude was matched with the experimental data on the τ → (3π )ντ to compute
1(1260) → 3π Dalitz plots and lineshapes. Techniques for solving the B-matrix equation are also discussed in Ref. [515].
here, the authors study a three-body system with an S-wave bound state in the two-body subchannel. The setup can
e considered as a simplified model of the nucleon–deuteron interaction. They employ the ladder approximation and
eproduce results obtained using finite-volume spectra of the same model [516].

The three-body equations as presented are complicated to use in practical analyses, as it is necessary to parametrize
he short-distance functions and to solve intricate integral equations. Moreover, for extracting the resonant spectrum
rom data, one is more interested in the short-distance physics than the long-distance rescattering terms which originate
rom two-body physics. Moreover, real-axis singularities cannot be seen in physical process, since 3 → 3 scattering
mplitudes are always convoluted with a production source. A reformulation of the B matrix method, similar to the REFT
pproach, separates these purely rescattering effects from the short-distance physics in order to provide a useful tool for
ractical data analysis [77]. Resonance physics is a useful application of this approach, as one can focus on constructing
ynamical models for the short-distance term and consider the OPE as the ‘‘dressing’’ corrections. Ref. [77] discusses
urther approximations which can be made to simplify subsequent analyses, such as factorization of the short-distance R
atrix or truncation of the partial-wave basis as it is done in Khuri–Treiman approaches.
The phase-space integral of the three-particles final state, which determines the imaginary part of the inverse

mplitude, is the integral over the Dalitz plot. The OPE affects the Dalitz plot distribution in two ways: First, the
40
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nterference of the different decay chains, e.g. a resonance in one pair of particle and in the other pair, is due to the real
ne-particle exchange. Second, the subchannel-resonance shape might deviate from the one measured in the two-body
cattering due to the final-state interaction. Accounting for the interference is straightforward, while the second effect
equires modeling and often a fitting of the model parameters to the data.

The Khuri–Treiman equations discussed in Section 3.1 offer a good model to address the final-state interaction. The
ethod is based on the analytic continuation of two-body unitarity. Hence, it implements a specific OPE ladder series
f the 3 → 3 scattering [372]. More importantly, the effect of OPE computed with the KT can be used to complete the
hree-body unitarity [77].

Similar to the three-body unitarity, the REFT formalism has been studied from various angles by different groups.
threshold expansion and isotropic approximation for the three-body K matrix have been proposed [484,517,518] to

simplify analyses of the lattice data. The formalism has also been applied to the study of the bound-state toy models
in Refs. [516,519]. In Ref. [489], it was shown that the REFT formulation in the infinite volume can be recovered from
the B-matrix representation. This is an expected result in light of Ref. [520] which proved the unitarity of the REFT
approach. The differences in both formalisms were proved to be consequences of different parametrization of two-body
rescatterings in the initial and final states. Additionally, the authors presented the equivalence of the heavy-mass limit of
both representations with the non-relativistic EFT approach by Bedaque, Hammer, and von Kolck [521] and the Faddeev
equations [522].

3.2.2. Lattice studies of the three-body scattering
The form of the B-matrix amplitude parametrization is suitable for investigating the three-body finite-volume spectrum

in the finite-volume unitarity (FVU) formalism. The integral equation is modified because in a finite cubic volume with
periodic boundary conditions, the particles’ three-momenta become discretized. Thus, one replaces three-dimensional
integrations by the summations over the available lattice momenta. Moreover, in the finite cubic box, the irreducible
representations of the rotation group are divided into 10 irreducible representations of the octahedral group and become
coupled due to the breaking of rotational symmetry [467,476,480,523,524]. The FVU approach is rooted in the fact that the
three-body subprocesses which lead to the large, finite-volume power-law corrections in the values of observables, are
described by amplitudes that contribute only imaginary parts to the three-body unitarity. In this sense, the three- and two-
body unitarity imply a three-body quantization condition, that is derived from the finite-volume version of the B-matrix
equation and takes the form of the determinant condition including the B matrix and a known geometric function [492].

The first study of the relativistic FVU quantization condition was completed in Ref. [478] for the case of a single
isobar and one irreducible representation of the lattice symmetry group, which can be considered an analog of a single
partial-wave in the infinite volume limit. In practice, the energy levels extracted on the lattice correspond to a given
representation of the group and are determined independently. In Ref. [486] the projection of the quantization condition
to a given irreducible representation of the octahedral group was reported. It corresponds to a partial diagonalization
of the quantization condition equation and thus greatly simplifies it for practical purposes. Finally, Ref. [525] includes a
prediction for the three-pion lattice spectrum from the unitarity quantization condition.

In Ref. [490] it was shown that the quantization conditions corresponding to the REFT and FVU formalisms are
equivalent. This was achieved by rewriting the REFT condition in terms of the R matrix, at the same time producing
a generalization of the latter approach to arbitrary angular momenta of isobars, independently of Ref. [526].

The generic lattice-based computation of the three-body amplitude is implemented via the following, simplified
procedure: First, one determines the two-body finite-volume amplitude F through a two-body convenient quantization
condition for all relevant isobars in the three-body system. Secondly, one computes a set of three-body energy levels
in a given octahedral representation and through the three-body quantization condition determines the three-body R
matrix. In practice, a suitable model is needed to fit the short-range interaction to the finite volume R-matrix data. Finally,
one inputs the obtained form of three-body forces into the infinite volume integral equation, Eq. (64), to compute the
three-body amplitude.

There is a growing number of results of few-body spectra from lattice QCD [526–534] that can be used to determine
the nature of the three-hadron interactions in the QCD. The FVU formalism has been applied to extract three-body forces
from various few-particle systems in lattice QCD, all of which were generated at a higher than physical pion mass. In
Ref. [535] the authors analyze the lattice π+π+ and π+π+π+ data from Ref. [528], extracting the matrix R. Within the
sed parametrizations, the authors found the short-range forces to be consistent with zero in this system. This study was
ontinued in Ref. [536], based on the data of Refs. [530,533], leading to a more precise determination of the three-body
oupling. The authors found the result of their analysis to be small but non-zero, and consistent with the LO χPT at the
eavy pion mass. In addition, the pion mass dependence of the three-pion amplitude was studied and compared to the
O χPT prediction. A clear conclusion of the consistency between the χPT and the Lattice QCD could not be made due to
arge systematic and statistical errors.

In Ref. [531], the REFT finite-volume approach was applied to the 3π+ spectrum computed at three pion masses,
ncluding the physical one. The resulting Kdf,3 term was analyzed in the isotropic approximation and found to be non-
ero, showing a reasonable agreement with LO χPT. The three-body RFT formalism was also employed in Ref. [533],
or the same system at large pion mass, producing the three-body term in the isotropic approximation compatible with
ero. It is worth noting that in the study the authors used the lattice output in the infinite-volume integral equations
41



M. Albaladejo, Łu. Bibrzycki, S.M. Dawid et al. Progress in Particle and Nuclear Physics 127 (2022) 103981
Fig. 35. Dalitz-plot distribution for the a−

1 → π−π−π+ decays modeled in Ref. [78]. The mass of the system is fixed to the nominal a1(1260) mass.
The diagrams on the left panel represent the contributions to the a1 self-energy. The kinematic regions where these are significant are indicated
with labels on the Dalitz plot. In the quasi-two-body dispersive model, diagram (b) is neglected, and so is the interference of the two bands.

for the first time, producing scattering amplitudes and Dalitz plots. In Ref. [526], the authors extracted parameters of the
a1(1260) from the Lattice QCD, at pion mass 244 MeV. They generalized the FVU three-body quantization condition to
sub-systems with non-zero angular momenta and coupled channels, and performed analytic continuation of the B-matrix
equations solution to determine the pole position of the resonance. Most recently, Ref. [534] presented a high-precision
lattice computation of three-particle systems including either pions or kaons. The authors include the D-wave isobars in
their work and determine the three-body K matrix using three different pion masses in the REFT approach. They notice
tensions between their results and previous studies and comment on the necessity of more accurate computations in the
future.

3.3. Application of three-body unitarity to resonance physics

The construction of dynamical models for three-body resonances can proceed in a way similar to that of two-body
amplitudes. Unitarity determines the imaginary part of the inverse amplitude above the particle production threshold.
Following the analyticity requirement, the self-energy function can be computed using dispersive techniques. The
remaining unknown part of the scattering amplitude is built through the parametrization of a real-valued function (or a
matrix in the coupled-channel case) using the K -matrix approach. The OPE needs to be accounted for in the computation
of the imaginary part (e.g. see diagram (b) in Fig. 35). Firstly, it leads to the contribution of the interference of different
chains for a three-body decay, and, secondly, it impacts the lineshape of the subchannel resonances. The inclusion of only
the OPE-related interference is referred to as approximate three-body unitarity. The approach has been employed in several
experimental analysis due to its relative simplicity and as a possibility to test data sensitivity to three-body effects [537].

3.3.1. Studies of a1(1260) resonance in the 3π system
The a1(1260) resonance has a prominent role in the τ → 3πν decay, dominating the lineshape structure. Its mass

is fairly known, but its width has large uncertainties and is just known to be large [1]. The dominant decay channel is
a1 → ρπ in the S-wave, where the ρ subsequently decays to two pions. The a1 broad peak spans the range from 0.8 to
1.6 GeV of the three-pion invariant mass, covering the nominal ρπ threshold, which makes the explicit inclusion of the
threshold essential for the proper analytic continuation of the amplitude to the complex energy plane and pole extraction.
The effect of the OPE is also significant since the two ρ0 meson bands largely overlap in the Dalitz plot as shown in Fig. 35.

