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ABSTRACT

Individual probabilities refer to the probabilities of outcomes that
are realized only once: the probability that it will rain tomorrow,
the probability that Alice will die within the next 12 months, the
probability that Bob will be arrested for a violent crime in the next
18 months, etc. Individual probabilities are fundamentally unknow-
able. Nevertheless, we show that two parties who agree on the
data—or on how to sample from a data distribution—cannot agree
to disagree on how to model individual probabilities. This is be-
cause any two models of individual probabilities that substantially
disagree can together be used to empirically falsify and improve
at least one of the two models. This can be efficiently iterated in a
process of “reconciliation” that results in models that both parties
agree are superior to the models they started with, and which them-
selves (almost) agree on the forecasts of individual probabilities
(almost) everywhere. We conclude that although individual proba-
bilities are unknowable, they are contestable via a computationally
and data efficient process that must lead to agreement. Thus we
cannot find ourselves in a situation in which we have two equally
accurate and unimprovable models that disagree substantially in
their predictions—providing an answer to what is sometimes called
the predictive or model multiplicity problem.
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1 INTRODUCTION

Probabilistic modelling in machine learning and statistics predicts
“individual probabilities” as a matter of course. In weather forecast-
ing, we speak of the probability of rain tomorrow; in life insurance
underwriting we speak of the probability that Alice will die in the
next 12 months; in recidivism prediction we speak of the probability
that an inmate Bob will commit a violent crime within 18 months
of being released on parole; in predictive medicine we speak of
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the probability that Carol will develop breast cancer before the age
of 50 — and so on. But these are not repeated events: we have no
way of directly measuring an “individual probability” — and indeed,
even the semantics of an individual probability are unclear and
have been the subject of deep interrogation within the philosophy
of science and statistics [13, 26] and theoretical computer science
[17]. Within the philosophy of science, puzzles related to individual
probability have been closely identified with “the reference class
problem” [26]. This is a close cousin of a concern that has recently
arisen in the context of fairness in machine learning called the “pre-
dictive multiplicity problem” (a focal subset of “model multiplicity
problems”) [8, 30] which [9] earlier called the “Rashomon Effect”.
At the core of both of these problems is the fact that from a data
sample that is much smaller than the data universe (i.e. the set
of all possible observations), we will have observed at most one
individual with a particular set of characteristics, and at most one
outcome for the event that an “individual probability” speaks to: It
will either rain tomorrow or it will not; Alice will either die within
the next year or she will not; etc. We do not have the luxury of
observing a large number of repetitions and taking averages.

[13] lays out two broad classes of perspectives on individual
probabilities: the group to individual perspective and the individual
to group perspective. The group to individual perspective is roughly
as follows: We cannot measure individual probabilities from data,
but we can measure averages of outcomes within sufficiently large
reference classes S. A reference class S is just some well defined
subset of the observed data: for example (in the weather forecasting
setting) the set of days in which there is cloud cover and humidity
is above 60%, or (in the life insurance setting) the set of 65 year old
women with a history of high blood pressure. Given a reference
class that is large enough that we have observed in our data many
members of the reference class, we can empirically estimate the
prevalence of the outcome we are concerned with forecasting (rain,
death within 12 months) for members of the reference class. Then,
if we are asked to forecast an individual probability (the probability
that Alice will die within the next 12 months), we simply pick an
appropriate reference class S such that Alice € S and then respond
with the proportion of observed deaths within a 12 month period
for individuals from reference class S. The principal problem with
this approach (known as the “reference class problem” [26]) is that
Alice will simultaneously be a member of many different reference
classes S. We cannot condition on everything we know about Alice,
or we will end up with a reference class that does not contain
enough examples for us do statistical inference on: thus we must
pick and choose. But should we have conditioned on her age, gender
and blood pressure? What about her weight? Her job? Her marital
status? Her vaccination history? Defining reference classes with
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respect to different subsets of these attributes will generally lead
to different estimates for the probability that Alice will die within
the next 12 months: what privileges one of these estimates over
another? This is the reference class problem.

On the other hand, the individual to group perspective treats
individual probabilities as the first class objects. This is the perspec-
tive most familiar in machine learning and statistics: models f are
learned from data with the goal of mapping individuals (e.g. “Alice”)
to individual probabilities for the outcome of interest, f(Alice).!
Models of individual probabilities can also be aggregated over to
give predicted probabilities conditional on reference classes. If we
want to evaluate the probability of an outcome conditional on some
reference class S, we can do so by averaging the model’s predictions
over individuals in S. We cannot measure individual probabilities,
but from data we can measure the average probability of an out-
come over a sufficiently large reference class S, which gives us a
way to empirically falsify a model f from data: if the prediction
implied by f for the average outcome conditional on a large refer-
ence class does not match the average outcome we can measure
from the data, then the model f must be wrong. Multicalibration,
introduced by [27], gives us a way to build models of individual
probabilities that are consistent with the data for large numbers
of arbitrarily chosen reference classes S — i.e. models that are not
empirically falsified by any of the pre-specified reference classes.
Nevertheless, multi-calibrated models are not unique: we can have
multiple models that have large disagreements in many of their
individual predictions that nevertheless are equally consistent with
the data on a large collection of reference classes. This is an instance
of the predictive multiplicity problem [8, 9, 30].

The predictive multiplicity problem is usually not phrased in
terms of multicalibration and reference classes, but in terms of
accuracy or error. If a model encodes true individual probabilities,
then it will minimize expected squared error? amongst all possible
models. Moreover, expected squared error is something that we
can efficiently estimate from data. Hence, if we have two models
fi and f2, and we can infer from data that f; has lower expected
squared error than f;, then this is an empirical falsification of the
hypothesis that f> correctly encodes individual probabilities. This
serves as a normative justification for selecting amongst models
based on their accuracy, which is a common practice. The predictive
multiplicity problem arises when we have two models f; and f;
(and perhaps others) that are equally accurate, but disagree substan-
tially on many of their predictions. More generally the predictive
multiplicity problem arises when we have multiple models that
differ substantially in their predictions, but are seemingly equally
consistent with the data before us.

