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Abstract—We present a stylized model with feedback
loops for the evolution of a population’s wealth over
generations. Individuals have both talent and wealth: talent
is a random variable distributed identically for everyone,
but wealth is a random variable that is dependent on the
population one is born into. Individuals then apply to a
downstream agent, which we treat as a university through-
out the paper (but could also represent an employer) who
makes a decision about whether to admit them or not. The
university does not directly observe talent or wealth, but
rather a signal (representing e.g. a standardized test) that
is a convex combination of both. The university knows the
distributions from which an individual’s type and wealth
are drawn, and makes its decisions based on the posterior
distribution of the applicant’s characteristics conditional
on their population and signal. Each population’s wealth
distribution at the next round then depends on the fraction
of that population that was admitted by the university at
the previous round.

We study wealth dynamics in this model, and give con-
ditions under which the dynamics have a single attracting
fixed point (which implies population wealth inequality
is transitory), and conditions under which it can have
multiple attracting fixed points (which implies that pop-
ulation wealth inequality can be persistent). In the case in
which there are multiple attracting fixed points, we study
interventions aimed at eliminating or mitigating inequality,
including increasing the capacity of the university to admit
more people, aligning the signal generated by individuals
with the preferences of the university, and making direct
monetary transfers to the less wealthy population.

Index Terms—Wealth Dynamics, Feedback Loops, Col-
lege Admissions, Fairness, Interventions for Fairness

This work was supported in part by NSF grants CCF-1763307 and
FAI-2147212 and a grant from the Simons Foundation.

I. INTRODUCTION

The wealth of a population evolves over generations

as a function of the opportunities available to it. Op-

portunities available to a generation depend not only

on their talent, but also on the wealth of the previous

generation. In such a dynamical system, the initial wealth

of a population determines how wealth evolves and what

it will be in the limit. Understanding this system can

help illuminate when and why inequalities can arise and

persist.

In this paper we define and analyze a simple,

mathematically-tractable model for this feedback system,

before considering possible interventions to make its

behavior more equitable. To discuss the main conclu-

sions of our paper, we first need to provide a sketch

of our model. Individuals are divided across multiple

populations, and have both a type (an abstraction of

talent) and a wealth. Within a single population, the

distribution of wealth and types are given by Gaussians

with known means and variances. Types are distributed

identically across populations, but each population has

its own distribution of wealth. An individual from

a particular population is sampled by sampling their

type T from the (universal) type distribution, and their

wealth W from the wealth distribution particular to

their population. An individual then generates a signal

S = βT + (1 − β)W , i.e., some convex combination

of their wealth and type. This signal could represent

e.g. an individual’s score on a standardized test, or the

rating that results from an interview. Here we allow that

the signal might have a dependence on wealth rather

than just type because of the indirect effects it can have
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on evaluations: for example, the ability to engage in

additional test preparation. Downstream, a university1

observes the signal, and forms a posterior belief about

the applicant’s type and wealth. This signal conflating

wealth and type is the only information the university gets.

It gets no additional information about the wealth or type

of an individual except through the signal. The university

seeks to select individuals for whom another convex

combination αT + (1 − α)W exceeds some threshold

τ , and so selects exactly those applicants for whom

E[αT + (1−α)W |S] ≥ τ . Here again we allow that the

university might have an explicit preference for a mixture

of wealth and type (and not purely for type). This might

represent e.g. a desire for full tuition payments or future

alumni donations, or a more nebulous desire for “culture

fit” or for skills associated with wealth (e.g. students

who can walk on to the sailing or squash team). For

each population we then let the mean wealth of the next

generation be a non-decreasing function of the fraction

of people admitted to the university at the previous round.

We also assume that the distribution of types (or talent)

remains unchanged over generations and is identical for

all individuals, independent of their population.

First, we consider the fixed points of these wealth

dynamics. If there is only a single fixed point (and

the dynamics converge to it), this implies that wealth

inequality across population groups is transitory, and that

over time it will equalize (as the mean wealth of all

populations move to the single attracting fixed point). On

the other hand, if there are multiple fixed points of the

wealth dynamics, then wealth inequality can persist, with

different populations “stuck” at different fixed points. We

regard the existence of multiple fixed points for different

populations as unfairly propagating inequality, since in

our model we assume that both populations have the

same type distribution. Our focus is on understanding the

conditions under which such unfairness can arise, and

ways of mitigating it with a limited budget.

We give conditions under which the dynamics corre-

spond to a contraction map and have a single fixed point

(implying that wealth inequality is transitory). These

conditions in particular include the case when α = 1 —

i.e. when the university is selecting entirely based on

inferred type. On the other hand, there are other situations

(in which, necessarily the university places some weight

1Throughout this paper we describe the downstream agent as
a university admitting students. However we could also view the
downstream agent as an employer hiring employees, or any other
agent allocating opportunities based on evidence that conflates talent
and wealth that have effects on the long-term wealth of the selected
individuals.

(1−α) > 0 in its objective on wealth) in which case there

can be two attracting fixed points (and a third unstable

fixed point), which can result in persistent inequality

absent intervention: one population can be “trapped” in

the less wealthy fixed point, while the other one is in

the more wealthy fixed point. We also briefly consider

an extension of our model in which the university is

additionally bound by a capacity constraint in setting

its admissions rule. Technically this corresponds to a

modification of the decision rule of the university using

a threshold on the posterior expectation of each student

that can change from round to round as a function of

the wealth of the two populations. We remind the reader

that in all of the cases discussed, the preferences of

the university as parameterized by α do not necessarily

correspond to the degree to which the signal conflates

type and wealth, which is parameterized by β.

We then turn our attention to interventions. We focus

our study of interventions on ways to move a population’s

wealth from the lower fixed point to the higher fixed

point, or to modify the dynamics so that there is a single

attracting fixed point (which leads to wealth equality).

We consider three types of interventions:

1) Increasing The Capacity of the University: We

consider what happens when the university is able

to admit more applicants (by lowering its threshold

τ ). We show that doing this has positive effects:

either it shifts the dynamics from the regime in

which there are multiple fixed points to the regime

in which there is a single fixed point (thus leading

to long-term wealth equality), or it raises the wealth

of both attracting fixed points.

2) Changing the Design of the Signal S: We con-

sider what happens if we are able to better align the

signal the university receives with the university’s

objective function (by shifting β closer to α —

i.e. by having the signal weight type and wealth

more similarly to how they are weighted in the

university’s objective function). We show that as

β is moved closer to α the disparity between the

two fixed points is reduced. Notably, and perhaps

counter-intuitively, making the signal depend more

on type (by increasing β) is not always the way

to reduce disparities (despite the fact that type is

distributed identically across populations).

3) Direct Subsidies to the Disadvantaged Popula-

tion: Finally we consider making direct financial

subsidies to the disadvantaged population, to shift

them from the lower wealth attracting fixed point

to the basin of attraction of the higher wealth
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fixed point (from which they will naturally proceed

to the higher wealth fixed point without further

intervention). We consider a parameterized family

of objective functions that the designer might have,

that differ in how they relatively weight the cost of

the subsidy with the wealth of the disadvantaged

population, and in how they discount time. Within

this class of interventions, we focus on two options:

the most aggressive “1-shot” option makes a large

1-shot payment to directly increase the wealth of

the disadvantaged population to move them to the

basin of attraction of the wealthier fixed point.

The least aggressive “limiting” option makes the

minimal payment per round that is guaranteed to

cause eventual convergence to the wealthier fixed

point. We derive conditions under which the “1-

shot” option is preferred by the designer over the

“limiting” option and vice versa.

A. Discussion and Limitations

For mathematical tractability, we study a simple

stylized model, which should be viewed as a first cut

at attempting to model wealth inequality rather than a

faithful description of the full problem. For example,

we have assumed that the university has access to an

applicant’s wealth only indirectly via inferences that can

be drawn from their test score and population. In practice,

a university has a number of other signals at their disposal.

One should interpret the wealth populations in our

model as equivalence classes induced by the information

available to them at admissions time. Similarly, we have

modeled individual talent via a static “type” distribution,

when in fact talent is multi-dimensional and not static

(and might depend on opportunities that different popu-

lations might have different access to prior to university

admissions). We have not modelled university capacity

constraints, and this allows us to treat each population

independently of the others.

