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ABSTRACT

Individual probabilities refer to the probabilities of outcomes that

are realized only once: the probability that it will rain tomorrow,

the probability that Alice will die within the next 12 months, the

probability that Bob will be arrested for a violent crime in the next

18 months, etc. Individual probabilities are fundamentally unknow-

able. Nevertheless, we show that two parties who agree on the

dataÐor on how to sample from a data distributionÐcannot agree

to disagree on how to model individual probabilities. This is be-

cause any two models of individual probabilities that substantially

disagree can together be used to empirically falsify and improve

at least one of the two models. This can be efficiently iterated in a

process of łreconciliationž that results in models that both parties

agree are superior to the models they started with, and which them-

selves (almost) agree on the forecasts of individual probabilities

(almost) everywhere. We conclude that although individual proba-

bilities are unknowable, they are contestable via a computationally

and data efficient process that must lead to agreement. Thus we

cannot find ourselves in a situation in which we have two equally

accurate and unimprovable models that disagree substantially in

their predictionsÐproviding an answer to what is sometimes called

the predictive or model multiplicity problem.
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1 INTRODUCTION

Probabilistic modelling in machine learning and statistics predicts

łindividual probabilitiesž as a matter of course. In weather forecast-

ing, we speak of the probability of rain tomorrow; in life insurance

underwriting we speak of the probability that Alice will die in the

next 12 months; in recidivism prediction we speak of the probability

that an inmate Bob will commit a violent crime within 18 months

of being released on parole; in predictive medicine we speak of
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the probability that Carol will develop breast cancer before the age

of 50 Ð and so on. But these are not repeated events: we have no

way of directly measuring an łindividual probabilityž Ð and indeed,

even the semantics of an individual probability are unclear and

have been the subject of deep interrogation within the philosophy

of science and statistics [13, 26] and theoretical computer science

[17]. Within the philosophy of science, puzzles related to individual

probability have been closely identified with łthe reference class

problemž [26]. This is a close cousin of a concern that has recently

arisen in the context of fairness in machine learning called the łpre-

dictive multiplicity problemž (a focal subset of łmodel multiplicity

problemsž) [8, 30] which [9] earlier called the łRashomon Effectž.

At the core of both of these problems is the fact that from a data

sample that is much smaller than the data universe (i.e. the set

of all possible observations), we will have observed at most one

individual with a particular set of characteristics, and at most one

outcome for the event that an łindividual probabilityž speaks to: It

will either rain tomorrow or it will not; Alice will either die within

the next year or she will not; etc. We do not have the luxury of

observing a large number of repetitions and taking averages.

[13] lays out two broad classes of perspectives on individual

probabilities: the group to individual perspective and the individual

to group perspective. The group to individual perspective is roughly

as follows: We cannot measure individual probabilities from data,

but we can measure averages of outcomes within sufficiently large

reference classes 𝑆 . A reference class 𝑆 is just some well defined

subset of the observed data: for example (in the weather forecasting

setting) the set of days in which there is cloud cover and humidity

is above 60%, or (in the life insurance setting) the set of 65 year old

women with a history of high blood pressure. Given a reference

class that is large enough that we have observed in our data many

members of the reference class, we can empirically estimate the

prevalence of the outcome we are concerned with forecasting (rain,

death within 12 months) for members of the reference class. Then,

if we are asked to forecast an individual probability (the probability

that Alice will die within the next 12 months), we simply pick an

appropriate reference class 𝑆 such that Alice ∈ 𝑆 and then respond

with the proportion of observed deaths within a 12 month period

for individuals from reference class 𝑆 . The principal problem with

this approach (known as the łreference class problemž [26]) is that

Alice will simultaneously be a member of many different reference

classes 𝑆 . We cannot condition on everything we know about Alice,

or we will end up with a reference class that does not contain

enough examples for us do statistical inference on: thus we must

pick and choose. But should we have conditioned on her age, gender

and blood pressure? What about her weight? Her job? Her marital

status? Her vaccination history? Defining reference classes with
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respect to different subsets of these attributes will generally lead

to different estimates for the probability that Alice will die within

the next 12 months: what privileges one of these estimates over

another? This is the reference class problem.

On the other hand, the individual to group perspective treats

individual probabilities as the first class objects. This is the perspec-

tive most familiar in machine learning and statistics: models 𝑓 are

learned from data with the goal of mapping individuals (e.g. łAlicež)

to individual probabilities for the outcome of interest, 𝑓 (Alice).1
Models of individual probabilities can also be aggregated over to

give predicted probabilities conditional on reference classes. If we

want to evaluate the probability of an outcome conditional on some

reference class 𝑆 , we can do so by averaging the model’s predictions

over individuals in 𝑆 . We cannot measure individual probabilities,

but from data we can measure the average probability of an out-

come over a sufficiently large reference class 𝑆 , which gives us a

way to empirically falsify a model 𝑓 from data: if the prediction

implied by 𝑓 for the average outcome conditional on a large refer-

ence class does not match the average outcome we can measure

from the data, then the model 𝑓 must be wrong. Multicalibration,

introduced by [27], gives us a way to build models of individual

probabilities that are consistent with the data for large numbers

of arbitrarily chosen reference classes 𝑆 Ð i.e. models that are not

empirically falsified by any of the pre-specified reference classes.

Nevertheless, multi-calibrated models are not unique: we can have

multiple models that have large disagreements in many of their

individual predictions that nevertheless are equally consistent with

the data on a large collection of reference classes. This is an instance

of the predictive multiplicity problem [8, 9, 30].

The predictive multiplicity problem is usually not phrased in

terms of multicalibration and reference classes, but in terms of

accuracy or error. If a model encodes true individual probabilities,

then it will minimize expected squared error2 amongst all possible

models. Moreover, expected squared error is something that we

can efficiently estimate from data. Hence, if we have two models

𝑓1 and 𝑓2, and we can infer from data that 𝑓1 has lower expected

squared error than 𝑓2, then this is an empirical falsification of the

hypothesis that 𝑓2 correctly encodes individual probabilities. This

serves as a normative justification for selecting amongst models

based on their accuracy, which is a common practice. The predictive

multiplicity problem arises when we have two models 𝑓1 and 𝑓2
(and perhaps others) that are equally accurate, but disagree substan-

tially on many of their predictions. More generally the predictive

multiplicity problem arises when we have multiple models that

differ substantially in their predictions, but are seemingly equally

consistent with the data before us.

Despite arising from different conceptions of individual proba-

bility, the reference class problem and the predictive multiplicity

problem result in the same practical concern: that data do not en-

code unique estimates for the individual probabilities for many

individuals. If this is the case, then what justification do we have in

making consequential decisions as a result of predictions that our

models make about individual probabilities? How can we justify

setting a high rate for Alice’s life insurance, denying parole to Bob,

1Here of course what is input to the model is some representation of the individual,
encoding the information that we have available about them.
2or any other proper scoring rule.

or suggesting life-altering preventative surgery to Carol based on

the predictions of some model 𝑓1 if we have an equally good (and

equally well supported by the data) model 𝑓2 that makes predictions

that would lead us to take the opposite course of action?

1.1 Our Results

We show that given a common understanding of the data (or the

process of sampling from the data distribution), models of individ-

ual probabilities are contestable through an efficient model recon-

ciliation process that must lead to broad agreement. Specifically,

suppose one party 𝐴 proposes a model of individual probabilities

𝑓𝐴 , that another party 𝐵 thinks is flawed. 𝐵 can contest 𝑓𝐴 by propos-

ing their own model of individual probabilities 𝑓𝐵 . There are two

possible outcomes:

(1) 𝑓𝐴 and 𝑓𝐵 agree in their predictions almost everywhere3. In

this case, it turns out there was no substantial disagreement.

(2) 𝑓𝐴 and 𝑓𝐵 substantially disagree in their predictions for a

large portion of the population.

