

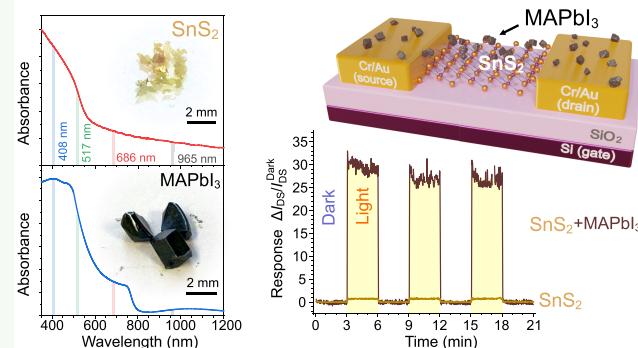
Enhanced Photoresponse in Few-Layer SnS₂ Field-Effect Transistors Modified with Methylammonium Lead Iodide Perovskite

Michael J. Loes, Alexey Lipatov, Nataliia S. Vorobeva, Haidong Lu, Jehad Abourahma, Dmitry S. Muratov, Alexei Gruverman, and Alexander Sinitskii*

Cite This: *ACS Appl. Electron. Mater.* 2023, 5, 705–713

Read Online

ACCESS |

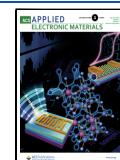

Metrics & More

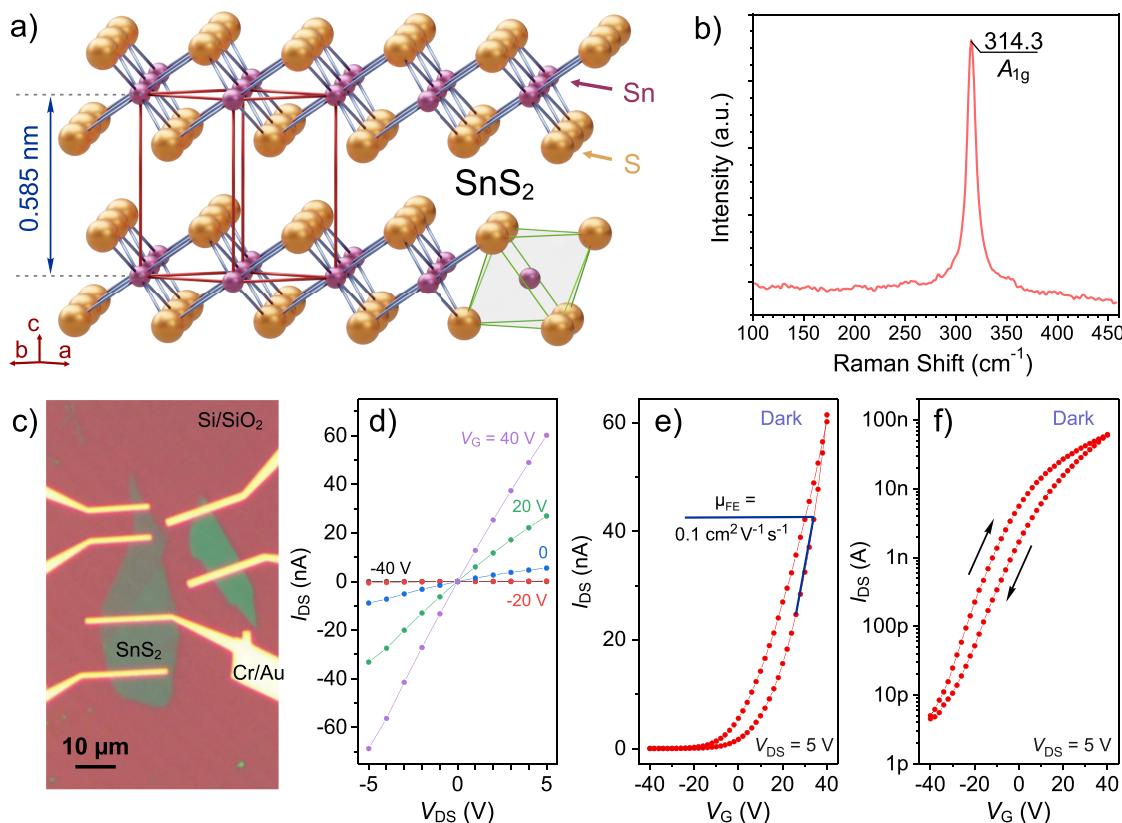
Article Recommendations

Supporting Information

ABSTRACT: We demonstrate that decoration with methylammonium lead iodide perovskite (MAPbI₃) nanoparticles is an efficient approach to engineer strong visible light photoresponse in electronic devices based on two-dimensional (2D) materials with limited optical absorptivity. This approach was demonstrated using 2D SnS₂, a promising electronic material with a band gap of about 2.3 eV and poor absorption in the visible range of spectrum. Field-effect transistors based on pristine 2D SnS₂ show an n-type transport with high on–off ratios. Decoration with isolated MAPbI₃ nanoparticles qualitatively retains the transfer characteristics of the devices but dramatically increases their photoresponse in the entire visible range of the spectrum. In particular, the photoresponse of the MAPbI₃-decorated devices to the red light is entirely engineered by the perovskite modification of SnS₂, which by itself does not absorb in the red region of the spectrum. The MAPbI₃-decorated SnS₂ devices exhibit stable, reproducible photoswitching over numerous cycles with response times of no longer than 12 ms. An analysis of a MAPbI₃–SnS₂ heterostructure by Kelvin probe force microscopy resulted in an energy level diagram suggesting a transfer of the photoexcited electrons in MAPbI₃ to the conduction band of the n-type SnS₂ channel. The photoresponse characteristics of the perovskite-modified SnS₂ devices were shown to be consistent with the intrinsic optical properties of MAPbI₃. The described perovskite decoration approach should be applicable to engineering photoresponse in a variety of other devices based on 2D electronic materials with low optical absorptivity.