Nevertheless, several qualitative takeaways emerge

from our modelling that we think are interesting: for

example, in our model, the persistence of inequality

(multiple attracting fixed points) depends on the university

using a selection rule that intentionally takes into account

wealth, rather than just talent (since if the university

places α = 1 weight on type in our model, there is only

a single fixed point, even when the signal nontrivially

conflates type and wealth (β ∈ (0, 1)) . This suggests that

changes in admission policies that reduce the focus on

wealth (for example, switching to need blind admissions

and reducing or eliminating legacy admissions) might

have beneficial long term effects. Similarly, we find that

aggressive interventions (in our model, that aim to in

one shot lift the lower wealth population to the basin

of attraction of the higher wealth fixed point) are often

the most cost effective in the long run, compared to

more modest interventions that would accomplish the

same goal after k > 1 rounds. On the other hand,

incremental interventions become optimal when society

heavily discounts the future, suggesting that institutions

that are able to formulate longer term goals (e.g. non-

profit universities with large endowments) may be in a

better position to take aggressive action to combat wealth

inequality.

Finally, in most of our paper we assume that the

university does not have a binding capacity constraint (i.e.

it can admit all of the students that it estimates would

lead to positive utility). We briefly consider the extension

of our model in which the university also has a binding

capacity constraint in Appendix A. However we leave the

study of interventions in the setting of binding capacity

constraints to future work.

B. Related Work

Our paper is related to economic models of inequality,

which date back to [1] and [2]. For example, [3] and [4]

study two stage models in which the existence of self-

confirming equilibria can cause inequality to be persistent

even when populations are ex-ante identical.

More recently, the computer science community has

begun studying dynamic models of fairness. [5] study

the costs of imposing fairness constraints on learners in

general Markov decision processes. [6] study a dynamic

model of the labor market similar to that of [3], [4] in

which two populations are symmetric, but can choose to

exert costly effort in order to improve their value to an

employer. They study a two stage model of a labor market

in which interventions in a “temporary” labor market can

lead to high welfare symmetric equilibrium in the long

run. [7] study a two round model of lending in which

lending decisions in the first round can change the type

distribution of applicants in the 2nd round, according to

a known, exogenously specified function. [8] study a

dynamic model where in each round, strategic individuals

decide whether to invest in qualifications and the decision-

maker updates his classifier that decides which individuals

are qualified; they characterize the equilibria of such

dynamics and develop interventions that lead to better

long-term outcomes. [9] study a model in which decisions

over individuals and populations are made along a multi-

layered pipeline, where each layer corresponds to a

different stage of life. They consider the algorithmic

problem faced by a budgeted centralized designer who
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aims to intervene on the transitions between layers to

obtain optimally fair outcomes, when such modifications

are costly. [10] study a two stage model of affirmative

action in which a college may set different admissions

policies for an advantaged and disadvantaged group,

but a downstream employer makes hiring decisions that

maximize their expected objective given their posterior

belief on student qualifications (that depend on the

college’s policies). [11] study an equilibrium model of

criminal justice in which two populations with different

outside option distributions make rational decisions as a

function of criminal justice policy; they show that policies

that have been proposed with equity considerations

in mind (equalizing false positive and negative rates)

actually emerge as optimal solutions to a social planner’s

optimization problem even without an explicit equity goal.

[12] studies a firm whose goal is to incentivize employees

to exert effort via a noisy and distorted performance

measure that may not align perfectly with the firm’s own

utility: this is similar to our setting in that the noisy signal

observed by our university does not align perfectly with

the university’s objective.

We highlight two closely related papers. [13] also study

a model of inter-generational wealth dynamics across

many rounds, in which both wealth and talent play a

role in success, as a function of opportunities that can

be allocated to a limited portion of the population. Like

us, [13] use college admissions as a running example of

an institution allocating the opportunities, and like us,

study a model in which admissions to college plays the

role of determining wealth increase or decrease from one

generation to the next. Our models differ in a number of

specifics, but the primary difference between these two

works is that [13] study the optimal policy for a very

patient institution interested in maximizing its long-run

payoff, and show that it recovers a form of affirmative

action, preferentially offering opportunities to the less

wealthy population so that it can reap the benefits of

their resulting increased wealth in future generations.

In contrast, we study institutions that are myopic: the

university makes decisions based only on the current

distribution of wealth and type, but is not trying to

optimize for long-term outcomes; it does not reason

about how its decisions affect future applicants. Another

important distinction is that in our model, neither wealth

nor types are observed; instead, they have to be inferred

through Bayesian inference from a signal that conflates

both, while in [13] ability is observed and directly used in

decisions. We view these as the most salient differences,

but those are not the only distinctions between the two

works. For example, [13] consider a setting where an

agent’s circumstance (which in our setting could be seen

as wealth) is binary (advantaged or disadvantaged). The

circumstance or wealth in our setting here is instead in

a continuous range: even in the same “disadvantaged”

population, different agents can have a continuum of

differing levels of wealth.

II. PRELIMINARIES

Definition 1 (Attracting fixed points). Let f : R → R be

a real-valued function and let x∗ be such that f(x∗) = x∗.

We call x∗ a fixed point of f . Further, let at(x) be the

sequence defined by a0 = x and at+1 = f(at); we say

that x∗ is attracting for x if and only if at(x) converges

to x∗.

Claim 1 (Attracting fixed points). Let f be a real-valued,

continuous, non-decreasing function such that x∗ is a

fixed point of f . If f(x) > x for all x ∈ [a, x∗), x∗

is attracting on [a, x∗). Similarly, if f(x) < x for all

x ∈ (x∗, b], x∗ is attracting on (x∗, b].

Proof. Let x ∈ [a, x∗). Let at(x) be the sequence defined

by a0 = x and at+1 = f(at). a1 = f(a0) > a0,

Since f is non-decreasing a2 = f(f(a0)) ≥ f(a0), but

f(x) > x ∀x ∈ [a, x∗), so this inequality is in fact strict,

i.e a2 > a1. Note that by induction, we have for all t that

x∗ = f(x∗) ≥ at+1(x) = f(at(x)) > at(x) . . . > a0;

hence at is increasing and at ∈ [a, x∗] for all t. In

particular, at is a convergent sequence with a finite limit

in [a, x∗]. Now, since f(x) > x for all x < x∗, x∗ is f ’s

unique fixed point on [a, x∗]. Because f is continuous,

we must have limt→+∞ at+1 = limt→+∞ f(at) =
f (limt→+∞ at), i.e. the limit l must satisfy f(l) = l.
The only point on [a, x∗] that satisfies this condition is

x∗, yielding the first part of the result. A similar argument

holds for the second part of the proof.

III. MODEL

We consider a university that has a non-atomic set of

applicants from two different sub-populations (or groups),

denoted 1 and 2, and must decide which applicants to

admit. Each applicant has a type T , where the types are

random variables drawn i.i.d. from a known distribution

D; we assume that the distribution of types is the same

for both groups. Further, each applicant also has a wealth

Wi; wealth is drawn i.i.d. from a known distribution Wi

which may depend on the applicant’s group i. We assume

that wealth and types are drawn independently of each

other.
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a) University’s admission decisions: The university

is interested in admitting applicants based on both their

type and wealth, and get some benefit

αT + (1− α)W

for admitting an applicant with type T and wealth W ,

for some parameter α ∈ [0, 1] that controls how much it

is interested in type versus wealth. The university also

incurs a cost of τ for each applicant they admit. Thus,

the university’s utility for admitting an applicant with

type T and wealth W is given by

u(T,W ) = αT + (1− α)W − τ.

The university, however, does not have access to T and

W directly. Instead, it can only see a signal or a score S
(e.g. in the form of a standardized test), which conflates

both and does not distinguish between the applicant’s

type and wealth. We assume that this score S is a convex

combination of W and T and is written as

S = βT + (1− β)W,

for some known β ∈ [0, 1]. This dependency of the score

on wealth rather than just type is motivated by the fact

that practically, individuals of higher socio-economic

status may have access to better preparation for tests

such as the SAT, and may be able to take the test several

times until they get a satisfactory score.

The university then performs a Bayesian update to

compute its expected utility for admitting each student

based on solely observing S and the distributions (but

not realizations) of type T and wealth W :

ET,W [u(T,W )|S] = ET,W [αT + (1− α)W |S]− τ.