In the second case, we can efficiently extract from the disagreement

region of 𝑓𝐴 and 𝑓𝐵 a large reference class 𝑆 = 𝑆 (𝑓𝐴, 𝑓𝐵) such that

on this reference class, not only do 𝑓𝐴 and 𝑓𝐵 disagree on individual

predictions, they also disagree substantially on their prediction of

the average outcome conditional on membership in 𝑆 . Because 𝑆

is large, from only a modest amount of data, we can accurately

estimate the average outcome conditional on 𝑆 . But because 𝑓𝐴
and 𝑓𝐵 have a substantial disagreement about this quantity, our

measurement is guaranteed to falsify at least one of the two models.

Suppose it is model 𝑓𝐴 that is falsified. Then, using a very simple

and efficient model update operation of the same sort used for com-

puting multicalibrated models [27], we can update 𝑓𝐴 to produce a

new model 𝑓 ′
𝐴
that now makes predictions that are correct on aver-

age over 𝑆 . The new model 𝑓 ′
𝐴
is guaranteed to have significantly

reduced squared error compared to 𝑓𝐴 , and so is a better model

not only in that it has not yet been falsified, but in that it is more

accurate.

After this update, we can then repeat the process: Either 𝑓 ′
𝐴
and

𝑓𝐵 agree on their predictions almost everywhere, or we can again

falsify one of the models and improve it using a large reference class

𝑆 ′ = 𝑆 (𝑓 ′
𝐴
, 𝑓𝐵). The only way for this process to end is with two

models that agree in their predictions almost everywhere. Moreover,

because each iteration of falsification and improvement improves

the expected squared error of at least one of the two models, the

process cannot continue for very many iterations Ð fast agreement

of the models is guaranteed.

In Section 4, we formally derive the guarantees of our model

reconciliation process under the assumption that we can directly

evaluate conditional outcome probabilities conditional on large

reference classes 𝑆 : this makes our analysis more transparent. In

the full version, we show that we can run our model reconciliation

process on the empirical distribution over a modestly sized dataset

that is sampled i.i.d. from some unknown underlying distribution,

3We use the expressions łalmost everywherež and łalmost agreež as shorthand for
quantitative statements that are made explicit in the formal presentation of our results.
Insofar as we are working in the context of discrete distributions, it should be clear that
we are not using these expressions in their usual measure-theoretic sense. We note that
our focus on discrete distributions is merely to avoid dealing with measure-theoretic
niceties, and is not essential to any of our results
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and that its guarantees carry over to the unknown distribution of

interest. Here łmodestly sizedž means a number of samples that is

independent of the complexity of the models to be reconciled or the

dimension (or any other property) of the underlying distribution,

and that depends only polynomially on the quantitative parame-

ters controlling how closely we want the models resulting from

the reconciliation process to agree. In Section 5 we show how to

affix a single, modestly sized sample to a model (which we call a

contestable model) which can be used to reconcile that model with

an exponentially large sequence of models that might be used to

contest it in the future.

2 DISCUSSION

Are łIndividual Probabilitiesž Coherent? What are we assuming

when we model the world using łindividual probabilitiesž? Are we

assuming some kind of idealized, unrealized randomness, which is

simply a poor stand-in for our ignorance of the relevant processes?

No. Our modelling choices do not preclude a deterministic world:

all true individual łprobabilitiesž could be 0 or 1, simply record-

ing the outcomes of interest. We still allow for models to predict

non-integer probabilities; we can view these as simply expressing

uncertainty about the outcomes, or as encoding objective features

of a stochastic universe. Our results imply that after reconciliation,

two parties must agree about their assignments of individual prob-

abilities, regardless of the philosophical commitments each may

have about the nature of probability.

Agreement is Guaranteed; Not Truth. We emphasize that indi-

vidual probabilities are not uniquely determined from observed

data. Consider a toy model of weather forecasting in which fea-

tures 𝑥 encode the date, and outcomes 𝑦 encode whether or not it

rains on that date. The following two situations are observationally

indistinguishable:

(1) On every day 𝑥 , the individual probability of rain 𝑝 (𝑥) = 1/2,
and

(2) Before the start of time, God selected a subset of days uni-

formly at random to have individual probability of rain

𝑝 (𝑥) = 1 and the remaining set to have individual prob-

ability of rain 𝑝 (𝑥) = 0.

There is no hope of distinguishing these two situations from

data about outcomes alone, and so it is plainly impossible to learn

a model that is guaranteed to accurately encode individual prob-

abilities from such data4Ð in fact, it is not clear that this goal is

meaningful, as they are not uniquely determined.5 Nevertheless,

suppose we believed that the individual probability of rain was

𝑝 (𝑥) = 1/2 every day. If we met a forecaster who was able to make

more accurate predictions (i.e. predictions that had lower squared

4Of course, we do not take such radical under-determination of individual probability
assignments from data about outcomes alone to in anyway impugn the objectivity
of such assignments. Indeed, the primary virtue of our results from a philosophical
perspective is that they provide an efficient method to guarantee inter-subjective
agreement about individual probability assignments and thus secure their objectivity
to this extent.
5It is perhaps worth remarking that in this case Dawid’s uniqueness result [12], cited
earlier, implies, with probability one with respect to God’s choices, that there is an
asymptotically unique computable assignment of probabilities that is computably
calibrated with the data generated by God’s choices. There is no paradox here: insofar
as God’s choices are generated uniformly at random, her (deterministic) probability
forecast is, with probability one, algorithmically random, and thus not computable.

error) on previously unobserved data, we would be forced to rec-

ognize that our model was incorrect Ð because we could compare

the performance of the two models on data. This drives our result

(and similar work on multiple expert testing [2, 20] Ð see Section

2.1), and is the reason that we can guarantee agreement rather than

truth. Nevertheless, the updates that result from our reconcilia-

tion process always move towards truthÐbecause they are error

improvingÐbut they stop when the available models agree, which

might be well before truth is attained.

Predictive Multiplicity Comes from Restricting Model Classes. Pre-

vious work has empirically noted and quantified the phenomenon

of predictive multiplicityÐi.e. that solving an error minimization

problem over some class of models can result in multiple solutions

of (roughly) equivalent error [10, 30]. How do these results square

with our contention that the predictive multiplicity problem cannot

arise, because two equally accurate but substantially different mod-

els constructively imply the existence of a more accurate model?

The answer is that predictive multiplicity can arise when models

are restricted to lie within some pre-specified hypothesis class, like

linear threshold functions, bounded depth decision trees, or neu-

ral networks with a particular architecture. Traditionally machine

learning is done by optimizing a model within a fixed model class,

and this is the setting in which predictive multiplicity has been

empirically observed and quantified. In contrast, our algorithm for

reconciling pairs of models 𝑓1 and 𝑓2 produces a model 𝑓3 that need

not lie in the same model class as 𝑓1 and 𝑓2. This is key to side-

stepping the predictive multiplicity problem. Traditional methods

in machine learning and statistics optimize over models from re-

stricted classes to avoid the problem of overfitting. In contrast, we

avoid overfitting despite not restricting our model classes a priori

by bounding the number of updates that can occur through our

reconciliation process.

Do models really predict individual probabilities? Another objec-

tion we can imagine is that in the settings we discussÐweather pre-

diction, life insurance underwriting, recidivism prediction, etc.Ðit

is logically impossible to observe repeated trials, because tomorrow

will only occur once, Alice has only one life to live, and so on. In con-

trast, when we move to the formalism of a probability distribution

over representations of individuals, it may be extremely unlikely

(or even a measure 0 event) to observe the same representation

of an individual multiple times, but it is no longer a logical im-

possibility. Said another way, when we model individuals in some

representation space, we may fail to record idiosyncratic details

of the individual, and so we are no longer speaking of individual

probabilities, but rather average outcomes over the reference class

defined by people who share the same representation. But this is

not a sharp distinction, because our results have no dependence at

all on the dimensionality or complexity of the representation we

use for individuals. For this objection to have teeth, it must be that

there is some crucial idiosyncrasy of an individual that we have

failed to capture in our representation: if so, add this to our repre-

sentation! Our results remain the same (not just qualitatively but

also quantitatively) even if the representation of every individual

records the position of every molecule in their body, a complete

history of their life from birth until the present, or anything else,
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and so does not rely even implicitly on having only an impover-

ished representation of an individual to work with rather than łthe

real thingž.