Despite arising from different conceptions of individual proba-
bility, the reference class problem and the predictive multiplicity
problem result in the same practical concern: that data do not en-
code unique estimates for the individual probabilities for many
individuals. If this is the case, then what justification do we have in
making consequential decisions as a result of predictions that our
models make about individual probabilities? How can we justify
setting a high rate for Alice’s life insurance, denying parole to Bob,

Here of course what is input to the model is some representation of the individual,
encoding the information that we have available about them.
Zor any other proper scoring rule.
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or suggesting life-altering preventative surgery to Carol based on
the predictions of some model f; if we have an equally good (and
equally well supported by the data) model f, that makes predictions
that would lead us to take the opposite course of action?

1.1 Our Results

We show that given a common understanding of the data (or the
process of sampling from the data distribution), models of individ-
ual probabilities are contestable through an efficient model recon-
ciliation process that must lead to broad agreement. Specifically,
suppose one party A proposes a model of individual probabilities
fa, that another party B thinks is flawed. B can contest fy by propos-
ing their own model of individual probabilities fg. There are two
possible outcomes:

(1) fa and fp agree in their predictions almost everywhere®. In
this case, it turns out there was no substantial disagreement.

(2) fa and fg substantially disagree in their predictions for a
large portion of the population.

In the second case, we can efficiently extract from the disagreement
region of f4 and fp a large reference class S = S(fa, fg) such that
on this reference class, not only do f4 and fp disagree on individual
predictions, they also disagree substantially on their prediction of
the average outcome conditional on membership in S. Because S
is large, from only a modest amount of data, we can accurately
estimate the average outcome conditional on S. But because fy
and fp have a substantial disagreement about this quantity, our
measurement is guaranteed to falsify at least one of the two models.

Suppose it is model fy4 that is falsified. Then, using a very simple
and efficient model update operation of the same sort used for com-
puting multicalibrated models [27], we can update f4 to produce a
new model f} that now makes predictions that are correct on aver-
age over S. The new model f} is guaranteed to have significantly
reduced squared error compared to f4, and so is a better model
not only in that it has not yet been falsified, but in that it is more
accurate.

After this update, we can then repeat the process: Either f; and
fB agree on their predictions almost everywhere, or we can again
falsify one of the models and improve it using a large reference class
S" = S(f}, fp)- The only way for this process to end is with two
models that agree in their predictions almost everywhere. Moreover,
because each iteration of falsification and improvement improves
the expected squared error of at least one of the two models, the
process cannot continue for very many iterations — fast agreement
of the models is guaranteed.

In Section 4, we formally derive the guarantees of our model
reconciliation process under the assumption that we can directly
evaluate conditional outcome probabilities conditional on large
reference classes S: this makes our analysis more transparent. In
the full version, we show that we can run our model reconciliation
process on the empirical distribution over a modestly sized dataset
that is sampled i.i.d. from some unknown underlying distribution,

3We use the expressions “almost everywhere” and “almost agree” as shorthand for
quantitative statements that are made explicit in the formal presentation of our results.
Insofar as we are working in the context of discrete distributions, it should be clear that
we are not using these expressions in their usual measure-theoretic sense. We note that
our focus on discrete distributions is merely to avoid dealing with measure-theoretic
niceties, and is not essential to any of our results
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and that its guarantees carry over to the unknown distribution of
interest. Here “modestly sized” means a number of samples that is
independent of the complexity of the models to be reconciled or the
dimension (or any other property) of the underlying distribution,
and that depends only polynomially on the quantitative parame-
ters controlling how closely we want the models resulting from
the reconciliation process to agree. In Section 5 we show how to
affix a single, modestly sized sample to a model (which we call a
contestable model) which can be used to reconcile that model with
an exponentially large sequence of models that might be used to
contest it in the future.

2 DISCUSSION

Are “Individual Probabilities” Coherent? What are we assuming
when we model the world using “individual probabilities”? Are we
assuming some kind of idealized, unrealized randomness, which is
simply a poor stand-in for our ignorance of the relevant processes?
No. Our modelling choices do not preclude a deterministic world:
all true individual “probabilities” could be 0 or 1, simply record-
ing the outcomes of interest. We still allow for models to predict
non-integer probabilities; we can view these as simply expressing
uncertainty about the outcomes, or as encoding objective features
of a stochastic universe. Our results imply that after reconciliation,
two parties must agree about their assignments of individual prob-
abilities, regardless of the philosophical commitments each may
have about the nature of probability.

Agreement is Guaranteed; Not Truth. We emphasize that indi-
vidual probabilities are not uniquely determined from observed
data. Consider a toy model of weather forecasting in which fea-
tures x encode the date, and outcomes y encode whether or not it
rains on that date. The following two situations are observationally
indistinguishable:

(1) On every day x, the individual probability of rain p(x) = 1/2,

and

(2) Before the start of time, God selected a subset of days uni-

formly at random to have individual probability of rain
p(x) = 1 and the remaining set to have individual prob-
ability of rain p(x) = 0.

There is no hope of distinguishing these two situations from
data about outcomes alone, and so it is plainly impossible to learn
a model that is guaranteed to accurately encode individual prob-
abilities from such data*— in fact, it is not clear that this goal is
meaningful, as they are not uniquely determined.’> Nevertheless,
suppose we believed that the individual probability of rain was
p(x) = 1/2 every day. If we met a forecaster who was able to make
more accurate predictions (i.e. predictions that had lower squared

40f course, we do not take such radical under-determination of individual probability
assignments from data about outcomes alone to in anyway impugn the objectivity
of such assignments. Indeed, the primary virtue of our results from a philosophical
perspective is that they provide an efficient method to guarantee inter-subjective
agreement about individual probability assignments and thus secure their objectivity
to this extent.