The university tries to maximize its expected utility across

all admission decisions for all students. It is immediate

that to do so, it must admit a student if and only if

ET,W [u(T,W )|S] ≥ 0, i.e. if and only if

ET,W [αT + (1− α)W |S] ≥ τ.

b) Wealth dynamics: We are interested in under-

standing the long-term dynamics of a process where the

university’s decisions (made as described above) affect

the individuals’ future attributes

2

. We consider a discrete time horizon, in which at each

time step t ∈ Z
+, the university’s decisions shapes the

distribution of wealth in each group in time step t+ 1.

In particular, we assume that the expected wealth µt
i of

group i in step t + 1 is the fraction of group i that is

admitted by the university at time step t. I.e., we write

µt+1
i = PS [ET,W [αT + (1− α)W |S] ≥ τ ] (1)

This is motivated by the fact that students that are

admitted to competitive universities are expected to reach

better life outcomes and accumulate more wealth. The

higher the fraction of admitted students in a population,

the better the life outcomes of this population, and the

higher its future wealth.

In the rest of the paper, we make the following

assumptions on the functional form of the type and wealth

distributions:

Assumption 1. T ∼ N
(

0, γ2
)

. The initial wealth at

time 0 satisfies µ0 ∈ [0, 1], and Wi ∼ N
(

µt
i, σ

2
)

at time

step t for a fixed constant σ.

Note that the type can be centered around 0 without

loss of generality, by changing the value of τ used by the

employer by the corresponding amount. The assumption

µ0 ∈ [0, 1] is also without loss of generality, and simply

renormalizes the average wealth of a group to be between

[0, 1], so long as we consider populations with bounded

wealth. Note that with our assumptions the mean wealth

of each group always stays in the range [0, 1] although the

sampled wealth of individuals can fall outside this interval.

Finally, it may be worth noting here that wealth has no

effect on type. We take this point of view to highlight

that disparities can arise across different populations even

in the case where there are no type discrepancies across

populations.

IV. WEALTH DYNAMICS AND PROPERTIES

We note that the dynamics of each group only depend

on the decisions made by the university within that group.

Therefore, we can treat groups independently. In this

2At a high level, our paper studies the dynamics that result when
a learning agent makes decisions from optimal statistical decisions,
and those decisions feed back into the data distribution at the next
round. One could adapt the current framework beyond university
admissions; e.g., to model wealth feedback loops via disparate access
to job opportunities–in which case the learner would be an employer
instead of a university. Here, we assume that our learner is able to make
Bayes optimal prediction, but we can also think of this assumption as
a simple abstraction for more complex machine learning systems; e.g.,
a bank which uses machine learning to make loan decisions, which
affects different populations’ abilities to build wealth.
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section, we focus on a single group at a time, and drop

the dependencies on i in our notations for simplicity. We

show that several attracting fixed points can arise from our

dynamics; in particular, there are regimes of parameters

under which there is a low wealth fixed point that groups

with initially low wealth converge to, and a high wealth

fixed point that groups with initially high wealth converge

to. In Section V-C, we consider interventions that apply

to more general update functions that the ones described

in this Section, so long as they have similar fixed point

properties.

A. Computing the Wealth Update Rule

We start by characterizing the joint distributions of the

type T , the wealth W , and the score S.

Claim 2. Let µ � E[W ]. We have that (T, S) forms a

bivariate Gaussian distribution with mean (0, (1− β)µ)
and covariance matrix

[

γ2 βγ2

βγ2 β2γ2 + (1− β)2σ2.

]

Similarly, (W,S) forms a bivariate Gaussian distribution

with mean (µ, (1− β)µ) and covariance matrix
[

σ2 (1− β)σ2

(1− β)σ2 β2γ2 + (1− β)2σ2.

]

The proof is provided in Appendix B-A. This allows

us to compute the update function that maps the wealth

of a group in the current round, µt, to the wealth of that

same group in the next round, µt+1:

Lemma 1. At every time step t, we have

µt+1 = 1− Φ
(

K (α, β, γ, σ)
(

τ − (1− α)µt
))

,

where K (α, β, γ, σ)) �

√
β2γ2+(1−β)2σ2

αβγ2+(1−α)(1−β)σ2 and Φ is

the cumulative density function of a standard Gaussian.

We denote the update rule function

f(x) � 1− Φ (K (α, β, γ, σ) (τ − (1− α)x)) . (2)

For simplicity of notations, we omit the dependency

of f in the parameters of the problem when clear from

context. When not, we explicitely write the dependency

of f in the parameters of interest. The proof of Lemma 1

is mostly algebraic, and is provided in Appendix B-B.

B. Fixed Points and Convergence of the Dynamics

We can now use the closed-form expression for the

update rule to study the properties of the wealth dynamics.

In this section, we bound the number of fixed points of

our dynamics, provide properties of these fixed points,

and characterize which fixed point each initial wealth

converges to. We start by noting that the update rule has

a simple shape. Indeed:

Claim 3. f(x) is continuous and increasing in x. Further,

f is convex on [0, x∗] and concave on [x∗, 1] where

x∗ =

⎧

⎪

⎨

⎪

⎩

0 if τ ≤ 0,
τ

1−α if 0 < τ < 1− α,

1 if τ ≥ 1− α.

The proof of the above claim is given in Appendix B-C.

We now use the above properties on the shape of f to

derive properties of its fixed point. First we remark that f
has at least one fixed point, since f(0) > 0 and f(1) < 1,

and f is continuous. Now, note that the number of fixed

points of f is also upper-bounded:

Lemma 2. Suppose 0 < τ < 1− α, then f(x) = x has

at most 3 solutions for x ∈ [0, 1]. If f has 3 fixed points

z1 < z2 < z3, it must be that z1 < τ
1−α < z3. If τ ≤ 0

or τ ≥ 1− α, f(x) = x only has a single solution for

x ∈ [0, 1].

The proof is provided in Appendix B-D. Lemma 2

has direct implications for disparities across groups

with different starting expected wealth. In particular, the

number of fixed points of f determines whether different

groups must converge to equal wealth (the case in which

there is only a single fixed point) in the long-run or

whether there are cases in which wealth inequality is

persistent (the case in which there are multiple fixed

points). We discuss these implications in more details in

the rest of this section.

a) The Case of a Single Fixed Point: We now study

conditions under which f has single vs. multiple fixed

points. We first consider the case of a single fixed point.

In this case, we remark that the single fixed point has

the following property:

Claim 4. If z is the single fixed point of f , then z is

attracting on [0, 1].

Proof. Since f(0) > 0, f(1) < 1, and f is continuous

and has a single fixed point z, it must be that f(x) >
f(z) = z for x < z and f(x) < f(z) = z for x > z.

Applying Claim 1 concludes the proof.

This implies in particular that when f has a single fixed

point z, wealth dynamics converge to this fixed point

no matter what the starting wealth was. This means in

particular that there are no long-term disparities between

populations of different initial socio-economic statuses

(though they may take different amounts of time to reach

the same wealth), i.e. the dynamics self correct for initial
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(a) Low initial wealth

(b) High initial wealth

Fig. 1: A wealth update function with a single fixed point,

for α = 0.1, β = 0.6, γ = 0.4, σ = 1.1, τ = 0.2. The

update function is plotted in blue, its single fixed point

in red, and the wealth dynamics induced by the update

function in green. Sub-figure (a) considers dynamics

starting at an initial wealth of 0.2 while sub-figure (b)

considers dynamics starting at wealth 1.0.

wealth disparities. Figure 1 shows an instantiation of a

wealth update functions with a single fixed point and

the corresponding wealth dynamics (in green); the plots

illustrate convergence of the dynamics to the single fixed

point starting both from an initially low wealth (Figure 1

(a)) and from an initially high wealth (Figure 1 (b)).

We note that Lemma 2 already implies that there

exist interesting situations in which the dynamics have

a single attracting fixed point and wealth dynamics are

self-correcting. The first one is when τ is small (τ < 0);

i.e., the university is not very selective in its admissions.