2.1 Additional Related Work

Our work is related to a number of strands of literature across statis-

tics, economics, and computer science. Aumann [3] proved that two

Bayesians who share a common prior, but may have made different

observations, must agree on the posterior expectation of a random

variable if their posterior distributions are common knowledge.

Although Aumann’s original result was nonconstructive, subse-

quent work has shown that agreement can be reached with finite,

communication efficient protocols [1, 23]. Despite similarity in its

conclusions, this line of work is quite distinct from ours. In the

Bayesian setting that this line of work focuses on, it is immediate

that two agents who share the same set of observations and prior

beliefs must share the same posterior beliefs (as a posterior dis-

tribution is determined, via Bayes rule, as a function only of the

prior distribution and observations). Aumann’s agreement theorem

instead shows that if agents have arrived at common knowledge

of their posterior distributions, then their posteriors must agree

even if they have not directly shared their observations. In contrast,

in a frequentist setting, individual probabilities are not uniquely

determined from data, which forms the basis of the reference class

problem [26] and the model multiplicity problem [8]. Our work

considers how two frequentist agents who agree on the same set

of data (or the distribution from which it was drawn) must come to

agree on individual probabilities Ð a problemwhich would not arise

in the first place if they were Bayesian agents with a common prior.

[11] proposed calibration as a desirable frequentist condition

for evaluating probabilistic forecasts: roughly speaking that the

outcome being forecast should have appeared with empirical fre-

quency 𝑝 conditional on the forecaster predicting probability 𝑝 of

the outcome, simultaneously for all predictions 𝑝 . Subsequently,

[12] studied a substantial strengthening of this condition called

computable calibration that requires calibration to hold simultan-

iously on all computable subsets of the data.Dawid proved that in

the infinite data limit, two computably calibrated forecasters must

approximately agree in their predictions almost everywhere Ð that

is, except on a finite subset of the data [12]. He notes explicitly

that this criterion is not of practical use in finite data scenarios,

and speculates about the desirability of restrictions of computable

calibration to finite sample scenarios (anticipating multicalibration

[27]). Multicalibration [27] asks for calibration on a restricted class

of subsets of the data. [27] gave algorithms for learning multicali-

brated predictors with data requirements that scale only modestly

with the number of subsets of the data on which calibration is re-

quired (and efficient algorithms whenever it is possible to efficiently

optimize over these subsets)Ðbut multicalibrated forecasts need

not be unique. [28] generalized multicalibration (which aims to be

consistent with mean outcomes) to moments and other properties

of real valued outcomes, and gave efficient algorithms for obtaining

these guarantees. [17] generalized multicalibration to notions of

łoutcome indistinguishabilityž that ask that a probabilistic forecaster

be indistinguishable from a true probabilistic model with respect to

a hierarchy of distinguishers that might have access not just to the

predictions but to the implementation details of the forecaster itself.

[17] explicitly connect outcome indistinguishability to philosophi-

cal questions surrounding individual probabilities. Multicalibration

has proven to be an effective technique for improving individual

predictions in several applications in predictive medicine [4, 5]

[21] gave the first algorithm to constructively make predictions

of individual probabilities guaranteed to generate calibrated fore-

casts against arbitrary sequences of outcomes (and so necessarily

without any knowledge of the łtrue individual probabilitiesž, since

the outcomes can be generated adversarially, with knowledge of

the predictor’s algorithm). [33] show constructively how to achieve

calibration in the infinite data limit on any computable subsequence

of an arbitrary sequence of outcomes. [32] showed that any em-

pirical test (not just calibration tests) that is guaranteed to pass

an expert who is forecasting true individual probabilities can be

passed by a prediction algorithm on any sequence of outcomes.

This is closely related to the fact that individual probabilities are

not uniquely specified by data Ð and so we cannot attempt to

test an expert by computing unique individual probabilities our-

selves. [25] gave computationally and sample efficient algorithms

for achieving multi-calibrated forecasts against arbitrary sequences

of outcomes Ð for means, moments, and quantiles. [7] gave prac-

tical implementations of quantile multicalibration algorithms in

adversarial sequential settings, and applied them to give algorithms

for producing prediction sets of various kinds of classifiers with

calibrated, group-wise conditionally valid guarantees.

Although [32] showed that no empirical test of outcomes can

distinguish a forecaster with knowledge of true individual prob-

abilities from one without such knowledge in isolation, [2] and

[20] showed that there are comparative tests that can distinguish

between two forecasters, one of whom is forecasting true individual

probabilities and one of whom is not. In particular, the test of [20]

is based on checking for cross-calibration between two forecasters

Ð i.e. calibration conditional on the predictions of both forecasters,

and is driven by the fact that on a sequence of predictions such

that one forecaster predicts a probability for an outcome 𝑝 and

the other predicts a probability 𝑝′ ≠ 𝑝 , they cannot both be right,

which is empirically verifiable if there are many such rounds. In

the context of studying the utility of predictors for downstream

fairness interventions, [22] study predictors that are refinements of

one another (in the sense of [14, 15]). They give a simple algorithm

(łMergež) that given any two predictors 𝑓1, 𝑓2, produces a predictor

𝑓3 that is cross-calibrated with respect to 𝑓1 and 𝑓2, and hence is a

refinement of both. A variant of the łMergež algorithm of [22] could

be used in place of our łReconcilež algorithm in our arguments; the

two algorithms have incomparable data requirements, but would

lead to the same qualitative conclusions.

[24] proposes a framework in which models that are sub-optimal

on different subsets of the population can be updated and improved

as part of a łbias bountiesž program by means of falsification; this

is another setting in which models can be made to be contestable.

3 BASIC SETTINGS AND DEFINITIONS

We study prediction tasks over a domain Z = X × Y. Here X
represents the feature domain and Y represents the label domain.

To avoid dealing with measure-theoretic issues, we assume in this
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paper that X is a discrete set, but this is not essential to any of our

results. For this paper we will restrict attention to binary prediction

tasks, where Y = {0, 1} records the outcome of some binary event.

Given a labelled example (𝑥,𝑦) ∈ Z, we view 𝑥 as encoding all

observable characteristics of the instance (e.g. meteorological con-

ditions in a weather prediction task, demographic attributes and

medical history in a predictive medicine task, etc.), and𝑦 represents

the binary outcome we are trying to predict (and when part of the

training data, represents the outcome of the binary event that we

have observed and recorded).

We model the world via a distribution D ∈ ΔZ. Generally we

will not have a direct description of the distribution, and instead

have access only to a sample of 𝑛 datapoints 𝐷 sampled i.i.d. from

D, which we will write as𝐷 ∈ Z𝑛 . We will also sometimes identify

a dataset 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} with the empirical distribu-

tion over 𝐷 , which is simply the discrete distribution that places

probability mass 1/𝑛 on each point (𝑥𝑖 , 𝑦𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}.
A model is some function 𝑓 : X → [0, 1], and our (typically

unattainable goal) is to find a model 𝑓 ∗ that has the property that

for all 𝑥 ∈ X, 𝑓 ∗ (𝑥) = Pr(𝑥,𝑦)∼D [𝑦 = 1|𝑥] is the conditional label
expectation given 𝑥 , or (since we are assuming labels are binary)

just łthe individual probabilityž of the outcome for 𝑥 .

Suppose someone purports to have a model for individual proba-

bilities 𝑓 . How can we evaluate whether 𝑓 is any good? If our goal

was purely prediction, we might evaluate 𝑓 via its squared error Ð

i.e. the expected (squared) deviation of its prediction from the true

label. This is the objective we would minimize if we were solving

(e.g.) a least squares regression problem:

Definition 3.1 (Brier Score). The squared error (also known as

Brier score) of a model 𝑓 evaluated on distribution D is: 𝐵(𝑓 ,D) =
E(𝑥,𝑦)∼D [(𝑓 (𝑥) − 𝑦)2]

Observe that when we treat a dataset 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
as an empirical distribution, then we have: 𝐵(𝑓 , 𝐷) = 1

𝑛

∑𝑛
𝑖=1 (𝑓 (𝑥𝑖 )−

𝑦𝑖 )2

The Brier score can be accurately estimated given access only

to samples from a distribution, and a justification for evaluating

models via their Brier score is that amongst all models, the Brier

score is minimized by the true individual probabilities encoded by

a probability distribution.

