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ABSTRACT

Mixtures of nanoparticles (NPs) with hybridizing grafted DNA or DNA-like strands have been
shown to create highly tunable NP-NP interactions, which, if designed to give non-additive
mixing, could lead to a richer self-assembly behavior. While non-additive mixing is known to
result in non-trivial phase behavior in molecular fluids, its effects on colloidal/NP materials have
been much less studied. Such effects are explored here via molecular simulations for a binary
system of tetrahedral patchy NPs, known to self-assemble into the diamond phase. The NPs are
modeled with raised patches that interact through a coarse-grained inter-particle potential
representing DNA hybridization between grafted strands. These patchy NPs were found to
spontaneous nucleated into the diamond phase and that hard-interacting NP cores eliminated the
competition between the diamond and BCC phases at the conditions studied. Our results also

showed that while higher non-additivity had a small effect on phase behavior, they kinetically



enhanced the formation of the diamond phase. Such a kinetic enhancement is argued to arise from
changes in phase packing densities and how these modulate the interfacial free energy of the
crystalline nucleus by favoring high-density motifs in the isotropic phase and larger NP vibrations

in the diamond phase.

I INTRODUCTION

Preferential attractions between components in mixtures of nanoparticles (NPs) are usually
realized experimentally and modeled computationally by using the effect of hybridizing DNA or
DNA-like strands grafted to the components' cores.! While these mixtures are of broad interest
to create self-assembled NP materials, this study focuses on mixtures whose NP-NP interactions
could be designed to give non-additive mixing, as this is expected to open up access to more
complex phases, in analogy to how non-additive mixing in molecular fluids is associated with
nontrivial phase behavior such as azeotropes and eutectic systems. At a macroscopic level, non-
additive mixing occurs when the volume of the mixed state is either larger (positive) or smaller
(negative) than the sum of the pure components’ phase volumes. At a microscopic level, non-
additive mixing can be introduced when, for example, the characteristic length “¢” of contact
between two particles A and B differs from the arithmetic average of the characteristic contact
lengths for A pairs and B pairs so that (6,5 = (044 + 05g)/2 + A), where the parameter A # 0
introduces non-additivity); i.e., it deviates from the so-called Lorentz’s additivity rule for spherical
sites. One of the first models developed using this property was the Widom-Rowlinson model for
a binary mixture of spheres,® which produced fluid-vapor and fluid-fluid transitions when the like
species are repulsive and unlike species are non-interacting (A > 0). Other relevant studies include

the Asakura-Oosawa model’ for the depletion effect of polymeric depletants on large colloidal



particles. In this model, the polymer coils only exclude volume to the colloids but not to other
polymer coils. Similarly, the non-additive Holland model® has been used to describe the
chemisorption of gases in the crystal phase.

In NP systems, negative non-additivity has been leveraged in studying the shape of
complementary NPs to form lattices with higher packing density.” A model with positive non-
additivity in colloidal NPs proposed by Kumar and Molinero (KM) was shown to lead to the
formation of a wide variety of novel mesophases, including some microsegregated phases typically
associated with block copolymers (like the lamellar, gyroid, and hexagonal phases).!° The KM
model combined a positive value of A with a preferential cross-interaction attractive energy
parameter (€45/€44 > 1). This combination of a stronger attraction with a longer contact distance
for unlike NPs can favor the formation of ordered phases because the grouping of the unlike pairs
caused by the stronger potential leads to an excess excluded volume which favors the more
compact clustering of like pairs, resulting in microphase segregation.

One way to implement a KM-type of non-additivity is to partially graft the surface of NPs with
DNA or DNA-like strains. One such case studied before is NPs with four patches in a tetrahedral
geometry so that, unlike uniformly coated NPs, these patchy NPs would tend to bond in tetrahedral
coordination. This system can provide a fabrication route for diamond-structured colloidal crystals
with highly desirable photonic properties.'"'> However, the assembly of diamond structures
presents both kinetic and thermodynamic challenges, such as non-spontaneous crystallization,
formation of clathrate structures, and BCC phases competing with the diamond phase. These issues
have led to extensive computer simulations that determined the optimal patch width that favors the
nucleation of the diamond phase.!*?* More recently, Neophytou et al. used Monte Carlo

simulations to show that having a binary system of tetrahedrally bonded NPs favored the