51t is perhaps worth remarking that in this case Dawid’s uniqueness result [12], cited
earlier, implies, with probability one with respect to God’s choices, that there is an
asymptotically unique computable assignment of probabilities that is computably
calibrated with the data generated by God’s choices. There is no paradox here: insofar
as God’s choices are generated uniformly at random, her (deterministic) probability
forecast is, with probability one, algorithmically random, and thus not computable.

103

FAccT 23, June 12-15, 2023, Chicago, IL, USA

error) on previously unobserved data, we would be forced to rec-
ognize that our model was incorrect — because we could compare
the performance of the two models on data. This drives our result
(and similar work on multiple expert testing [2, 20] — see Section
2.1), and is the reason that we can guarantee agreement rather than
truth. Nevertheless, the updates that result from our reconcilia-
tion process always move towards truth—because they are error
improving—but they stop when the available models agree, which
might be well before truth is attained.

Predictive Multiplicity Comes from Restricting Model Classes. Pre-
vious work has empirically noted and quantified the phenomenon
of predictive multiplicity—i.e. that solving an error minimization
problem over some class of models can result in multiple solutions
of (roughly) equivalent error [10, 30]. How do these results square
with our contention that the predictive multiplicity problem cannot
arise, because two equally accurate but substantially different mod-
els constructively imply the existence of a more accurate model?

The answer is that predictive multiplicity can arise when models
are restricted to lie within some pre-specified hypothesis class, like
linear threshold functions, bounded depth decision trees, or neu-
ral networks with a particular architecture. Traditionally machine
learning is done by optimizing a model within a fixed model class,
and this is the setting in which predictive multiplicity has been
empirically observed and quantified. In contrast, our algorithm for
reconciling pairs of models f; and f; produces a model f; that need
not lie in the same model class as f; and fa. This is key to side-
stepping the predictive multiplicity problem. Traditional methods
in machine learning and statistics optimize over models from re-
stricted classes to avoid the problem of overfitting. In contrast, we
avoid overfitting despite not restricting our model classes a priori
by bounding the number of updates that can occur through our
reconciliation process.

Do models really predict individual probabilities? Another objec-
tion we can imagine is that in the settings we discuss—weather pre-
diction, life insurance underwriting, recidivism prediction, etc.—it
is logically impossible to observe repeated trials, because tomorrow
will only occur once, Alice has only one life to live, and so on. In con-
trast, when we move to the formalism of a probability distribution
over representations of individuals, it may be extremely unlikely
(or even a measure 0 event) to observe the same representation
of an individual multiple times, but it is no longer a logical im-
possibility. Said another way, when we model individuals in some
representation space, we may fail to record idiosyncratic details
of the individual, and so we are no longer speaking of individual
probabilities, but rather average outcomes over the reference class
defined by people who share the same representation. But this is
not a sharp distinction, because our results have no dependence at
all on the dimensionality or complexity of the representation we
use for individuals. For this objection to have teeth, it must be that
there is some crucial idiosyncrasy of an individual that we have
failed to capture in our representation: if so, add this to our repre-
sentation! Our results remain the same (not just qualitatively but
also quantitatively) even if the representation of every individual
records the position of every molecule in their body, a complete
history of their life from birth until the present, or anything else,
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and so does not rely even implicitly on having only an impover-
ished representation of an individual to work with rather than “the
real thing”.

2.1 Additional Related Work

Our work is related to a number of strands of literature across statis-
tics, economics, and computer science. Aumann [3] proved that two
Bayesians who share a common prior, but may have made different
observations, must agree on the posterior expectation of a random
variable if their posterior distributions are common knowledge.
Although Aumann’s original result was nonconstructive, subse-
quent work has shown that agreement can be reached with finite,
communication efficient protocols [1, 23]. Despite similarity in its
conclusions, this line of work is quite distinct from ours. In the
Bayesian setting that this line of work focuses on, it is immediate
that two agents who share the same set of observations and prior
beliefs must share the same posterior beliefs (as a posterior dis-
tribution is determined, via Bayes rule, as a function only of the
prior distribution and observations). Aumann’s agreement theorem
instead shows that if agents have arrived at common knowledge
of their posterior distributions, then their posteriors must agree
even if they have not directly shared their observations. In contrast,
in a frequentist setting, individual probabilities are not uniquely
determined from data, which forms the basis of the reference class
problem [26] and the model multiplicity problem [8]. Our work
considers how two frequentist agents who agree on the same set
of data (or the distribution from which it was drawn) must come to
agree on individual probabilities — a problem which would not arise
in the first place if they were Bayesian agents with a common prior.

[11] proposed calibration as a desirable frequentist condition
for evaluating probabilistic forecasts: roughly speaking that the
outcome being forecast should have appeared with empirical fre-
quency p conditional on the forecaster predicting probability p of
the outcome, simultaneously for all predictions p. Subsequently,
[12] studied a substantial strengthening of this condition called
computable calibration that requires calibration to hold simultan-
iously on all computable subsets of the data.Dawid proved that in
the infinite data limit, two computably calibrated forecasters must
approximately agree in their predictions almost everywhere — that
is, except on a finite subset of the data [12]. He notes explicitly
that this criterion is not of practical use in finite data scenarios,
and speculates about the desirability of restrictions of computable
calibration to finite sample scenarios (anticipating multicalibration
[27]). Multicalibration [27] asks for calibration on a restricted class
of subsets of the data. [27] gave algorithms for learning multicali-
brated predictors with data requirements that scale only modestly
with the number of subsets of the data on which calibration is re-
quired (and efficient algorithms whenever it is possible to efficiently
optimize over these subsets)—but multicalibrated forecasts need
not be unique. [28] generalized multicalibration (which aims to be
consistent with mean outcomes) to moments and other properties
of real valued outcomes, and gave efficient algorithms for obtaining
these guarantees. [17] generalized multicalibration to notions of
“outcome indistinguishability” that ask that a probabilistic forecaster
be indistinguishable from a true probabilistic model with respect to
a hierarchy of distinguishers that might have access not just to the
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predictions but to the implementation details of the forecaster itself.
[17] explicitly connect outcome indistinguishability to philosophi-
cal questions surrounding individual probabilities. Multicalibration
has proven to be an effective technique for improving individual
predictions in several applications in predictive medicine [4, 5]