Lemma 3.1. Fix any probability distribution D and let 𝑓 ∗ (𝑥) =
Pr(𝑥,𝑦)∼D [𝑦 = 1|𝑥] represent the true individual probabilities en-
coded byD. Let 𝑓 : X → [0, 1] be any othermodel. Then:𝐵(𝑓 ∗,D) ≤
𝐵(𝑓 ,D)

Thus if we have two models 𝑓1 and 𝑓2, and can verify from data

that 𝐵(𝑓1,D) < 𝐵(𝑓2,D), this constitutes an empirical falsification

that 𝑓2 correctly encodes individual probabilities.

4 A RECONCILIATION PROCEDURE

Suppose we are given two models 𝑓1, 𝑓2 : X → [0, 1] that purport to
predict individual probabilities. Our principle concern is the łmodel

multiplicityž problem Ð that 𝑓1 and 𝑓2 differ substantially in their

predictions, and yet we cannot falsify either of the two models

from the data. Thus we will be interested in regions in which these

models disagree substantially in their predictions. We will define

łsubstantiallyž by an arbitrarily small discretization parameter 𝜖 :

Definition 4.1. Two models 𝑓1 and 𝑓2 have an 𝜖-disagreement

on a point 𝑥 ∈ X if |𝑓1 (𝑥) − 𝑓2 (𝑥) | > 𝜖 .
Let 𝑈𝜖 (𝑓1, 𝑓2) be the set of points on which 𝑓1 and 𝑓2 have an

𝜖-disagreement:𝑈𝜖 (𝑓1, 𝑓2) = {𝑥 : |𝑓1 (𝑥) − 𝑓2 (𝑥) | > 𝜖}

Informally, wewill say that if 𝑓1 and 𝑓2 do not have an 𝜖-disagreement

on 𝑥 that they agree on 𝑥 .

One way that we can empirically falsify a model 𝑓 is by measur-

ing the average outcome 𝑦 on some subset or group defined on the

data, and comparing it to the average prediction of the model 𝑓 on

the same subset. If the two differ substantially, the model must be

incorrect. But from finite data we will only be able to accurately

measure these averages on groups that are sufficiently large. We

will model groups 𝑔 as indicator functions 𝑔 : X → {0, 1} that

specify whether or not each data point 𝑥 is in the group (𝑔(𝑥) = 1)
or not (𝑔(𝑥) = 0). We will use the following notation to measure

the size of a group as measured on the underlying distribution D:

Definition 4.2. Under a distribution D, a group 𝑔 : X → {0, 1}
has probability mass 𝜇 (𝑔) defined as: 𝜇 (𝑔) = Pr(𝑥,𝑦)∼D [𝑔(𝑥) = 1].

Given a model 𝑓 and a group 𝑔, we can define a quantitative

extent to which the average prediction of the model on points in

𝑔 compares to the average (expected) outcome on points in 𝑔. In

expectation over the distribution, these two quantities should agree

exactly if 𝑓 = 𝑓 ∗ actually encodes true individual probabilities,

but from data we will only be able to estimate these quantities

approximately. Thus we define an approximate notion of agreement,

which we call approximate group conditional mean consistency.

Models 𝑓 that can be shown not to satisfy approximate group

conditional mean consistency on any group 𝑔 have been falsified,

in that this constitutes a proof that 𝑓 ≠ 𝑓 ∗ (i.e. 𝑓 must not encode

true individual probabilities).

Definition 4.3. A model 𝑓 : X → [0, 1] satisfies 𝛼-approximate

group conditional mean consistency with respect to a group 𝑔 ∈ G if:(
E

(𝑥,𝑦)∼D
[𝑓 (𝑥) |𝑔(𝑥) = 1] − E

(𝑥,𝑦)∼D
[𝑦 |𝑔(𝑥) = 1]

)2
≤ 𝛼

𝜇 (𝑔)

Note that we parameterize 𝛼-approximate group conditional

mean consistency so that it asks for a weaker condition the smaller

the size 𝜇 (𝑔) of the group 𝑔. Informally, for a fixed value of 𝛼 , it

asks that the deviation between the average prediction of 𝑓 and the

actual expected outcomes 𝑦 on a group 𝑔 differ by at most an error

parameter that is proportional to 1/
√︁
𝜇 (𝑔). This will turn out to be

the łrightž scaling because it corresponds to the precision to which

we can measure these quantities from data.

We will show a quantitative version of the following statement.

It must be the case that either

(1) 𝑓1 and 𝑓2 agree on almost all of their predictions, or

(2) 𝑓1, or 𝑓2, or both can be proven from the data to violate a

group conditional mean consistency condition on a large set

of points. In this case, the falsified model can be łpatchedž

with a simple update in a way that improves its accuracy.

The result is that there can be no substantial disagreements about

individual probabilities by people who are willing to be convinced

by the evidence of the data before them: models which disagree on a

substantial fraction of their predictionswitness for each other places
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in which their predictions are falsified by the data, and provide the

means to correct (and improve) each other. Thus disagreements

can be leveraged to produce improved models, and this process

necessarily converges only when the models agree.

To formalize this, we start by partitioning the set of 𝜖-disagreements

𝑈𝜖 (𝑓1, 𝑓2) into two additional sets that will be important Ð the set

of disagreements on which 𝑓1 (𝑥) > 𝑓2 (𝑥), and the set of disagree-

ments on which 𝑓1 (𝑥) < 𝑓2 (𝑥).
Definition 4.4. Fix any two models 𝑓1, 𝑓2 : X → [0, 1] and any

𝜖 > 0. Define the sets:

𝑈 >

𝜖 (𝑓1, 𝑓2) = {𝑥 ∈ 𝑈𝜖 (𝑓1, 𝑓2) : 𝑓1 (𝑥) > 𝑓2 (𝑥)}
𝑈 <

𝜖 (𝑓1, 𝑓2) = {𝑥 ∈ 𝑈𝜖 (𝑓1, 𝑓2) : 𝑓1 (𝑥) < 𝑓2 (𝑥)}
Based on these sets, for • ∈ {>, <} and 𝑖 ∈ {1, 2} define the quantities:
𝑣•∗ = E

(𝑥,𝑦)∼D
[𝑦 |𝑥 ∈ 𝑈 •

𝜖 (𝑓1, 𝑓2)] 𝑣•𝑖 = E
(𝑥,𝑦)∼D

[𝑓𝑖 (𝑥) |𝑥 ∈ 𝑈 •
𝜖 (𝑓1, 𝑓2)]

Our analysis will proceed by showing that if𝑈𝜖 (𝑓1, 𝑓2), the set of
𝜖-disagreements of 𝑓1 and 𝑓2 is large, then at least one of the two sets

𝑈 >

𝜖 (𝑓1, 𝑓2) and 𝑈 <

𝜖 (𝑓1, 𝑓2) will witness a large violation of group

conditional mean consistency for at least one of the two models.

Lemma 4.1. Fix any two models 𝑓1, 𝑓2 : X → [0, 1] and any 𝜖 > 0.

If the fraction of points on which 𝑓1 and 𝑓2 have an 𝜖 disagreement

has mass 𝜇 (𝑈𝜖 (𝑓1, 𝑓2)) = 𝛼 then for some • ∈ {>, <} some 𝑖 ∈ {1, 2},
we have that:

𝜇 (𝑈 •
𝜖 (𝑓1, 𝑓2)) ·

(
𝑣•∗ − 𝑣•𝑖

)2 ≥ 𝛼𝜖2

8

In other words, at least one of the sets𝑈 >

𝜖 (𝑓1, 𝑓2) and𝑈 <

𝜖 (𝑓1, 𝑓2) is
a group that witnesses an 𝛼𝜖2

8 -mean consistency violation for at least

one of the models 𝑓1 and 𝑓2.

