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ABSTRACT 

Mixtures of nanoparticles (NPs) with hybridizing grafted DNA or DNA-like strands have been 

shown to create highly tunable NP-NP interactions, which, if designed to give non-additive 

mixing, could lead to a richer self-assembly behavior. While non-additive mixing is known to 

result in non-trivial phase behavior in molecular fluids, its effects on colloidal/NP materials have 

been much less studied. Such effects are explored here via molecular simulations for a binary 

system of tetrahedral patchy NPs, known to self-assemble into the diamond phase. The NPs are 

modeled with raised patches that interact through a coarse-grained inter-particle potential 

representing DNA hybridization between grafted strands. These patchy NPs were found to 

spontaneous nucleated into the diamond phase and that hard-interacting NP cores eliminated the 

competition between the diamond and BCC phases at the conditions studied. Our results also 

showed that while higher non-additivity had a small effect on phase behavior, they kinetically 
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enhanced the formation of the diamond phase. Such a kinetic enhancement is argued to arise from 

changes in phase packing densities and how these modulate the interfacial free energy of the 

crystalline nucleus by favoring high-density motifs in the isotropic phase and larger NP vibrations 

in the diamond phase. 

 

I. INTRODUCTION 

Preferential attractions between components in mixtures of nanoparticles (NPs) are usually 

realized experimentally and modeled computationally by using the effect of hybridizing DNA or 

DNA-like strands grafted to the components' cores.1–5 While these mixtures are of broad interest 

to create self-assembled NP materials, this study focuses on mixtures whose NP-NP interactions 

could be designed to give non-additive mixing, as this is expected to open up access to more 

complex phases, in analogy to how non-additive mixing in molecular fluids is associated with 

nontrivial phase behavior such as azeotropes and eutectic systems. At a macroscopic level, non-

additive mixing occurs when the volume of the mixed state is either larger (positive) or smaller 

(negative) than the sum of the pure components’ phase volumes. At a microscopic level, non-

additive mixing can be introduced when, for example, the characteristic length “σ” of contact 

between two particles A and B differs from the arithmetic average of the characteristic contact 

lengths for A pairs and B pairs so that (𝜎𝐴𝐵  =  (𝜎𝐴𝐴 + 𝜎𝐵𝐵) 2⁄  + Δ), where the parameter   0 

introduces non-additivity); i.e., it deviates from the so-called Lorentz’s additivity rule for spherical 

sites. One of the first models developed using this property was the Widom-Rowlinson model for 

a binary mixture of spheres,6 which produced fluid-vapor and fluid-fluid transitions when the like 

species are repulsive and unlike species are non-interacting (Δ > 0). Other relevant studies include 

the Asakura-Oosawa model7 for the depletion effect of polymeric depletants on large colloidal 
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particles. In this model, the polymer coils only exclude volume to the colloids but not to other 

polymer coils. Similarly, the non-additive Holland model8 has been used to describe the 

chemisorption of gases in the crystal phase.  

In NP systems, negative non-additivity has been leveraged in studying the shape of 

complementary NPs to form lattices with higher packing density.9 A model with positive non-

additivity in colloidal NPs proposed by Kumar and Molinero (KM) was shown to lead to the 

formation of a wide variety of novel mesophases, including some microsegregated phases typically 

associated with block copolymers (like the lamellar, gyroid, and hexagonal phases).10 The KM 

model combined a positive value of Δ with a preferential cross-interaction attractive energy 

parameter (𝜀𝐴𝐵 𝜀𝐴𝐴 > 1⁄ ). This combination of a stronger attraction with a longer contact distance 

for unlike NPs can favor the formation of ordered phases because the grouping of the unlike pairs 

caused by the stronger potential leads to an excess excluded volume which favors the more 

compact clustering of like pairs, resulting in microphase segregation.  

One way to implement a KM-type of non-additivity is to partially graft the surface of NPs with 

DNA or DNA-like strains. One such case studied before is NPs with four patches in a tetrahedral 

geometry so that, unlike uniformly coated NPs, these patchy NPs would tend to bond in tetrahedral 

coordination. This system can provide a fabrication route for diamond-structured colloidal crystals 

with highly desirable photonic properties.11–15 However, the assembly of diamond structures 

presents both kinetic and thermodynamic challenges, such as non-spontaneous crystallization, 

formation of clathrate structures, and BCC phases competing with the diamond phase. These issues 

have led to extensive computer simulations that determined the optimal patch width that favors the 

nucleation of the diamond phase.16–20 More recently, Neophytou et al. used Monte Carlo 

simulations to show that having a binary system of tetrahedrally bonded NPs favored the 



4 
 

thermodynamics and kinetics of diamond formation.21 The non-additivity in both the KM and 