The reaction amplitude for the resonant part, aka a1, of the 3π → 3π rescattering is written as a Breit–Wigner with
a nontrivial self-energy function that accounts for three-body effects. The imaginary part of the amplitude is computed
using the optical theorem for the a1 → 3π decay; then the real part of the self-energy is computed through dispersive
integrals. In this way we manage to implement the correct analytic structure. We consider two models. The first one,
aka symmetrized-dispersive model incorporates the OPE process via the interference the two coherent a1 → ρπ decay
chains in the self-energy function of a . Due to the presence of two same-charge pions in the decay of the a− meson,
1 1
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Fig. 36. (left) Three-pion spectrum of the τ → 3πν decay. Data are given by ALEPH [538,539] The model curves for the two dispersive models
are overlayed. (right) Position of the a1(1260) pole in the complex energy plane for both models: The symmetrized-dispersive model (red) and the
quasi-two-body dispersive model (orange). The ellipses account for the 95% confidence level. The results for the main fit are shown by filled ellipses,
while the unfilled ellipses provide the systematic studies.
Source: Figures adapted from [78].

the imaginary part of the ρπ → πρ bubble contains the term with the real pion exchange, as shown in Fig. 35, namely,
π−

1 (π−

2 π
+)ρ0 |π

−

2 (π−

1 π
+)ρ0⟩. The second model, aka quasi-two-body dispersive model, neglects the OPE effect entirely

and considers only one ρπ decay chain for the a1 → 3π transition. Fig. 36 shows the fits of both models to the ALEPH
ataset [538,539]. The data are clearly correlated, and the statistics results have be taken with a grain of salt. The models
re consistent with the data and provide results of similar quality, however, the parameters and hence the pole extractions
re quite different. In the figure we also show both pole extractions. Not including the OPE makes the a1(1260) width
arger and the mass lighter. The presence of the ρπ cut and of spurious poles has been already discussed in Section 2.2.3,
while here we focus on the extraction of physics. The pole position obtained using the symmetrized-dispersive model
reads:

ma1(1260)
p = 1209 ± 4+12

−9 MeV, Γ a1(1260)
p = 580 ± 10+80

−20 MeV, (69)

here the first error is statistical and the second error comes from the systematic studies, such as varying the ρ lineshape.
here is an ongoing effect to take into account the rescattering in systematic manner using the Khuri–Treiman approach
iscussed in Section 3.1, particularly see [382]. The scalar ππ wave component is also of large interest for the future
mprovement of the model. It might account for 20% of the a−

1 decay rate [540].
Moreover, an interplay of the ππ → KK̄ in the a−

1 decay leads to a spectacular manifestation of the triangle
ingularity. An axial resonance-like a1(1420) signal with mass 1.42 GeV and width of 150 MeV was indeed reported by
OMPASS [455]. It was observed in the P-wave of the f0(980)π system of the π− p → 3π p reaction [541]. The mass of
he a1(1420) is slightly above the K ∗K̄ threshold. In [542,543] it was suggested that the signal could be a consequence of
inal-state interactions in the a1(1260) decaying to 3π and KK̄π , in particular, a triangle singularity, finding an excellent
greement with the data [456].

.3.2. Studies of π2 resonances in 3π system
The main puzzle of the JPC = 2−+ sector is an interplay of the two states called π2(1670) and π2(1880), which have

een seen to decay predominantly into 3π [1]. The quark model does not explain two states with the same quantum
umbers with masses so close together; the π2(1880) is too light to be a radial excitation of the π2(1670), and is a prime
andidate for a hybrid meson [231,544]. Rather, the π2(2005) might be the radial excitation, and is seen in the diffractive
roduction of the ωππ system at BNL [545].
The JPC = 2−+ sector is well separated from the other quantum numbers in the COMPASS partial-wave analysis of

iffractive π− p → 3π p reaction [541], allowing to isolate the π2 candidates. The resonances decay to the 3π final states
ia f0, ρ, and f2. The COMPASS mass-dependent analysis [228] indicates three π2 states, π2(1670), π2(1880), and π2(2005).
he latter, however, significantly overlaps with the π2(1880), which limits the applicability of the Breit–Wigner model
dopted.
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c
T

Fig. 37. Intensities of the JPCMϵ
= 2−+0+ waves integrated over t ′ bins in the 0.1 GeV2 < −t ′ < 1 GeV2 range. The sets of transparent points and

urves correspond to increasing the lower limit of −t ′ to 0.127, 0.164, 0.220, and 0.326 GeV2 , respectively. Data are measured by COMPASS [541].
he curves are presented in [537].

Table 6
Summary of the parameters of π2 resonances in the K -matrix model with four poles. The second column gives the
results of Ref. [228] using the Breit–Wigner model.

mp (MeV) Γp (MeV) mBW (MeV) ΓBW (MeV)

π2(1670) 1650–1750 280–380 1642+12
−1 311+12

−23

π2(1880) 1770–1870 200–450 1847+20
−3 246+33

−28

π2(2005) 1890–2190 590–1340 1962+17
−29 269+16

−120

To study these states, we develop an exploratory coupled-channel model that incorporates both the three-body and
the resonance-spectator thresholds in the complex plane [537,546,547]. The OPE effects are neglected to simplify the
setup. The model accounts for the production mechanism using the Q -vector approach [548–550]. The production vector
is modeled by a polynomial series of the conformal variable, ω(s) = (1−

√
s)/(1+

√
s). Then, the model is applied to the

intensities and relative phases of the four major JPC = 2−+ waves for eleven bins of π p transferred momenta t ′ [541]. A
reasonable description of the set of the four waves is shown in Fig. 37, and requires at least four K -matrix poles in the
form of Eq. (31a). The production vector is modeled with a fourth-order polynomial in ω, independent for each wave and
all t ′ slices.

This optimization problem suffers from multimodality. The colored lines in Fig. 37 represent to the four solution for
local minima with similar quality.

All the solutions suggest the presence of three poles in vicinity of the fit region. The poles are ordered by their mass
values and assigned to π2(1670), π2(1880), and π2(2005). However, the parameters are significantly different across
different solutions. Conservative estimate of masses and widths shown in Table 6 are obtained by quoting the extreme
values among all the selected solutions. The pole positions of the states are correlated, to the extent that the mass intervals
of π2(1880) and π2(2005) overlap. However, all solutions prefer the heavier pole to be broader than the middle one.

The results are compared to the conventional approach of the Breit–Wigner model of Ref. [228]. Our studies indicate
that both π2(1670) and π2(1880) are required by the data, and their widths are below 450 MeV. The width of the π2(2005)
is obtained in the interval from 590 MeV to 1.34 GeV. The π2(2005) pole is hinted in the data by the left shoulder of
the f2π S-wave in Fig. 37. However, the shortcomings of the models, e.g. the omission of OPE, in combination with the
multi-channel complexity do not allow establishing the presence of resonance and its parameters reliably.

The main difficulty in describing the data is related the nonresonant coherent background process named after
Deck [551]. Studies of the Deck mechanism in Refs. [537,552] showed a large pollution in the JPC = 2−+ waves. The
unitarization method proposed in Ref. [553] builds in the explicit form of the background while preserving unitarity. The
method requires dedicated studies of the partial wave projections of the Deck process. This will be the subject for future
research that will lead to a better understanding of the sector.

4. Production mechanisms

The mechanisms that produce hadron resonances in experiments offer another valuable piece of information for
understanding their nature. For example, most of the recent data on XYZ states come from electroweak processes,
as heavy meson/baryon decays or e+e− annihilation. Matrix elements can most often be studied in terms of form
factors [213,554,555].

At high energy, (semi-)inclusive production processes enter the perturbative QCD regime. For example, deep inelastic
scattering (DIS) of electrons off protons at large Q 2 has been the main experimental tool to scrutinize the inner structure
of nucleons. Data on the corresponding cross sections and structure functions have been key ingredients in global QCD
analyses of parton distributions [556–565]. At lower energies and Q 2 inclusive data are saturated by a few exclusive
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hannels, and perturbative calculations lose their validity. Having a comprehensive understanding of the low and high
nergy regimes at once is a highly nontrivial task that will be discussed in Section 4.1.
In peripheral production, where the momentum transferred is much smaller than the energy, forces and resonances

themselves are constrained by the same strong interaction dynamics, and one can learn about one by studying the other.
This duality is the cornerstone of Regge theory. The most comprehensive study for establishing the role of Reggeons in
quasi-elastic two body scattering will be discussed in Section 4.2. These studies are particularly effective in explaining
single hadron (or resonance) photoproduction, as shown in Section 4.3 for the light sector. Quarkonia photoproduction
ill be discussed in Section 4.4 in the context of pentaquark searches, and in Section 4.5 in the context of predicting
YZ rates at electron–proton facilities. At high invariant masses, one enters the so-called double-Regge regime, which we
ill describe in Section 4.6. Contributions to the amplitude from resonances in the direct channel and Reggeons in the
verlapping, crossed channels, cannot be added, as explicit for example in the Veneziano amplitude [566,567], and one has
o take specific care when involving both in amplitude analysis. In 2 → 2 scattering, Reggeons dominate the high energy
ehavior of the cross section at forward (or backward) angles, while resonances are visible at low energies in specific
artial waves. Analyticity requires that these two regimes are connected, which allows us to write dispersion relations
hat can convert the Regge phenomenology at high energies into further constraints for the partial waves in the resonance
egion. This program of finite energy sum rules (FESR) will be discussed in Section 4.7. This and other forms of duality
ave found some recent interest because of the discovery of several tetraquark and pentaquark candidates [253,568].
lthough establishing the presence of exotic states in the spectrum through their role as exchange forces might be a long
hot, the duality between Reggeons and resonances can play an important role in constraining models of exotics.