Intuitively, this leads to most individuals from any group

being admitted (almost) independently of their starting

wealth, which allows even economically disadvantaged

groups to build wealth over time. The other situation

deriving from Lemma 2 arises when τ > 1 − α. This

can arise for two reasons: first, is the university is very

selective and sets high values of τ , wealth becomes

insufficient to qualify an individual for admission (as

then (1− α)E[W |S] ≤ 1− α < τ ); an agent must have

sufficiently high (inferred) type to be admitted, which

helps reduce disparities due to wealth. This can also arise

when α is large and the university is mostly interested in

type over wealth. Intuitively, in this case, the university

pays significant attention to their posterior belief on the

type of an individual, which facilitates equalizing the

treatment of groups of different wealth since they have

the same type distributions; while the university cannot

observe type directly, they discount for average wealth

more (by a factor of (1− α)µ) hence correct for wealth

disparities more as α is smaller.

Below, we provide an additional condition under which

f has a single fixed point:

Claim 5. If K(α, β, γ, σ) ≤
√
2π

1−α , f is a contraction

mapping and has a unique attracting fixed point.

Proof. This immediately follows from f ′(x) =
K(1−α)√

2π
exp

(

−K2(τ − (1− α)x)2/2
)

and from

exp
(

−K2(τ − (1− α)x)2/2
)

≤ 1 (with equality at

x = τ/(1 − α)). Note that f(0) > 0 and f(1) < 1
so the fixed point z must satisfy f(x) < z if and only if

x < z and must be attracting.

We note that K(α, β, γ, σ) =

√
V ar(S)

Cov(D,S) where D =

αT + (1−α)W . This implies that, holding the college’s

objective function (i.e., α) constant, the better the scoring

rule aligns with the university’s admissions criteria (i.e. as

the covariance between D and S increases), the smaller K
becomes. This makes the condition that f is a contraction

mapping with a single fixed point easier to satisfy, which

in turn causes wealth dynamics to self-correct for initial

inequality. When α → 1, the condition is always satisfied,

and f has a single fixed point. This may not be surprising

in that in this case the university only cares about type in

admissions, and the university requires a higher threshold

on scores for wealthier populations; this helps reduce

disparities across populations with disparate wealth.

b) The Case of Multiple Fixed Points: We first

characterize which fixed points are attracting when

multiple points arise, and which regime of initial wealth

lead to which fixed points. We focus on the case of three

fixed points, as the case of two fixed points is a corner

case than can only arise if f(x) is tangent to Id(x) = x
at one of the fixed points.3

3Suppose this is not the case. f(0) > 0 hence f(x) > x before the
first fixed point. Because it is not tangent to the identity line, it must
then be that f(x) < x between the first and the second fixed point.
Similarly, it must then be that f(x) > x after the second, last fixed
point. This contradicts f(1) < 1.
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Claim 6. Suppose f has 3 fixed points, denoted z1 <
z2 < z3. Then z1 is attracting for [0, z2) and z3 is

attracting for (z2, 1].

Proof. This follows from the proof of lemma 2. Indeed,

let g(x) = f(x)−x, we have that g(0) = f(0) > 0, then

g must decrease below 0, increase above 0, and decreases

below 0 again as g(1) = f(1)− 1 < 0. This implies that

f(x) > x for x < z1 and x ∈ (z2, z3), while f(x) < x
for x ∈ (z1, z2) and x > z3.

In particular, when there are three fixed points, a

population that starts with low wealth will converge to

the first fixed point, while a group with large initial

wealth will converge to the third fixed point. In this

case, initial disparities in wealth persist in the long term,

and interventions are needed for different populations to

obtain equitable long-term wealth outcomes. Figure 2

shows a wealth update function with three fixed points

and the corresponding dynamics for two different starting

points. We note that starting at low wealth leads to

convergence to the first and lowest fixed point, while

starting at relatively high health leads to convergence to

the highest fixed point. The figure illustrates how wealth

disparities can propagate and amplify over time.

We note that such situations can only arise in the

regime in which 0 < τ < (1− α). In particular:

Claim 7. Suppose K(α, β, γ, σ) >
√
2π

1−α and τ = 1−α
2 .

Then f has 3 fixed points.

Proof. In this case, note that x∗ = τ
1−α = 1

2 . Further,

we know that

f(x∗) = 1− Φ (K (α, β, γ, σ) · (τ − (1− α)x∗))

= 1− Φ(0)

= 1/2,

implying that x∗ = 1/2 is a fixed point of f . Further,

f ′(x∗) =
K(1− α)√

2π
> 1,

hence f(x) < x in a small neighborhood (x∗ − ε, x∗)
and f(x) > x in a small neighborhood (x∗, x∗ + ε). By

continuity of x and the fact that f(0) > 0, f(x) = x
must have a solution on [0, x∗). Similarly, since f(1) < 1,

f(x) = x must have a solution on (x∗, 1].

Note that because f is continuous in τ , f must have

three fixed points for any τ in a neighborhood of 1−α
2 . I.e.,

there exists a continuous range of values of τ for which

f has three fixed points, showing that such situations are

not a corner case of our framework, unlike when f has

two fixed points.

(a) Low initial wealth

(b) High initial wealth

Fig. 2: A wealth update function with 3 fixed points,

for α = 0.1, β = 0.95, γ = 1.4, σ = 1.1, τ = 0.5. the

update function is plotted in blue, its fixed points in red,

and the wealth dynamics induced by the update function

in green. Sub-figure (a) considers dynamics starting at

an initial wealth of 0.5 while sub-figure (b) considers

dynamics starting at an initial wealth of 0.7.

Remark 1. There is a gap between the conditions given

in Claim 5 and Lemma 2 under which a single fixed

point arises, and the condition given in Claim 7. In

particular, we remark that even if f is not a contraction

mapping and K >
√
2π

1−α , or when 0 ≤ τ ≤ 1 − α, it

may still have only a single fixed point. To investigate

how often 3 fixed points can arise, we picked a uniform

grid of parameter values (α, β, γ, σ, τ) ∈ [0, 1]5 and

investigated what fraction of the parameters that satisfy

either 0 ≤ τ ≤ 1− α or K >
√
2π

1−α actually lead to an

update rule with three fixed points. We found that this

was the case for roughly 45 percent of the values we

explored, implying the existence of a significant range

of parameters for which there are disparities in the long

term wealth of different populations.

In Appendix A, we study an extension of these

dynamics when the university has a maximum capacity

on the number of students it can admit.
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V. INTERVENTIONS TO IMPROVE LONG TERM

POPULATION WEALTH

In this section, we consider different types of inter-

vention aiming at improving and equalizing population

wealth, when the wealth dynamics have multiple fixed

points (and so are not necessarily self correcting). We

consider three types of interventions: i) changing the

design of the admission rule used by the university, ii)

changing the design of the standardized test or scoring

rule that the university relies on, and iii) providing

subsidies to disadvantaged groups.

A. Changing the Admission Rule

Since in our model, it is admission to university that

confers a wealth advantage to the next generation, a

natural intervention is to increase the capacity of the

university, thereby admitting more people. Rather than

changing the objective function of the university (α),
we model this kind of intervention by decreasing the

university’s admissions threshold τ . We note that although

we do not explicitly quantify it, increasing the capacity

of a university will come at some financial cost, and so

this kind of intervention is not necessarily incomparable

to the direct subsidies we consider later.

The claim below characterizes how the fixed points of

f change when we change the value of τ . For the sake

of notation, we let f(., τ) be the update rule when the

chosen threshold is τ , and omit the dependencies of f
in the other parameters of the problem.

Theorem 1. Fix α, β, γ, σ. For a given admission thresh-

old τ , let z1(τ) < z2(τ) < z3(τ) be the fixed points of

f when all 3 exist. Let τ ′ < τ be such that f(., τ ′) has

3 fixed points, we have

z1(τ
′) > z1(τ) and z3(τ

′) > z3(τ),

but

z2(τ
′) < z2(τ).

Proof Sketch. The proof follows simply by showing that

the update function is decreasing in τ . In turn, decreasing

τ moves the update rule f “up”, which increases attracting

fixed points and decreases unstable ones. The full proof

is given in Appendix C-A.