Neophytou’s model is enacted artificially in the mixing rule, i.e., there is no shape anisotropy or 

any explicitly modeled functionalization on the NPs. Hence, in this work, we wanted to use an 

explicit model that physically encodes positive non-additivity, to identify the role of non-additivity 

in forming the diamond phase. We chose spherical NPs with raised grafted patches to explore their 

phase behavior using molecular dynamics. The patches modeled in this work mimic the 

preferential inter-species attractions between hybridizing grafted DNA or DNA-like strands of 

different lengths. Hence, as shown later through potential of mean force (PMF) calculations, the 

positive non-additivity is physically enacted and controlled by decorating the NP surfaces with 

raised patches of different heights having a preferential attraction. The protruding patches enhance 

positive mixing additivity since they increase the volume of the resulting diamond phase relative 

to that of the pure component phases. We tuned the patch's non-additivity and the softness of the 

NP cores to explore their effects on the proclivity to form the diamond phase. For this purpose, we 

designed two inter-particle potentials endowed of non-additive PMFs (a soft-core Model-S and a 

hard-core Model-H) that are representative of NPs with different core types and with DNA 

hybridizing patches.  

 The rest of the paper is organized as follows: Section II describes the interparticle potential 

models, simulation methods, and order parameters employed in this study; Sec. III contains the 

main results and associated analysis, and Sec. IV provides the concluding remarks and outlook for 

future work. 
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II. THEORY AND COMPUTATIONAL DETAILS  

 A. Grafted Hard Nanoparticle Model (Model-H) 

Based on Lorentz's rule, we first designed a coarse-grained non-additive model for grafted NPs 

using hard colloidal cores (Model-H). This model, whose potential of mean force (PMF) and 

patchy geometry are depicted in Fig. 1, was intended to single out the effect of the local non-

additivity on phase behavior. The A-B selectivity (mimicking the effect of hybridization between 

grafted chains), see Fig. 1 (a), is enacted by the attraction between complementary patches (PAB). 

Each patch is made of 7 identical Lennard-Jones beads in a closed-packed hexagonal arrangement 

(see Fig. 2(a) and (b)), where 𝜎𝑃=0.2 and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄  , with the latter being one of the parameters 

varied to map phase behavior. The core-core and core-patch interactions are purely repulsive 

(enacted through the Lennard Jones potential with a cutoff radius shifted to 21/6σ). We kept the 

parameters for these interactions constant: 𝜎𝐶𝐴𝐴 = 𝜎𝐶𝐵𝐵 = 1, 𝜎𝐶−𝑃𝑎𝑡𝑐ℎ = 0.6, 𝜀𝐶𝐴𝐴 = 𝜀𝐶𝐵𝐵 =

𝜀𝐶−𝑃𝑎𝑡𝑐ℎ = 1. The NPs are modeled as rigid bodies, and all intramolecular interactions are 

excluded. The PMF as shown in Fig. 1 (b) captures the orientationally averaged NP-NP free energy 

at different distances, between two patchy NPs in vacuum. These calculations employed a Monte 

Carlo sampling that places one of the NPs at random positions and orientations within a distance 

from a fixed NP, following the protocol of Ref. [22]. Figure S1 in the Supplementary Information 

shows a typical NP-NP orientation distribution from one such PMF calculation. Due to the stronger 

energetic complementary patch-patch interaction, the PMF for Model-H shows a preferential 

contact at a longer distance between the unlike NPs (𝜎𝐴𝐵 = 𝜎𝐶𝐴𝐴 + 𝜎𝑃) than that of the 𝜎𝐴𝐴 of like 

NPs, which interact through the WCA potential. To tune this parameter, we change the height of 

the patch beads, where height (H) measures the amount of the patch that protrudes outside the 

core’s surface, see Figure 2(b). H ranged from zero (flat patch) to 0.2 (𝜎𝑃 = 𝐻). The height of the 

patch is also directly associated with the preferential contact, i.e., NPs with more protruding 
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patches (representing longer grafted chains) would have a larger 𝜎𝐴𝐵 and non-additivity. The patch 

coverage angle is fixed at θ =30◦, as shown in Figure 2 (b), so that as the patch height increases by 

moving the patch beads away from the core center, so do the bead-bead distance and patch 

diameter (i.e., of the circumference that inscribes all the beads in one patch). The patch width 

adopted was based on previous literature on how the patch width can thermodynamically favor the 

patch interaction.19  

B. Grafted Soft Nanoparticle Model (Model-S) 

To identify possible effects associated with the choice of core design, we introduced softness in 

our soft model (Model-S) by describing the NP cores through the two-body portion of the 

Stillinger-Weber potential23 and made the NP cores to be the same regardless of type. The same 

soft potential has been used before in the study of non-additive NPs, and shown to aid in the 

formation of different mesophases.10 The choice of such a soft potential would approximate a case 

where the core is loosely grafted with flexible chains (while the patches are densely grafted with 

longer, stiffer chains). A schematic of Model-S can be seen in Fig. 1 (a). Similar to Model-H, the 

attraction between unlike patches continues to be of the Lennard-Jones type. All the other 

interactions are calculated using the repulsive short-range Lennard Jones potential (rc = 21/6σ). The 