.1. Nucleon resonance contributions to inclusive electron scattering

Being able to describe the strong interaction physics across a broad range of energy and distance scales is crucial, but
he nonperturbative regime is still far from being well understood. In inclusive electron–proton scattering, the transition
rom the low-energy resonance region to the high-energy regime (i.e. DIS) offers broad grounds for exploration [561,
63,569–576]. Leading twist approximations14 are found to be accurate at describing the region of invariant masses W
bove the resonances, at sufficiently large photon virtualities, Q 2 ≳ 1–2 GeV2. Therefore, global QCD analyses [561–
63] usually involve cuts in both W and Q 2 [557–560,577–579]. In order to bridge the gap between perturbative and
onperturbative regimes and to assess the parton distributions at large Bjorken-x, target mass corrections, higher twists
nd factorization-breaking corrections are called for. In addition, due to the resonance peaks appearing in the W < 2 GeV
egion, the electroexcitation amplitudes of the resonances should be incorporated into the description of the structure
unctions [580,581]. High-precision measurements of inclusive electron scattering cross sections in the resonance region
ere made at JLab’s Halls B and C [582–588].
A further phenomenological motivation for these studies is the observation of a duality between the structure functions

n the nucleon resonance region, when averaged over resonances, and the scaling function extrapolated from the deep-
nelastic scattering region [589]. When integrating the structure functions over (finite intervals of) x, one obtains the
truncated) moments of the structure functions [590,591]. The leading twist term is associated with incoherent scattering
ith individual partons in the nucleon [592–594], while the higher twist corrections capture elements of long-distance,
onperturbative quark–gluon dynamics associated with color confinement in QCD [595,596]. Duality is interpreted as the
ominance of the leading twist and the consequent suppression of higher twist contributions to the moments [597].
The inclusive structure functions are related to the total virtual photon–nucleon scattering cross sections σT and σL,

or transversely and longitudinally polarized photons, respectively [598],

F1(W ,Q 2) =
Km

4π2α
σT (W ,Q 2), (70a)

F2(W ,Q 2) =
Km

4π2α

2x
ρ2

(
σT (W ,Q 2) + σL(W ,Q 2)

)
, (70b)

here α is the fine structure constant, K = (W 2
− m2)

/
2m is the equivalent photon flux in the Hand convention [599],

ρ =
(
1 + 4m2x2/Q 2

)1/2 a kinematic parameter, and m the proton mass. The F2 structure function can also be written in
terms of the unpolarized virtual photoproduction cross section σU ,

F2(W ,Q 2) =
Km

4π2α

2x
ρ2

1 + RLT

1 + ϵRLT
σU (W ,Q 2), (71)

where

σU (W ,Q 2) = σT (W ,Q 2) + ϵ σL(W ,Q 2), (72)

14 Operators contributing to DIS can be organized in terms of their twist, i.e. their mass dimension minus the number of Lorentz indices. Higher
twist operators are further suppressed by powers of the hard scale Q 2 .
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Fig. 38. Proton F2 and FL structure function in the resonance region at different values of Q 2 . The data are compared with the full resonant structure
unctions computed by adding amplitudes (thick blue curves) and cross sections (thin blue curves) from the contributing resonances, using the
entral values of their electrocouplings. The contributions from individual resonances are shown separately, as indicated in the legends. Below each
anel, we also show the uncertainty sizes of the thick blue curves (full coherent sum of resonant contributions), which are computed by propagating
he electrocoupling uncertainties via bootstrap. The data in the left plot come from the interpolation of the CLAS database [600], the data in the
ight plot come from [587] (filled black circles) and [583] (open black circles).
ource: Figure from [581].

is the degree of transverse virtual photon polarization, determined by the scattered electron angle θe,

ϵ =

(
1 +

2ρ2

ρ2 − 1
tan2 θe

2

)−1

, (73)

nd RLT = σL(W ,Q 2)/σT (W ,Q 2) is the ratio of longitudinal to transverse virtual photon cross sections. The longitudinal
tructure function is defined as

FL(W ,Q 2) =
Km

4π2α
2x σL(W ,Q 2) = ρ2F2(W ,Q 2) − 2xF1(W ,Q 2). (74)

Here, we focus on the unpolarized structure functions F1 and F2, and their combination FL. A compilation of the data
for unpolarized structure functions and inclusive cross sections in the range 1.07 ≤ W ≤ 2 GeV and 0.5 ≤ Q 2

≤ 7 GeV2,
ogether with a tool for the interpolation between bins, is available online from the CLAS database [588,600,601]. At the
ame time, the experimental program of exclusive π+n, π0p, ηp, and π+π−p electroproduction channels with CLAS at
Lab has provided the first and only available results on electroexcitation amplitudes, or electrocouplings of most nucleon
esonances in the mass range W < 1.8 GeV and Q 2 < 5.0 GeV2 [602–604]. This makes it possible to evaluate the resonant
ontributions to inclusive electron scattering using parameters of the individual nucleon resonances extracted from data,
xpressing the amplitudes as a coherent sum over all relevant resonances in the mass range W < 1.75 GeV [605,606],

FR
1 = m2

∑
IJη

⎡⎢⎣
⏐⏐⏐⏐⏐⏐
∑
RIJη

GRIJη
+

⏐⏐⏐⏐⏐⏐
2

+

⏐⏐⏐⏐⏐⏐
∑
RIJη

GRIJη
−

⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦ , (75a)

ρ2FR
2 = mν

∑
IJη

⎡⎢⎣
⏐⏐⏐⏐⏐⏐
∑
RIJη

GRIJη
+

⏐⏐⏐⏐⏐⏐
2

+ 2

⏐⏐⏐⏐⏐⏐
∑
RIJη

GRIJη
0

⏐⏐⏐⏐⏐⏐
2

+

⏐⏐⏐⏐⏐⏐
∑
RIJη

GRIJη
−

⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦ , (75b)

here the outer sum runs over the possible values of spin J , isospin I and intrinsic parity η, and the inner sums run over
ll those resonances RIJη with same quantum numbers that are added coherently. The electrocouplings are encoded in the
unctions GIJη

0,± [581].
Representative examples of F2(W ,Q 2) and FL(W ,Q 2) are shown in Fig. 38. Three distinct peaks are clearly seen in

heir W dependencies and related to the resonant contributions. In the first resonance region, the contribution from
he ∆(1232) 3/2+ decreases rapidly with Q 2, so that at Q 2 > 2 GeV2 the tail from the N(1440) 1/2+ state becomes
ssential. This is even more drastically so for the longitudinal FL. In the second resonance region, the N(1520) 3/2− and
(1535) 1/2− give the largest contributions to F2 and the contribution from the N(1535) 1/2− becomes dominant as Q 2

ncreases. Additionally, the tail from ∆(1700) 3/2− becomes the main contribution to FL as Q 2 increases. Finally, the peak
n the third resonance region is generated by contributions from several resonances, one of the largest stemming from
he N ′(1720) 3/2+ state discovered recently in combined studies of π+π−p photo- and electroproduction at JLab [283].
ecause of the intricate interplay with other resonances, the evolution with Q 2 of the third peak in F2 becomes rather
nvolved, and the contribution from the∆(1700) 3/2− dominates the resonant part at Q 2

∼ 4 GeV2. This behavior suggests
hat further insight can be gained into its structure in the range of high Q 2 > 4 GeV2, which will be covered in future
ucleon resonance studies with the CLAS12 detector [602,607]. Therefore, in Fig. 39 we also show the unpolarized inclusive

2
ross section [584] σU (W ,Q ) as predicted for CLAS12 kinematics.
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Fig. 39. Resonant contributions (green) to the unpolarized σU virtual photon–proton cross sections, for an electron beam energy of 10.6 GeV,
compared to the predicted inclusive virtual photon–proton cross sections in the kinematic area covered in the measurements with the CLAS12
detector [608].
Source: Figures from [580].

More generally, the pronounced differences seen in the Q 2-evolution of the three peaks are related to the different
Q 2 evolutions of the electroexcitation amplitudes of the contributing resonances. Therefore, a credible evaluation of the
resonant contributions relies essentially upon the knowledge of the electroexcitation amplitudes of all prominent reso-
nances in the entire mass and Q 2 region under study. The extraction of reliable information from the experimental data
on exclusive meson electroproduction will extend the capability of gaining insight into the nucleon parton distribution
functions (PDFs) at large x within the resonance excitation region. It also allows us to explore quark–hadron duality.