[21] gave the first algorithm to constructively make predictions
of individual probabilities guaranteed to generate calibrated fore-
casts against arbitrary sequences of outcomes (and so necessarily
without any knowledge of the “true individual probabilities”, since
the outcomes can be generated adversarially, with knowledge of
the predictor’s algorithm). [33] show constructively how to achieve
calibration in the infinite data limit on any computable subsequence
of an arbitrary sequence of outcomes. [32] showed that any em-
pirical test (not just calibration tests) that is guaranteed to pass
an expert who is forecasting true individual probabilities can be
passed by a prediction algorithm on any sequence of outcomes.
This is closely related to the fact that individual probabilities are
not uniquely specified by data — and so we cannot attempt to
test an expert by computing unique individual probabilities our-
selves. [25] gave computationally and sample efficient algorithms
for achieving multi-calibrated forecasts against arbitrary sequences
of outcomes — for means, moments, and quantiles. [7] gave prac-
tical implementations of quantile multicalibration algorithms in
adversarial sequential settings, and applied them to give algorithms
for producing prediction sets of various kinds of classifiers with
calibrated, group-wise conditionally valid guarantees.

Although [32] showed that no empirical test of outcomes can
distinguish a forecaster with knowledge of true individual prob-
abilities from one without such knowledge in isolation, [2] and
[20] showed that there are comparative tests that can distinguish
between two forecasters, one of whom is forecasting true individual
probabilities and one of whom is not. In particular, the test of [20]
is based on checking for cross-calibration between two forecasters
— i.e. calibration conditional on the predictions of both forecasters,
and is driven by the fact that on a sequence of predictions such
that one forecaster predicts a probability for an outcome p and
the other predicts a probability p” # p, they cannot both be right,
which is empirically verifiable if there are many such rounds. In
the context of studying the utility of predictors for downstream
fairness interventions, [22] study predictors that are refinements of
one another (in the sense of [14, 15]). They give a simple algorithm
(“Merge”) that given any two predictors fi, f2, produces a predictor
f3 that is cross-calibrated with respect to f; and f;, and hence is a
refinement of both. A variant of the “Merge” algorithm of [22] could
be used in place of our “Reconcile” algorithm in our arguments; the
two algorithms have incomparable data requirements, but would
lead to the same qualitative conclusions.

[24] proposes a framework in which models that are sub-optimal
on different subsets of the population can be updated and improved
as part of a “bias bounties” program by means of falsification; this
is another setting in which models can be made to be contestable.

3 BASIC SETTINGS AND DEFINITIONS

We study prediction tasks over a domain Z = X x Y. Here X
represents the feature domain and Y represents the label domain.
To avoid dealing with measure-theoretic issues, we assume in this
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paper that X is a discrete set, but this is not essential to any of our
results. For this paper we will restrict attention to binary prediction
tasks, where Y = {0, 1} records the outcome of some binary event.
Given a labelled example (x,y) € Z, we view x as encoding all
observable characteristics of the instance (e.g. meteorological con-
ditions in a weather prediction task, demographic attributes and
medical history in a predictive medicine task, etc.), and y represents
the binary outcome we are trying to predict (and when part of the
training data, represents the outcome of the binary event that we
have observed and recorded).

We model the world via a distribution D € AZ. Generally we
will not have a direct description of the distribution, and instead
have access only to a sample of n datapoints D sampled i.i.d. from
D, which we will write as D € Z". We will also sometimes identify
a dataset D = {(x1,y1),- .-, (xn, yn)} with the empirical distribu-
tion over D, which is simply the discrete distribution that places
probability mass 1/n on each point (x;,y;) fori € {1,...,n}.

A model is some function f : X — [0, 1], and our (typically
unattainable goal) is to find a model f* that has the property that
forall x € X, f*(x) = Pr(y,y)~p [y = 1|x] is the conditional label
expectation given x, or (since we are assuming labels are binary)
just “the individual probability” of the outcome for x.

Suppose someone purports to have a model for individual proba-
bilities f. How can we evaluate whether f is any good? If our goal
was purely prediction, we might evaluate f via its squared error —
i.e. the expected (squared) deviation of its prediction from the true
label. This is the objective we would minimize if we were solving
(e.g.) a least squares regression problem:

DEFINITION 3.1 (BRIER SCORE). The squared error (also known as
Brier score) of a model f evaluated on distribution D is: B(f, D) =
E(x,y)~o [(f(x) = y)?]

Observe that when we treat a dataset D = {(x1,y1), ..., (Xn, yn) }
as an empirical distribution, then we have: B(f, D) = % 2 (f (i) -
yi)?

The Brier score can be accurately estimated given access only
to samples from a distribution, and a justification for evaluating
models via their Brier score is that amongst all models, the Brier
score is minimized by the true individual probabilities encoded by
a probability distribution.

LEMMA 3.1. Fix any probability distribution D and let f*(x) =
Pr(xy)~ply = 1lx] represent the true individual probabilities en-
codedby D. Let f : X — [0, 1] be any other model. Then: B(f*, D) <
B(f,D)

Thus if we have two models fi and f2, and can verify from data
that B(fi, D) < B(f2, D), this constitutes an empirical falsification
that f; correctly encodes individual probabilities.

4 A RECONCILIATION PROCEDURE

Suppose we are given two models fi, f2 : X — [0, 1] that purport to
predict individual probabilities. Our principle concern is the “model
multiplicity” problem — that f; and f; differ substantially in their
predictions, and yet we cannot falsify either of the two models
from the data. Thus we will be interested in regions in which these
models disagree substantially in their predictions. We will define
“substantially” by an arbitrarily small discretization parameter e:
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DEFINITION 4.1. Two models fi and fo have an e-disagreement
on a pointx € X if |fi(x) — fa(x)| > e.