PMF for Model-S is depicted in Figure 1 (b). We kept the parameters for these interaction constant: 

𝜎𝐶𝐴𝐴 = 𝜎𝐶𝐵𝐵 = 1, 𝜎𝐶−𝑃𝑎𝑡𝑐ℎ = 0.6, 𝜀𝐶𝐴𝐴 = 𝜀𝐶𝐵𝐵 = 𝜀𝐶−𝑃𝑎𝑡𝑐ℎ = 1. The geometric arrangement of 

the patches is the same as those shown in Figure 2.  
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) Illustration of the coarse graining of Model-H and Model-S (b) PMF (free energy) 

between two NPs for Model-H and Model-S in vacuum as a function of their distance rij. Curves 

were calculated using 𝜎𝐴𝐵 = 1.15 and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 0.5 for both Model-H and Model-S and the 

PMF values are per particle. (c) Representation of preferential distance between unlike NPs.  
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(c) 

Figure 2. (a) Coarse-grained Model-H having raised patches (as coarse-grained representations 

of, e.g., complementary DNA grafted on NP surface). The A-B selectivity (hybridization) is 

modeled using attractive, complementary patches (PA-PB). (b) Patch coverage angle (θ), patch 

bead diameter (𝜎𝑃) and height (H). (c) Unit cell of diamond phase formed with a binary mixture 

of patchy NPs. 

While in the A-B PMF curves of Fig. 1 (b) the main attraction well occurs when the NP patches 

are aligned as in Fig. 1(c), a secondary shallow well occurs for both models (𝑟𝑖𝑗 < 1 for Model-H 

and 𝑟𝑖𝑗 < 0.8 for Model-S), associated with the NP patches interacting laterally, as shown in the 

sample configurations in Fig. S1 (c) and (d) of the Supplementary Information. However, these 

secondary-well interparticle distances were never observed at the conditions we carried out our 

bulk many-NP simulations. 

C. Simulation details 

Molecular dynamic simulations for models H and S were conducted in the isothermal-isobaric 

(NPT) ensemble with rigid body dynamics and no intramolecular interactions using the LAMMPS 

software.24 We simulated systems with sizes ranging from N = 512 to 4096 at the equimolar 

composition to favor the cross-species four-fold coordination expected in a diamond lattice. The 

initial random configurations were cooled at a rate of 210-7 kT/step and constant pressure (P*= 

𝑃𝜎3 𝜀⁄  = 0.5) from a disordered state (T*= 𝑘𝑇 𝜀⁄  =4) until we observed the formation of an ordered 
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structure, which occurred for 1 ≤ T*≤ 0.5 for Model-H and 2 ≤ T* ≤3 for Model-S. The cooling 

runs consisted of 3107 steps with a timestep of Δt = 0.001. Thereafter, we equilibrated the system 

at the phase formation temperature for 107 steps. In some cases, we carried additional heating NPT 

runs followed by cooling runs to minimize the number of morphological defects. 

 We computed the transition points between BCC or diamond and isotropic phases using 

interfacial simulations on LAMMPS. We followed the protocol laid out by Pedersen25 to prepare 

the simulation cells containing the crystal and isotropic phases and to calculate the difference in 

free energy necessary to determine if the system had converged to the coexistence 𝜀𝑃𝐴𝐵/kT value. 

We observed the formation of both BCC and diamond phases in a simulations box for some 

conditions of 𝜀𝑃𝐴𝐵/kT and 𝜎𝐴𝐵 when using Model-S. At these points, we performed simulations 

in a rectangular box with Lz= 2Lx = Ly and N = 1024 in the NPZT ensemble. We cooled the system 

down to T*= 3 and equilibrated the box at this temperature to check if the BCC/diamond phases 

were still observed. 

The binary system of tetrahedrally bonded patches can assemble in two different polytypes, 

namely, cubic and hexagonal diamonds. We conducted spontaneous nucleation simulations to 

calculate the fractions of polytypes, following a methodology similar to that of ref. [21]. Ten 

independent simulations for six values of 𝜎𝐴𝐵 were performed in the NVT ensemble at T* =3 and 

number density (𝜌 = 𝑁𝜎𝐴𝐵 𝑉⁄ ) of 0.4. We used the average of the final configurations from those 

10 runs to calculate the fraction of NPs in a cubic or hexagonal environment.  

The nucleation free-energy barriers for the diamond phase with different patch heights were 

estimated using the Dual Order Parameter “OP” method.26 A key advantage of this method is that 

it allows a simple way of implementing biased-sampling (via Umbrella Sampling) over a readily 

accessible (albeit low quality) OP (1) with molecular dynamics, circumventing the need for 
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expensive and frequent on-the-fly calculations of a complex (albeit high quality) OP (2), which 

in this case would track the nucleation of the diamond structure. This method is suitable for low-

to-medium degrees of supersaturation, i.e., when the disorder-to-order transition barriers are large 

enough that no timely spontaneous transition occurs, and a biasing potential on a suitable OP is 

needed. The Dual OP method assumes that the two OPs (𝜆1 and 𝜆2)are correlated and can be used 

to track the phase transition.  