KEYWORDS: 2D materials, tin disulfide, methylammonium lead iodide, heterostructure, photoresponse, Kelvin probe force microscopy


the idea of perovskite decoration to 2D electronic materials with larger band gaps that do not absorb light through most of the visible range of spectrum and thus would not be naturally considered for optical photodetectors.


Tin disulfide (SnS₂) is an example of a 2D material with a limited light absorptivity in the visible range of spectrum due to the band gap of about 2.3 eV.^{20–22} SnS₂ has a layered CdI₂-type crystal structure²⁰ (space group $P\bar{3}m1$) that is shown in Figure 1a.²³ High-quality SnS₂ crystals can be conveniently grown by a direct reaction between metallic tin and sulfur vapor at about 700 °C; see the detailed description of the synthesis of SnS₂ in the Supporting Information. A representative Raman spectrum of a few-layer SnS₂ shows the out-of-plane A_{1g} vibrational mode at 314.3 cm^{−1}, which is

Received: July 20, 2022

Accepted: January 5, 2023

Published: February 6, 2023

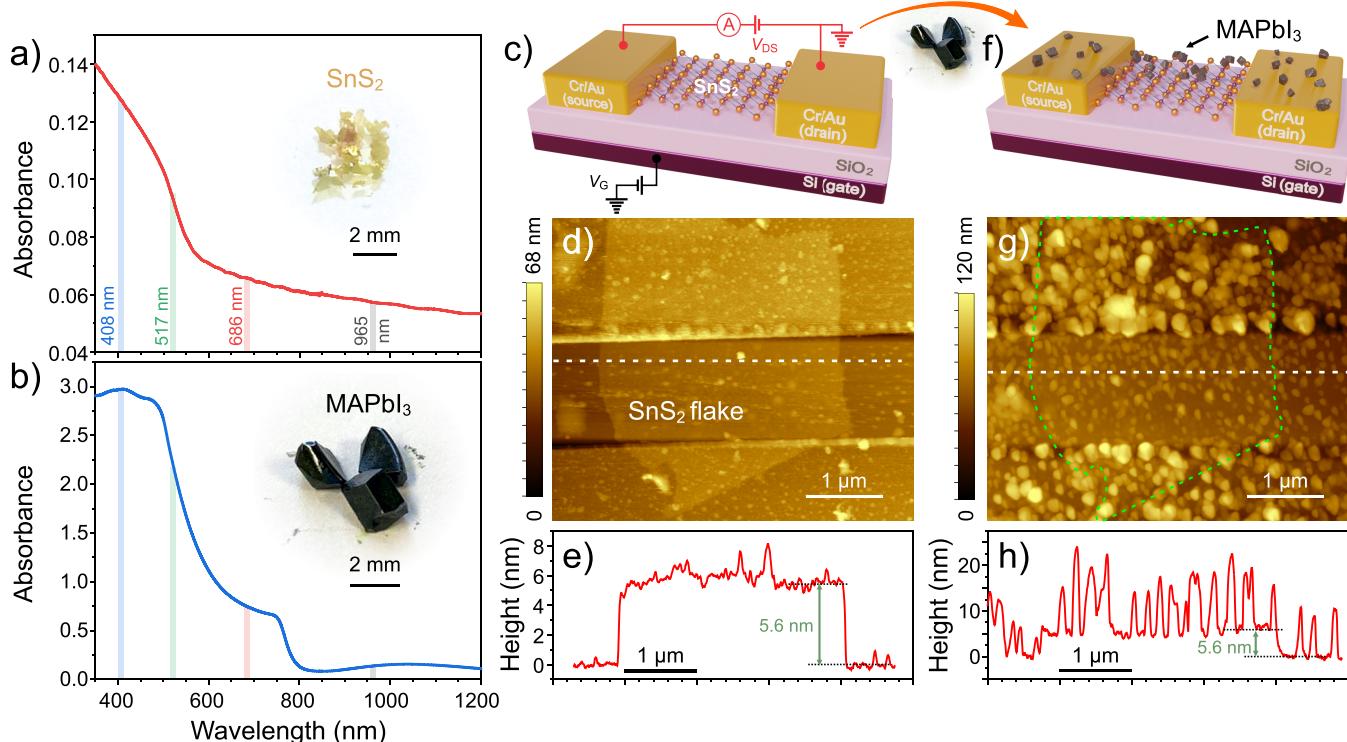
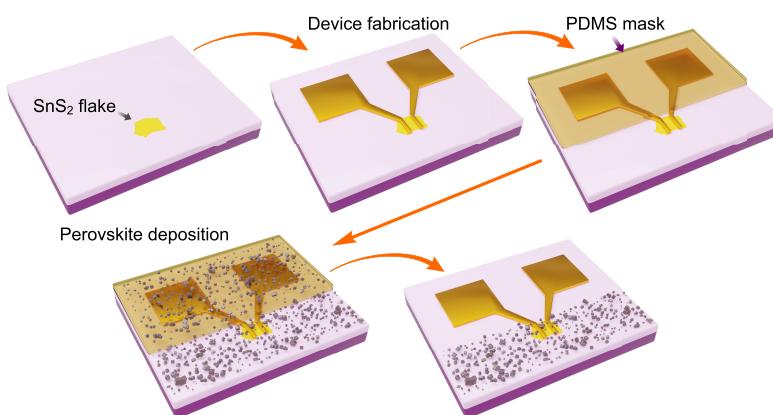