thermodynamics and kinetics of diamond formation.?! The non-additivity in both the KM and
Neophytou’s model is enacted artificially in the mixing rule, i.e., there is no shape anisotropy or
any explicitly modeled functionalization on the NPs. Hence, in this work, we wanted to use an
explicit model that physically encodes positive non-additivity, to identify the role of non-additivity
in forming the diamond phase. We chose spherical NPs with raised grafted patches to explore their
phase behavior using molecular dynamics. The patches modeled in this work mimic the
preferential inter-species attractions between hybridizing grafted DNA or DNA-like strands of
different lengths. Hence, as shown later through potential of mean force (PMF) calculations, the
positive non-additivity is physically enacted and controlled by decorating the NP surfaces with
raised patches of different heights having a preferential attraction. The protruding patches enhance
positive mixing additivity since they increase the volume of the resulting diamond phase relative
to that of the pure component phases. We tuned the patch's non-additivity and the softness of the
NP cores to explore their effects on the proclivity to form the diamond phase. For this purpose, we
designed two inter-particle potentials endowed of non-additive PMFs (a soft-core Model-S and a
hard-core Model-H) that are representative of NPs with different core types and with DNA
hybridizing patches.

The rest of the paper is organized as follows: Section II describes the interparticle potential
models, simulation methods, and order parameters employed in this study; Sec. III contains the
main results and associated analysis, and Sec. IV provides the concluding remarks and outlook for

future work.



II. THEORY AND COMPUTATIONAL DETAILS

A. Grafted Hard Nanoparticle Model (Model-H)

Based on Lorentz's rule, we first designed a coarse-grained non-additive model for grafted NPs
using hard colloidal cores (Model-H). This model, whose potential of mean force (PMF) and
patchy geometry are depicted in Fig. 1, was intended to single out the effect of the local non-
additivity on phase behavior. The A-B selectivity (mimicking the effect of hybridization between
grafted chains), see Fig. 1 (a), is enacted by the attraction between complementary patches (PAB).
Each patch is made of 7 identical Lennard-Jones beads in a closed-packed hexagonal arrangement
(see Fig. 2(a) and (b)), where 0,=0.2 and €p,5/kT , with the latter being one of the parameters
varied to map phase behavior. The core-core and core-patch interactions are purely repulsive
(enacted through the Lennard Jones potential with a cutoff radius shifted to 2'°c). We kept the
parameters for these interactions constant: 0cas = 0cgg = 1, 0¢c_patcn = 0.6, €caa = €cpp =
Ec—patch = 1. The NPs are modeled as rigid bodies, and all intramolecular interactions are
excluded. The PMF as shown in Fig. 1 (b) captures the orientationally averaged NP-NP free energy
at different distances, between two patchy NPs in vacuum. These calculations employed a Monte
Carlo sampling that places one of the NPs at random positions and orientations within a distance
from a fixed NP, following the protocol of Ref. [22]. Figure S1 in the Supplementary Information
shows a typical NP-NP orientation distribution from one such PMF calculation. Due to the stronger
energetic complementary patch-patch interaction, the PMF for Model-H shows a preferential
contact at a longer distance between the unlike NPs (g,5 = d¢44 + 0p) than that of the 0,44 of like
NPs, which interact through the WCA potential. To tune this parameter, we change the height of
the patch beads, where height (H) measures the amount of the patch that protrudes outside the
core’s surface, see Figure 2(b). H ranged from zero (flat patch) to 0.2 (6p = H). The height of the
patch is also directly associated with the preferential contact, i.e., NPs with more protruding
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patches (representing longer grafted chains) would have a larger g5 and non-additivity. The patch
coverage angle is fixed at 0 =30¢, as shown in Figure 2 (b), so that as the patch height increases by
moving the patch beads away from the core center, so do the bead-bead distance and patch
diameter (i.e., of the circumference that inscribes all the beads in one patch). The patch width
adopted was based on previous literature on how the patch width can thermodynamically favor the

patch interaction.’