Following this procedure, we first calculate the free energy as a function of the cheaper OP (𝜆1), 

i.e., 𝛽𝑓(𝜆1), using biasing potentials on 𝜆1. Later, we calculated the free energy as a function of 

the expensive, high-quality OP (𝜆2) by using Bayes theorem on data collected during the 

simulation: 

𝛽𝑓(𝜆2) = − ln ∑ Π

𝜆1

(𝜆1|𝜆2)𝑒−𝛽𝑓(𝜆1) (1) 

 

Where 𝛽 = 1
𝑘𝑇⁄ . The parameter 𝜆1 was chosen to be the potential energy of the system and 

𝛽𝑓(𝜆1) was obtained using umbrella sampling (US) simulations. The potential energies were 

pinned with biasing harmonic potential using PLUMED27,28 on LAMMPS. The different windows 

from the US simulations were then unbiased, and the multistate Bennett acceptance ratio (MBAR) 

method was used to estimate the free energies.29 More details about the US simulations are 

available in the Supplementary Material. These US simulations were carried out in the NPT 

ensemble for a system of 4096 NPs at P*= 0.5. The temperatures were set relative to the diamond-

isotropic transition temperature (obtained via interfacial pinning simulations as described before) 

to target a preset degree of supersaturation (𝛽𝜇𝐷 − 𝛽𝜇𝐼 = −2). This degree of supersaturation was 

obtained by finding the difference between the chemical potential at the coexistence temperature 

(𝛽𝑐𝑜𝑒𝑥) and supersaturation temperature (𝛽𝑠𝑠) for both the isotropic and diamond phases: 
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𝛽𝑠𝑠𝜇𝐷(𝛽𝑠𝑠, 𝑃) − 𝛽𝑐𝑜𝑒𝑥𝜇𝐷(𝛽𝑐𝑜𝑒𝑥, 𝑃) = − ∫
𝐻𝐷(𝑇)

𝑁𝑘𝑇2
𝑑𝑇

𝑇𝑠𝑠

𝑇𝑐𝑜𝑒𝑥

 

𝛽𝑠𝑠𝜇𝐷 − 𝛽𝑠𝑠𝜇𝐼 = − ∫
𝐻𝐷(𝑇)

𝑁𝑘𝑇2
𝑑𝑇 + ∫

𝐻𝐼(𝑇)

𝑁𝑘𝑇2
𝑑𝑇

𝑇𝑠𝑠

𝑇𝑐𝑜𝑒𝑥

𝑇𝑠𝑠

𝑇𝑐𝑜𝑒𝑥

 

(2) 

 

where HX(T) is the configurational enthalpy of phase X evaluated at temperature T. Equation 2 was 

evaluated using the trapezoidal rule for the numerical integration. The values for the integrands 

were obtained from NPT simulations of the two phases. The 𝜆2 OP was defined as the largest 

cluster of crystal-like NPs and calculated as a post-processing step together with 𝛽𝑓(𝜆2). We 

obtained the error bars for the free energy values with 𝜆1 using the MBAR method for error 

estimation, and then the error bars for 𝛽𝑓(𝜆2) by applying the errors from MBAR onto Eq. 1. 

D. Order parameters 

The second OP (𝜆2) was chosen to be the largest crystalline cluster. To define the local 

translational order of a NP, we used the following Steinhardt bond order parameter:30 

 

𝑞3,𝑚(𝑖) =
1

𝑁𝐵(𝑖)
∑ 𝑌3,𝑚(𝜃𝑖𝑗 , 𝜙𝑖𝑗)

3

𝑗=1

 (3) 

 

where 𝑁𝐵(𝑖) is the number of neighbors of NP i, and 𝑌3,𝑚(𝜃𝑖𝑗 , 𝜙𝑖𝑗) are the spherical harmonics, 

𝜃𝑖𝑗 and 𝜙𝑖𝑗 are the polar and azimuthal angles between NP i and its neighbor j. The total angular 

momentum is set to 3, and the value of m ranges from -3 to 3. The cutoff to define neighbors of 

NP i is set to 1.4𝜎𝐴𝐵. We then used the translation correlation parameter (𝑑3(𝑖, 𝑗)) between NPs i 

and j to determine if a NP is in a diamond crystalline environment: 

𝑑3(𝑖, 𝑗) =
∑ 𝑞3,𝑚(𝑖)𝑞3,𝑚

∗ (𝑖)3
𝑚=−3

(∑ |𝑞3,𝑘(𝑖)|
23

𝑘=−3 )1/2(∑ |𝑞3,𝑙(𝑗)|
23

𝑙=−3 )1/2
𝑞3,𝑚(𝑖) (4) 
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where the asterisk denotes the complex conjugate. We adopted the values of 𝑑3(𝑖, 𝑗) established 

in ref. 20,21 to determine if NPs are crystalline and if they have staggered or eclipsed bonds. 