Proof. Since𝑈𝜖 (𝑓1, 𝑓2) can be written as the disjoint union:

𝑈𝜖 (𝑓1, 𝑓2) = 𝑈 >

𝜖 (𝑓1, 𝑓2) ∪𝑈 <

𝜖 (𝑓1, 𝑓2)
we must have that for at least one value of • ∈ {>, <} we have that:

𝜇 (𝑈 •
𝜖 (𝑓1, 𝑓2)) ≥

𝛼

2
.

Since the points in𝑈 •
𝜖 (𝑓1, 𝑓2) are 𝜖-separated, we must have that

|𝑣•1 − 𝑣
•
2 | ≥ 𝜖 . Therefore, for at least one of 𝑖 ∈ {1, 2} we must have

that

|𝑣•𝑖 − 𝑣
•
∗ | ≥

𝜖

2
Combining these two claims, we must have that:

𝜇 (𝑈 •
𝜖 (𝑓1, 𝑓2)) · (𝑣•𝑖 − 𝑣

•
∗ )2 ≥ 𝛼𝜖2

8
□

Let’s consider the significance of this Lemma. Most basically, if

we have twomodels 𝑓1 and 𝑓2 that disagree substantially, this lemma

gives an easily constructable set (𝑈 >

𝜖 (𝑓1, 𝑓2) or𝑈 <

𝜖 (𝑓1, 𝑓2)) that fal-
sifies by a substantial quantitative margin either the assertion that

𝑓1 encodes true conditional label expectations or the assertion that

𝑓2 does. Next, we show that not only do these sets falsify that at

least one of 𝑓1 or 𝑓2 are a łcorrectž model Ð they provide a directly

actionable way to improve one of the models. We prove the follow-

ing lemma (which is closely related to the kinds of updates used

to obtain multicalibrated predictors [27]) which shows us how to

improve a model given a group 𝑔 on which the model fails to satisfy

approximate group conditional mean consistency.

Lemma 4.2. Fix any model 𝑓𝑡 : X → [0, 1], group 𝑔𝑡 : X → {0, 1},
and distribution D. Let

Δ𝑡 = E
(𝑥,𝑦)∼D

[𝑦 |𝑔𝑡 (𝑥) = 1] − E
(𝑥,𝑦)∼D

[𝑓𝑡 (𝑥) |𝑔𝑡 (𝑥) = 1]

and

𝑓𝑡+1 = ℎ(𝑥, 𝑓𝑡 ;𝑔𝑡 ,Δ𝑡 )
where ℎ is a łpatchž defined as:

ℎ(𝑥, 𝑓 ;𝑔,Δ) =
{
𝑓 (𝑥) + Δ 𝑔(𝑥) = 1

𝑓 (𝑥) otherwise

Then:

𝐵(𝑓𝑡 ,D) − 𝐵(𝑓𝑡+1,D) = 𝜇 (𝑔𝑡 ) · Δ2
𝑡

In other words: given any model 𝑓𝑡 and a group 𝑔𝑡 that witnesses a

violation of 𝛼-approximate group conditional mean consistency on

𝑓𝑡 , we can efficiently produce a model 𝑓𝑡+1 that has Brier score that is
smaller by exactly 𝛼 .

Proof. By the definition of the patch ℎ(𝑥, 𝑓𝑡 ;𝑔𝑡 ,Δ𝑡 ), models 𝑓𝑡
and 𝑓𝑡+1 differ in their predictions only for 𝑥 such that 𝑔𝑡 (𝑥) = 1.

Therefore we can calculate:

𝐵(𝑓𝑡 ,D) − 𝐵(𝑓𝑡+1,D)
= Pr[𝑔𝑡 (𝑥) = 0] · E

(𝑥,𝑦)∼D

[
(𝑓𝑡 (𝑥) − 𝑦)2 − (𝑓𝑡+1 (𝑥) − 𝑦)2 |𝑔𝑡 (𝑥) = 0

]
+ Pr[𝑔𝑡 (𝑥) = 1] · E

(𝑥,𝑦)∼D

[
(𝑓𝑡 (𝑥) − 𝑦)2 − (𝑓𝑡+1 (𝑥) − 𝑦)2 |𝑔𝑡 (𝑥) = 1

]
= 𝜇 (𝑔𝑡 ) E

(𝑥,𝑦)∼D

[
(𝑓𝑡 (𝑥) − 𝑦)2 − (𝑓𝑡 (𝑥) + Δ𝑡 − 𝑦)2 |𝑔𝑡 (𝑥) = 1

]

= 𝜇 (𝑔𝑡 )
(
2Δ𝑡 E

(𝑥,𝑦)∼D
[𝑦 − 𝑓𝑡 (𝑥) |𝑔𝑡 (𝑥) = 1] − Δ

2
𝑡

)

= 𝜇 (𝑔𝑡 )
(
2Δ2
𝑡 − Δ

2
𝑡

)
= 𝜇 (𝑔𝑡 )Δ2

𝑡

□

Summarizing, whenever we have two models that have 𝜖 dis-

agreements on an𝛼-fraction of points, we can always constructively

falsify at least one of the models, and update it to improve its Brier

score by at least 𝑂 (𝛼𝜖2).
Finally, to make our argument that in-sample quantities (i.e. as

measured on the data samples) translate to out of sample quantities

(measured on the distribution), it will be useful for our algorithm

to not use arbitrarily precise values when patching models, but

instead values that are rounded to a finite grid:

Definition 4.5. Fix any integer𝑚. Let [1/𝑚] denote the set of
𝑚 + 1 grid points: [

1

𝑚

]
=

{
0,

1

𝑚
,
2

𝑚
, . . . ,

𝑚 − 1

𝑚
, 1

}
For any value 𝑣 ∈ [0, 1] let Round(𝑣 ;𝑚) = argmin𝑣′∈[1/𝑚] |𝑣 − 𝑣 ′ |
denote the closest grid point to 𝑣 in [1/𝑚].

Observe that for 𝑣 ′ = Round(𝑣 ;𝑚) we always have that |𝑣−𝑣 ′ | ≤
1
2𝑚
We put this all together in Algorithm 1 (Reconciler). For sim-

plicity of exposition, we initially describe and analyze Algorithm 1

as if it has direct access to distributional quantities. In practice, of

course, we will have access only to samples from the distribution,
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and we will have to run an algorithm on a dataset 𝐷 ∈ Z𝑛 consist-

ing of these samples. We can do so by interpreting 𝐷 as the uniform

distribution over the samples contained within it. In Section ??,

we show that when we run Reconcile(𝑓1, 𝑓2, 𝛼, 𝜖, 𝐷) on a dataset

𝐷 ∼ D𝑛 consisting of 𝑛 i.i.d. samples from D, then the guarantees

we prove in Theorem 4.1 with respect to the empirical distribution

𝐷 translate over to the true distributionD with error terms quickly

tending to 0 as the number of samples 𝑛 grows large.

Algorithm 1: Reconcile(𝑓1, 𝑓2, 𝛼, 𝜖,D)

Let 𝑡 = 𝑡1 = 𝑡2 = 0 and 𝑓 𝑡11 = 𝑓1, 𝑓
𝑡2
2 = 𝑓2.

Let𝑚 = ⌈ 2√
𝛼𝜖

⌉
while 𝜇 (𝑈𝜖 (𝑓 𝑡11 , 𝑓

𝑡2
2 )) ≥ 𝛼 do

For each • ∈ {>, <} and 𝑖 ∈ {1, 2} Let:
𝑣•∗ = E

(𝑥,𝑦)∼D
[𝑦 |𝑥 ∈ 𝑈 •

𝜖 (𝑓
𝑡1
1 , 𝑓

𝑡2
2 )] 𝑣•𝑖

= E
(𝑥,𝑦)∼D

[𝑓 𝑡𝑖𝑖 (𝑥) |𝑥 ∈ 𝑈 •
𝜖 (𝑓

𝑡1
1 , 𝑓

𝑡2
2 )]

Let:

(𝑖𝑡 , •𝑡 ) = argmax
𝑖∈{1,2},•∈{>,<}

𝜇 (𝑈 •
𝜖 (𝑓

𝑡1
1 , 𝑓

𝑡2
2 )) ·

(
𝑣•∗ − 𝑣•𝑖

)2
breaking ties arbitrarily.