We quantify the duality by considering the lowest truncated moment of F2, which in an interval ∆x ≡ xmax − xmin at
ixed Q 2 is given by

M2(xmin, xmax;Q 2) =

∫ xmax

xmin

dx F2(x,Q 2). (76)

n Fig. 40, we compare the empirical moments with the moments of structure functions computed from the CJ15 [561] and
AM19 [562] PDFs extrapolated from higherW . The differences between parametrizations can be interpreted as systematic
heoretical uncertainties associated with the extrapolations.15 For the moments evaluated for the entire resonance region,
rom the pion threshold to W = 1.75 GeV, there is reasonable agreement within uncertainties between the experimental
data and the extrapolations from the DIS region for Q 2 ≳ 2 GeV2. A similar agreement is observed in the second resonance
region down to even smaller Q 2 values. In the third region the extrapolated results generally underestimate the data by
∼10% − 30%, while in the first region the extrapolated results overestimate the data at all Q 2 considered. Interestingly,
he ratio of the resonance contributions to the truncated moments relative to the total remains fairly constant across
he range of Q 2 considered. This suggests a similar Q 2 evolution of the resonant and nonresonant contributions to the
tructure function, thus pointing to a nonvanishing relative resonant vs. nonresonant size, even at larger Q 2.
Definitive conclusions about the longitudinal truncated moments are more difficult to draw on account of the greater

ystematic uncertainties associated with the experimental data extraction and the theoretical analysis prescriptions,
otivating the need to complete the understanding of the leading and higher twist contributions to FL, as well as of
btaining L/T separated data in the resonance region.
On the experimental side, our results motivate extensions of the inclusive electron scattering studies in the resonance

egion towards Q 2 > 4 GeV2, as well as the extraction of the γ ∗pN∗ electrocouplings at high photon virtualities from
he exclusive meson electroproduction data [602,607]. Furthermore, the results suggest the intriguing future avenue of
imultaneously describing the resonance and DIS regions, thus providing constraints for nucleon PDFs at large values
f x [606]. A further extension is to explore the spin dependence of the exclusive–inclusive duality by analyzing the
pin-dependent g1 and g2 structure functions.

15 To run these extrapolations to such low values of Q 2 , one has to include the leading O
(
Λ2

QCD/Q
2
)
corrections. The target mass correction is

ncluded in both extrapolations, while an estimate of next-to-leading twist operators is included in CJ15 only. An improvement of these estimates,
s well as including higher twist terms, will improve the agreement between the extrapolations and data.
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Fig. 40. Truncated moments M2 of the F2 structure function versus Q 2 for the three resonance regions, as well as for the full range 1.07 < W <

.75 GeV. The moments from the experimental results [600] (black circles, with uncertainties smaller than the circle sizes) are compared with the
esonant contributions (blue lines) and the structure function moments computed from the JAM19 [562] (green lines) and CJ15 [561] (red lines)
DFs, with the latter including also higher twist terms. Also shown beneath each panel is the ratio of the resonant contributions to the data in each
region.

ource: Figures from [581].

.2. Regge theory and global fits

As mentioned, Reggeons and resonances are dual and not additive, so one has to be careful when involving both in
mplitude analysis. Before exploring the applications of duality in the following sections, we first review the basic of the
egge theory and its recent applications in the analysis of modern experiments.
Analyticity in angular momentum requires that singularities of partial waves are not independent, but rather connected

y an analytic function called trajectory. One can show that indeed that poles in the complex angular momentum (Regge
oles or Reggeons) correspond to the existence of an infinite tower of resonances of increasing mass and spin, as the ones
escribed in Section 2.4.3 (see for example [249–251]). The contribution of a single Reggeon to a 2 → 2 process in the
igh-energy limit s ≫ −t can be written as

A λb,λM
λN ,λ

′
N

(s, t) = βλγ ,λM (t)

[
τ + e−iπα(t)

2 sinπα(t)

(
s
s0

)α(t)]
βλN ,λ′

N
(t) , (77)

here λb, λM , λN and λ′

N are the helicities of the beam, produced meson, target and recoil, respectively. The trajectory
(t) gives the pole position of a resonance of given spin JR solving α(m2

R) = JR. Indeed, in the vicinity of t ≃ m2
R, the

ormula can be expanded

A λb,λM
λN ,λ

′
N

(s, t ≃ m2
R) = βλγ ,λM (m2

R)

[
1 + τ (−1)JR

2πα′(m2
R)

(
s
s0

)JR
]

1
t − m2

R
βλN ,λ′

N
(m2

R) + regular , (78)

hich explains that Eq. (77) contains a tower of increasing spin and mass, as given by the trajectory crossing integer
umbers for mesons (or semi-integers for baryons). The signature of the Reggeon is τ = (−1)J with J representing the
pin of the lightest particle on the trajectory. Because of the factor 1 + τ (−1)JR , a trajectory can only contain odd or
ven spins. It is customary to refer to a trajectory with the name of the lightest particle laying on it. Vectors and tensors
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Fig. 41. (left) Production of meson via Regge exchange (Reggeon). Since the momentum transferred is small, in a fixed-target experiment the
fragments of beam and target will be fast and slow, respectively, in the lab frame. (right) π−p → ηn differential cross sections.
ource: Figures from [609].

Table 7
Regge trajectories of the Pomeron, and of other Regge exchanges. Appropriate units of
GeV are understood.
Exchange Regge trajectory α(t)

P 1.08 + 0.2t

ρ, ω, a2 , f2 0.9(t − m2
ρ ) + 1

π , b1 , h1 , a1 , f1 0.7(t − m2
π )

satisfying P(−1)J = +1 are called ‘‘natural exchanges’’, while pseudoscalars and axial-vectors with P(−1)J = −1 are
denoted as ‘‘unnatural exchanges’’. In the following, we consider α(t) to be real functions, as their imaginary parts are
onnected to resonance widths and give subleading effects when describing meson production. The effects of the widths
nd their relation to the nature of light baryon states are studied in Section 2.4.3.
Meson production at high energies can thus be explained in terms of Regge exchanges whose quantum numbers

etermine the energy dependence of the reaction from its trajectory α(t). As shown in Eq. (77) and represented in Fig. 41,
he production amplitude factorizes into a top (beam-meson) and a bottom (target-recoil) vertex.

The total production amplitude will be a sum over Regge poles R (77), that at large energies behave like sα(t). The sum
s thus dominated by the exchanges R having largest values of αR(t) in the kinematic domain of interest. Since, in practice,
rajectories are approximately linear α(t) = α0+α′t , for small t the production mechanism is dominated by the trajectory
aving the highest intercept α0. In processes having exotic quantum numbers in the s-channel such as pp or π+π+ elastic
cattering, tensor and vector trajectories are forced to cancel each other since there is no direct resonance produced to
e dual to. These vector and tensor exchanges are called degenerate. Exchange degeneracy (EXD) requires not only that
ector and tensor trajectories α(t), but also couplings to the exotic channel β(t) be equal. Similarly to the natural parity
xchange (vector and tensor), one can show that unnatural parity exchange (pseudoscalar and axial-vector trajectories)
re also degenerate. There are thus only two different Regge trajectories α(t) for Reggeons built out of mesons.
Natural exchanges have a larger intercept (α0 ≃ 0.5) than unnatural ones (α0 ≃ 0). These values lead to cross sections

hat decrease with energy, and cannot explain why the total cross section pp → anything slightly rises with energy. It has
een postulated that a Pomeron trajectory (P) with an intercept close to unity and having the quantum numbers of the
acuum is responsible for this phenomena. This trajectory is in principle related to the existence of purely gluonic particles,
s glueballs with C = +. Glueballs with C = − would instead lie on the Odderon trajectory, which is responsible of the
ifference between pp and pp̄ total cross section at high energies, and whose existence is been recently debated [610–613].
he t-channel quantum number for various reactions are listed in Table 8, and their Regge trajectories α(t) are listed in
able 7.
For a given process, all quantities appearing in Eq. (77) are known except the couplings β(t). These can be approximated

o constants, once the t-dependence at small angles is explicitly factored out. Conservation of angular momentum implies
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Table 8
Regge exchanges in single meson photoproduction on a nucleon target.
Final state Natural Ex. Unnatural Ex. Refs.

π0p, ηp, η′p ρ, ω b1 , h1 [614,616,618]
ρ0p, ωp, φp P, a2 , f2 π0 , η, a1 , f1 [619]
a02p, f2p ρ, ω b1 , h1 [620]
π+n, π+∆0 , π−∆++ ρ, a2 π± , b1 [621]

that, in the forward direction,

A λb,λM
λN ,λ

′
N

(s, t) ∝

(√
−t ′
)|λb−λM+λ′

N−λN |

. (79)

here we have defined t ′ = t − tmin with tmin = t(θ = 0). The factorized form of the production amplitude implies a
stronger constraint

A λb,λM
λN ,λ

′
N

(s, t) ∝

(√
−t ′
)|λb−λM |+|λ′

N−λN |

. (80)

By imposing Eq. (80) at the amplitude level, we can thus check whether mesons are photoproduced diffractively by
comparing the t-dependence of the data and the model. As said, the constraints in Eq. (80) are only valid near the forward
direction. Away from this limit, there are corrections of O(−t ′/(m+mbeam)2), where m is the mass of the produced meson
and mbeam is the mass of the beam.

The most recent and comprehensive study aimed at establishing the role of Reggeons in quasi-elastic two-body
scattering with pion and kaon beams was performed in [609]. It was established that the leading Regge poles which
give the high-energy asymptotic behavior of scattering amplitudes (i.e. poles with the largest intercept) indeed dominate
the charge exchange reactions already for pbeam > 5 GeV. As can be seen in Fig. 41, the model matches perfectly data
across a wide energy range. Subleading effects include poles with lower intercept (daughter trajectories), or branch cuts
in complex angular momentum, for example Reggeon–Pomeron boxes that model final-state interactions, aka absorption.
hese effects are mainly visible when the leading amplitude vanishes, and can also contribute significantly to polarization
bservables, or in specific cases of pion exchange [614–617]. The latter has indeed long range and can be significantly
ffected by final-state interactions.