According to these references, particles i and j have a staggered bond if −1 ≤ 𝑑3(𝑖, 𝑗) ≤ −0.85 

and an eclipsed bond if −0.3 ≤ 𝑑3(𝑖, 𝑗) ≤ 0.1. Particles are crystalline if they have four bonds. 

The particle is in a cubic environment if four out of four bonds are staggered, while it is in a 

hexagonal environment if it has one eclipsed and three staggered bonds.  

III. RESULTS AND DISCUSSION 

A. Influence of NP core-core interactions on the phase diagram 

We started our phase exploration of multiple patch cases by grafting two and three patches (with 

geometry compatible with tetrahedral coordination) with both Model-S and Model-H. However, 

such minimalistic patchy models did not produce a diamond or other network phase of interest at 

the studied conditions. Hence, we focus on the four-patch case (i.e., NPs having four tetrahedrally 

oriented patches on the surface) whose phase diagrams are presented in Figure 3. A video showing 

the formation of the diamond phase from the isotropic phase is available in the Supplementary 

Material. We investigated how the height and bonding strength of the raised patches in both Model-

S and Model-H influence the formation of such an open lattice as the diamond crystal. The effect 

of non-additivity and energetic attraction on phase behavior is shown in Figure 3 for both Model-

S and Model-H. We also detail in Figure 3 (c) the structure of the diamond phase formed. Since 

the energetic attractions between patches are only present between unlike NP patches, the energy 

is minimized in the diamond lattice as this maximizes the number of favorable contacts per NP. 

The ability of self-assembling diamond phases is observed here over a wide range of the patch 

height parameter, as indicated by the spontaneous formation of diamond phases for both models 

investigated. The observed facile self-assembly of the diamond phase corroborated the observation 
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of a previous study in which the interaction between a binary mixture of flat patches was found to 

thermodynamically and kinetically favor the diamond phase when compared to a single component 

system.21 

 

 

 
(a) 
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(b) 

 
  

Diamond BCC 

(Model-S) 

Diamond(grey)/BCC(colored) 

(Model-S) 

(c) 
 

Figure 3. Phase diagrams for the four-patch Model-S (a) and Model-H (b) NP model for an 

equimolar mixture as a function of the contact distance parameter ratio (σAB/σAA) and patch 

attraction parameter (εPAB/kT). Phases obtained using P*=0.5. (c) Representative snapshots of the 

phases described in (a) and (b). 

 

One of the main characteristics of the diamond crystal is the low packing fraction which would 

be made even lower by the longer A-B contacts found for NPs with raised patches. Other phases, 
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such as the body-centered cubic (BCC) lattice, may also expectedly compete with the diamond 

phase for lower values of patch interaction strength. For Model-S, we find conditions where the 

BCC phase seemed to be in equilibrium with the diamond phase. In fact, for some εPAB/kT points, 

we observed that both the BCC and diamond phases were present in the simulation box. Hence, 

we carried out two-phase interfacial simulations (see simulation details section) to verify if this 

arrangement could be recreated and maintained; a snapshot of this two-phase coexistence state is 

shown in Figure 3 (c). The BCC phase formation was not observed for Model-H, which can be 

attributed to the hard, short-range interaction of unlike cores that do not favor the more numerous 

core-core contacts prevailing in the BCC phase. Indeed, the softness of core-core interactions 

allows for closer proximity and hence the more efficient BCC packing in the Model-S cores only. 

Generally, softer core-core interactions allow for faster equilibration by reducing the kinetic 

configurational barriers between different structural motifs, but they can also modify the relative 

thermodynamic stability of competing phases. For example, for a system of additive Janus 

particles, the softening of the particle cores was implicated in the formation of the diamond 

phase.31 However, we do not see a similar effect of softness for our system, at least in cases where 

a comparison to such Janus particle system would be reasonable (i.e., for flat patches). The main 

finding, in terms of core design, is that Model-H should be preferred when targeting the diamond 

phase for NPs with taller patch heights for the geometry and range of interaction strengths studied.  

We identified through interfacial simulations the points in which either the diamond or BCC 

phase melted into the isotropic phase, which are also marked in Fig. 3 for both models. Note that 

a BCC solid is formed by two interpenetrating diamond lattices, and since the distinct patches are 

explicitly modeled in our model, the contacting unlike patches form a network that can be 

classified as a double diamond (DD). We calculated structure factors32 to verify the effect of having 
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explicit patches on the double-diamond/BCC structure (see Figure 4). When we use the center of 

mass of the NP, the BCC spectrum peak ratios are observed (√2: √4: √6: √8: √10). Meanwhile, 

DD peak ratios appear for the calculations with the cores and patches configurations 

(√2: √3: √4: √6: √8: √9).33 

 
Figure 4. Structure factor calculation considering the coordinates of the center of mass (com) and 

the individual coordinates of the cores and patches (core+patch) for the double diamond/BCC 

structure. Simulations for this structure were conducted for Model-S with 𝜎𝐴𝐵 = 1.16 and 

𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 0.5.  