Figure 1. Structural and electronic properties of SnS_2 . (a) Crystal structure of SnS_2 . The red lines indicate the unit cell, while the green lines show the octahedral coordination of tin. (b) Representative Raman spectrum of few-layer SnS_2 . (c) Optical photograph of SnS_2 devices fabricated on a Si/SiO_2 substrate. (d) $I_{\text{DS}}-V_{\text{DS}}$ dependences for a SnS_2 device measured in a vacuum at different gate voltages (V_{G}) ranging from -40 to 40 V. (e, f) $I_{\text{DS}}-V_{\text{G}}$ dependences at $V_{\text{DS}} = 5$ V shown in linear (e) and logarithmic (f) current scales.


consistent with other spectra of SnS_2 in the literature.^{21,22,24,25} SnS_2 was recently recognized as a promising electronic material with some of its electronic properties summarized in Figure 1c–f. The layered SnS_2 crystals can be conveniently exfoliated into monolayer and few-layer flakes using the conventional adhesive tape approach, and then these flakes can be patterned into electronic devices using the standard electron beam lithography (EBL). Figure 1c shows the optical photograph of field-effect transistor (FET) devices, in which thin SnS_2 flakes deposited on a Si/SiO_2 substrate bridge $\text{Cr}(5\text{ nm})/\text{Au}(20\text{ nm})$ leads, which served as source (S) and drain (D) electrodes in the transport measurements. The conductive p-type Si separated from the SnS_2 device channels by a 300 nm thick layer of SiO_2 served as a global gate (G). Figure 1d shows that SnS_2 forms good contacts with Cr/Au electrodes, which can be seen from the linearity of the drain–source current (I_{DS})/drain–source voltage (V_{DS}) dependences. The $I_{\text{DS}}-V_{\text{G}}$ characteristics that are shown in the linear and logarithmic I_{DS} scales demonstrate that the SnS_2 devices exhibit an n-type semiconductor behavior with electron mobility of about $0.1\text{ cm}^2\text{ V}^{-1}\text{ s}^{-1}$ (Figure 1e) and transistor on–off ratios $>10^4$ (Figure 1f); these values are comparable to similar back-gated, few-layer SnS_2 devices produced by mechanical exfoliation.^{22,26,27} It should be noted that while this is a modest mobility compared to the more popular TMCs, such as MoS_2 ¹⁸ or TiS_3 ,²⁸ mobilities reaching $200\text{ cm}^2\text{ V}^{-1}\text{ s}^{-1}$ have been reported for solution-gated SnS_2 devices,²⁰ demonstrating their potential for electronic applications.

The low visible light absorptivity of SnS_2 is illustrated by Figure 2a. The inset in Figure 2a shows optical photograph of the SnS_2 crystals prepared in this study, which are semi-transparent yellow flakes (also see Figure S1 in the Supporting Information). The spectrum in Figure 2a shows that these crystals do not absorb light in the red range of spectrum, and the absorption starts only as the photon energy increases into the green/blue range. The absorption edge of SnS_2 can be estimated from these data to rise at 565 nm (2.19 eV), in agreement with reported literature values of $\sim 2.18\text{--}2.44\text{ eV}$.²¹ Below the band gap energy of SnS_2 , minimal absorbance is seen; however, absorption increases sharply for incident photons with wavelengths below about 550 nm . In order to enhance the light–matter interactions in the SnS_2 devices, we modified them with methylammonium lead iodide (MAPbI_3), the optical properties of which are presented in Figure 2b. The bulk MAPbI_3 crystals are shown in the inset of Figure 2b, and unlike SnS_2 , they are black and nontransparent. The spectrum in Figure 2b demonstrates that MAPbI_3 exhibits a strong optical absorption in the entire visible range of spectrum and has an absorption edge at about 795 nm (1.56 eV), which is in agreement with the previous studies.²⁹ Therefore, decoration of the SnS_2 FET channels with MAPbI_3 is expected to enhance the light–matter interactions throughout the entire visible range of spectrum and, in particular, enable the device photoresponse in the red region, where SnS_2 does not absorb light because of its $\sim 2.3\text{ eV}$ band gap.

The decoration of SnS_2 FETs with MAPbI_3 is illustrated by Figure 2c–h with a detailed device fabrication procedure

Figure 2. Decoration of SnS₂ devices with MAPbI₃ nanoparticles. (a, b) UV–vis–NIR absorption spectra of SnS₂ (a) and MAPbI₃ (b). The insets demonstrate optical photographs of the samples. The vertical lines show the wavelengths of the lasers that were used in this study. (c) Scheme of a SnS₂ FET. (d) AFM image of a representative SnS₂ FET that was used in this study. (e) AFM height profile measured across the SnS₂ flake shown in panel d; the measurement was taken along the dashed white line. (f) Scheme of a SnS₂ FET decorated with MAPbI₃ nanoparticles. (g) AFM image of the same SnS₂ device as in panel d after its decoration with MAPbI₃ nanoparticles. The dashed green line shows the contour of the SnS₂ flake. (h) AFM height profile measured across the perovskite-decorated SnS₂ flake shown in panel g; the measurement was taken along the dashed white line.