In interpreting Theorem 1, we recall that only the first

and third fixed points z1 and z3 are attracting, and that z2
is unstable (has no points x for which it is attracting for

x 	= z2). Hence, if we are in a situation in which there

is persistent wealth inequality (multiple fixed points), we

find that if we can decrease the admissions threshold τ
of the university, then either:

1) We increase the wealth of both of the attracting

fixed points (and hence the wealth of both popu-

lations, irrespective of which attractive fixed point

they are at). By decreasing z2 we also reduce the

size of the attracting region [0, z2) of the lower

wealth fixed point, thus enabling poorer populations

to converge to the most desirable fixed point. Or

2) We move the dynamics to one in which there is only

a single fixed point, and hence eliminate wealth

inequality.

B. Changing the design of the scoring rule S

The college has to engage in inference about an

applicant’s type and wealth when β 	= α, because the

signal it receives does not align with its objective function.

What if we can modify the signal (by e.g. changing the

design of a standardized test) to more closely align the

signal with the college’s objective?

In this section we characterize how the fixed points of f
change when we change the value of β. We denote f(., β)
the update rule when the scoring rule uses parameter β,

while the other parameters of the problem remain fixed.

Theorem 2. Fix α, τ, γ, σ. For a given β, let z1(β) <
z2(β) < z3(β) be the fixed points of f when all 3 exist.

Suppose β < α and let β′ ∈ (β, α) be such that f(., β′)
has 3 fixed points, then

z1(β
′) > z1(β) and z3(β

′) < z3(β).

Similarly, if β > α and β′ ∈ (α, β), we have

z1(β
′) > z1(β) and z3(β

′) < z3(β).

Proof Sketch. The first part of the proof follows simply

by showing that the update function is increasing in β
for x < τ/(1− α) (where the first fixed point lies) and

decreasing in β as for x > τ/(1− α) (where the third

fixed point lies). In turn, increasing β < α towards α
move the update rule f “up” around the first fixed point

and “down” around the third fixed point, which increases

z1 and decreases z3. A similar argument holds for β > α.

The full proof is given in Appendix C-B.

Intuitively, one might suppose that to reduce wealth

disparities, we should redesign tests so as to make

them reflect type more strongly and wealth less strongly

(since types are distributed identically across groups). But

Theorem 2 shows that counter-intuitively, this need not

be the case4. Instead, what Theorem 2 shows is that in

4Even when β → 1, f may have three fixed points: by Claim 7, this
arises for example when K(α, 1, γ, σ) = 1

αγ
> 1−α

√

2π
and τ = 1−α

2
.

In this case, setting β = α surprisingly leads to better outcomes than
β = 1.
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order to reduce inequality, we want to move β towards α,

causing the signal to better reflect the objective function

of the college —- even when this results in reducing

the extent to which the signal reflects type5. Theorem 2

shows that moving β towards α always has the effect of

reducing wealth disparities. It either:

1) Increases the wealth of the less wealthy attracting

fixed point, and decreases the wealth of the more

wealthy attracting fixed point, thereby decreasing

the long term wealth disparity, or it

2) Shifts the dynamic to one that has only a single

fixed point, thereby eliminating long term wealth

disparities.

C. Direct Subsidies

We have thus far considered interventions that can

be applied by the college (admitting more students) or

a testing body (changing the design of the signal). In

this section, we take the point of view of a funding

body or governmental agency that can provide direct

monetary subsidies to populations. We generalize the

class of functions we study to include any function f
satisfying the following properties:

Assumption 2. f is continuous and increasing. Further,

f has three fixed points z1 < z2 < z3 with f(x) > x on

[0, z1] and [z2, z3] and f(x) < x on [z1, z2] and [z3, 1].

The above assumption captures the main properties of

our function f = 1 − Φ (K (α, β, γ, σ) (τ − (1− α)x))
when it has three fixed points and implies the same

attracting properties we established for z1, z2, and z3,

but also encompasses more general update rules that need

not result from the Gaussian inference process we have

studied thus far. We note that this allows us to study

general S-shaped function with diminishing returns at

both ends of the socio-economic spectrum. Such functions

model situation in which people of very low income or

very high income see little upward mobility (in the first

case because of a lack of access to opportunities, and in

the second case due to the fact that individuals of higher

income are rare), whereas middle income individuals

have significant opportunities to improve their wealth.

We denote by C(µ, t) the subsidy given to a population

with wealth µ at time step t. The wealth of a population

t+ 1 then depends of the wealth in time t as

µt+1 = f
(

µt + C(µt, t)
)

.

5Of course, if we can, we would prefer to increase the extent to
which the college values type rather than wealth, but to the extent that
we cannot do this, then we want to align the test with the college’s
objective.

In this setting, we consider interventions that allow a

population to reach beyond the second fixed point z2.

Once a population reaches wealth (even slightly) over z2,

their wealth naturally evolves to the highest attracting

fixed point z3 over time; i.e., wealth dynamics self-correct

for disparities with no intervention needed. For the same

reason, we only consider µ0 ∈ [z1, z2]; this is because

populations with µ0 < z1 will converge to z1 without

intervention, and we can start intervening once µ0 reaches

z1, while a population with µ0 > z2 will reach the best

long-term outcome (the highest fixed point, z3) on its

own. Therefore, from now on, we assume C(µ) = 0 for

all µ /∈ [z1, z2]. We can now formulate our centralized

designer’s objective, which is to minimize the following

loss function:

L(C) = λ

T (C)−1
∑

t=0

ρtC(µt, t)+(1−λ)

T (C)−1
∑

t=0

ρt(z2−µt),

where ρ, λ ∈ [0, 1), and T (C) = min{t s.t. µt ≥ z2}
is the first time step such that µt ≥ z2. Here ρ is a

discounting factor; the lower ρ is, the less the designer

cares about future as opposed to immediate outcomes.

The objective is a convex combination of two terms,

with weights controlled by λ. The first term consists

of the discounted monetary cost of the subsidies (the

sum goes up to time T (C) − 1, since after the wealth

of the population crosses z2, the subsidies cease. This

term represents a preference to spend less money on

direct subsidies. The second term consists of the sum

discounted difference between the target wealth z2 that

the intervention is aiming at, and the wealth of the

population at the current round. This term represents

a preference to quickly increase the wealth of the lower

wealth population. λ represents the relative strength of

these two preferences.

Note that z2 − µ0 is a constant term that does not

depend on the designer’s interventions, hence we will

equivalently aim to minimize

L(C) = λ

T (C)−1
∑

t=0

ρtC(µt, t)+(1−λ)

T (C)−1
∑

t=1

ρt(z2−µt),

where we drop the discounted difference between z2 and

the initial wealth µ0 at t = 0.

a) Algorithmically finding a near-optimal subsidy

function C(.): We note that in our setting, one may

discretize the space of possible costs and use dynamic

programming to find optimal interventions from each

possible starting point. However, doing so requires

carefully understanding the wealth update function f . In

practice, detailed knowledge of f will be hard to come
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by. For this reason, in the rest of this section, we will aim

for a “detail free” solution and consider a simple class

of constant subsidies and study how they can be applied

with minimal information about the wealth update f .

b) Constant Subsidies: In the rest of this section,

we consider the case in which C(µ) is constant in µ
for z1 ≤ µ ≤ z2. I.e. there exists C ∈ [0, 1] such that

C(µ) = C for all µ ∈ [z1, z2] and C(µ) = 0 otherwise.

We call these C-subsidy interventions. We qualify a C-

subsidy intervention as a k-shot intervention if it takes

k time steps under the subsidy to reach wealth (at least)

z2 when starting at wealth z1, i.e. if T (C) = k. Note

that different values of C may lead to the same number

of steps k such that µk ≥ z2, i.e. there may be several

values of C that qualify as a k-shot intervention for a

given value of k.

Our aim is to give guidelines on how to choose C
while using minimal information about the function f .

Here, we will encode this minimal information as a single,

real parameter ∆, defined as

∆ = max
x∈[z1,z2]

x− f(x). (3)

Intuitively, ∆ measures how difficult it is for a subsidy to

have an effect on wealth that propogates in the next round.

When ∆ → 0, we have that f(x) → x on x ∈ [z1, z2],
and investing a subsidy of C increases the population

wealth by C, since f(µt + C) → µt + C. However, we

have that for at least one value of µt, f(µt + C) =
µt + C − ∆, implying that when ∆ is large, a large

amount of the subsidy is lost in the next round, and

so its overall effect is small. If we want to guarantee

that our subsidies will eventually lift the lower wealth

population to the higher wealth fixed point independently

of its starting point, we need to consider subsidies in

which C > ∆.