 

B. Influence of non-additivity on the Diamond Phase assembly 

The diamond phase can be classified as either a cubic or a hexagonal diamond. It is essential to 

distinguish between the two types because the former has better photonic properties than the 

latter.12 Structurally, the cubic diamond phase differentiates from the hexagonal phase by the 

number of bonds in the staggered configuration. The cubic diamond has all four bonds in the 

staggered configuration, while the hexagonal diamond has three bonds in the staggered 

configuration and one bond in the eclipsed configuration.34 Previously, a model for NPs with 
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implicit tetrahedrally grafted patches was simulated via Monte Carlo simulations to address the 

influence of the coverage area of the patches on the fractions of hexagonal and cubic-arranged 

NPs.21 They found that wider patches (θ > 28◦) resulted in a higher relative fraction of cubic 

diamond. It has also been shown that depletion and DNA-mediated interactions can stabilize the 

cubic crystal for a narrow parameter region in a system of tetrahedral clusters of NPs.11,15 For the 

following calculations, we used Model-H due to the more extensive range of parameters associated 

with the diamond phase. We used the correlation parameter (𝑑3(𝑖, 𝑗)), to determine if a NP was in 

a cubic or hexagonal environment. We observe a weak dependence between the relative fraction 

of cubic diamond and the non-additivity parameter that is directly related to the height of the patch, 

as seen in Figure 5. The distribution of the 𝑑3 parameter for Figure 5 is given in Fig. S3 of the 

Supplementary Information. The fractions of hexagonally bonded NPs are slightly larger for 𝜎𝐴𝐵 

< 1.10, but the fraction plateaus at ~ 50% for taller patches. 

 

 
Figure 5. Relative fraction (𝑁𝑥 (𝑁𝑐𝑢𝑏𝑖𝑐 + 𝑁ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙)⁄ ) of NPs in cubic and hexagonal 

environments for different non-additivity parameters (𝜎𝐴𝐵) following spontaneous nucleation of 

crystal phase. Simulations were carried out with Model-H,  𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 0.5, and 𝜌 =0.4.  
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Even though the effect of patch height on the formation of different polytypes was marginal, we 

noted a difference in the strength of the binding. We ascribe this difference to the flanking effect 

of having patches of one NP type-A being closer to the core of NP type-B for Model-H when patch 

height decreases. This flanking effect is evident in Figure 6 (a). If the height of the patch is larger 

than the cutoff of purely repulsive interactions between patch A and core B, the “bonded” NPs A 

and B vibrate more around their preferential distance (𝜎𝐴𝐵). As a measure of the extent of this 

vibration, we calculated the mean squared displacements (RMSD) of the NPs forming the diamond 

phase at 𝑇𝑐𝑜𝑒𝑥 for both the flat patch case (𝜎𝐴𝐵 = 1) and three values of 𝜎𝐴𝐵. More details about 

RMSD calculations are available in the Supplementary Material. The results in Figure 7 show that 

the NPs with a flat patch vibrate (fluctuate) less than NPs with the taller patches. The vibration of 

NPs in their respective lattice sites contributes to the NP-entropy through both momenta and 

configurational degrees of freedom, but the momentum effects are inconsequential in determining 

phase coexistence conditions as the two phases are in thermal equilibrium. Hence, larger vibration 

amplitudes of NPs translate into larger vibrational entropy, which would lower the free energy and 

help stabilize the diamond phase relative to the isotropic phase.  
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(a) 

 
(b) 

Figure 6. (a) Non-additivity Flanking effect as captured by the average potential energy difference 

between all interactions (〈𝑢〉) and that of unlike patches 〈𝑢𝑃𝐴𝐵〉). (b) Average molar volume of the 

diamond phase as a function of the non-additivity parameter. Simulations were carried out for 

Model-H with 𝜀𝑃𝐴𝐵 = 1.5, P*= 0.5, and T = Tcoex. 

 

 
Figure 7. Average Root Mean Squared Displacement (RMSD) of NPs as a function of the 

simulation time (τ) for four different non-additivity parameters (𝜎𝐴𝐵). RMSD was calculated for a 

defect-free diamond phase at the isotropic-crystal coexistence temperature.  
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While the stronger energetic bonds of the flat patch favor the diamond structure 

thermodynamically, as seen by the higher coexistence temperatures, this stronger inter-particle 

association seemed to slow down the assembly dynamics in our simulations. Indeed, our 

qualitative observations indicated that, starting from the isotropic phase, the diamond phase 

(spontaneously) formed significantly more quickly and with fewer defects when the patch height 

(non-additivity parameter) was larger. The volume of perfect cubic diamond lattice also increased 

with 𝜎𝐴𝐵, indicating that the channels formed by the open lattice structure are wider for higher 𝜎𝐴𝐵 