B. Grafted Soft Nanoparticle Model (Model-S)

To identify possible effects associated with the choice of core design, we introduced softness in
our soft model (Model-S) by describing the NP cores through the two-body portion of the
Stillinger-Weber potential>> and made the NP cores to be the same regardless of type. The same
soft potential has been used before in the study of non-additive NPs, and shown to aid in the
formation of different mesophases.'? The choice of such a soft potential would approximate a case
where the core is loosely grafted with flexible chains (while the patches are densely grafted with
longer, stiffer chains). A schematic of Model-S can be seen in Fig. 1 (a). Similar to Model-H, the
attraction between unlike patches continues to be of the Lennard-Jones type. All the other
interactions are calculated using the repulsive short-range Lennard Jones potential (r. = 2°c). The
PMF for Model-S is depicted in Figure 1 (b). We kept the parameters for these interaction constant:
Ocaa = 0cgg = 1, 0c_patch = 0.6, €cana = €ceg = €c—patch = 1. The geometric arrangement of

the patches is the same as those shown in Figure 2.
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Figure 1. (a) Illustration of the coarse graining of Model-H and Model-S (b) PMF (free energy)

between two NPs for Model-H and Model-S in vacuum as a function of their distance ;. Curves
were calculated using o45 = 1.15 and €p,5/kT = 0.5 for both Model-H and Model-S and the

PMF values are per particle. (c) Representation of preferential distance between unlike NPs.
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Figure 2. (a) Coarse-grained Model-H having raised patches (as coarse-grained representations

of, e.g., complementary DNA grafted on NP surface). The A-B selectivity (hybridization) is
modeled using attractive, complementary patches (PA-PB). (b) Patch coverage angle (0), patch
bead diameter (op) and height (H). (c¢) Unit cell of diamond phase formed with a binary mixture
of patchy NPs.

While in the A-B PMF curves of Fig. 1 (b) the main attraction well occurs when the NP patches
are aligned as in Fig. 1(c), a secondary shallow well occurs for both models (r;; < 1 for Model-H
and 7;; < 0.8 for Model-S), associated with the NP patches interacting laterally, as shown in the
sample configurations in Fig. S1 (c) and (d) of the Supplementary Information. However, these

secondary-well interparticle distances were never observed at the conditions we carried out our

bulk many-NP simulations.

C. Simulation details

Molecular dynamic simulations for models H and S were conducted in the isothermal-isobaric
(NPT) ensemble with rigid body dynamics and no intramolecular interactions using the LAMMPS
software.”* We simulated systems with sizes ranging from N = 512 to 4096 at the equimolar
composition to favor the cross-species four-fold coordination expected in a diamond lattice. The
initial random configurations were cooled at a rate of 2x107 kT/step and constant pressure (P*=

Po3 /& =0.5) from a disordered state (7%= kT /& =4) until we observed the formation of an ordered



structure, which occurred for 1 < 7#< 0.5 for Model-H and 2 < 7* <3 for Model-S. The cooling
runs consisted of 3x107 steps with a timestep of Az = 0.001. Thereafter, we equilibrated the system
at the phase formation temperature for 107 steps. In some cases, we carried additional heating NPT
runs followed by cooling runs to minimize the number of morphological defects.

We computed the transition points between BCC or diamond and isotropic phases using
interfacial simulations on LAMMPS. We followed the protocol laid out by Pedersen? to prepare
the simulation cells containing the crystal and isotropic phases and to calculate the difference in
free energy necessary to determine if the system had converged to the coexistence €p45/kT value.
We observed the formation of both BCC and diamond phases in a simulations box for some
conditions of €p,p/kT and 0,5 when using Model-S. At these points, we performed simulations
in a rectangular box with L,=2Lx =Ly and N = 1024 in the NP7T ensemble. We cooled the system
down to 7*= 3 and equilibrated the box at this temperature to check if the BCC/diamond phases
were still observed.

The binary system of tetrahedrally bonded patches can assemble in two different polytypes,
namely, cubic and hexagonal diamonds. We conducted spontaneous nucleation simulations to
calculate the fractions of polytypes, following a methodology similar to that of ref. [21]. Ten
independent simulations for six values of a4z were performed in the NVT ensemble at 7* =3 and
number density (o0 = Nayz/V) of 0.4. We used the average of the final configurations from those
10 runs to calculate the fraction of NPs in a cubic or hexagonal environment.