Claim 8. Suppose C ≤ ∆. Then there exists a starting

wealth µ0 ∈ [z1, z2) such that µt < z2 for all t; i.e., µt

never reaches z2. On the other hand, if C > ∆, there

exists t such that µt ≥ z2.

Proof. Let x∆ ∈ (z1, z2) be any value of x such that

f(x) = x − ∆ (note that x∆ 	= z1, z2 where f(x) −
x = 0, since f(x) < x on [z1, z2] if f has three fixed

points). Suppose µt < x∆−∆ and C ≤ ∆, then µt+1 =
f (µt + C) < f (x∆ −∆+ C) ≤ f(x∆) = x∆−∆. I.e.,

µt < x∆−∆ < z2 for all t so long as µ0 ∈ [z1, x∆−∆);
note that the interval is not empty as x∆−∆ = f(x∆) >
z1. For the second part of the proof, note that by definition

of ∆, for all t, µt+1 = f (µt + C) ≥ µt+C−∆, hence

the group wealth increases by at least a constant amount

C −∆ at each time step.

Intuitively, this holds because if C is smaller than

∆, it becomes insufficient to compensate the fact that

the wealth of a group can decrease by an amount up

to ∆ at each round. In the rest of this section, we aim

to understand how different interventions for different

values of C compare to each other, and when to choose

low-cost versus high-cost interventions. Before doing so,

we note that there is always a single, optimal 1-shot

intervention among all such 1-shot interventions:

Fact 1. The 1-shot intervention with cost C = z2 − µ0

has smaller cost than any other 1-shot intervention.

This immediately follows from the fact that any 1-shot

intervention with cost C has loss λC, and that no

intervention with C < z2 − µ0 can reach z2 in one

shot, as µ1 = f(µ0 + C) < f(z2) = z2.

We now provide a sufficient condition under which

the 1-shot intervention is guaranteed to be optimal.

Theorem 3. Suppose ρ ≥ λ. Then, any k-shot interven-

tion has higher loss than the 1-shot,
(

z2 − µ0
)

-subsidy

intervention. I.e. the
(

z2 − µ0
)

-subsidy intervention is

optimal.

Proof. The proof follows by induction on k. First, let us

consider the base case when k = 2, and let C be any

cost that leads to convergence in two shots. Consider any

starting point µ0 ∈ [z1, z2]. Note that the sequence of

wealth µ0 → µ1 → µ2 must satisfy µ1 < z2 and µ2 ≥ z2.

Further, note that because µt+1 = f (µt + C) ≤ µt + C
we must have C ≥ µt+1−µt. We then have that the loss

L satisfies

L(C)

= λC + (1− λ)ρ(z2 − µ1) + ρ(λC)

≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)]

= λ(µ1 − µ0) + ρ
(

z2 − µ1
)

≥ λ(µ1 − µ0) + λ
(

z2 − µ1
)

= λ(z2 − µ0).

This concludes the case of k = 2.

For k > 2, note that we have µk−1 < z2 and µk ≥ z2.

Letting C be any cost that leads to reaching z2 in k shots,
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we have that the loss function is given by

L(C) ≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+

[

λ
k−1
∑

t=1

ρtC + (1− λ)
k−1
∑

t=2

ρt(z2 − µt)

]

= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+ ρ

[

λ
k−1
∑

t=1

ρt−1C + (1− λ)
k−1
∑

t=2

ρt−1(z2 − µt)

]

= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+ ρ

[

λ
k−2
∑

t=0

ρtC + (1− λ)
k−2
∑

t=1

ρt(z2 − µt+1)

]

.

The second term in the last line of the inequality is the

loss function when starting at µ1 ∈ [z1, z2] instead of

µ0. Indeed, write νt = µt+1 the sequence that starts at

µ1 and satisfies νk = µk−1 < z2 but νk−1 = µk ≥ z2
(hence this new sequence converges in k − 1 rather than

k steps); the loss of this sequence is given by:

λ
k−2
∑

t=0

ρtC + (1− λ)
k−2
∑

t=1

ρt(z2 − νt)

= λ

k−2
∑

t=0

ρtC + (1− λ)

k−2
∑

t=1

ρt(z2 − µt+1).

By the induction hypothesis, since the cost of a one-

shot intervention is lower than that of any k − 1-shot

intervention, we have that

λ

k−2
∑

t=0

ρtC + (1− λ)
k−2
∑

t=1

ρt(z2 − µt+1) ≥ λ
(

z2 − µ1
)

.

Therefore, L(C) is lower bounded by

λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)]

≥ λ(µ1 − µ0) + λ(z2 − µ1)

≥ λ(z2 − µ0).

In particular, 1-shot interventions become optimal when

the discounting factor ρ is relatively large, or when λ is

relatively small. The first result intuitively arises because

when ρ becomes large, the centralized designer cares

about cost and wealth of the group at each time step; a 1-

shot intervention allows the designer to incur a single up-

front cost for intervening (instead of inefficiently investing

a smaller cost per round over more rounds, and losing

some of this invested cost, up to ∆, at each time step)

while immediately reaching high wealth outcomes. On

the other hand, no matter what ρ is, when λ becomes

small, the designer only cares about reaching high wealth

as soon as possible, hence prefers faster interventions.

We now provide sufficient conditions under which 1-shot

is not optimal:

Theorem 4. If ρ < λ
(

1− C
z2−µ0

)

, the C-subsidy

intervention has lower loss than the 1-shot,
(

z2 − µ0
)

-

subsidy intervention.

Proof. Consider any intervention with cost C such that

µk ≥ z2, i.e. we reach z2 after at most k time steps. First,

remember that the loss for this intervention is given by

λ

k−1
∑

t=0

ρtC + (1− λ)

k−1
∑

t=1

ρt(z2 − µt).

Noting that µt ≥ µ0 for all t, hence z2 − µt ≤ z2 − µ0,

we can upper bound the loss by

λ
+∞
∑

t=0

ρtC + (1− λ)
+∞
∑

t=1

ρt(z2 − µ0)

=
λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0)

≤ λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0).

In turn, we have that a sufficient condition for C-subsidy

to have a lower loss than one-shot is given by

1

1− ρ

(

λC + (1− λ)ρ(z2 − µ0)
)

< λ(z2 − µ0).

This can be rewritten as

λC+(z2−µ0)ρ−λ(z2−µ0)ρ < λ(z2−µ0)−λ(z2−µ0)ρ,

i.e.

(z2 − µ0)ρ < λ(z2 − µ0)− λC,

which immediately leads to the theorem statement.

Theorem 4 gives conditions under which the minimal

1-shot intervention has higher cost than the C-subsidy

intervention. But recall that we can take C as small as

∆+ ǫ (for arbitrarily small ǫ) and still get an intervention

that reaches the region of attraction for the highest wealth

fixed point. Thus we have the following corollary, which

gives a necessary condition for the 1-shot intervention to

be optimal:

Corollary 1. If ρ < λ
(

1− ∆
z2−µ0

)

, then the (∆ + ε)-

subsidy intervention has lower loss than the 1-shot, (z2−
µ0)-subsidy intervention as ε → 0.

The above corollary provides the most stringent

condition that we can derive from Theorem 4 for 1-

shot not to be optimal. In particular, we note that the
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cheapest intervention we can use, the (∆ + ε)-subsidy

one, is better than the 1-shot intervention so long as

ρ < λ
(

1− ∆
z2−µ0

)

. We note that the combination of

Theorem 3 and Corollary 1 show that when ∆ becomes

small and subsidy interventions are efficient, the condition

that ρ ≥ λ becomes nearly tight for optimality of

the 1-shot, (z2 − µ0)-subsidy intervention. When ∆ is

large, there are still situations in which the condition of

Corollary 1 is essentially necessary and sufficient for the

(∆+ ε)-subsidy to be better than the 1-shot intervention,

as evidenced by the example below:

Example 1. Suppose f is continuous, but such that it is

linear on interval (a, b) ⊂ (z1, z2) with f(x) = x −∆
within said interval. We have immediately that µt+1 =
µt + C − ∆ hence µt = µ0 + t(C − ∆) so long as t
is such that µt ∈ (a, b). Here, the one-shot intervention

still has loss λ(z2 − µ0). However, the (∆ + ǫ)-subsidy

intervention reaches z2 − ε, hence z2, after no less than

Tε =
b−µ0

ε →ε→0 +∞ time steps. In turn, it has loss at

least

L(∆ + ε) ≥ λ

Tε−1
∑

t=0

ρt(∆ + ε)

+ (1− λ)

Tε−1
∑

t=1

ρt(z2 − µ0 − tε)

→ε→0
λ

1− ρ
∆+

ρ(1− λ)

1− ρ
(z2 − µ0).