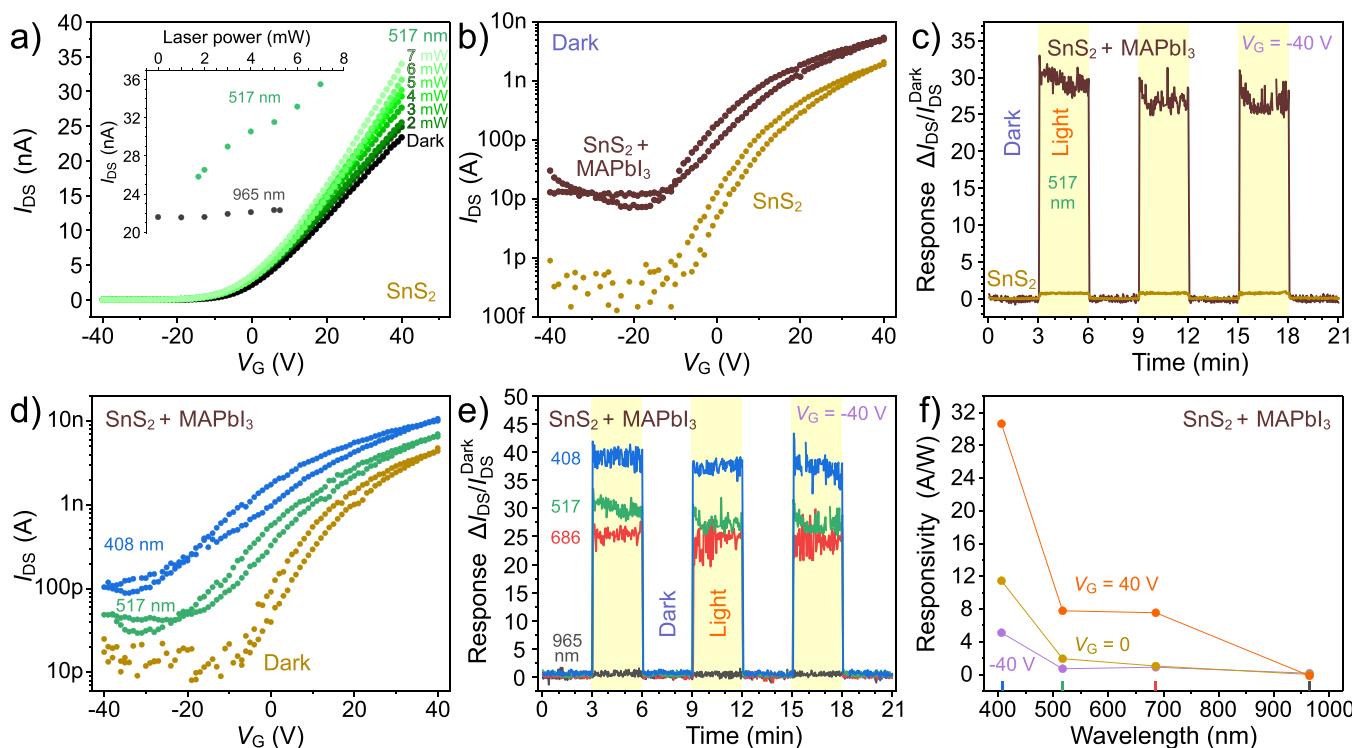


Figure 3. Scheme of fabrication of MAPbI₃-decorated SnS₂ devices. See text for details.

shown in Figure 3. Figure 2d demonstrates an atomic force microscopy (AFM) image of a representative FET device fabricated from a single SnS₂ flake. The height profile measured across this flake (Figure 2e) shows the thickness of about 5.6 nm, suggesting several layers of SnS₂. The device channel contains several foreign particles, which may be residues of either the adhesive tape used for the mechanical exfoliation of SnS₂ crystals or the EBL resist. In either case, these particles did not affect the electrical properties of this FET, which behaved similar to other previously reported SnS₂ devices,^{20,22,26,27} as shown in Figure 4. It should be noted that these particles are not intrinsic to the fabrication process, as

illustrated by Figure S2, which shows AFM images of two other as-prepared SnS₂ devices with much less surface contamination. Although one of the SnS₂ flakes in Figure S2 has a nearly perfect triangular shape, which is reminiscent of TMC crystals grown by chemical vapor deposition,^{30,31} it was produced by mechanical exfoliation, just like other flakes in this study.

The deposition of MAPbI₃ on the devices was performed using the antisolvent-assisted spin-coating procedure.^{29,32} After protection of gold electrodes with a thin layer of polydimethylsiloxane (PDMS), the Si/SiO₂ substrate with the devices was flooded with a solution of CH₃NH₃I and PbI₂