The nucleation free-energy barriers for the diamond phase with different patch heights were
estimated using the Dual Order Parameter “OP” method.?® A key advantage of this method is that
it allows a simple way of implementing biased-sampling (via Umbrella Sampling) over a readily

accessible (albeit low quality) OP (A1) with molecular dynamics, circumventing the need for



expensive and frequent on-the-fly calculations of a complex (albeit high quality) OP (A2), which
in this case would track the nucleation of the diamond structure. This method is suitable for low-
to-medium degrees of supersaturation, i.e., when the disorder-to-order transition barriers are large
enough that no timely spontaneous transition occurs, and a biasing potential on a suitable OP is
needed. The Dual OP method assumes that the two OPs (4; and A, )are correlated and can be used
to track the phase transition.

Following this procedure, we first calculate the free energy as a function of the cheaper OP (4,),
i.e., ff (A1), using biasing potentials on A,. Later, we calculated the free energy as a function of
the expensive, high-quality OP (4,) by using Bayes theorem on data collected during the

simulation:

BFG2) = —1n ) T (44 11p)e /0 )
A

Where = 1/ .. The parameter 1; was chosen to be the potential energy of the system and
kT

Bf(4,) was obtained using umbrella sampling (US) simulations. The potential energies were
pinned with biasing harmonic potential using PLUMED?”*® on LAMMPS. The different windows
from the US simulations were then unbiased, and the multistate Bennett acceptance ratio (MBAR)
method was used to estimate the free energies.”” More details about the US simulations are
available in the Supplementary Material. These US simulations were carried out in the NPT
ensemble for a system of 4096 NPs at P*=(.5. The temperatures were set relative to the diamond-
isotropic transition temperature (obtained via interfacial pinning simulations as described before)
to target a preset degree of supersaturation (Sup — Bu; = —2). This degree of supersaturation was
obtained by finding the difference between the chemical potential at the coexistence temperature

(Bcoex) and supersaturation temperature (f,s) for both the isotropic and diamond phases:
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where Hx(7) is the configurational enthalpy of phase X evaluated at temperature 7. Equation 2 was
evaluated using the trapezoidal rule for the numerical integration. The values for the integrands
were obtained from NPT simulations of the two phases. The 4, OP was defined as the largest
cluster of crystal-like NPs and calculated as a post-processing step together with ff(4,). We
obtained the error bars for the free energy values with A; using the MBAR method for error

estimation, and then the error bars for Sf(4,) by applying the errors from MBAR onto Eq. 1.

D. Order parameters

The second OP (A;) was chosen to be the largest crystalline cluster. To define the local

translational order of a NP, we used the following Steinhardt bond order parameter:*°

3
1
q3m (i) = mz Y3 m(0i, ¢ij) (3)
=

where Ny (i) is the number of neighbors of NP i, and Y3,m(9i oF j) are the spherical harmonics,

j»
6;; and ¢;; are the polar and azimuthal angles between NP i and its neighbor j. The total angular
momentum is set to 3, and the value of m ranges from -3 to 3. The cutoff to define neighbors of

NP i is set to 1.4045. We then used the translation correlation parameter (d5 (i, j)) between NPs i

and j to determine if a NP is in a diamond crystalline environment:

an=—3 Q3,m(i)qg,m(i)

d (l,j) = 2 2
’ (%3 o] a5 D)V ol a5, (D[ H)V2

QB,m(i) (4)
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where the asterisk denotes the complex conjugate. We adopted the values of d5(i, j) established
in ref. 2°2! to determine if NPs are crystalline and if they have staggered or eclipsed bonds.
According to these references, particles i and j have a staggered bond if —1 < d3(i,j) < —0.85
and an eclipsed bond if —0.3 < d;(i,j) < 0.1. Particles are crystalline if they have four bonds.
The particle is in a cubic environment if four out of four bonds are staggered, while it is in a

hexagonal environment if it has one eclipsed and three staggered bonds.

I1I. RESULTS AND DISCUSSION

A. Influence of NP core-core interactions on the phase diagram

We started our phase exploration of multiple patch cases by grafting two and three patches (with
geometry compatible with tetrahedral coordination) with both Model-S and Model-H. However,
such minimalistic patchy models did not produce a diamond or other network phase of interest at
the studied conditions. Hence, we focus on the four-patch case (i.e., NPs having four tetrahedrally
oriented patches on the surface) whose phase diagrams are presented in Figure 3. A video showing
the formation of the diamond phase from the isotropic phase is available in the Supplementary
Material. We investigated how the height and bonding strength of the raised patches in both Model-
S and Model-H influence the formation of such an open lattice as the diamond crystal. The effect
of non-additivity and energetic attraction on phase behavior is shown in Figure 3 for both Model-
S and Model-H. We also detail in Figure 3 (c) the structure of the diamond phase formed. Since
the energetic attractions between patches are only present between unlike NP patches, the energy
is minimized in the diamond lattice as this maximizes the number of favorable contacts per NP.
The ability of self-assembling diamond phases is observed here over a wide range of the patch
height parameter, as indicated by the spontaneous formation of diamond phases for both models

investigated. The observed facile self-assembly of the diamond phase corroborated the observation
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of a previous study in which the interaction between a binary mixture of flat patches was found to

thermodynamically and kinetically favor the diamond phase when compared to a single component

system.?!