Let Ue(fi, f2) be the set of points on which fi and f, have an
e-disagreement: Uc (f1, f2) = {x : |fi(x) — fa(x)| > €}

Informally, we will say that if fi and f; do not have an e-disagreement

on x that they agree on x.

One way that we can empirically falsify a model f is by measur-
ing the average outcome y on some subset or group defined on the
data, and comparing it to the average prediction of the model f on
the same subset. If the two differ substantially, the model must be
incorrect. But from finite data we will only be able to accurately
measure these averages on groups that are sufficiently large. We
will model groups g as indicator functions g : X — {0,1} that
specify whether or not each data point x is in the group (g(x) = 1)
or not (g(x) = 0). We will use the following notation to measure
the size of a group as measured on the underlying distribution D:

DEFINITION 4.2. Under a distribution D, a group g : X — {0, 1}
has probability mass 1i(g) defined as: ji(g) = Pr(x,y)~1) [g(x) =1].

Given a model f and a group g, we can define a quantitative
extent to which the average prediction of the model on points in
g compares to the average (expected) outcome on points in g. In
expectation over the distribution, these two quantities should agree
exactly if f = f* actually encodes true individual probabilities,
but from data we will only be able to estimate these quantities
approximately. Thus we define an approximate notion of agreement,
which we call approximate group conditional mean consistency.
Models f that can be shown not to satisfy approximate group
conditional mean consistency on any group g have been falsified,
in that this constitutes a proof that f # f* (i.e. f must not encode
true individual probabilities).

DEFINITION 4.3. A model f : X — [0, 1] satisfies a-approximate
group conditional mean consistency with respect to a group g € G if:
2

E [f®lgx)=1]- E [ylgx)=1]] < —
D (x,y)~D u(g)

X, Y)~

Note that we parameterize a-approximate group conditional
mean consistency so that it asks for a weaker condition the smaller
the size p(g) of the group g. Informally, for a fixed value of «, it
asks that the deviation between the average prediction of f and the
actual expected outcomes y on a group g differ by at most an error
parameter that is proportional to 1/ \/;Tg) . This will turn out to be
the “right” scaling because it corresponds to the precision to which
we can measure these quantities from data.

We will show a quantitative version of the following statement.
It must be the case that either

(1) fi and f, agree on almost all of their predictions, or

(2) fi, or f, or both can be proven from the data to violate a
group conditional mean consistency condition on a large set
of points. In this case, the falsified model can be “patched”
with a simple update in a way that improves its accuracy.

The result is that there can be no substantial disagreements about
individual probabilities by people who are willing to be convinced
by the evidence of the data before them: models which disagree on a
substantial fraction of their predictions witness for each other places
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in which their predictions are falsified by the data, and provide the
means to correct (and improve) each other. Thus disagreements
can be leveraged to produce improved models, and this process
necessarily converges only when the models agree.

To formalize this, we start by partitioning the set of e-disagreements
Ue(fi, f2) into two additional sets that will be important — the set
of disagreements on which fi(x) > f2(x), and the set of disagree-
ments on which fi (x) < f2(x).

DEFINITION 4.4. Fix any two models fi, fo : X — [0, 1] and any
€ > 0. Define the sets:

US (fi. o) = {x € Ue(fi. o) + ix) > fo(x)}
US (fi. fo) = {x € Ue(fi. f2) « ix) < fo(x)}

Based on these sets, fore € {>, <} and i € {1,2} define the quantities:
vi= E lykeU(fif)lof= E [fix)lxeU(fi.fo)l
(xy)~D (xy)~D
Our analysis will proceed by showing that if U (f1, f2), the set of
e-disagreements of fi and f; is large, then at least one of the two sets
UZ (fi, f2) and US(f1, f2) will witness a large violation of group
conditional mean consistency for at least one of the two models.

LEmMA 4.1. Fix any two models fi, fo : X — [0,1] and any € > 0.
If the fraction of points on which fi and f, have an € disagreement
has mass p(Ue(fi, f2)) = a then for some ® € {>, <} somei € {1,2},
we have that:
ae?

Ui ) - (03 = 0f)* 2 ==

In other words, at least one ofthe sets UZ (fi, f2) and US (f1, f2) is

a group that witnesses an %~
one of the models fi andfz.

-mean consistency violation for at least

Proor. Since Ue(fi, f2) can be written as the disjoint union:

Ue(fi. f2) = US (fi. f2) VUE (fi. f2)

we must have that for at least one value of ® € {>, <} we have that:

W2 (finfo) 2 5

Since the points in U2 (fi, f2) are e-separated, we must have that
|07 — 03| > €. Therefore, for at least one of i € {1, 2} we must have
that .

[of — 0] = 2
Combining these two claims, we must have that:

0(62

p(UE (fi f2)) - (0F = 02)? =

O

Let’s consider the significance of this Lemma. Most basically, if
we have two models f and f; that disagree substantially, this lemma
gives an easily constructable set (U7 (f1, f2) or US (fi, f2)) that fal-
sifies by a substantial quantitative margin either the assertion that
fi encodes true conditional label expectations or the assertion that
f2 does. Next, we show that not only do these sets falsify that at
least one of fi or fz are a “correct” model — they provide a directly
actionable way to improve one of the models. We prove the follow-
ing lemma (which is closely related to the kinds of updates used
to obtain multicalibrated predictors [27]) which shows us how to
improve a model given a group g on which the model fails to satisfy
approximate group conditional mean consistency.