Figure 4. Optoelectronic characterization of MAPbI₃-decorated SnS₂ devices. (a) I_{DS} – V_G dependences for a pristine SnS₂ device measured under illumination with a green laser (517 nm) at powers ranging from 0 to 7 mW. $V_{DS} = 0.1$ V. The inset shows the dependences of I_{DS} at $V_G = 40$ V on the laser power for green (517 nm) and IR (965 nm) lasers. (b) I_{DS} – V_G dependences measured in the dark for a SnS₂ device before and after the perovskite decoration. (c) Photoresponses of pristine and perovskite-decorated SnS₂ devices to excitation with a green laser measured at $V_G = -40$ V and $V_{DS} = 0.1$ V. (d) I_{DS} – V_G dependences for a MAPbI₃-decorated SnS₂ device measured in the dark and under illumination with green (517 nm) and blue (408 nm) lasers. $V_{DS} = 0.1$ V. (e) Photoresponses of a MAPbI₃-decorated SnS₂ device to excitation with blue (408 nm), green (517 nm), red (686 nm), and IR (965 nm) lasers measured at $V_G = -40$ V and $V_{DS} = 0.1$ V. (f) Photoreponsivity of a MAPbI₃-decorated SnS₂ device as a function of the excitation laser wavelength and the gate voltage. All data are shown for the device presented in Figure 2g.

powders in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) and then spin-coated at 3000 rpm for 30 s. About 5 s before the spinning cycle was finished, an antisolvent, such as ethyl acetate, was dripped over the substrate, which was then annealed at 60 °C for 10 min. During the annealing, the film darkens from transparent yellow to opaque black, indicating the formation of the MAPbI₃ perovskite structure.^{29,33} Thin films on transparent substrates reveal the material to be deep maroon red; however, the material absorbs so strongly in the visible region³⁴ that on Si/SiO₂ substrates used in this work the film appears black (see Figure S3). The results of the X-ray diffraction (XRD) characterization of the perovskite material are also presented in Figure S3 along with their Rietveld refinement.

As shown schematically in Figure 2f, the reported procedure resulted in the formation of isolated MAPbI₃ nanoparticles on SnS₂ rather than a continuous perovskite film. This is important for understanding the electronic properties of the resulting SnS₂-MAPbI₃ devices. Because MAPbI₃ did not form a percolating layer, there was no alternative continuous conductive channel formed in parallel to the SnS₂ flake, and the transfer characteristics of the decorated devices were qualitatively the same as before the decoration. On the other hand, the perovskite nanoparticles on SnS₂ channels can be excited by visible light and increase photoresponsivity of the devices. It should be noted that even in the case of bulk TMCs that have high optical absorption coefficients,³⁵ the ultrathin devices made from these materials often exhibit low absolute

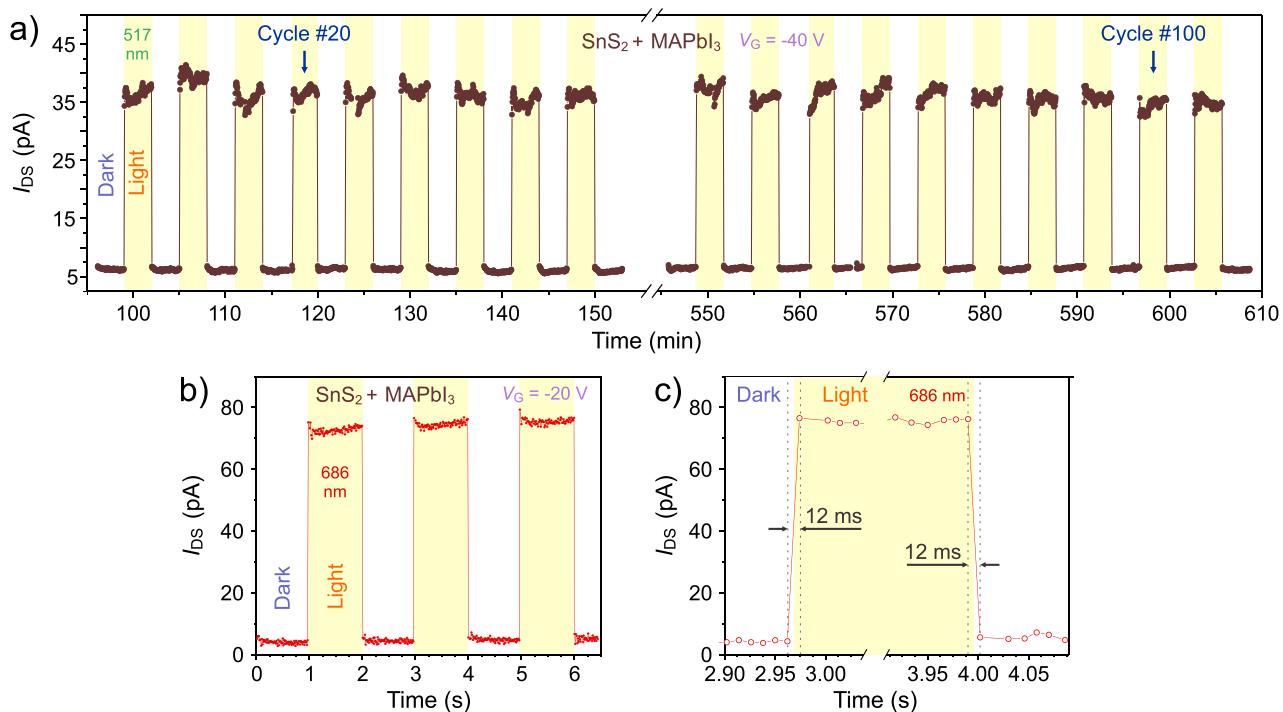
absorbances because of the small thicknesses of the device channels.^{2,36} Therefore, it has become a common practice to decorate the 2D devices with quantum dots, plasmonic nanoparticles, or other materials^{2,36,37} to aid in absorption while still preserving the fundamental electrical properties of the underlying 2D channels.