1-0 w w W w w w w w w w w w w w w w w W W

0.9 -

0gl e eo0o0o00o000000 00 ¢

0.7 -
— 3 o0 6 o000 0000000 * o0 ¢
X 0.6 - * o ¢
Q
N 0.5 o0 ® 00 *XOOOXKXKOOOOO
w s °

4 [

0 -: : . . ® @ ®

0.3 -

02 ® Diamond * D->BCC

' ® BCC e |

0.1 T T T T

1.00 1.05 1.10 1.15 1.20 1.25
OaB
(a)

13



1.0 T 222222 @ VvV UV UV VvV 9 VvV VvV VvV VUV VUV VvV VvV VvV Vv Vv Vv Vv

0.9 -

0.8 -

0.7 -
: b e o oo e o oo o o (
X 0.6 - q
=
W o059 000000 O00OCOCOOOOOGOOOOO

|
0.4" . . .
® @
0.3 - _
® Diamond o |
0.2 1 T 1 Ll
1.00 1.05 1.10 1.15 1.20 1.25

Diamond BCC Diamond(grey)/BCC(colored)
(Model-S) (Model-S)

(c)

Figure 3. Phase diagrams for the four-patch Model-S (a) and Model-H (b) NP model for an

equimolar mixture as a function of the contact distance parameter ratio (c4s/044) and patch
attraction parameter (ep4p/kT). Phases obtained using P*=0.5. (c) Representative snapshots of the

phases described in (a) and (b).

One of the main characteristics of the diamond crystal is the low packing fraction which would

be made even lower by the longer A-B contacts found for NPs with raised patches. Other phases,
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such as the body-centered cubic (BCC) lattice, may also expectedly compete with the diamond
phase for lower values of patch interaction strength. For Model-S, we find conditions where the
BCC phase seemed to be in equilibrium with the diamond phase. In fact, for some ep4p/kT points,
we observed that both the BCC and diamond phases were present in the simulation box. Hence,
we carried out two-phase interfacial simulations (see simulation details section) to verify if this
arrangement could be recreated and maintained; a snapshot of this two-phase coexistence state is
shown in Figure 3 (c). The BCC phase formation was not observed for Model-H, which can be
attributed to the hard, short-range interaction of unlike cores that do not favor the more numerous
core-core contacts prevailing in the BCC phase. Indeed, the softness of core-core interactions
allows for closer proximity and hence the more efficient BCC packing in the Model-S cores only.
Generally, softer core-core interactions allow for faster equilibration by reducing the kinetic
configurational barriers between different structural motifs, but they can also modify the relative
thermodynamic stability of competing phases. For example, for a system of additive Janus
particles, the softening of the particle cores was implicated in the formation of the diamond
phase.’! However, we do not see a similar effect of softness for our system, at least in cases where
a comparison to such Janus particle system would be reasonable (i.e., for flat patches). The main
finding, in terms of core design, is that Model-H should be preferred when targeting the diamond
phase for NPs with taller patch heights for the geometry and range of interaction strengths studied.

We identified through interfacial simulations the points in which either the diamond or BCC
phase melted into the isotropic phase, which are also marked in Fig. 3 for both models. Note that
a BCC solid is formed by two interpenetrating diamond lattices, and since the distinct patches are
explicitly modeled in our model, the contacting unlike patches form a network that can be

classified as a double diamond (DD). We calculated structure factors to verify the effect of having
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explicit patches on the double-diamond/BCC structure (see Figure 4). When we use the center of

mass of the NP, the BCC spectrum peak ratios are observed (v2: v4:/6:v/8:4/10). Meanwhile,

DD peak ratios appear for the calculations with the cores and patches configurations