.3. Single meson photoproduction

The upgrade of the JLab facility has opened a new area for meson photoproduction [622]. With a 12 GeV electron beam,
esons with a mass up to ∼4 GeV are expected to be produced, as depicted on Fig. 41.
The GlueX and CLAS detectors are developing a rich meson spectroscopy program, including the study of exotic

esons and of other excited resonances, produced with a real and quasi-real photon beam, respectively [623–625].
owever, before undertaking the search of new hadrons, we need to establish the production mechanisms of known
esons. In particular we need to assess whether at these energies they are produced diffractively, i.e. the production
mplitude factorizes into a photon–meson vertex and a nucleon vertex. This is achieved by comparing diffractive models
or pseudoscalar, vector and tensor meson photoproduction to data. The Regge exchanges contributing to photoproduction
f mesons on a nucleon target are summarized in Table 8. In these sections, we present several results on single meson
hotoproduction and their comparison to data. The results are discussed in order of model sophistication.
In this context, the production of vector mesons is an ideal place to start. The ω, the φ and, to some extent, the ρ

re narrow resonances and so are easy to reconstruct experimentally. The angular distributions of their decay products
re given by the Spin Density Matrix Elements (SDME), which are known quadratic combinations of the production
mplitudes. We can thus confirm the diffractive nature of vector meson photoproduction by constructing a model based
n Regge exchanges that incorporates the small t behavior in Eq. (80), and comparing with JLab data. In Ref. [619], we
eveloped a model for photoproduction of light neutral vector mesons (V = ρ0, ω, φ). We considered the only relevant

unnatural exchange to be π0, and determine the coupling from the radiative decay V → γπ0. The natural exchanges
Pomeron and tensors), have three distinct helicity couplings to the γV vertex. These are denoted by the difference
etween the beam helicity and the vector meson one, and called non-flip, single-flip and double-flip couplings. For tensor
xchange, the three couplings are related to the partial waves of the radiative decay T → Vγ (where T = f2, a2), and in

principle is accessible experimentally. In the absence of such information, we extracted their relative weights from the
SLAC measurement of vector meson SDME from Ref. [626]. In the s-channel center-of-mass frame, the Pomeron is assumed
to be helicity conserving. A year after the publication the model, GlueX has presented the preliminary version of the ρ0

SDME [627]. In Fig. 42 we show that the comparison between prediction and data is excellent for −t ′ < 0.5 GeV2
≃ m2

ρ ,
n agreement with the range of validity of the expansion (80). Data are compatible with the dominance of the helicity
onserving Pomeron coupling, plus the addition of tensor exchanges with complete helicity structures.
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Fig. 42. Example of spin density matrix elements in ρ0p photoproduction in the helicity frame. Comparison between GlueX preliminary data and
the model of Ref. [619].
Source: Figure from [627].

Fig. 43. (eft) Beam asymmetry in π−∆++ photoproduction. Comparison between GlueX data and the model in [621]. Figure from [628]. (right) η/η′

beam asymmetry ratio compared with the model of [618].
Source: Figure from [629].

In the case just discussed, unnatural exchanges turned out to be almost irrelevant. However, it is well known that pion
exchange dominates at low t in charge-exchange reactions such as γ p → π−∆++. In single pseudoscalar photoproduction,
the relative importance between natural and unnatural exchanges can be extracted from the beam asymmetry

Σ(t) =

dσ⊥

dt −
dσ∥

dt
dσ⊥

dt +
dσ∥

dt

, (81)

here σ⊥ (σ∥) is the cross section for photon beam with linear polarization, perpendicular (parallel) polarization to the
eaction plane. At high energies, natural (unnatural) exchanges contribute only to σ⊥ (σ∥). Thus, positive (negative) Σ
mplies the dominance of natural (unnatural) Reggeons.

One observes in Fig. 43 that the beam asymmetry turns out to be negative at small −t , confirming the dominance of
nnatural exchange (pion) in the forward region. Moreover the minimum ofΣ around |t| ≃ 0.25 GeV2 has been predicted
y the model in Ref. [621], which includes ρ and a2 as dominant natural exchanges. As mentioned in Section 4.2, pion
xchange suffers from large absorption corrections. We used William’s model also known as ‘‘Poor’s man absorption
odel’’, which provides a simple prescription to take these corrections into account. Data on beam asymmetry tend to 1

aster than the model as −t increases, indicating a stronger component of natural exchanges than expected. Nevertheless,
he model describes correctly the gross features of the data.

For large −t values, corrections to the leading Regge poles, such as daughter trajectories or Regge cuts, might be
mportant. Their contribution are not easily derived theoretically, but can be estimated from data when available. In
ef. [614], we developed a model for γ p → π0p that includes Regge cuts, fitting to data measured at Eγ = 6–15 GeV in
he range −t < 1.5 GeV2. The data display a dip at t ≃ −0.5 GeV2 that is described in the model by including a zero in
he vector Regge residue. This zero has a physical motivation, despite the curious name ‘nonsense wrong-signature zero’
NSWSZ). In tensor exchanges, Eq. (77) has a scalar pole (α(t) = 0) at negative mass squared t ≃ −0.5 GeV2. Since this
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Fig. 44. Differential cross section for Regge model at three energies compared to the γ p → π0p CLAS data [630].
Source: Figure from [630].

Fig. 45. a2(1320) (left) and f2(1270) (right) differential cross section extracted by the CLAS collaboration [631,632] compared to the JPAC model of
ef. [620].
ource: Figures from [620] (left) and [631] (right).

appens in the physical region, we have to add explicitly a zero to the residue to remove this unphysical pole. Because of
he EXD discussed in Section 4.2, the same zero appears in the vector trajectory as well.16 Regge cuts are parametrized
in a similar way to Regge pole as in Eq. (77), but with a flatter trajectory αc(t) ≃ 0.5 + 0.2t . In analogy with the Regge
vector pole, we included a NSWSZ in the Regge cut couplings βc(t) ∝ αc(t). Consequently, our model predicts a dip at
t ≃ −2.5 GeV2. New data from the CLAS detector [630] in a wide t range, displayed in Fig. 44, confirm the presence
of this dip at the same t for several energies, and thus the presence of the NSWSZ in the Regge cut contribution to the
production mechanism in π0 photoproduction.

The presence of corrections to the leading pole approximation can be identified by comparing the beam asymmetries
f η and η′ photoproduction. Since Regge poles factorize, assuming only Regge exchanges and the absence of hidden
trangeness terms as φ exchange leads to the equivalence of η and η′ beam asymmetries. In Ref. [618], we modeled
he contribution of the φ exchange and obtained that the ratio of η and η′ beam asymmetries would deviate from 1 by
aximum 2% in the range −t < 1 GeV2. This ratio, measured recently by the GlueX collaboration [629] and presented in

Fig. 43 (right), turned out to indeed be compatible with unity. However, the uncertainties are still quite large at about 10%,
and the data points are centered around a nominal value about 0.95. One should then take this conclusions cautiously, as
the data points could change significantly when more statistics are accumulated.

Tensor mesons are photoproduced by the same t-channel quantum numbers as pseudoscalar mesons. Their differential
cross sections indeed present the same pattern. That is, the isovector π0 and a2 cross section present a minimum around

= −0.5 GeV2, while the isoscalar η and f2 cross sections do not, see Fig. 45. Since the ω exchange dominates the isovector

16 The name ‘wrong signature’ is due to the fact that a vector trajectory contains odd spins only, and usually does not bother about zeros and
poles at even spin. Furthermore, the ‘nonsense’ is due to the fact that, since the photon helicity is ±1, the minimum spin allowed in the t-channel
s J = 1. For more details see [249]. Since this argument relies on exact EXD, it is not necessarily realized in nature. However, it gives a simple
xplanation for this kind of dips that occur in differential cross sections. Whether they exist or not, it must be seen by a comprehensive analysis
f several reactions that allows us to disentangle the contributions of individual Regge exchanges. Alternatively, one can implement Finite Energy
um Rules (FESR) to reconstruct the residues, as we will show in Section 4.7.
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roduction, it is natural to associate the dip at t = −0.5 GeV2 with a zero in the ω amplitudes. In our previous model
f γ p → π0p we introduced a NSWSZ in both the ω and the ρ amplitudes and explained that it was filled by Regge
ut contributions. In Ref. [620] we revised this hypothesis and introduced the NSWSZ only in the ω production, so that
he dip at t = −0.5 GeV2 is filled by a nonvanishing ρ contribution. In this model, the ρ amplitude does not feature the
SWZ and lead to a nondipping shape of the f2 differential cross section, in agreement with the recent measurements by
he CLAS collaboration [631,632].