Let:

𝑔𝑡 (𝑥) =
{
1 𝑥 ∈ 𝑈 •𝑡

𝜖 (𝑓 𝑡11 , 𝑓
𝑡2
2 )

0 otherwise

Let:

Δ̃𝑡 = E
(𝑥,𝑦)∼D

[𝑦 |𝑔𝑡 (𝑥) = 1] − E
(𝑥,𝑦)∼D

[𝑓 𝑡𝑖𝑡𝑖𝑡 (𝑥) |𝑔𝑡 (𝑥) = 1]

Δ𝑡 = Round(Δ̃𝑡 ;𝑚)

Let: 𝑓 𝑡𝑖+1𝑖 (𝑥) = ℎ(𝑥, 𝑓 𝑡𝑖𝑖 , 𝑔𝑡 ,Δ𝑡 ), 𝑡𝑖 = 𝑡𝑖 + 1, 𝑡 = 𝑡 + 1.

Output (𝑓 𝑡11 , 𝑓
𝑡2
2 ).

Theorem 4.1. For any pair of models 𝑓1, 𝑓2 : X → [0, 1], any
distribution D, and any 𝛼, 𝜖 > 0, Algorithm 1 (Reconcile) runs for

𝑇 = 𝑇1 +𝑇2 many rounds and outputs a pair of models (𝑓 𝑇11 , 𝑓
𝑇2
2 ) such

that:

(1) 𝑇 ≤ (𝐵(𝑓1,D) + 𝐵(𝑓2,D)) · 16
𝛼𝜖2

(2) 𝐵(𝑓 𝑇11 ,D) ≤ 𝐵(𝑓1,D)−𝑇1 · 𝛼𝜖
2

16 and 𝐵(𝑓 𝑇22 ,D) ≤ 𝐵(𝑓2,D)−
𝑇2 · 𝛼𝜖

2

16

(3) 𝜇 (𝑈𝜖 (𝑓 𝑇11 , 𝑓
𝑇2
2 )) < 𝛼 .

Remark 4.1. The third conclusion of Theorem 4.1 states that the fi-

nal models output (𝑓 𝑇11 , 𝑓
𝑇2
2 ) approximately agree on their predictions

of individual probabilities almost everywhere. The first conclusion

states that the reconciliation procedure converges quickly. The second

condition of Theorem 4.1 focuses on one way that the output models

(𝑓 𝑇11 , 𝑓
𝑇2
2 ) are superior to the input models (𝑓1, 𝑓2) Ð they are more

accurate. But there is also another way: Every intermediate model

𝑓
𝑡1
1 and 𝑓 𝑡22 for 𝑡1 < 𝑇1 and 𝑡2 < 𝑇2 considered by the reconciliation

procedure but ultimately not output has been falsified via the demon-

stration of a set 𝑈 •
𝜖 (·, ·) on which it fails to satisfy 𝛼-approximate

group conditional mean consistency for a large value of 𝛼 .

Proof. By Lemma 4.1, for each round 𝑡 < 𝑇 we must have that:

𝜇 (𝑈 •𝑡
𝜖 (𝑓 𝑡11 , 𝑓

𝑡2
2 )) ·

(
𝑣
•𝑡
∗ − 𝑣•𝑡𝑖𝑡

)2
≥ 𝛼𝜖2

8

Let 𝑓 𝑡𝑖+1𝑡 = ℎ(𝑥, 𝑓 𝑡𝑖𝑖 , 𝑔𝑡 , Δ̃𝑡 ) Ð i.e. the update that would have

resulted at round 𝑡 had the algorithm used the unrounded measure-

ment Δ̃𝑡 rather than the rounded measurement Δ𝑡 . By Lemma 4.2,

we have that:

𝐵(𝑓 𝑡𝑖𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D) ≥ 𝛼𝜖2

8
.

We can now compute

𝐵(𝑓 𝑡𝑖𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D)
= (𝐵(𝑓 𝑡𝑖𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D)) − (𝐵(𝑓 𝑡𝑖+1𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D))

≥ 𝛼𝜖2

8
− (𝐵(𝑓 𝑡𝑖+1𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D))

So it remains to upper bound (𝐵(𝑓 𝑡𝑖+1𝑡 ) − 𝐵(𝑓 𝑡𝑖+1𝑡 )). Let Δ̂ = Δ̃𝑡 −
Δ𝑡 . We make several observations: First, 𝑓 𝑡𝑖+1𝑡 = ℎ(𝑥, 𝑓 𝑡𝑖+1𝑡 , 𝑔𝑡 , Δ̂).
Second,

Δ̂ = E
(𝑥,𝑦)∼D

[𝑦 |𝑔𝑡 (𝑥) = 1] − E
(𝑥,𝑦)∼D

[𝑓 𝑡𝑖𝑖 (𝑥) |𝑔𝑡 (𝑥) = 1] − Δ𝑡

= E
(𝑥,𝑦)∼D

[𝑦 |𝑔𝑡 (𝑥) = 1] − E
(𝑥,𝑦)∼D

[𝑓 𝑡𝑖+1𝑖 (𝑥) |𝑔𝑡 (𝑥) = 1]

Third, by definition of the Round operation, |Δ̂| ≤ 1
2𝑚 . Therefore

we can again apply Lemma 4.2 to conclude that:

𝐵(𝑓 𝑡𝑖+1𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D) = 𝜇 (𝑔𝑡 )Δ̂2

≤ 1

4𝑚2

Combining this with our initial calculation lets us conclude that:

𝐵(𝑓 𝑡𝑖𝑡 ,D) − 𝐵(𝑓 𝑡𝑖+1𝑡 ,D) ≥ 𝛼𝜖2

8
− 1

4𝑚2
≥ 𝛼𝜖2

16

Here we are using the fact that we have set𝑚 ≥ 2√
𝛼𝜖

. Applying this

lemma for each of the 𝑇1 and 𝑇2 updates for 𝑓1 and 𝑓2, respectively,

we get that: 𝐵(𝑓 𝑇11 ,D) ≤ 𝐵(𝑓1,D) − 𝑇1 · 𝛼𝜖216 and 𝐵(𝑓 𝑇22 ,D) ≤
𝐵(𝑓2,D)−𝑇2 · 𝛼𝜖

2

16 . Since Brier scores are non-negative, we conclude

that 𝑇1 ≤ 𝐵(𝑓1,D) 16
𝛼𝜖2

and 𝑇2 ≤ 𝐵(𝑓2,D) 16
𝛼𝜖2

. Thus 𝑇 = 𝑇1 +𝑇2 ≤
(𝐵(𝑓1,D) + 𝐵(𝑓2,D)) · 16

𝛼𝜖2

Finally the halting condition of the algorithm implies that:

𝜇 (𝑈𝜖 (𝑓 𝑇11 , 𝑓
𝑇2
2 )) < 𝛼.

□

Thus if we start with any two models that have substantial

disagreement, we are guaranteed to be able to efficiently produce

strictly improved models that almost agree almost everywhere. In

particular, we can never be in a position in which we have two

equally accurate but unimprovable models that have substantial

disagreements: in this case, we can always improve the models.

The only time we can have substantial model disagreement is if we
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refuse to improve the models even in the face of efficiently verifiable

and actionable evidence that one of the models is suboptimal and

improvable.

We observe that any pair of models that have gone through the

łReconcilež process must also produce very similar estimates for the

conditional label expectation over any sufficiently large reference

class (i.e. any subset of the feature space). In particular, for any suffi-

ciently large reference class, either both models are consistent with

the data or they are not Ð but they cannot substantially disagree.