Figure 2g shows AFM image of the same SnS₂ device as in Figure 2d after the perovskite modification. The isolated MAPbI₃ nanoparticles are clearly seen in the AFM image and in the representative height profile across the perovskite-decorated SnS₂ flake (Figure 2h). The 5.6 nm height of the SnS₂ flake can be identified in the height profile; relative to this height the perovskite nanoparticles were about 5–15 nm thick. Interestingly, the AFM image shows that MAPbI₃ particles have grown larger on Cr/Au contacts than on the SnS₂ flake or the bare Si/SiO₂ substrate, suggesting a greater affinity of the perovskite material to gold than to the sulfide or oxide surfaces. A rougher surface of Au electrodes compared to flat SnS₂ and Si/SiO₂ may also be beneficial for MAPbI₃ nucleation and crystallization.

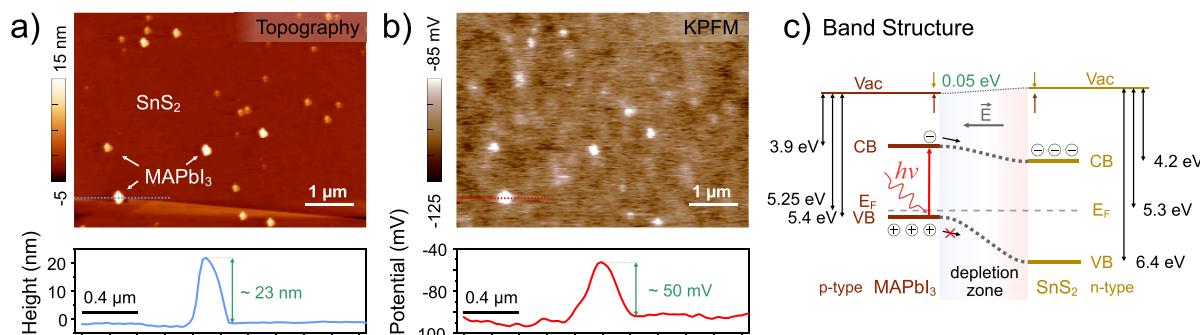
The tendency of MAPbI₃ to densely cover gold electrodes was the reason we protected them with PDMS masks when the perovskite was deposited on SnS₂ devices (see Figure 3). In a typical device fabrication process, a SnS₂ flake was first exfoliated by the conventional adhesive tape method onto Si/SiO₂ and then used for electrode patterning by EBL, as described in the Supporting Information. Then, the Cr/Au contacts were covered with a protective PDMS mask, as shown

in Figure 3, so that only the device channel area remained exposed for the perovskite deposition. After the spin-coating of the solution of $\text{CH}_3\text{NH}_3\text{I}$ and PbI_2 and the formation of the perovskite particles, the PDMS mask was removed (see Figure 3). This procedure prevented the unnecessary formation of MAPbI_3 on the large Cr/Au pads, which were later contacted with the tips of a probe station in electrical measurements, and also ensured that no conductive bridges of a perovskite material could accidentally form between the electrodes outside the observed channel area. It should also be noted that because in this process the perovskite material is formed after a lithography process and in the contact area between the substrate and the PDMS mask, the deposition dynamics is different from that of the solution spin-coating on a bare Si/SiO₂. In our control experiments, we found that a significantly larger amount of the perovskite material would be deposited on an oxygen plasma-cleaned Si/SiO₂ substrate without devices, lithography residues, and PDMS masks using the same spin-coating process.

Electronic properties of SnS₂ devices before and after the perovskite decoration were measured at room temperature in a vacuum probe station at a base pressure of about 2×10^{-6} Torr. The vacuum measurements were expected to minimize the doping effect of the surface adsorbates, such as water and oxygen, on the measured electronic properties of semiconducting materials³⁸ as well as to preserve the decoration of devices with MAPbI_3 , which is known to degrade in ambient conditions. At the same time, because some degradation of MAPbI_3 was reported to occur over time even in a vacuum,³⁹ we performed all electrical characterization of perovskite-decorated SnS₂ devices within several days after the evacuation. The devices, while remained in a vacuum, were illuminated through a transparent window in a probe station chamber with infrared (IR, 965 nm), red (686 nm), green (517 nm), or blue (408 nm) lasers; the experimental setup is also discussed in our previous works.^{40–42} These lasers provided us with two sets of data points below the band gap of pristine SnS₂ and two sets above. After the perovskite decoration, 965 nm remains below the band gap of MAPbI_3 , with the remaining three sets above.


Figure 4 demonstrates the effect of perovskite decoration on the optoelectronic properties of SnS₂ devices. A drain–source voltage of 0.1 V was used for all of these measurements. Figure 4a shows that the pristine SnS₂ devices exhibit a photoresponse to an excitation with a green laser (517 nm), which has an energy greater than the band gap of SnS₂. The drain–source current (I_{DS}) increases in the entire tested range of gate voltages (V_{G}) from -40 to 40 V under the green light illumination, and the increase is proportional to the laser power. The linear dependence of the I_{DS} at $V_{\text{G}} = 40$ V on the power of a green laser is illustrated by the inset in Figure 4a. Correspondingly, the pristine devices exhibit negligible response to an IR laser with an energy smaller than the band gap of SnS₂ (see the inset in Figure 4a). This slight response to the 965 nm radiation is not without precedent^{27,43} and has been attributed to virtual energy levels introduced within the band gap by defect states²⁷ including sulfur vacancies^{35,44} and other traps that may lie at the interface between the conductive channel and the gate dielectric.² Transitions by low-energy photons from these defect-induced states to the conduction band can also contribute to this negligible photocurrent.²⁷ It is still clear that the response to radiation with energy above the band gap is far more effective for generating excited electrons.