(V2:43:V/4:1/6:4/8:1/9).%
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Figure 4. Structure factor calculation considering the coordinates of the center of mass (com) and
the individual coordinates of the cores and patches (core+patch) for the double diamond/BCC
structure. Simulations for this structure were conducted for Model-S with o4 = 1.16 and

gPAB/kT = 05

B. Influence of non-additivity on the Diamond Phase assembly

The diamond phase can be classified as either a cubic or a hexagonal diamond. It is essential to
distinguish between the two types because the former has better photonic properties than the
latter.'? Structurally, the cubic diamond phase differentiates from the hexagonal phase by the
number of bonds in the staggered configuration. The cubic diamond has all four bonds in the
staggered configuration, while the hexagonal diamond has three bonds in the staggered

configuration and one bond in the eclipsed configuration.>* Previously, a model for NPs with
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implicit tetrahedrally grafted patches was simulated via Monte Carlo simulations to address the
influence of the coverage area of the patches on the fractions of hexagonal and cubic-arranged
NPs.?! They found that wider patches (6 > 28¢) resulted in a higher relative fraction of cubic
diamond. It has also been shown that depletion and DNA-mediated interactions can stabilize the
cubic crystal for a narrow parameter region in a system of tetrahedral clusters of NPs.!"! For the
following calculations, we used Model-H due to the more extensive range of parameters associated
with the diamond phase. We used the correlation parameter (d3 (i, j)), to determine if a NP was in
a cubic or hexagonal environment. We observe a weak dependence between the relative fraction
of cubic diamond and the non-additivity parameter that is directly related to the height of the patch,
as seen in Figure 5. The distribution of the d3 parameter for Figure 5 is given in Fig. S3 of the
Supplementary Information. The fractions of hexagonally bonded NPs are slightly larger for g5

< 1.10, but the fraction plateaus at ~ 50% for taller patches.
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Figure 5. Relative fraction (Ny/(Ncypic + Nhexagonar)) ©of NPs in cubic and hexagonal
environments for different non-additivity parameters (g,5) following spontaneous nucleation of

crystal phase. Simulations were carried out with Model-H, &p,5/kT = 0.5, and p =0.4.
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Even though the effect of patch height on the formation of different polytypes was marginal, we
noted a difference in the strength of the binding. We ascribe this difference to the flanking effect
of having patches of one NP type-A being closer to the core of NP type-B for Model-H when patch
height decreases. This flanking effect is evident in Figure 6 (a). If the height of the patch is larger
than the cutoff of purely repulsive interactions between patch A and core B, the “bonded” NPs A
and B vibrate more around their preferential distance (g5). As a measure of the extent of this
vibration, we calculated the mean squared displacements (RMSD) of the NPs forming the diamond
phase at T“°¢* for both the flat patch case (g5 = 1) and three values of g,5. More details about
RMSD calculations are available in the Supplementary Material. The results in Figure 7 show that
the NPs with a flat patch vibrate (fluctuate) less than NPs with the taller patches. The vibration of
NPs in their respective lattice sites contributes to the NP-entropy through both momenta and
configurational degrees of freedom, but the momentum effects are inconsequential in determining
phase coexistence conditions as the two phases are in thermal equilibrium. Hence, larger vibration
amplitudes of NPs translate into larger vibrational entropy, which would lower the free energy and

help stabilize the diamond phase relative to the isotropic phase.
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Figure 6. (a) Non-additivity Flanking effect as captured by the average potential energy difference

between all interactions ({u)) and that of unlike patches (up4p)). (b) Average molar volume of the
diamond phase as a function of the non-additivity parameter. Simulations were carried out for

Model-H with €p 45 = 1.5, P*= 0.5, and 7' = T°°.
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Figure 7. Average Root Mean Squared Displacement (RMSD) of NPs as a function of the
simulation time (t) for four different non-additivity parameters (g,5). RMSD was calculated for a