.4. Photoproduction of J/ψ and pentaquark searches

The use of photon beams to search for or confirm exotic hadrons is appealing since it reduces the role of kinematic
ffects and minimizes the model dependence of partial-wave analyses [59,633–636].
As discussed in Section 2.5, the LHCb data on Λ0

b → J/ψ p K− decay potentially indicate the existence of several
aryon resonances in the J/ψ p spectrum that do not fit predictions of the valence quark model [305,306,637]. These
tates have the right mass to be produced directly at JLab, through a scan of the J/ψ photoproduction cross sections.
earches proposed at Hall C and CLAS12 are ongoing [638,639], while the results by GlueX show no evidence of narrow
eaks [640]. With fits to these data existing so far, we could provide estimates for the upper limits of the pentaquark
oupling sizes. The quantum numbers are not reliably determined yet, so in order to provide an estimate we focus the
iscussion on the Pc(4450) as determined in the older analysis [305].
The data available in this channel is so scarce that there is no point in considering refined models. We describe

he diffractive J/ψ production background with an effective Pomeron exchange [59,641]. We adopt the vector Pomeron
odel [642,643],⟨

λψλp′ |TP |λγ λp
⟩
= F (s, t) ū(pf , λp′ )γµu(pi, λp)[εµ(q, λγ )qν − εν(q, λγ )qµ]ε∗

ν (pψ , λψ ) , (82)

ith

F (s, t) = iA
(
s − sth

s0

)α(t) eb0(t−tmin)

s
, (83)

hat was successful in reproducing the azimuthal angular dependencies (see Sections 4.6 and 2.4.2). Since this is just an
effective description, the Pomeron parameters are refitted to data.17 As said, since we do not need a refined description,
instead of considering dual models that incorporate both resonances and Reggeons as in [431], we simply add to the
previous model a Breit–Wigner amplitude for the pentaquark,

⟨
λψλp′ |TR|λγ λp

⟩
= fth(s)

⟨
λψλp′ |Tdec|λR

⟩ ⟨
λR|T

†
em|λγ λp

⟩
M2

R − s − iΓRMR
, (84)

here fth(s) further suppresses the amplitude at threshold. The strong decay
⟨
λψλp′ |Tdec|λR

⟩
is determined by the spin-

parity of the state, while
⟨
λR|T

†
em|λγ λp

⟩
depends on the unknown pentaquark photocouplings. According to Vector Meson

Dominance (VMD), one can relate the two matrix elements assuming

⟨λγ λp|Tem|λR⟩ =

√
4παfψ
Mψ

⟨λψ = λγ , λp|Tdec|λR⟩, (85)

nd with this provide an upper limit to the branching ratio of the Pc(4450) to the final state where it is actually observed.
A word of caution is in order: While in the light sector VMD gives reasonable results, having a photon so off-shell that it
can oscillate into a heavy vector meson is questionable [645]. Nevertheless, VMD predicts roughly the correct size of the
ratio Γ (χc2 → γ J/ψ)/Γ (χc2 → γ γ ), so it seems an appropriate method to obtain at least order-of-magnitude estimates.
Before GlueX data were published, most of J/ψ photoproduction data were taken by HERA at higher energies [646,647],
which we analyzed in the first publication [59]. After GlueX data were made available, we noticed that our simple model
is not able to fit consistently the low and high energy region. We therefore selected the data at Eγ ≲ 25 GeV by GlueX
and SLAC [648]. The results are summarized in Table 9 for different spin-parity hypotheses [641], and a fit example is
given in Fig. 46.

Furthermore, we could provide estimates of the angular distributions of the differential cross sections depending on
the relative size of the photocouplings, see Fig. 46. These kinds of studies will help pin down the quantum numbers of
the pentaquarks if their signals are to be found in photoproduction experiments.

The use of polarization observables has been proposed for an experiment at the Super BigBite Spectrometer (SBS)
in Hall A at JLab [649]. It has been argued that these may reach higher signal-to-background ratios than differential
cross sections, which is particularly appealing due to the discovery of double-peak structures in the LHCb spectrum.
Furthermore, the polarization data offer new and complementary information relevant in the evaluation of the resonance

17 An alternative microscopic description is given in [644].
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Fig. 46. (left) Examples of angular distributions of the pentaquark at the peak, depending on the spin-parity assignment and relative photocoupling
sizes. (right) Fit to GlueX [640] data for a spin assignment of the Pc (4450) JP =

3
2

−
.

Source: Figures from [59] (left) and [641] (right).

Fig. 47. (left) Predictions for KLL (solid line) and ALL (dash-dotted line) in the SBS acceptance in bins of energy in the presence of two pentaquarks,
onsidering hadronic branching ratios B(4450)

ψp = B(4380)
ψp = 1.3%, and photocouplings ratio R(4450)

= 0.2, R(4380)
= 1/

√
2 and an experimental resolution

of 125 MeV. (right) 5σ sensitivity map of the dependence of the double polarization observables on the photocoupling ratio R and the branching
fraction Bψp of the Pc (4450).
Source: Figures from [641].

Table 9
Parameters of the fits for different JP assignments for the Pc (4450) state. Uncertainties are at the 68% confidence level,
except for the branching ratio, whose upper limit is quoted at 95%.
Source: Table from [641].

JP 3
2

− 5
2

+ 3
2

+ 5
2

−

A 0.379 ± 0.051 0.380 ± 0.053 0.378 ± 0.049 0.381 ± 0.053
α0 0.941 ± 0.047 0.941 ± 0.049 0.942 ± 0.045 0.941 ± 0.048
α′ ( GeV−2) 0.364 ± 0.037 0.367 ± 0.039 0.363 ± 0.035 0.365 ± 0.037
b0 ( GeV−2) 0.12 ± 0.14 0.13 ± 0.15 0.12 ± 0.14 0.13 ± 0.15

B(4450)
ψp (95%) ≤4.3% ≤1.4% ≤1.8% ≤0.71%

photo- and hadronic couplings. In Ref. [641], we provided sensitivity studies for the planned experiments on extracting
the beam-target asymmetry ALL, and the beam-recoil asymmetry KLL, scanning the observable behavior with the relative
oupling sizes, and mapping it as functions of the scattering angles and energies, to find the optimal experimental settings.
he results are summarized in Fig. 47, where the presence of a broad Pc(4380) with parity opposite to the Pc(4450) was

also considered. We found that 250 days of collected data with the SBS experiment would give more than 5σ sensitivity
to the Pc signals in large regions of the parameter space, in particular for KLL.

Another possibility is to produce Pc ’s in backward J/ψ photoproduction. The cross sections can be estimated by
employing the techniques shown in the following section. Unfortunately, searches of hidden-charm pentaquarks in this
way are hindered by large N∗ contributions [650].
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Fig. 48. (left) Photoproduction of a quarkonium-like meson, Q via an exchange E in the t-channel. (right) Quasi-real photon production of X(3872)
ia Primakoff effect.
ource: Figures from [650].

In view of the experiments in the electron–ion collider (EIC) era, it is instructive and timely to extend these studies to
ther polarization observables as well, and to investigate pentaquark photo- and electro-production also in semi-inclusive
eactions. Furthermore, EIC colliders are unique factories for hidden-beauty Pb searches [651], hence it is important to
rovide theoretical studies for these states as well. Ultimately, for the signals to be found in photo- and electroproduction
xperiments, it shall be important to use the combined knowledge of different observables in order to draw conclusions
bout the quantum numbers, couplings, and nature of these exotic states.

.5. XYZ Production in electron–proton collisions

Electromagnetic probes are expected to be essential in the near future to provide insight on the nature of exotic
adrons. Besides providing independent confirmation of exotica, at high energies these reactions are not affected by three-
ody dynamics and constitute efficient probes to determine exotic hadrons’ quantum numbers and internal structure. The
se of real and quasi-real photon beams to search for exotic hadrons is currently being surveyed in the light sector at
Lab, with some incursion into reachable low-lying charmonia, in particular pentaquarks as was shown in the previous
ection.
The next generation of electron–hadron colliders, the EIC [652,653] and the EicC [654], promise to open new

ossibilities of a spectroscopy program with higher energy and luminosity to study the plethora of the XYZ states. In
reparation for these new facilities, it is necessary to provide theoretical estimates for the production of quarkonium(-like)
tates. In particular, we are interested in exclusive processes where Q is produced through photon fragmentation from
hreshold to the expected EIC and EicC energies. We aim at providing predictions that are as based on data as possible,
n order to minimize the model assumptions related to the microscopic nature of the XYZ states. Moreover we also give
redictions for the ordinary quarkonia generated by the production mechanism, in order to provide candles to assess the
oodness of the model.
We write a helicity amplitude for the production process γN → QN ′ (see Fig. 48),

⟨λQ, λN ′ |TE |λγ , λN⟩ = T
α1...αJ
λγ λQ

P (E)
α1...αJ ;β1...βJ

B
β1...βJ
λN λN′

, (86)

here the rank-J Lorentz tensors associated to the spin J of the exchanged E , T (top vertex) and B (bottom vertex) are
erived from assumed forms of the γQE and ENN ′ interactions, say from effective Lagrangians consistent with expected
ymmetries of the reactions. The helicity structure is simplified when needed in order to make the amplitude depend on a
ingle coupling. Since most of the XYZ states have been observed to decay into a vector quarkonium, one can assume VMD
o calculate the photon-Q−E coupling from the measurement of the branching ratio B (Q → V E).18 The phenomenology
f the bottom vertex is well constrained by photoproduction phenomenology. Table 10 summarizes the exchanges and
ranching ratios for the considered exotics.
We note that we are dealing with two energy regimes that require different treatments. We expect that a model with

xchange of a fixed-spin particle is valid from threshold to moderate values of s. However, it can be shown that this

18 The applicability of VMD is discussed in Section 4.4.
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Fig. 49. Integrated cross sections for the axial Zc and Z (′)
b states according to the low-energy fixed-spin model (left), and to the high-energy Regge

exchange (right).
Source: Figures from [650].