Corollary 4.1. Let 𝐸 ⊂ X be any subset of the feature space. Let

𝑓1 and 𝑓2 be any two models that have been output by Algorithm 1

(Reconcile) with parameters 𝜖 and 𝛼 . Let:

𝑝1 (𝐸) = E
(𝑥,𝑦)∼D

[𝑓1 (𝑥) |𝑥 ∈ 𝐸] and 𝑝2 (𝐸) = E
(𝑥,𝑦)∼D

[𝑓2 (𝑥) |𝑥 ∈ 𝐸]

be the estimates for Pr[𝑦 = 1|𝑥 ∈ 𝐸] implied by models 𝑓1 and 𝑓2
respectively. Then:

|𝑝1 (𝐸) − 𝑝2 (𝐸) | ≤
𝛼

𝜇 (𝐸) + 𝜖

Proof. Let 𝑆𝜖 (𝑓1, 𝑓2) = {𝑥 : 𝑥 ∉ 𝑈𝜖 (𝑓1, 𝑓2)} be the set of points
on which 𝑓1 and 𝑓2 do not have an 𝜖-disagreement. Recall that

𝜇 (𝑆𝜖 (𝑓1, 𝑓2)) ≥ 1 − 𝛼 . We compute:

𝜇 (𝐸) |𝑝1 (𝐸) − 𝑝2 (𝐸) |

=

�����
∑︁
𝑥∈𝐸

𝜇 ({𝑥}) · (𝑓1 (𝑥) − 𝑓2 (𝑥))
�����

=

��� ∑︁
𝑥∈𝐸∩𝑈𝜖 (𝑓1,𝑓2 )

𝜇 ({𝑥}) · (𝑓1 (𝑥) − 𝑓2 (𝑥))

+
∑︁

𝑥∈𝐸∩𝑆𝜖 (𝑓1,𝑓2 )
𝜇 ({𝑥}) · (𝑓1 (𝑥) − 𝑓2 (𝑥))

���
≤ 𝛼 + 𝜇 (𝐸 ∩ 𝑆𝜖 (𝑓1, 𝑓2))𝜖
≤ 𝛼 + 𝜇 (𝐸)𝜖

Dividing by 𝜇 (𝐸) yields the corollary. □

5 CONTESTABLE MODELS

Thus far we have considered the problem of reconciling two mod-

els 𝑓1 and 𝑓2, and have shown that we require only 𝑂 (1/(𝛼3𝜖2))
many points to obtain strictly improved models 𝑓 ′1 , 𝑓

′
2 that have

𝜖 disagreements on at most an 𝛼 measure of points. But what if

someone then proposes a third model, 𝑓3, and then another 𝑓4, etc?

We could run the reconciliation process again each timeÐand per-

haps if we had 𝑘 models, repeatedly in a pairwise fashion until

all 𝑘 of the models approximately agreedÐbut this would naively

require a fresh set of samples for each new reconciliation procedure.

In this section, we show how to do better: we attach to 𝑓 just a

single sample of łcontestationž data that is of size polynomial in

our target reconciliation parameters 𝛼 and 𝜖 (and independent of

the complexity of the model or distribution). Using this data, we

show that we can then put 𝑓 through a reconciliation procedure

with a very large (exponential in the size of its contestation data set)

number of models, with the same guarantees as if we had run the

models through Algorithm 1 each time. Driving this result is the

observation that each time a particular model 𝑓 is updated using

the patch operation defined in Lemma 4.2, 𝑓 ’s squared error drops,

independently of which reconciliation process the update is a part

of Ð and thus the total number of large updates made to a single

model is bounded independently of the number of other models

that are łreconciledž with it. This, together with results from adap-

tive data analysis that allow us to repeatedly re-use hold-out sets

while preserving statistical validity [6, 16, 29] are enough to give

the result.

We define a łcontestable modelž to be a model 𝑓 attached to a

fixed sample of łcontestation dataž. A łcontestablež model can be

łcontestedž by identifying any subset of the data identified by an

indicator function 𝑔 : X → {0, 1}. The guarantee of a contestable
model is that if it is contested using a subset of the data that is

simultaneously large and on which the expectation of the model’s

predictions is substantially different than the expectation of the

label, then the model will be updated in a way that corrects the dis-

covered error on the identified subset of data, and strictly improves

the squared error of the model. These contestations are accepted.

Contestations can also be rejected on the grounds either that the

group identified is too small, or that the model already predicts on

average a value over that group that is sufficiently close to the true

label mean over that group. We aim to design contestable models

that can receive a number of contestations over their lifetime that

is exponential in the size of their contestation dataset.

Definition 5.1. A contestable model f consists of a current

model 𝑓𝑐 : X → [0, 1], a dataset 𝐷 ∈ Z𝑛 , and has two opera-

tions: f .predict(𝑥) which takes as input a data point 𝑥 ∈ X and

f .contest(𝑔) which takes as input the indicator function for a group

𝑔 : X → {0, 1}. f .predict(𝑥) outputs 𝑓𝑐 (𝑥), where 𝑓𝑐 is the current
model belonging to f , and f .contest(𝑔) may update the current model

𝑓𝑐 to a new model 𝑓𝑐+1 according to Algorithm 2.

Algorithm 2, which follows, is a randomized algorithm: it sam-

ples from the Laplace distribution. We write Lap(𝑏) to denote the

sampling operation for the centered Laplace distribution with scale

parameter 𝑏, which is the distribution that has probability density

function 𝑓 (𝑥 ;𝑏) = 1
2𝑏

exp
(
− |𝑥 |
𝑏

)
.

The analysis of Algorithm 2 is in the full version and goes

through differential privacy [18]. Differential privacy was originally

introduced as a strong notion of privacy that could be satisfied

while still carrying out high accuracy statistical analyses, but has

since found many other uses. Our interest in differential privacy

will be because of the transfer theorems of [6, 16, 29] which infor-

mally state that analyses that are both differentially private and

accurate on a sample of data 𝐷 drawn i.i.d. from an underlying dis-

tribution D must also be accurate on the underlying distribution.

Algorithm 2 is an instantiation of Algorithm 3 (NumericSparse)

from [19], from which it follows that the algorithm is differentially

private in the contestation dataset 𝐷 . We then apply the version

of the łtransfer theoremž given in [29], which establishes that its

estimates of statistics on 𝐷 are representative of their true values

on the underlying distribution D from which 𝐷 was drawn. Our

use of differential privacy here to get out of sample guarantees

closely mirrors its use in [27] to get a generalization theorem for

multicalibration algorithms. In fact, if the łcontestationž sets 𝑔𝑡
submitted to f .Contest(𝑔𝑡 ) were the groups with respect to which
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Algorithm 2: f .Contest

Given: A failure probability 𝛿 , a dataset 𝐷 ∈ Z𝑛 , an initial

model 𝑓 = 𝑓0, a threshold 𝑇 to accept attempted contestations, a

target total number of contestations 𝐾 , and an upper bound 𝐶

on the total number of accepted contestations.

Let 𝑡 = 0 denote a count of the number of attempted

contestations and 𝑐 = 0 denote the count of the number of

accepted contestations.

Let privacy parameter 𝜖 =

√︂
log 𝐾

𝛿

√︃
𝐶 ln 1

𝛿

𝑛

Let 𝜖1 =
√
512√

512+1𝜖 , 𝜖2 =
1√

512+1𝜖

Let 𝜎 (𝜖) =
√
32𝐶 log(1/𝛿 )

𝜖𝑛

Let 𝑇0 = 𝑇 + Lap(𝜎 (𝜖1))
while there is another model 𝑔𝑡 given as input to f.contest(𝑔𝑡 )
and 𝑐 < 𝐶 do

Compute an empirical estimate of

𝜇 (𝑔𝑡 ) · E[𝑦 − 𝑓𝑐 (𝑥) |𝑔𝑡 (𝑥) = 1]:

𝜂𝑡 (𝑓𝑐 , 𝑔𝑡 ) =
1

𝑛

∑︁
(𝑥,𝑦) ∈𝐷

(𝑦 − 𝑓𝑐 (𝑥)) · 𝑔𝑡 (𝑥)

Let 𝜂𝑡 = |𝜂𝑡 (𝑓𝑐 , 𝑔𝑡 ) | + Lap (2𝜎 (𝜖1))
if 𝜂𝑡 ≥ 𝑇𝑐 then

The contestation is accepted.