The proof of Theorem 4 shows that the loss is also upper-

bounded by

L(∆ + ε) ≤ λ

1− ρ
(∆ + ε) +

ρ(1− λ)

1− ρ
(z2 − µ0).

Hence, it must be that this bound is essentially tight, i.e.

that

L(∆ + ε) →ε→0
λ

1− ρ
∆+

ρ(1− λ)

1− ρ
(z2 − µ0).

In particular, in this case, the condition of Theorem 4

and Corollary 1 is not only sufficient but also necessary

for the (∆ + ε)-subsidy intervention to have better loss

than the one-shot intervention.

REFERENCES

[1] K. Arrow, “The theory of discrimination,” Discrimination in labor

markets, vol. 3, no. 10, pp. 3–33, 1973.

[2] E. S. Phelps, “The statistical theory of racism and sexism,” The

american economic review, pp. 659–661, 1972.

[3] S. Coate and G. C. Loury, “Will affirmative-action policies
eliminate negative stereotypes?” The American Economic Review,
pp. 1220–1240, 1993.

[4] D. P. Foster and R. V. Vohra, “An economic argument for
affirmative action,” Rationality and Society, vol. 4, no. 2, pp.
176–188, 1992.

[5] S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, and A. Roth,
“Fairness in reinforcement learning,” in International Conference

on Machine Learning, 2017, pp. 1617–1626.

[6] L. Hu and Y. Chen, “A short-term intervention for long-term
fairness in the labor market,” in Proceedings of the 2018 World

Wide Web Conference on World Wide Web, WWW, P. Champin,
F. L. Gandon, M. Lalmas, and P. G. Ipeirotis, Eds. ACM, 2018,
pp. 1389–1398.

[7] L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt,
“Delayed impact of fair machine learning,” in International

Conference on Machine Learning, 2018.

[8] L. T. Liu, A. Wilson, N. Haghtalab, A. T. Kalai, C. Borgs,
and J. Chayes, “The disparate equilibria of algorithmic decision
making when individuals invest rationally,” in Proceedings of the

2020 Conference on Fairness, Accountability, and Transparency,
2020, pp. 381–391.

[9] E. R. Arunachaleswaran, S. Kannan, A. Roth, and J. Ziani,
“Pipeline interventions,” arXiv preprint arXiv:2002.06592, 2020.

[10] S. Kannan, A. Roth, and J. Ziani, “Downstream effects of
affirmative action,” in Proceedings of the Conference on Fairness,

Accountability, and Transparency, 2019, pp. 240–248.

[11] C. Jung, S. Kannan, C. Lee, M. Pai, A. Roth, and R. Vohra,
“Fair prediction with endogenous behavior,” in Proceedings of the

21st ACM Conference on Economics and Computation, 2020, pp.
677–678.

[12] G. Baker, “Distortion and risk in optimal incentive contracts,”
The Journal of Human Resources, vol. 37, no. 4, pp. 728–751,
2002. [Online]. Available: http://www.jstor.org/stable/3069615

[13] H. Heidari and J. Kleinberg, “Allocating opportunities in a
dynamic model of intergenerational mobility,” in Proceedings

of the 2021 ACM Conference on Fairness, Accountability, and

Transparency, 2021, pp. 15–25.

APPENDIX A

EXTENSION: WEALTH DYNAMICS UNDER CAPACITY

CONSTRAINTS

One extension of immediate interest is when the

university has a maximum capacity on the number of

students they can admit. For simplicity and in the rest

of this section, we assume that each of the two sub-

populations constitutes half of the total population. We

assume that the university can only admit a maximum

fraction δ ∈ [0, 1] of the total population, and that it

wants to populate this fraction by hiring the students that

yields the highest expected utility for the university, i.e.

the δ fraction of the population with the highest values

of E [αT + (1− α)W |S].
We show that the decision rule used by the university

can still be seen as selecting individuals that meet a

minimum threshold on their expected utility, with the

added complexity that this threshold is both time and

population dependent:

Claim 9. Let µt
1 and µt

2 the means of populations 1 and

2 at time step t. At t, the university’s decision rule can
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be written as

E [αT + (1− α)W |S] ≥ φt,

where φt solves

2δ = 1− Φ
(

K (α, β, γ, σ)
(

φt − (1− α)µt
1

))

+ 1− Φ
(

K (α, β, γ, σ)
(

φt − (1− α)µt
2

))

.

Proof. First, note that the optimal admission rule must

admit all individuals above a certain threshold φt
i

for population i–i.e., consider the “worst” individ-

ual to be admitted in population i and let φt
i =

E [αT + (1− α)W |S] for that individual. Then all in-

dividuals with E [αT + (1− α)W |S] ≥ φt
i must also be

admitted, since the university admits the students that

yield the highest expected utility.

Second, it must be the case that φt
1 = φt

2. Suppose for

contradiction and without loss of generality that φt
1 > φt

2.

Then, there exist individuals in population 1 (in particular,

some individuals whose utility is in the interval [φt
2, φ

t
1),

with non-zero probability mass), who are not admitted

but are more qualified than some of the individuals in

population 2. This contradicts the fact that the university

admits the students with the highest expected utility.

Third, we note that the resulting fraction of the

population that is admitted by the above decision rule in

population i is given by

1− Φ
(

K (α, β, γ, σ)
(

τ − (1− α)µt
i

))

(4)

as per Lemma 1, which gives a closed-form expression of

what fraction of the population is above a given threshold.

The fraction of the total population that is admitted is

then given by

1

2

(

1− Φ
(

K (α, β, γ, σ)
(

τ − (1− α)µt
1

)))

+
1

2

(

1− Φ
(

K (α, β, γ, σ)
(

τ − (1− α)µt
2

)))

= δ.

We also consider a university that can only admit

students up to a capacity of δ, but does not need to fill its

whole capacity — i.e. it does not want to admit students

that lead to negative expected utility. In this case, it is

easy to see that at each time step t, the decision rule

used by the university in population i can be written as

E [αT + (1− α)W |S] ≥ max
(

φt, τ
)

, (5)

where φt
i is defined as per Claim 9. Note that when the

capacity constraint is not binding — i.e. when φt < τ —

then this model is identical to that of a university without

a capacity constraint, that we study in the body of this

paper.

We now run experiments showing how these dy-

namics evolve in the presence of a capacity, for both

update rules described in Equations (4) and (5). For

the update rule from Equation (4), we study values

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for the

fractional capacity δ, and 5 evenly spaced values in

[0.01, 0.99]6 each for α, β, γ, σ. For the update rule from

Equation (5), we keep the same range of parameters but

also discretize the threshold τ across the 5 evenly spaced

values in [0.01, 0.99]. Table I shows, given a desired

capacity δ, what percentage of the parameter values for

(µ0
1, µ

0
2, α, β, γ, σ) lead to long-term disparities in wealth

across both populations for the update rule described

in Equation (4) with only a capacity constraint. Table

II does the same for the update rule of Equation (5)

with both a capacity and a minimum utility constraint,

and also tracks what fraction of the time the capacity is

“binding” i.e. the university admits exactly the capacity δ
and cannot admit all students over the threshold τ .