Table 10
List of XYZ states studied, with the corresponding branching ratios into vector quarkonia and light meson. The widths
reported are obtained from Breit–Wigner extractions.
Q ΓQ (MeV) V E B(Q → V E) (%)

X(3872) 1.19 ± 0.19 J/ψ ρ 4.9+1.9
−1.1

ω 4.4+2.3
−1.3

Zc (3900) 28.3 ± 2.5 J/ψ π 10.5 ± 3.5

Zcs(4000) 131 ± 41 J/ψ K ∼10

X(6900) 168 ± 102 J/ψ ω ∼1–4

Zb(10 610) 18.4 ± 2.4
Υ (1S)

π

0.54+0.19
−0.15

Υ (2S) 3.6+1.1
−0.8

Υ (3S) 2.1+0.8
−0.6

Zb(10 650) 11.5 ± 2.2
Υ (1S)

π

0.17+0.08
−0.06

Υ (2S) 1.4+0.6
−0.4

Υ (3S) 1.6+0.7
−0.5

amplitude behaves as

⟨µQµγ |T |µ′

N̄µN⟩ ∝

dj
µ′

N̄
−µN ,µQ−µγ

(θt )

t − m2
E

, (87)

here cos θt is the t-channel scattering angle, and depends linearly on s. At high energies, this expression grows as sj,
hich exceeds the unitarity bound. The reason for this is that a fixed-spin exchange amplitude is not analytic in angular
omentum. Assuming that the large-s behavior is dominated by a Regge pole rather than a fixed pole, we obtain the
tandard form of the Regge propagator of Eq. (77). This can be interpreted as originating from the resummation of the
eading powers of sj in the t-channel amplitude, which originate from the exchange of a tower of particles with increasing
pin. In the high-energy regime, the P (E)

α1...αJ ;β1...βJ
is thus replaced by a Regge propagator.

For the Pomeron-dominated Y (4260) production, a fixed-spin description is no longer possible. However, we can
se the results discussed in Section 4.4 from Refs. [59,641], that were fitted to low-energy and high-energy J/ψ

photoproduction data separately. Together with a rescaling of couplings, and an upper limit on Y (4260) production from
HERA data [655], one can obtain predictions also for this state.

An example of results is shown in Fig. 49. We note that the strengths of the amplitudes do not necessarily match in the
two regimes. The expectation is that the cross section decreases faster and matches the Regge prediction atWγ p ∼ 20 GeV.
COMPASS has measured upper limits for the Zc(3900) and X(3872) photoproduction cross sections at an average energy
of
⟨
W

⟩
= 13.7 GeV of ∼0.35 and 0.07 nb respectively, once branching ratios are taken into account. While the first
γ p
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Fig. 50. Differential cross sections for WγN = 2 GeV (left) and integrated cross sections (right) for Primakoff production of X(3872) off various nuclei.
Solid and dashed curves correspond to longitudinal and transverse incoming photons, respectively.
Source: Figures from [650].

result has roughly the same order of magnitude as our prediction, the second one is clearly smaller than our low energy
prediction. This could be due to the Regge regime being reached earlier than expected, to the breaking of the VMD
assumption, or to a dramatic dependence of the top coupling on the photon virtuality. In particular for the X(3872), it is
unlikely that all these fail at least close to threshold, so an independent confirmation of these measurements is needed.

Another possible mechanism to produce the X(3872) at the EIC is through Primakoff effect exploiting the planned
nuclear beams, ranging from the proton to uranium. The diagram is shown in Fig. 48. The Landau–Yang theorem [656,657]
prohibits the X(3872) to couple to two real photons, but nothing prevents it from coupling to a real and a virtual one.
Actually, a recent measurement by Belle found Γ̃ X

γ γ × B(X(3872) → J/ψ π+π−) = 5.5+4.1
−3.8 ± 0.7 eV [658]. The virtuality

of the exchanged photon is suppressed for −t ≫ R−2
∼ O(10−3) GeV2, R being the nuclear radius, so that the exchanged

photon is quasi-real. The Xγ γ ∗ coupling can be estimated from Belle’s width and the absolute branching ratios in [659],
obtaining gXγ γ ∗ ∼ 3.2×10−3. The cross section is enhanced by the square of the atomic number of the nuclear beam, so we
expect this production mechanism to be possible for high Z beams. Fig. 50 shows differential and integrated cross section
redictions for a variety of nuclei for Q 2

= 0.5 GeV2 for an average photon nucleon energy WγN = WγA/A = 2 GeV, with
being the mass number of the ion.
The integrated cross-section estimations show that the near-threshold production of the X(3872) and Z states might

e promising for the EIC or other electron–proton facilities. The X(3872) may see production cross-sections of tens of
anobarn close to threshold, while charged quarkonium states near-threshold are predicted to be O(1 nb), and are well
ositioned for a high-luminosity spectroscopy program at the EIC. Additionally, diffractive vector production of vector
tates was also computed and shown to increase with energy, meaning the higher center-of-mass reach of the EIC is also
eneficial for the production of Y (4260) states.
When compared to exclusive reactions, semi-inclusive production can, among others, offer the advantage of easier

xperimental accessibility. We therefore aim to extend the work described in the previous section to general γN → QX
rocesses, where X represents any combination of final states with total invariant mass M (aka missing mass) that are
roduced in addition to the scrutinized Q. We shall focus on the region characterized by large center-of-mass energy and
issing masses, with s ≫ M2

≫ mp. In this limit the Q meson is produced with high momentum in the near-forward
egion with x ∼ pL/p ≈ 1. This region is dominated primarily by ‘‘triple-Regge’’ interactions as shown in Fig. 51, where
he sum over i, j and k refers to the possible exchanges contributing to the triple Regge vertex. As can be seen, the top and
ottom vertices can be taken from our previous work on exclusive reactions. The novel information to be given as input is
he triple-Regge vertex itself. Here, production of neutral states is assumed to primarily proceed through a triple-Pomeron
nteraction [660]. For the charged Z states, on the other hand, pion exchanges dominate the top vertices, and therefore
n order to describe the triple-Regge exchange one needs to estimate the total π N scattering cross section, for which
ne can take the asymptotic Regge approximation [615,661,662]. Other kinematic regions must be studied with other
ethods, see e.g. [663]. This way, we aim to provide estimates and feasibility studies for semi-inclusive production of
eavy quarkonia, which is particularly timely and promising in view of the EIC era.
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Fig. 51. Diagrammatic representation of triple-Regge interactions in the s,M2
→ ∞ limit.

Fig. 52. Intensity Iθ (m, cos θ ) density distribution computed from the ηπ (left) and η′π (right) COMPASS partial waves.
Source: Figure from [62].

.6. Two-meson production in the double-Regge region

As discussed in Section 2.4.2 the ηπ spectrum is of particular interest, since the odd partial waves have exotic quantum
umbers and specifically, the JPC = 1−+ partial wave hosts the π1 hybrid candidate. To further understand the exotic
eson production in this channel, one can invoke the Regge-resonance duality to relate the process πp → R p → η(′)πp,
here R stands for an η(′)π resonance, to the double Regge region where the η(′)π invariant mass is large.
In general the multi-Regge exchange formalism has been extensively studied theoretically in the past [249,664–669];

ore recently the double-Regge exchange was used to study two-kaon photoproduction off the proton [670], and to
escribe the central meson production in the high energy proton–proton collisions [671–673].
In Ref. [62], we studied the π−p → η(′)π− p data measured at COMPASS [215]. The experimental η(′)π m-binned

ntensity distribution I(m, cos θ, φ), where m is the η(′)π invariant mass, can be computed from the published partial
aves [215]. We focus on the 2.4 < m < 3.0 GeV region, where the double Regge is expected to dominate. The angular
ariables determine the direction of the η(′) in the Gottfried–Jackson frame. The φ-integrated distributions

Iθ (m, cos θ ) =

∫ 2π

0
dφ I(m, cos θ, φ) , (88)

re shown in Fig. 52 for a total of seventeen mass bins in each channel. We note that the intensity peaks in the forward
os θ ∼ 1 and backward cos θ ∼ −1 regions and both become narrower as the invariant mass m increases. In the forward
egion, most of the beam momentum is carried by the η(′) (‘‘fast-η’’ region), and in the backward region by the pion (‘‘fast-
’’ region). These features are typical of diffractive processes, pointing to the dominance of double-Regge exchanges for
≳ 2.3 GeV.
The existence of a forward–backward asymmetry is apparent in Fig. 52 and by itself is proof of the existence of

esonances with exotic quantum numbers in that m range. This asymmetry can be quantified through

A(m) ≡
F (m) − B(m)
F (m) + B(m)

, (89)

here

F (m) ≡

∫ 1

d cos θ Iθ (m, cos θ ) , B(m) ≡

∫ 0

d cos θ Iθ (m, cos θ ) , (90)

0 −1
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Fig. 53. Fast-η (left) and fast-π (right) amplitudes.
Source: Figure from [62].

ith F (m) and B(m) being the forward and backward intensities, respectively.
COMPASS data were correctly described by model of [62]. Specifically, the double-Regge exchange amplitudes depicted

n Fig. 53 were considered, assuming the dominance of leading Regge poles. The intensity is given by

ITh(m,Ω) = k(m) |ATh(m,Ω)|2, (91)

here k(m) = λ
1
2 (m2,m2

η(′)
,m2

π )/(2m) is the breakup momentum between the π and the η(′) and the total amplitude
Th(m,Ω) is the sum of six double-Regge amplitudes,

ATh(m,Ω) = ca2P Aa2P + ca2f2 Aa2f2 + cf2P Af2P + cf2f2 Af2f2 + cPP APP + cPf2 APf2 , (92)

here the {c} are constants fitted to the data.
An important property of multiperipheral amplitudes is the absence of simultaneous singularities in overlapping

hannels. For example, it is possible to identify that, for fast-η production, the first two terms in Eq. (92) are dual to
resonances decaying to ηπ and πN . It is then possible to write dispersion relations that enable us to independently study
resonances in the beam and target fragmentation region.