106

Aaron Roth, Alexander Tolbert, and Scott Weinstein

LEMMA 4.2. Fix any model f; : X — [0, 1], groupg; : X — {0, 1},
and distribution D. Let

Ar= E [ylge(x)=1]- E
(x,y)~D (x,y)~D

[fe(x)1g:(x) = 1]

and
Jee1 = h(x, fi3 96, D)
where h is a “patch” defined as:

[ fe+a g =1
h(x.f39.8) = {f(x) otherwise
Then:
B(fs, D) = B(fi+1, D) = p(gs) - A2

In other words: given any model f; and a group g; that witnesses a
violation of a-approximate group conditional mean consistency on
f, we can efficiently produce a model f;41 that has Brier score that is
smaller by exactly a.

Proor. By the definition of the patch h(x, f;; gr, A¢), models f;
and f;41 differ in their predictions only for x such that g;(x) = 1.
Therefore we can calculate:

B(ft, D) = B(fi+1, D)
Prlg:(x) =0] - ( E

x,y)~

+Prlgi(x) =1]- E [(fix)-y)* -

(xy)~D

= plg) B [(fix0) =y)® = (/i) +Ar = y)?lg(x) = 1]
(xy)~D

= u(gt)(%t E [y-fi(0)lg:(x)=1] -
(xy)~D

= ugr) (287 - A3)

= p(gr)A:
o

Summarizing, whenever we have two models that have € dis-
agreements on an a-fraction of points, we can always constructively
falsify at least one of the models, and update it to improve its Brier
score by at least O(ae?).

Finally, to make our argument that in-sample quantities (i.e. as
measured on the data samples) translate to out of sample quantities
(measured on the distribution), it will be useful for our algorithm
to not use arbitrarily precise values when patching models, but
instead values that are rounded to a finite grid:

DEFINITION 4.5. Fix any integer m. Let [1/m] denote the set of
m + 1 grid points:

-

For any valuev € [0,1] let Round(v m) = argmin,,
denote the closest gnd point tov in [1/m].

efi/m lo =7l

Observe that for v’ = Round(v; m) we always have that [v—0'| <
1
2m

We put this all together in Algorithm 1 (Reconciler). For sim-
plicity of exposition, we initially describe and analyze Algorithm 1
as if it has direct access to distributional quantities. In practice, of
course, we will have access only to samples from the distribution,

» [(f () = 9)? = (fir1 (x) = y)*|g¢ (x) = 0]
(fer1 (%) = )%l (x) = 1]
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and we will have to run an algorithm on a dataset D € Z" consist-
ing of these samples. We can do so by interpreting D as the uniform
distribution over the samples contained within it. In Section ??,
we show that when we run Reconcile( fi, f2, @, €, D) on a dataset
D ~ D" consisting of n i.i.d. samples from D, then the guarantees
we prove in Theorem 4.1 with respect to the empirical distribution
D translate over to the true distribution 9 with error terms quickly
tending to 0 as the number of samples n grows large.

Algorithm 1: Reconcile(fi, f2, &, €, D)
Lett=t;=1,=0 andflt1 =f1,f2t2
_r.2
Letm = [—WE]

while u(Ue(f]", £?)) > a do
For each e € {>,<}andi € {1, 2} Let:

= f.

vi= B [ylx e UL £ of
(x,y)~D
= B [ff@)xeU(ff ]
(x,y)~D
Let:
(o) = argmax  p(US(f1, £1) - (02 - of)?

i€{1,2},0e{>,<}

breaking ties arbitrarily.

Let:
) 1 xeUX(fL £
xX) =
It 0 otherwise
Let:
Ar= E [ylgs(x)=1]- E [f,fi’ (x)1gz(x) = 1]
(xy)~D (xy)~D

Ay = Round(As; m)

Let: £ (x) = h(x, {1, ge, Ae). ti = ti + 1, t = £ + 1.
Output ( fltl, th).

THEOREM 4.1. For any pair of models fi, fo : X — [0,1], any
distribution D, and any a, € > 0, Algorithm 1 (Reconcile) runs for
T =T1 + T many rounds and outputs a pair of models (flTl, ZTZ) such
that:

(1) T < (B(f1, D) + B(f2, D)) -

(2) BL" D) < B(fi D) =T 55

aE
T, 25

3) pU(f ) < a

REMARK 4.1. The third conclusion of Theorem 4.1 states that the fi-
nal models output (le, ZTZ) approximately agree on their predictions
of individual probabilities almost everywhere. The first conclusion
states that the reconciliation procedure converges quickly. The second
condition of Theorem 4.1 focuses on one way that the output models

an

andB(sz,D) < B(f2,D)-

(le,szz) are superior to the input models (fi, f2) — they are more
accurate. But there is also another way: Every intermediate model
flt1 andfzt2 fort; < Ty and ty < T, considered by the reconciliation
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procedure but ultimately not output has been falsified via the demon-
stration of a set U2 (-, -) on which it fails to satisfy a-approximate
group conditional mean consistency for a large value of a.

ProoF. By Lemma 4.1, for each round ¢t < T we must have that:

(162

8

Let f:iﬂ = h(x, ]”iti,g,, Ay) — ie. the update that would have
resulted at round ¢ had the algorithm used the unrounded measure-
ment A; rather than the rounded measurement A;. By Lemma 4.2,
we have that:

WU ) - (e =) 2

t

0{62

B(f!, D) - B(f/*, D) >

We can now compute
B(f), D) - B(f{™, D)
(B(f", D) - B(f*, D)) -

“ (B, D

So it remains to upper bound (B(ft‘H) B(ft‘“)) Let A=A, —
A¢. We make several observations: First, ft‘Jr1 = h(x ft’H,gt, A).
Second,

(B(f, D) - B(ff™*, D))

B(ft,+1 Z)))

\%

A= B [ylg@=1- B [fi®lgx=1]-
(xy)~D (xy)~D

= E [ylgx)=1- E [ﬁ"“(xng,(x):l]
(xy)~D x,y)~D

Third, by definition of the Round operation, |A] < 7 -+ Therefore

we can again apply Lemma 4.2 to conclude that:
BUF™LD) =B D) = plgnh
1
4m?
Combining this with our initial calculation lets us conclude that:

1 ae?
>

B D) =B D) 2 - - 5 2 -

Here we are using the fact that we have set m > \f . Applying this
lemma for each of the Ty and T, updates for f and fa, respectlvely,
we get that: B(le, D) < B(fi,D) - Th - % and B(f;%, D) <
B(f2. D)—-T,- %5 Since Brier scores are non-negative, we conclude
that T; < B(ﬁ,@)— and T, <B(f2,D) 2% Thus T=Ty + Tz <

(B(fi, D) + B(f. D)) - 25,
Finally the halting condition of the algorithm implies that:

p(Ue(f1, ) < e

[m]

Thus if we start with any two models that have substantial
disagreement, we are guaranteed to be able to efficiently produce
strictly improved models that almost agree almost everywhere. In
particular, we can never be in a position in which we have two
equally accurate but unimprovable models that have substantial
disagreements: in this case, we can always improve the models.
The only time we can have substantial model disagreement is if we
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refuse to improve the models even in the face of efficiently verifiable
and actionable evidence that one of the models is suboptimal and
improvable.

We observe that any pair of models that have gone through the
“Reconcile” process must also produce very similar estimates for the
conditional label expectation over any sufficiently large reference
class (i.e. any subset of the feature space). In particular, for any suffi-
ciently large reference class, either both models are consistent with
the data or they are not — but they cannot substantially disagree.

CoroLLARY 4.1. Let E C X be any subset of the feature space. Let
fi and f; be any two models that have been output by Algorithm 1
(Reconcile) with parameters € and a. Let:
p1(E) = ( E Z)[fl(x)|x € E] and p2(E) = (

x,y)~

E

x,y)~

[f2(x)|x € E]

be the estimates for Pr[y = 1|x € E] implied by models fi and f>
respectively. Then:

|p1(E) — p2(E)| <

2 e
H(E)

PRrOOF. Let Se(fi, f2) = {x : x ¢ Ue(fi, f2)} be the set of points
on which f; and f; do not have an e-disagreement. Recall that
u(Se(fi, f2)) = 1 — a. We compute:

H(E)|p1(E) — p2(E)|

D)) - (A - f(x)

x€eE

x€ENUe (fi.f2)

£

x€ENSe (fi.f2)

n({x}) - (filx) - f2(x))

Hx)) - (i) = )|

< a+p(ENSe(fi. f2))e
< a+pu(E)e
Dividing by p(E) yields the corollary. O

5 CONTESTABLE MODELS

Thus far we have considered the problem of reconciling two mod-
els fi and f;, and have shown that we require only O(1/(a3€?))
many points to obtain strictly improved models f/, f; that have
€ disagreements on at most an @ measure of points. But what if
someone then proposes a third model, f3, and then another f3, etc?
We could run the reconciliation process again each time—and per-
haps if we had k models, repeatedly in a pairwise fashion until
all k of the models approximately agreed—but this would naively
require a fresh set of samples for each new reconciliation procedure.
In this section, we show how to do better: we attach to f just a
single sample of “contestation” data that is of size polynomial in
our target reconciliation parameters « and € (and independent of
the complexity of the model or distribution). Using this data, we
show that we can then put f through a reconciliation procedure
with a very large (exponential in the size of its contestation data set)
number of models, with the same guarantees as if we had run the
models through Algorithm 1 each time. Driving this result is the
observation that each time a particular model f is updated using
the patch operation defined in Lemma 4.2, f’s squared error drops,
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independently of which reconciliation process the update is a part
of — and thus the total number of large updates made to a single
model is bounded independently of the number of other models
that are “reconciled” with it. This, together with results from adap-
tive data analysis that allow us to repeatedly re-use hold-out sets
while preserving statistical validity [6, 16, 29] are enough to give
the result.

We define a “contestable model” to be a model f attached to a
fixed sample of “contestation data”. A “contestable” model can be
“contested” by identifying any subset of the data identified by an
indicator function g : X — {0, 1}. The guarantee of a contestable
model is that if it is contested using a subset of the data that is
simultaneously large and on which the expectation of the model’s
predictions is substantially different than the expectation of the
label, then the model will be updated in a way that corrects the dis-
covered error on the identified subset of data, and strictly improves
the squared error of the model. These contestations are accepted.
Contestations can also be rejected on the grounds either that the
group identified is too small, or that the model already predicts on
average a value over that group that is sufficiently close to the true
label mean over that group. We aim to design contestable models
that can receive a number of contestations over their lifetime that
is exponential in the size of their contestation dataset.

DEFINITION 5.1. A contestable model f consists of a current
model fo : X — [0,1], a dataset D € Z", and has two opera-
tions: f.predict(x) which takes as input a data point x € X and
f.contest(g) which takes as input the indicator function for a group
g : X — {0,1}. f.predict(x) outputs f.(x), where f; is the current
model belonging to f, and f.contest(g) may update the current model
fe to a new model f.41 according to Algorithm 2.

Algorithm 2, which follows, is a randomized algorithm: it sam-
ples from the Laplace distribution. We write Lap(b) to denote the
sampling operation for the centered Laplace distribution with scale

parameter b, which is the distribution that has probability density
|x]|

function f(x;b) = # exp (_T)

The analysis of Algorithm 2 is in the full version and goes
through differential privacy [18]. Differential privacy was originally
introduced as a strong notion of privacy that could be satisfied
while still carrying out high accuracy statistical analyses, but has
since found many other uses. Our interest in differential privacy
will be because of the transfer theorems of [6, 16, 29] which infor-
mally state that analyses that are both differentially private and
accurate on a sample of data D drawn ii.d. from an underlying dis-
tribution O must also be accurate on the underlying distribution.
Algorithm 2 is an instantiation of Algorithm 3 (NumericSparse)
from [19], from which it follows that the algorithm is differentially
private in the contestation dataset D. We then apply the version
of the “transfer theorem” given in [29], which establishes that its
estimates of statistics on D are representative of their true values
on the underlying distribution D from which D was drawn. Our
use of differential privacy here to get out of sample guarantees
closely mirrors its use in [27] to get a generalization theorem for
multicalibration algorithms. In fact, if the “contestation” sets g;
submitted to f.Contest(g;) were the groups with respect to which
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Algorithm 2: f.Contest

Given: A failure probability , a dataset D € Z", an initial
model f = f;, a threshold T to accept attempted contestations, a
target total number of contestations K, and an upper bound C
on the total number of accepted contestations.