The effect of perovskite decoration on the transfer characteristics of a SnS₂ device measured in the dark is illustrated by Figure 4b. As demonstrated previously, the pristine SnS₂ exhibits an n-type semiconducting behavior with on–off ratios of several orders of magnitude in field-effect electrical measurements.^{20,22,26,27} Upon decoration with MAPbI_3 perovskite nanoparticles, the I_{DS} current increases across the entire V_{G} range, but the overall shape of the $I_{\text{DS}}-V_{\text{G}}$ dependence remains qualitatively the same. Thus, the decoration of a 2D SnS₂ device channel, while dramatically increasing the photoresponse of a device, as shown in the following panels, qualitatively retains its original transfer characteristics. The increase in the dark current of the device upon its decoration with MAPbI_3 could be caused by the local parallel conduction paths formed by perovskite nanoparticles on top of the SnS₂ channel (even though no global contact-to-contact percolation was evident, based on the AFM results).


The dramatically increased photoresponse of the MAPbI_3 -decorated SnS₂ devices is illustrated by Figure 4c. Here, the photoresponse is presented as the relative change in the device current, Response = $(I_{\text{DS}}^{\text{Light}} - I_{\text{DS}}^{\text{Dark}})/I_{\text{DS}}^{\text{Dark}}$, where $I_{\text{DS}}^{\text{Dark}}$ and $I_{\text{DS}}^{\text{Light}}$ are drain–source currents measured at the same V_{DS} and V_{G} (in this case, $V_{\text{DS}} = 0.1$ V and $V_{\text{G}} = -40$ V) in the dark and under illumination, respectively. The photoresponse to the green laser (517 nm) increases by about 2 orders of magnitude after the decoration of a device with MAPbI_3 nanoparticles. Figure 4c also shows the reproducibility of the photoswitching in both pristine and perovskite-modified SnS₂ devices. Similar data obtained with other lasers used in this study can be found in Figure S4.

For three of the lasers used in this experiment, red (686 nm), green (517 nm), and blue (408 nm), that had energies sufficiently high to photoexcite electrons in MAPbI_3 , the responses of the perovskite-modified devices increased with the laser energy, as illustrated by Figure 4d,e. This can be explained by the optical spectrum of MAPbI_3 presented in Figure 2b, which shows the increasing absorption of the perovskite from red to green to blue regions of spectrum. Correspondingly, the transfer characteristics of the MAPbI_3 -decorated SnS₂ device in Figure 4d show the larger I_{DS} increase across the entire V_{G} range for the blue laser illumination compared to the green laser. A similar idea is conveyed by the photoswitching data presented in Figure 4e, which show the largest photoresponse of the MAPbI_3 -decorated SnS₂ device to the blue laser and smaller photoresponses to the green and red lasers, in accordance with the optical absorption spectrum of MAPbI_3 shown in Figure 2b. The appreciable photocurrent in the MAPbI_3 -decorated device under the red laser (686 nm) illumination is notable because its energy is smaller than the band gap of SnS₂, which means that this photoresponse is entirely engineered by the perovskite decoration and would not be expected in a pristine device. Furthermore, the IR (965 nm) laser did not produce any significant photoresponse in the device, which is consistent with the fact that its energy is smaller than the band gaps of both SnS₂ (Figure 2a) and MAPbI_3 (Figure 2b).

The photoresponse of these devices depends not only on the energy of the excitation light but also on the gate voltage, which can be deduced from Figure 4d. This idea is further conveyed by Figure 4f, which characterizes the device by a different metric, responsivity, which is a measure of the absolute photocurrent generated in a device per unit incident

Figure 5. Functional characteristics of MAPbI_3 – SnS_2 photodetectors. (a) Cyclic photoresponse of a perovskite-decorated SnS_2 device measured at $V_G = -40$ V and $V_{DS} = 0.1$ V. The device was repeatedly illuminated with a green laser. (b, c) Switching time measurements: (b) three cycles of photoresponse of a perovskite-decorated SnS_2 device to excitation with a red laser measured at $V_G = -20$ V and $V_{DS} = 1$ V and (c) zoomed-in second switching cycle from panel b, showing the rise and fall response times of about 12 ms. The data are shown for the device presented in Figure S2a after its modification with perovskite nanoparticles.

Figure 6. KPFM characterization of the MAPbI_3 – SnS_2 heterostructure. (a) Topography image of the MAPbI_3 particles on SnS_2 flake with corresponding height profile for one of the particles. (b) KPFM image of the same area as in (a) along with the potential profile for the same particle. (c) Proposed energy level diagram of the MAPbI_3 – SnS_2 heterostructure.

power: Responsivity = $(I_{DS}^{\text{Light}} - I_{DS}^{\text{Dark}})/(P_{\text{Device}})$ where I_{DS}^{Dark} and I_{DS}^{Light} are the same as defined above, and P_{Device} is the fraction of the laser spot incident on the device channel (see details in the Supporting Information). The data in Figure 4 show that both responsivity and photoresponse are gate-voltage-dependent metrics. Responsivity is optimized while the device is in its ON state (high positive V_G) while the photoresponse observed in the photoswitching measurements is maximized at high negative V_G . The latter statement is illustrated by Figure 4d, which shows that the higher $I_{DS}^{\text{Light}}/I_{DS}^{\text{Dark}}$ ratios are observed at negative gate voltages, which explains why the data in Figure 4c,e are shown at $V_G = -40$ V. The dependence of the photoresponse characteristics of MAPbI_3 -decorated SnS_2 devices on the gate voltage provides another degree of their tunability for device applications.