defect-free diamond phase at the isotropic-crystal coexistence temperature.
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While the stronger energetic bonds of the flat patch favor the diamond structure
thermodynamically, as seen by the higher coexistence temperatures, this stronger inter-particle
association seemed to slow down the assembly dynamics in our simulations. Indeed, our
qualitative observations indicated that, starting from the isotropic phase, the diamond phase
(spontaneously) formed significantly more quickly and with fewer defects when the patch height
(non-additivity parameter) was larger. The volume of perfect cubic diamond lattice also increased
with g5, indicating that the channels formed by the open lattice structure are wider for higher g4z
(Figure 6 (b).). We surmised that this extra available volume and the “weaker” binding could help
heal defects more readily when nucleating and growing the diamond phase from the isotropic
phase. To quantitatively test this conjecture of higher non-additivity correlating with lower
diamond-phase nucleation free energy barriers, we calculated these barriers for Model-H for
different patch heights. We used umbrella sampling simulations together with the Dual OP method
to calculate the needed free energies for three different g5 values at temperatures corresponding
to the same degree of supersaturation (SAu). In this way, all systems being compared experience
the same thermodynamic driving force for nucleating the diamond phase. Figure 8 shows the free
energy as a function of the number of the largest ordered crystalline cluster (). We used classical

nucleation theory (CNT) to fit the simulation points: assuming a fixed spherical geometry:>’

BAG = —nBAu + Byn?/3 (5

where y is the surface free energy to maintain the crystalline-isotropic interface (which in this
expression also absorbs a nucleus-geometry factor (fyA o Byn?/?)). The CNT fit, also shown in
Figure 8, provides a reasonable correlation to the data trends, albeit deviations are larger for small

cluster sizes. The larger barrier size for the flat patch case can be attributed to its higher surface
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free energy (whose estimated values are listed in the caption of Fig. 8). We connect this larger
interfacial tension to a higher packing density in the crystalline phase and a higher density
difference between the isotropic and crystalline phases for the flat patch case when compared to
the taller patch cases, as seen in Figure 8 (c). This difference reaches a minimum for 045 = 1.2, at
which point the volume of the isotropic phase starts to increase, while the volume of the diamond
phase plateaus for taller patches. The isotropic phase is always less dense than the diamond phase
at phase coexistence, and, at the isotropic phase density maximum (g, = 1.2), local fluctuations
with the denser diamond coordination motifs are likely better stabilized in the isotropic phase.
Evidence of an increase in the AB patch-patch contacts (i.e., a more negative energy) in the
isotropic phase for o4 = 1.2 is shown in Fig. S2 of the Supplementary Material. This difference
in local density can explain why g45 = 1.2 has the lowest barrier in Figure 8 (a), indicating an
optimal value for the height of the patch. Optimality in terms of patch width has also been observed
in flat patch NPs.?° We also note that the fAu fit from CNT was three times larger than the SAu
calculated with Eq. 2 (i.e., fAu =2) for the flat patch case (o4 = 1). Possible causes for such
deviations may be related to the effects of structural changes in the nucleus and to a size
dependence of the surface energy, which are not accounted for by CNT. Saika-Voivod et al.?’, in
their study of a single-component flat-patch NPs that assemble into the diamond phase, also found
similar discrepancies and showed that Ay could change by a factor of 2 depending on the order

parameter chosen to classify the particles as solid-like.
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Figure 8. (a) Free energy as a function of the cluster size. Markers correspond to simulation data,
and lines correspond to CNT fits with Eq. 5. Fitting parameter values are fAyu = 6.1 and fy =
28.0 for g5 = 1.00, fAu = 2.3 and By = 14.1 for o4 = 1.15, fAu = 1.3 and By = 5.0 for
o4 = 1.20,and fAu = 1.9 and By =10.2 for 045 = 1.23. (b) Snapshot of NPs in the nucleus and
its vicinity near the critical point (n ~10) for a,5 = 1.23. The crystalline NPs are colored (red and
blue). (c) Average molar volume difference between the diamond and isotropic phases as a
function of the non-additivity parameter o,5. Inset shows the average molar volumes for each

phase. Simulations were carried out for Model-H with 044 = 1, epgp = 1.5, and g¢44 = 1.

While we have provided some physical arguments as to why raising the patch height oy (relative
to the flat-patch case) facilitates the isotropic-diamond transition, this trend reverses for oy > 1.2.
This reversal may occur because as patches are made more protruding, the “lateral” patch-patch
interactions become more competitive (at least in our model) against the “frontal” patch-patch

contacts needed to form the diamond structure. In addition, the density of the diamond phase
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decreases as the patch height increases, which, for o4z > 1.2, can create a packing entropic cost

that is not compensated by the energetic attraction between patches.