Let:

𝜇̃𝑡 =
1

𝑛

∑︁
(𝑥,𝑦) ∈𝐷

𝑔𝑡 (𝑥) + Lap(2𝜎 (𝜖2)) 𝜂𝑡 = 𝜂𝑡 (𝑓𝑐 , 𝑔𝑡 ) + Lap(2𝜎 (𝜖2))

Let Δ̃𝑡 =
𝜂̃𝑡
𝜇̃𝑡

Let 𝑓𝑐+1 (𝑥) = ℎ(𝑥, 𝑓𝑐 , 𝑔𝑡 , Δ̃𝑡 ), 𝑐 = 𝑐 + 1.

Let 𝑇𝑐 = 𝑇 + Lap(𝜎 (𝜖1))
else

The contestation is rejected.

Let 𝑡 = 𝑡 + 1.

Halt.

which multicalibrated predictors are required to satisfy group con-

ditional mean consistency, then Algorithm 2 would essentially (up

to some details) be the multicalibration algorithm originally given

by [27]. But a contestable model can take as input the indicator

function 𝑔𝑡 of any group, including those groups 𝑈 •
𝜖 (𝑓

𝑡1
1 , 𝑓

𝑡2
2 ) used

as updates within Reconcile (Algorithm 1). Thus, contestable mod-

els will be able to be reconciled with many other models in a data

efficient way (in addition to being łcontestedž on other groups on

which they fail to satisfy group conditional mean consistency).

Theorem 5.1. Initialized with a dataset𝐷 ∼ D𝑛 of size 𝑛 sampled

i.i.d. fromD, a target number of contestations 𝐾 , a failure probability

𝛿 , a threshold 𝑇 = Θ
©­
«

(
log 𝐾

𝛿

)1/3
(ln 1

𝛿
)1/6

𝑛1/3
ª®
¬
and a limit on successful

contestations 𝐶 = Θ

(
1
𝑇 2

)
, a contestable model will with probability

1 − 2𝛿𝑛:

(1) Process at least 𝐾 contestations 𝑔𝑡 without halting,

(2) Guarantee that every accepted contestation 𝑔𝑡 is such that:���E(𝑥,𝑦)∼D [𝑔𝑡 (𝑥) (𝑦 − 𝑓𝑐 (𝑥))]
��� ≥ Ω

©­«
(
log 𝐾

𝛿

)1/3
(ln 1

𝛿
)1/6

𝑛1/3
ª®¬
and

produces an update that reduces the squared error of f by

𝐵(𝑓𝑐 ) − 𝐵(𝑓𝑐+1) = Ω(𝑇 2) = Ω
©­«

(
log 𝐾

𝛿

)2/3
(ln 1

𝛿
)1/3

𝑛2/3
ª®¬
.

(3) Guarantee that every rejected contestation 𝑔𝑡 is such that:���E(𝑥,𝑦)∼D [𝑔𝑡 (𝑥) (𝑦 − 𝑓𝑐 (𝑥))]
��� ≤ 𝑂 ©­«

(
log 𝐾

𝛿

)1/3
(ln 1

𝛿
)1/6

𝑛1/3
ª®¬
.

The proof of Theorem 5.1 can be found in the full version.

We now observe how a contestable model with the guarantees

of Theorem 5.1 can be repeatedly used as part of a reconciliation

procedure akin to Algorithm 1.

Algorithm 3: Contestable-Reconcile(f1, f2, 𝛼, 𝜖,D)

while 𝜇 (𝑈𝜖 (f1, f2)) ≥ 𝛼 do

For • ∈ {>, <} let:

𝑔• (𝑥) =
{
1 𝑥 ∈ 𝑈 •

𝜖 (f1, f2)
0 otherwise

f1 .𝑐𝑜𝑛𝑡𝑒𝑠𝑡 (𝑔>), f1 .𝑐𝑜𝑛𝑡𝑒𝑠𝑡 (𝑔<), f2 .𝑐𝑜𝑛𝑡𝑒𝑠𝑡 (𝑔>),
f2 .𝑐𝑜𝑛𝑡𝑒𝑠𝑡 (𝑔<)

The idea is simple (and outlined in Algorithm 3): While we have

two contestable models f1 and f2 that have 𝜖-disagreements on

more than an 𝛼 fraction of the distribution, contest both models

on the disagreement sets 𝑈 >

𝜖 (f1, f2) and 𝑈 <

𝜖 (f1, f2). By Lemma 4.1,

if indeed 𝜇 (𝑈 •
𝜖 (f1, f2)) ≥ 𝛼 , then for at least one of the models

𝑖 ∈ {1, 2} and for at least one of the sets • ∈ {>, <}, we must have:��𝜇 (𝑈 •
𝜖 (𝑓1, 𝑓2)) · E[𝑦 − 𝑓𝑐 (𝑥) |𝑥 ∈ 𝑈 •

𝜖 (𝑓1, 𝑓2)]
��

≥ 𝜇 (𝑈 •
𝜖 (𝑓1, 𝑓2)) · E[𝑦 − 𝑓𝑐 (𝑥) |𝑥 ∈ 𝑈 •

𝜖 (𝑓1, 𝑓2)]2

≥ 𝛼𝜖2

8

By Theorem 5.1, assuming that the contestation datasets of both

models are of size:

𝑛 ≥ Ω

©­­«
log 𝐾

𝛿

√︃
log 1

𝛿

𝛼3𝜖6

ª®®¬
then at least one of these contestations will succeed until (after at

most a polynomial number of contestations in 𝛼 and 𝜖), the models

are reconciled and 𝜇 (𝑈 •
𝜖 (f1, f2)) ≤ 𝛼 .

Solving for 𝐾 , we find that a contestable model can be run

through

𝐾 = Θ̃

©­­
«
𝛿 exp

©­­«
𝑛𝛼3𝜖6√︃
log 1

𝛿

ª®®
¬
ª®®
¬

many contestation procedures given a single contestation dataset

of size 𝑛. Here the Θ̃ hides terms that are logarithmic in 1/𝛼 and

1/𝜖 .
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We emphasize that a contestable model can be contested using

𝐾 many sets of any nature Ð these can include the disagreement

regions that arise from our Reconcile procedure, but can also include

arbitary regions on which the current model is found to be mis-

calibrated. Thus contestable models can be robustly and iteratively

improved over an exponential number of contestations whenever

they are falsified by being shown to fail to satisfy group conditional

mean consistency on any group. Modest amounts of data, attached

to a model as a contestation dataset, can make the model long-lived

in an easily adaptable and improvable form.

6 CONCLUSION

Individual probability assignments are not determined by data;

this lies at the heart of both the reference class problem and the

predictive multiplicity problem. Insofar as individual probability as-

signments play a significant role in consequential decision-making,

their underdetermination by data may give rise to practical prob-

lems when we have two or more seemingly equally good estima-

tion methods that nevertheless result in models that differ sub-

stantially in the assignments they predict. We show that given

modest amounts of data to resolve disagreements, such problems

cannot arise at a substantial scale, because if two models disagree

substantially in many places, then this large disagreement region

itself points us to how to improve at least one of the models. The

only way this process can conclude is with improved models that

approximately agree almost everywhere. This does not łresolvež

the reference class problem, the predictive multiplicity problem, or

other puzzles about individual probability in that it does not claim

a way to produce łcorrectž estimates of individual probabilities. But

it does remove the practical bite of these problems in that it shows

that two parties who agree on the data distribution and who have

committed in good faith to make statistical estimates of individ-

ual probabilities cannot end up in a state where they substantially

disagree on a large number of instances Ð and hence will rarely

face any ambiguity in how they should act, given their statistical

modeling.
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