(Figure 6 (b).). We surmised that this extra available volume and the “weaker” binding could help 

heal defects more readily when nucleating and growing the diamond phase from the isotropic 

phase. To quantitatively test this conjecture of higher non-additivity correlating with lower 

diamond-phase nucleation free energy barriers, we calculated these barriers for Model-H for 

different patch heights. We used umbrella sampling simulations together with the Dual OP method 

to calculate the needed free energies for three different 𝜎𝐴𝐵 values at temperatures corresponding 

to the same degree of supersaturation (𝛽Δ𝜇). In this way, all systems being compared experience 

the same thermodynamic driving force for nucleating the diamond phase. Figure 8 shows the free 

energy as a function of the number of the largest ordered crystalline cluster (n). We used classical 

nucleation theory (CNT) to fit the simulation points: assuming a fixed spherical geometry:35 

  

𝛽Δ𝐺 = −𝑛𝛽Δ𝜇 + 𝛽𝛾𝑛2/3 (5) 

 

where 𝛾 is the surface free energy to maintain the crystalline-isotropic interface (which in this 

expression also absorbs a nucleus-geometry factor (𝛽𝛾𝐴 ∝ 𝛽𝛾𝑛2/3)). The CNT fit, also shown in 

Figure 8, provides a reasonable correlation to the data trends, albeit deviations are larger for small 

cluster sizes. The larger barrier size for the flat patch case can be attributed to its higher surface 
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free energy (whose estimated values are listed in the caption of Fig. 8). We connect this larger 

interfacial tension to a higher packing density in the crystalline phase and a higher density 

difference between the isotropic and crystalline phases for the flat patch case when compared to 

the taller patch cases, as seen in Figure 8 (c). This difference reaches a minimum for 𝜎𝐴𝐵 = 1.2, at 

which point the volume of the isotropic phase starts to increase, while the volume of the diamond 

phase plateaus for taller patches. The isotropic phase is always less dense than the diamond phase 

at phase coexistence, and, at the isotropic phase density maximum (𝜎𝐴𝐵 = 1.2), local fluctuations 

with the denser diamond coordination motifs are likely better stabilized in the isotropic phase. 

Evidence of an increase in the AB patch-patch contacts (i.e., a more negative energy) in the 

isotropic phase for 𝜎𝐴𝐵 = 1.2 is shown in Fig. S2 of the Supplementary Material. This difference 

in local density can explain why 𝜎𝐴𝐵 = 1.2 has the lowest barrier in Figure 8 (a), indicating an 

optimal value for the height of the patch. Optimality in terms of patch width has also been observed 

in flat patch NPs.20 We also note that the 𝛽Δ𝜇 fit from CNT was three times larger than the 𝛽Δ𝜇 

calculated with Eq. 2 (i.e., 𝛽Δ𝜇 =2) for the flat patch case (𝜎𝐴𝐵 = 1). Possible causes for such 

deviations may be related to the effects of structural changes in the nucleus and to a size 

dependence of the surface energy, which are not accounted for by CNT. Saika-Voivod et al.20, in 

their study of a single-component flat-patch NPs that assemble into the diamond phase, also found 

similar discrepancies and showed that Δ𝜇 could change by a factor of 2 depending on the order 

parameter chosen to classify the particles as solid-like.  
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(a)  

 
(b) 
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(c) 

 

 

Figure 8. (a) Free energy as a function of the cluster size. Markers correspond to simulation data, 

and lines correspond to CNT fits with Eq. 5. Fitting parameter values are 𝛽Δ𝜇 = 6.1 and 𝛽𝛾 =

28.0 for 𝜎𝐴𝐵 = 1.00, 𝛽Δ𝜇 = 2.3 and 𝛽𝛾 = 14.1 for 𝜎𝐴𝐵 = 1.15, 𝛽Δ𝜇 = 1.3 and 𝛽𝛾 = 5.0 for 

𝜎𝐴𝐵 = 1.20, and 𝛽Δ𝜇 = 1.9 and 𝛽𝛾 =10.2 for 𝜎𝐴𝐵 = 1.23. (b) Snapshot of NPs in the nucleus and 

its vicinity near the critical point (n ~10) for 𝜎𝐴𝐵 = 1.23. The crystalline NPs are colored (red and 

blue). (c) Average molar volume difference between the diamond and isotropic phases as a 

function of the non-additivity parameter 𝜎𝐴𝐵. Inset shows the average molar volumes for each 

phase. Simulations were carried out for Model-H with 𝜎𝐴𝐴 = 1, 𝜀𝑃𝐴𝐵 = 1.5, and 𝜀𝐶𝐴𝐴 = 1. 

 

While we have provided some physical arguments as to why raising the patch height AB (relative 

to the flat-patch case) facilitates the isotropic-diamond transition, this trend reverses for AB > 1.2. 