The top exchange is dominated by the a2 trajectory for fast-η, and by f2 or P trajectories for fast-π . The bottom
exchange is either f2 or P for both amplitudes. Given the high energy of the COMPASS pion beam, the P was expected to
be the relevant bottom exchange. We found this to be true for the forward peak, where the slope of the F (m) intensity
is dominated by the a2/P amplitude as shown in Fig. 54. However, for the backward peak we find that the slope of the
B(m) intensity is dominated by the bottom f2 exchange, as also shown in Fig. 54.

The ηπ intensity can be well described with four amplitudes, either a2/P or a2/f2, f2/f2, f2/P or P/P. The inclusion
of either bottom-P amplitude is necessary to describe the forward region, but the data do not show a clear preference
between f2/P and P/P. Fig. 55 compares the asymmetry intensity A(m) to the fitted model. The existence of a nonzero
asymmetry is clear. The η′π data are consistently described by the a2/P, a2/f2, f2/f2, and P/P amplitudes. The P/P
contribution is necessary to describe the data and is an indication of the large gluon impact on the η′π system, which
relates to the existence of hybrid mesons. This result is consistent with exchange degeneracy breaking between a2 and f2
in η′π production.

Additionally, the double-Regge amplitude model contains an infinite number of partial waves and hence, these
cannot be directly matched to the truncated waves from COMPASS. However, both the truncated partial waves from
COMPASS and those from the partial wave expansion of the Regge exchanges can be reconciled by performing an analysis
on the theoretical amplitudes constrained to the same number of partial waves employed by COMPASS. Hence, once
the double-Regge regime is reached, it is important to study the full amplitude rather than a truncated partial wave
decomposition.

4.7. Finite energy sum rules

In the previous sections, we provided models for Regge amplitudes and compared to experimental data. As was said, at
low energies the 2 → 2 amplitude is saturated by a finite number of s-channel partial waves, dominated by resonances,
while at high energies it can be represented by a sum over a finite number of leading Regge poles exchanged in the crossed
channels. Both are representations of the same analytic amplitudes, so they must be related by a dispersion relation,
which can be used to provide strong constraints on resonance parameters by imposing that the sum of partial waves at
low energies matches the Regge amplitude at high energies. The dispersion relations are written for invariant amplitudes
that are free of kinematic singularities. These are four in pseudoscalar photoproduction and two in πN scattering. We will
denote generically those amplitudes as Ai and refer to [615,616,674] for their definition and their relation to observables.
For πN scattering, where the s- and u-channel both represent the πN → πN reaction, the Ai have definite parity in the
variable ν = (s − u)/2.
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Fig. 54. Forward (left) and backward (right) intensities as defined in Eq. (90) for the top-a2 and top-f2 amplitudes, respectively. Solid lines correspond
o ηπ and dashed to η′π . Each theoretical intensity is normalized to its value at m = 2.1 GeV. In circles and diamonds we show the experimental
ata arbitrarily rescaled. Uncertainties for the forward η′π intensity are very large, almost exhausting the plot, and are therefore not shown.

Source: Figures adapted from [62].

Fig. 55. Forward–backward intensity asymmetry as defined in Eq. (89) for ηπ (left) and η′π (right).

Fig. 56. Contour integration in the ν = (s − u)/2 plane for the πN FESR. The contour across the positive real axis accounts for the integral over
Im Ai(ν, t) in the resonance region. At large Λ, the amplitude is saturated by a finite number of Regge poles, so that the integral over CΛ can be
analytically computed.
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Fig. 57. (left) Differential cross sections for π+p (red) and π−p (blue) elastic scattering at plab = 5 GeV. Data from [675]. Figure adapted from [615].
right) η photoproduction differential cross section computed from the low energy models using FESR. Data from [676] (circles) and [677] (squares).
ource: Figure from [674].

For each Ai, one writes an integral over the contour depicted in Fig. 56. This gives a relation between the imaginary
art of the amplitude integrated over the resonance region, and an integral evaluated at complex high energies. In the
atter, the amplitude is represented by Regge exchanges, and the integral can be computed analytically. Powers of ν can
e multiplied to the amplitude, in order to calculate higher moments. These relations are generally called finite-energy
um rules (FESR) and for pseudoscalar photoproduction they read

1
Λk+1

∫ Λ

0
Im Ai(ν, t)νkdν = β(t)

(Λ/s0)α(t)−1

α(t) + k
, (93)

here k ∈ Z. The r.h.s. of Eq. (93) includes the nucleon pole and the discontinuity above the πN threshold up to ν = Λ as
epicted in Fig. 56. The cutoff Λ should be chosen large enough that for ν ≳ Λ the amplitude is saturated by Reggeons.
n the r.h.s. of Eq. (93), a sum over the leading Regge poles is understood.

These relations between the low and high energy regimes can be exploited in different ways. One such way is to provide
urther constraints to the resonance parametrization using high energy data. Another use would be the prediction of the
ross section at high energies from the reactions at low energies.
As an example, in Fig. 57 the differential cross section for π0 photoproduction at high energies is compared with

redictions based on FESR. The low-energy amplitude is calculated from the partial waves extracted by SAID [678].
nalogous application of FESR to η photoproduction [616], using the partial wave from η-MAID [679]. This study revealed a
iscrepancy between data and predictions in the forward −t < 0.25 GeV2 region, which was traced to the A4 amplitude. In
his region indeed the various PWA extractions available in the literature have strong disagreements, and other constraints
ike the one discussed here can be crucial to resolve the issue.

When precise data in the high energy regime are available, the Regge couplings βi(t) can be determined as explained
n the previous section and both sides of Eq. (93) can be compared. In the case of πN scattering, we observed an excellent
greement in all invariant amplitudes for both isospin channels [615]. The relation between the pattern of zeros in the
ow-energy and high-energy regimes is made apparent thanks to the FESR. For instance, the l.h.s. of Eq. (93) for the
harged exchange amplitudes helicity nonflip and flip vanish at t = −0.1 and −0.5 GeV2 respectively, which correspond
o zeros of the ρ exchange residues. The zero in the nonflip amplitude implies that the elastic π+p and π−p cross sections
oincide at that value of t (cf. Fig. 57 left panel), while the zero in the flip amplitude produces a dip in the π−p → π0n
ross section.
The very good agreement of both sides of the FESR allowed us to reconstruct the real part of the amplitudes via the

ispersion relation

Ai(ν, t) =
1
π

∫
∞

0
dν ′ Im Ai(ν ′, t)

(
1

ν ′ − ν
±

1
ν ′ + ν

)
, (94)

here the relative sign depends on the parity properties of Ai. In Ref. [615], the imaginary parts of the amplitudes in
Eq. (94) were taken from SAID in the low energy region and smoothly continued to the Regge parametrization matching
the data and satisfying the FESR. The resulting real part of the amplitudes reconstructed from Eq. (94) is in excellent
agreement with the original real part from the SAID analysis, cf. Fig. 58. This result exemplifies how one can determine the
complete amplitudes in the complex plane by only fitting its imaginary part on the real axis, together with an appropriate
description of the high energy region with Regge poles.

In pion photoproduction, the situation is more complicated. The simultaneous inclusion of all three isospin channels
leads to 12 invariant amplitudes. In Ref. [674] we computed the l.h.s. of the FESR using five independent partial wave
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Fig. 58. (left) Illustration of FESR in Eq. (93): The Regge parametrization is equivalent to the average of the imaginary part of the amplitude. (right)
The real part of the amplitude reconstructed from the dispersion relation in Eq. (94) (dashed) matches the original real part from SAID (solid) [678].
ource: Figures adapted from [615].

nalyses in the resonance region. We then performed a global fit of the high energy data constrained by the FESR. The
nclusion of Regge daughters was necessary to accommodate both the data and the features of the FESR. Finally our
olution involves the minimum Regge content in each amplitude: A leading Regge pole, whose trajectory is constrained
round the expected values, and a second subleading term in the natural exchange amplitudes. The latter allowed us to
atch the position of zeros in the two sides of the FESR, and to describe the high-energy observables.

. Summary

Many new and unexpected hadrons have been discovered in the last twenty years. To fully exploit the potential of
resent and future high-statistics datasets, one must combine knowledge of reaction theory, hadron phenomenology, and
ata analysis. The ultimate goal of all this is to reduce model dependence as much as possible. In this respect, machine
earning techniques have the potential to greatly contribute towards achieving this goal.

Since its foundation in 2013, the Joint Physics Analysis Center (JPAC) has focused its research on developing the
ecessary tools to tackle some of the many open challenges in hadron spectroscopy. JPAC has contributed to understand
everal aspects of the hadron spectrum and of resonance production, as well as of three-body dynamics.
Continuing this work in close cooperation with experimental collaborations will allow to improve the level of rigor

n how to assess the properties of resonances in QCD, and eventually to understand why the microscopic constituents of
atter arrange themselves into the rich picture one observes in nature.
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