Let ¢t = 0 denote a count of the number of attempted
contestations and ¢ = 0 denote the count of the number of

accepted contestations.
log % 4/Cln %

Let privacy parameter € = n

V512 _ 1
otz O 2T Bzl ©
Let o(c) = \/32Clog(1/3)

€n
Let To = T + Lap(o(e1))
while there is another model g; given as input to f.contest(g;)
andc < Cdo

Compute an empirical estimate of
1(ge) - Ely = fe(x)1ge(x) = 1]:

nog) =5 D =) 9 ()

(x.y)eD

Lete; =

Let Az = |n:(fe, g1)| + Lap (20(e1))

if 7j; > T; then
The contestation is accepted.

Let:
.1 .
fr== > gi(0)+Lap(20(e2)) fit = ne(feoge) +Lap(20(e2))
(xy)eD
Let At = i
He

Let for1 (%) = h(x, fo, g1, Ar), e = ¢ + 1.
Let To = T + Lap(o(€1))

else
The contestation is rejected.
Lett=¢t+1.
Halt.

which multicalibrated predictors are required to satisfy group con-
ditional mean consistency, then Algorithm 2 would essentially (up
to some details) be the multicalibration algorithm originally given
by [27]. But a contestable model can take as input the indicator
function g; of any group, including those groups U (f; f ztz) used
as updates within Reconcile (Algorithm 1). Thus, contestable mod-
els will be able to be reconciled with many other models in a data
efficient way (in addition to being “contested” on other groups on
which they fail to satisfy group conditional mean consistency).

THEOREM 5.1. Initialized with a dataset D ~ D™ of size n sampled

i.i.d. from D, a target number of contestations K, a failure probability
1/3

(1og %) (In %)1/6

nl/3

6, a threshold T = © and a limit on successful

contestations C = © (%), a contestable model will with probability
1—26n:

(1) Process at least K contestations g; without halting,
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(2) Guarantee that every accepted contestation g; is such that:

(o §)" "
Blxy)-nla0@ - £ 2 o S | and

produces an update that reduces the squared error of f by

o K 2/3 BEINTE
B(fe) = B(fes1) = Q(T?) = Q w :

(3) Guarantee that every rejected contestation g; is such that:

(log %)1/3 In %)1/6
Bley)-ploi(0)(y - fro)]| < 0 S|

The proof of Theorem 5.1 can be found in the full version.

We now observe how a contestable model with the guarantees
of Theorem 5.1 can be repeatedly used as part of a reconciliation
procedure akin to Algorithm 1.

Algorithm 3: Contestable-Reconcile(fi, f2, 2, €, D)
while p(Ue(f1,£2)) > a do
For e € {>, <} let:

*(x) 1 xeU2(f1,f2)
xX) =
9 0 otherwise

fy.contest(g”), f1.contest(g<), f2.contest(g”),
f2.contest(g<)

The idea is simple (and outlined in Algorithm 3): While we have
two contestable models f; and f that have e-disagreements on
more than an « fraction of the distribution, contest both models
on the disagreement sets U_ (f1, f2) and US (f1, f2). By Lemma 4.1,
if indeed p(UZ(f1,f2)) > a, then for at least one of the models
i € {1,2} and for at least one of the sets ® € {>, <}, we must have:

|u(U2 (A f2)) - Ely — fe(x)|x € U (fi. f2)]]
p(UL (A, £2)) - Ely - fe(0)lx € UL (A, fo)]?

0(62

8
By Theorem 5.1, assuming that the contestation datasets of both

models are of size:
log %1 [log %

adeb

v

n>Q

then at least one of these contestations will succeed until (after at
most a polynomial number of contestations in « and €), the models
are reconciled and p (U2 (f, f2)) < a.

Solving for K, we find that a contestable model can be run
through

3.6

,/log%—

many contestation procedures given a single contestation dataset
of size n. Here the © hides terms that are logarithmic in 1/a and
1/e.

K=0|5exp
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We emphasize that a contestable model can be contested using
K many sets of any nature — these can include the disagreement
regions that arise from our Reconcile procedure, but can also include
arbitary regions on which the current model is found to be mis-
calibrated. Thus contestable models can be robustly and iteratively
improved over an exponential number of contestations whenever
they are falsified by being shown to fail to satisfy group conditional
mean consistency on any group. Modest amounts of data, attached
to a model as a contestation dataset, can make the model long-lived
in an easily adaptable and improvable form.

6 CONCLUSION

Individual probability assignments are not determined by data;
this lies at the heart of both the reference class problem and the
predictive multiplicity problem. Insofar as individual probability as-
signments play a significant role in consequential decision-making,
their underdetermination by data may give rise to practical prob-
lems when we have two or more seemingly equally good estima-
tion methods that nevertheless result in models that differ sub-
stantially in the assignments they predict. We show that given
modest amounts of data to resolve disagreements, such problems
cannot arise at a substantial scale, because if two models disagree
substantially in many places, then this large disagreement region
itself points us to how to improve at least one of the models. The
only way this process can conclude is with improved models that
approximately agree almost everywhere. This does not “resolve”
the reference class problem, the predictive multiplicity problem, or
other puzzles about individual probability in that it does not claim
a way to produce “correct” estimates of individual probabilities. But
it does remove the practical bite of these problems in that it shows
that two parties who agree on the data distribution and who have
committed in good faith to make statistical estimates of individ-
ual probabilities cannot end up in a state where they substantially
disagree on a large number of instances — and hence will rarely
face any ambiguity in how they should act, given their statistical
modeling.
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