This reversal may occur because as patches are made more protruding, the “lateral” patch-patch 

interactions become more competitive (at least in our model) against the “frontal” patch-patch 

contacts needed to form the diamond structure. In addition, the density of the diamond phase 
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decreases as the patch height increases, which, for AB > 1.2, can create a packing entropic cost 

that is not compensated by the energetic attraction between patches. 

 

 

IV. CONCLUSIONS  

In summary, we explored the phase behavior of A+B binary mixtures of spherical NPs decorated 

with tetrahedrally arranged patches. These NPs have preferential inter-species attractions to mimic 

hybridization between grafted DNA or DNA-like strands. The patches are raised to introduce a 

local, positive non-additive behavior, whose effect on phase and kinetic behavior was explored 

through molecular simulations. We further used two models, a hard-core model (Model-H) and a 

soft-core model (Model-S) to investigate the role of NP core softness on the assembly. We found 

that an equimolar mixture of Model-S NPs can form either the single cubic diamond or the BCC 

phase depending on patch height and patch-patch attraction strength, whereas Model-H NPs only 

formed the single diamond phase. The softness of the core facilitates core-core contacts, which 

makes the BCC phase to be more thermodynamically favored for lower binding strengths between 

complementary raised patches. 

We assessed the influence of the non-additivity parameter on the formation of the diamond phase 

polytype and crystal nucleation in Model-H only. The largest fraction of cubic diamond was found 

for a non-additive parameter of AB = 1.2 albeit error bars do not allow a firm conclusion. Overall, 

we found that non-additivity did not significantly influence the fraction of cubic or hexagonal 

diamonds, at least for the chosen patch width. Additionally, zero non-additivity (i.e., NPs with flat 

patches) resulted in stronger binding between patches, which slightly favored the diamond crystal 

thermodynamically, as seen by the slightly higher isotropic-crystal coexistence temperatures than 
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those for systems with higher non-additivity. Nonetheless, the non-additivity had a more 

substantial effect on the nucleation free-energy barriers, with the flat patch case having the highest 

barrier. This shows that even though non-additivity was not necessary for diamond phase 

assembly, it helped its formation kinetically. We showed that the non-additivity lowers the 

difference in molar volume at the interface between the crystalline diamond and isotropic phase, 

with the smallest density difference and nucleation barrier found for a non-additivity parameter 

𝜎𝐴𝐵 of 1.2. Macroscopically, this smaller density difference at the interface can be associated with 

a lower interfacial free energy, whose values were estimated via fits of simulation data to classical 

nucleation theory. Microscopically, the lower interfacial tension for taller patches can be 

associated with: (i) a higher isotropic phase density, which is more conducive to stabilize the higher 

NP-NP bond coordination associated with the diamond phase, and (ii) a slight increase in the NP 

mobility and vibrational entropy in the diamond phase. Altogether, our results suggest that non-

additivity and the implied length of DNA strains grafted on the NP as patches is an important knob 

in controlling the formation of the diamond phase. Indeed, toward the formation of open lattices 

with patchy NPs, whereas patch width has been shown to beneficially modulate NP rotational 

entropy,33 our model shows that patch height can be used to modulate NP vibrational entropy.  

The observed effects of patchy-NP design parameters on the diamond phase could be amplified 

for other conditions, e.g., for wider patches, for different geometric arrangements of the beads 

forming the patches, or for NP cores of different sizes and shapes. Besides amplification, other 

open lattice phases may be accessible by changing the cited parameters. From the observation that 

non-additivity can increase the local vibrations of NPs in the diamond lattice, patches could be 

designed to enhance such fluctuations; this would translate into a higher entropy (and lower free 

energy) and hence an increased stability of the diamond phase. Several aspects of the models 
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employed here could also be improved to better capture realistic features of our systems. For 

instance, the coarse-grained patch-patch selective interactions in our model are described by 

Lennard-Jones type of potentials between the small patch beads across different NPs; a more 

refined coarse-grained potential could be extracted from PMFs of two NPs where patches contain 

explicitly modeled DNA strands. Such more refined potentials could alter the way how, e.g., patch-

patch bonds align and fluctuate, hence affecting the kinetics and thermodynamics of different 

diamond polytypes. Finally, while in our study we computed nucleation free-energy barriers and 

used them as surrogates for nucleation kinetics (in view of their dominant role in the context of, 

e.g., classical nucleation theory), a more complete kinetic analysis (to quantify rates and transition 

states) can be performed by using specialized methods that sample transition pathways.26,36 
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See the supplementary material for additional details provided pertaining to:  

(S1) Orientation distribution from PMF calculations, (S2) Average potential energy of unlike 

patches (〈𝑢𝑃𝐴𝐵〉) for isotropic and diamond phases at coexistence. (S3) Distribution of order 

parameters for cubic or hexagonal environment classification (S4) Umbrella Sampling 

calculations, and (S5) RMSD calculations. (Supporting Information for Publication.docx) 
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