IV. CONCLUSIONS

In summary, we explored the phase behavior of A+B binary mixtures of spherical NPs decorated
with tetrahedrally arranged patches. These NPs have preferential inter-species attractions to mimic
hybridization between grafted DNA or DNA-like strands. The patches are raised to introduce a
local, positive non-additive behavior, whose effect on phase and kinetic behavior was explored
through molecular simulations. We further used two models, a hard-core model (Model-H) and a
soft-core model (Model-S) to investigate the role of NP core softness on the assembly. We found
that an equimolar mixture of Model-S NPs can form either the single cubic diamond or the BCC
phase depending on patch height and patch-patch attraction strength, whereas Model-H NPs only
formed the single diamond phase. The softness of the core facilitates core-core contacts, which
makes the BCC phase to be more thermodynamically favored for lower binding strengths between
complementary raised patches.

We assessed the influence of the non-additivity parameter on the formation of the diamond phase
polytype and crystal nucleation in Model-H only. The largest fraction of cubic diamond was found
for a non-additive parameter of oys = 1.2 albeit error bars do not allow a firm conclusion. Overall,
we found that non-additivity did not significantly influence the fraction of cubic or hexagonal
diamonds, at least for the chosen patch width. Additionally, zero non-additivity (i.e., NPs with flat
patches) resulted in stronger binding between patches, which slightly favored the diamond crystal

thermodynamically, as seen by the slightly higher isotropic-crystal coexistence temperatures than
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those for systems with higher non-additivity. Nonetheless, the non-additivity had a more
substantial effect on the nucleation free-energy barriers, with the flat patch case having the highest
barrier. This shows that even though non-additivity was not necessary for diamond phase
assembly, it helped its formation kinetically. We showed that the non-additivity lowers the
difference in molar volume at the interface between the crystalline diamond and isotropic phase,
with the smallest density difference and nucleation barrier found for a non-additivity parameter
o4p of 1.2. Macroscopically, this smaller density difference at the interface can be associated with
a lower interfacial free energy, whose values were estimated via fits of simulation data to classical
nucleation theory. Microscopically, the lower interfacial tension for taller patches can be
associated with: (i) a higher isotropic phase density, which is more conducive to stabilize the higher
NP-NP bond coordination associated with the diamond phase, and (ii) a slight increase in the NP
mobility and vibrational entropy in the diamond phase. Altogether, our results suggest that non-
additivity and the implied length of DNA strains grafted on the NP as patches is an important knob
in controlling the formation of the diamond phase. Indeed, toward the formation of open lattices
with patchy NPs, whereas patch width has been shown to beneficially modulate NP rotational
entropy,*® our model shows that patch height can be used to modulate NP vibrational entropy.
The observed effects of patchy-NP design parameters on the diamond phase could be amplified
for other conditions, e.g., for wider patches, for different geometric arrangements of the beads
forming the patches, or for NP cores of different sizes and shapes. Besides amplification, other
open lattice phases may be accessible by changing the cited parameters. From the observation that
non-additivity can increase the local vibrations of NPs in the diamond lattice, patches could be
designed to enhance such fluctuations; this would translate into a higher entropy (and lower free

energy) and hence an increased stability of the diamond phase. Several aspects of the models
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employed here could also be improved to better capture realistic features of our systems. For
instance, the coarse-grained patch-patch selective interactions in our model are described by
Lennard-Jones type of potentials between the small patch beads across different NPs; a more
refined coarse-grained potential could be extracted from PMFs of two NPs where patches contain
explicitly modeled DNA strands. Such more refined potentials could alter the way how, e.g., patch-
patch bonds align and fluctuate, hence affecting the kinetics and thermodynamics of different
diamond polytypes. Finally, while in our study we computed nucleation free-energy barriers and
used them as surrogates for nucleation kinetics (in view of their dominant role in the context of,
e.g., classical nucleation theory), a more complete kinetic analysis (to quantify rates and transition

states) can be performed by using specialized methods that sample transition pathways.?6-3

Supporting Information

See the supplementary material for additional details provided pertaining to:

(S1) Orientation distribution from PMF calculations, (S2) Average potential energy of unlike
patches ({upyp)) for isotropic and diamond phases at coexistence. (S3) Distribution of order
parameters for cubic or hexagonal environment classification (S4) Umbrella Sampling

calculations, and (S5) RMSD calculations. (Supporting Information for Publication.docx)

Video of the formation of the diamond phase from the isotropic phase

(diamond phase formation.mpg)
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