TABLE I: Capacitated update rule 4

Capacity δ % wealth gap

0 0
0.1 14.4
0.2 25.12
0.3 28.96
0.4 30.24
0.5 30.24
0.6 30.24
0.7 28.96
0.8 25.12
0.9 14.4
1 0

TABLE II: Capacitated update rule 5

Capacity δ % wealth gap % rounds binding(mean)

0 0 100
0.1 3.10 49.49
0.2 8.70 43.12
0.3 12.92 39.96
0.4 15.48 37.31
0.5 15.96 24.16
0.6 15.96 20.60
0.7 15.58 17.77
0.8 14.36 14.26
0.9 11.00 10.72
1 8.25 0

6We ignore 0 and 1 to avoid numerical issues that arise that make
K → +∞. These situations only arise in trivial corner cases where
the employer only cares about wealth but the signal only encode types,
and simple situations in which there is no variability hence uncertainty
in the population distributions and every individual in a population has
the same type and wealth.
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As evidenced in Table I for the update rule given in

Equation 4 (capacity only), in the extreme case when the

capacity δ is 0, the university cannot admit anyone. In

turn, the wealth of both populations immediately goes

to 0. When δ is 1, on the other extreme, the university

admits everyone, and both populations converge to 1. In

both cases, one observes no wealth disparities. However,

we see that significant wealth disparities start arising for

intermediate values of the capacity; constraining capacity

more and more (compared to the unconstrained case

when δ = 1) leads first to more and more disparities

where only one populations achieve high wealth. As the

capacity decreases more, these disparities start reducing:

the capacity becoming more stringent negatively impacts

the initially wealthy population and forces this population

to also end with low-wealth outcome.

Table II for the update rule of Equation 5 (capacity

and minimum threshold) exhibits a major distinction

compared the results of Table I. Indeed, even when δ = 1,

the university will only admit students that are above

the bar, and there will still be wealth gaps. In this case,

we note that unless the capacity is very restricted (in

which case, the wealth gap decreases as both populations

are forced towards undesirable outcomes, as in Table II),

the presence of a capacity seems to reinforce wealth

disparities across populations. The last column shows

that as the capacity becomes more and more stringent,

its effect is felt more and more in the dynamics since

it limits which students are admitted compared to the

uncapacitated case δ = 1 an increasing fraction of the

time.

APPENDIX B

OMITTED PROOFS FOR SECTION IV-B0B: WEALTH

DYNAMICS

A. Proof of Claim 2

Because S is a convex combination of W and T ,

both (T, S) and (W,S) are multivariate Gaussians. The

covariances are given by

Cov(T, S) = βCov(T, T ) + (1− β)Cov(T,W ) = βγ2,

Cov(W,S) = βCov(W,T ) + (1− β)Cov(W,W )

= (1− β)σ2,

and

Cov(S, S) = β2Cov(T, T ) + (1− β)2Cov(W,W )

+ 2β(1− β)Cov(T,W )

= β2γ2 + (1− β)2σ2.

B. Proof of Lemma 1

Using Claim 2, we have that

E[T |S = s] =
Cov(T, S)

V ar(S)
(s− (1− β)µ)

=
βγ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ),

and

E[W |S = s] = µ+
Cov(W,S)

V ar(S)
(s− (1− β)µ)

= µ+
(1− β)σ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ).

Therefore, the university admits a student with score s if

and only if
(

αβγ2 + (1− α)(1− β)σ2

β2γ2 + (1− β)2σ2

)

(s− (1− β)µ)

≥ τ − (1− α)µ,

which can be rewritten as

s− (1− β)µ
√

β2γ2 + (1− β)2σ2

≥
√

β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ) .

Noting that by Claim 2,
S−(1−β)µ√

β2γ2+(1−β)2σ2
follows a

normal distribution with mean 0 and variance 1; the

expression for µt+1 (hence the update rule) is then given

by

1− Φ

(

√

β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ)

)

= 1− Φ (K (α, β, γ, σ) · (τ − (1− α)µ))

This concludes the proof.

C. Proof of Claim 3

For simplicity of notations, let us write K instead of

K(α, β, γ, σ). Continuity is immediate from f being the

composition of a linear (hence continuous) function and

the continuous function Φ. Now, we have

f ′(x) =
K(1− α)√

2π
exp

(

−K2(τ − (1− α)x)2/2
)

≥ 0,

showing f is increasing. Finally, the second order

derivative of the update rule f ′′(x) is given by

K3(1− α)2(τ − (1− α)x)√
2π

· e−K2(τ−(1−α)x)2/2.

The result immediately follows, as f ′′(x) ≥ 0 if and only

if x ≤ τ
1−α .
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D. Proof of Lemma 2

Let us write g(x) = f(x) − x. Note that f(x) has a

fixed point if and only if g(x) = 0.

1) τ ≥ 1−α and f is convex on [0, 1]. Then g′(x) =
f ′(x) − 1, g′′(x) = f ′′(x), and g is also convex.

Further, note that g(0) = f(0)−0 > 0 and g(1) =
f(1)− 1 < 0. Therefore, g(x) = 0 can only have

one solution at most. Indeed, let x∗ be the smallest

value in [0, 1] for which g(x∗) = 0; we have that for

all x ∈ (x∗, 1], we can write x∗ = λx+(1−λ)1 for

some λ ∈ (0, 1], Then, we have g(x) ≤ λg(x∗) +
(1− λ)g(1) < 0 by convexity.

2) τ ≤ 0 and f is concave on [0, 1]. Then f can have

at most 1 fixed point by the same argument as

above.

3) Otherwise, note that g′(x) = f ′(x) − 1 is first

increasing up until x∗ = τ/(1−α) then decreasing

in x. Therefore, g′ has at most two zeros x− and

x+. If g′ has two zeros, they must satisfy x− < x∗

and x+ > x∗, and that g′(x) < 0 for x < x−,

g′(x) ≥ 0 for x ∈ [x−, x+], and g′(x) < 0 for

x > x+. g then has at most three intersection with

0, with the first intersection on [0, x−], the second

on [x−, x+], and the third on [x+, 1]. When g′ has

at most one zero, g can only have at most 2 zeros

This concludes the proof.

APPENDIX C

OMITTED PROOFS FOR SECTION V: INTERVENTIONS

FOR LONG-TERM FAIRNESS

A. Proof of Theorem 1

This follows from the fact that f(x, τ) is decreasing

in τ for all x ∈ [0, 1]. First, this implies that f(x, τ ′) >
f(x, τ) ≥ x for all x ∈ [0, z1(τ)]. Hence z1(τ

′) >
z1(τ). For the third fixed point, note that f(z3(τ), τ

′) >
f(z3(τ), τ) = z3(τ); because f is continuous and f(1) <
1, this immediately implies that f has a fixed point on

(z3(τ), 1], hence z3(τ
′) > z3(τ).

Finally, let us consider the case of the second fixed

point. First, we note that it must be that z1(τ
′) < z2(τ).

Suppose this is not the case, it must be that f(x, τ ′) > x
for all x < z2(τ). Further, for all x ∈ [z2(τ), z3(τ)], we

must have f(x, τ ′) > f(x, τ) ≥ x, hence f(x, τ ′) > x
for all x < z3(τ). This implies z1(τ

′) > z3(τ). However,

we must have z3(τ) ≥ τ/(1 − α) while z1(τ
′) ≤

τ ′/(1− α) < τ/(1− α), which is a contradiction.

Now that we have z1(τ
′) < z2(τ), note that it

must be that f(x, τ ′) < x on a small neighborhood

(z1(τ
′), z1(τ

′) + ε) by our characterization of the fixed

points of f . Since f is continuous and f(z2(τ), τ
′) >

f(z2(τ), τ) = z2(τ), there exists a fixed point on

(z1(τ
′), z2(τ). Since z3(τ

′) > z3(τ) > z2(τ), this must

be the second fixed point z2(τ
′).

B. Proof of Theorem 2

The partial derivative of f with respect to β is given

by

∂

∂β
f(x, β) =

[τ − (1− α)x] · φ (K(α, β, γ, σ)(τ − (1− α)x))

× (α− β)γ2σ2

√

β2γ2 + (1− β)2σ2(αβγ2 + (1− α)(1− β)σ2)2

where φ is the probability density function of a standard

Gaussian. Note that for α < β, ∂
∂β f(x, β) < 0 when x <

τ/(1− α) and ∂
∂β f(x, β) > 0 when x > τ/(1− α). In

particular, f(x, β′) > f(x, β) ≥ x for all x ≤ z1(β)(<
τ/(1−α)), hence f(.β′) has no fixed point on [0, z1(β)].
This means that z1(β

′) > z1(β). Similarly, f(x, β′) <
f(x, β) ≤ x for all x ≥ z3(β)(> τ/(1 − α)), hence f
has no fixed point on [z3(β), 1] and z3(β

′) < z3(β). A

similar proof follows for α ≥ β′ > β.
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