Some of the functional characteristics of MAPbI_3 -decorated SnS_2 FETs as potential photodetectors are illustrated by Figure 5, which presents the data collected for the device shown in Figure S2a after its modification with perovskite nanoparticles. First, we investigated the cyclability of the MAPbI_3 -decorated SnS_2 FET in photoresponse measurements. Figure 5a demonstrates the results of an experiment containing more than 100 cycles of photoswitching spanning more than 10 h of continuous operation of the MAPbI_3 -decorated SnS_2 device. Stable, reproducible photoresponse cycles were observed while the device was repeatedly illuminated with a green laser during this experiment, as shown in Figure 5a. A pristine SnS_2 device showed a similarly stable operation, although with much smaller responses, as expected (Figure S5). Furthermore, while for the MAPbI_3 -decorated SnS_2 device the photocurrent changes associated with the laser turned on or off appear to be instantaneous on the time scale used in Figure 5a, a pristine

SnS_2 device exhibited a visibly slower switching kinetics (Figure S5). We further investigated the response time of the MAPbI_3 -decorated SnS_2 devices to photoexcitation. The results of a typical measurement, in which we used a mechanical shutter to open and close the probe station window that was used for device illumination with a red laser, are shown in Figure 5b,c. With the characteristics of the electronics and the mechanical shutter available to us, we could study the photoresponse of MAPbI_3 -decorated SnS_2 devices on the time scale of >10 ms, on which the photoswitching appeared to be instantaneous. Figure 5c shows the rise and fall response times for a typical cycle of photoresponse to a red laser of about 12 ms. It is most likely that the real photoresponse of these devices happens on a much smaller time scale and should be studied with a faster measurement setup. The functional parameters of MAPbI_3 - SnS_2 photodetectors studied in this work are summarized in Table S1.

Kelvin probe force microscopy (KPFM) measurements provide evidence for the charge transfer between MAPbI_3 and SnS_2 . KPFM examines the local variation of surface potential and provides a direct determination of the band offset of the MAPbI_3 - SnS_2 heterostructure. We used a reference sample where freshly prepared MAPbI_3 solution was deposited on a few-layer SnS_2 flake. The thicker SnS_2 flake helps reduce the effect of Si/SiO_2 substrate on the measurements, which were performed in an inert atmosphere of nitrogen gas. A standard Pt-coated Si AFM tip was used in this study, and its work function (W_f) was calibrated using Au(111) test sample ($W_f = 5.2$ eV). The topographic AFM image in Figure 6a shows the distribution of MAPbI_3 particles on the surface of SnS_2 . The profile measurements indicate that the typical size of MAPbI_3 particles were about 10–25 nm in diameter. Figure 6b shows the corresponding KPFM image, which was measured simultaneously with the topography image. The SnS_2 flake has an average potential of -100 mV relative to Au(111), providing an estimate for the Fermi level (E_f) of SnS_2 flake of 5.3 eV. The KPFM image also shows bright spots in the positions corresponding to MAPbI_3 particles in the topography image. The potential of these particles is about 50 mV above that of the SnS_2 flake. Because the system is in equilibrium, the Fermi levels of MAPbI_3 and SnS_2 are the same, and the measured difference of the potentials corresponds to the difference of 0.05 eV between the vacuum levels above the studied materials. On the basis of the results of the KPFM measurements and the energies of the valence and conduction bands of MAPbI_3 and SnS_2 ,^{3,21} we suggest a band diagram of the MAPbI_3 - SnS_2 heterostructure (see Figure 6c). On the basis of the position of Fermi energy, the MAPbI_3 particles are p-type semiconductors, which upon contact with the n-type SnS_2 form a depletion zone with the electric field pointing toward MAPbI_3 . When a MAPbI_3 particle absorbs a photon, it forms a pair of long-lived electron and hole with high mobility. The electric field in the depletion zone helps electrons move to the SnS_2 flake, while preventing the holes to do the same. As a result, illuminated MAPbI_3 provides additional electrons to the SnS_2 flake, making it more conductive as observed in our laser experiments. It should be noted again that because the MAPbI_3 nanoparticles did not percolate in the studied device (Figure 2f–h), the enhanced photocurrent should be due to the increased conductance of the SnS_2 channel. Correspondingly, Figure 6c shows that the energies of the valence and conduction bands of both materials relative to a vacuum are such that carriers excited into the conduction band of the

highly absorbing MAPbI_3 can be transferred to the conduction band of the n-type SnS_2 , which increases the photocurrent.^{3,45} While the band diagram of the MAPbI_3 - SnS_2 heterostructure in Figure 6c could be further verified by ultraviolet photoelectron spectroscopy (UPS), it appears to agree well with the experimental photoresponse data.

In summary, we demonstrate that decoration with MAPbI_3 perovskite nanoparticles is an efficient approach to engineer strong visible light photoresponse in electronic devices based on 2D materials with limited optical absorptivity. This approach was demonstrated using 2D SnS_2 , a promising electronic material with a band gap of about 2.3 eV, which makes it transparent to the red region of the spectrum. FET devices based on pristine SnS_2 show an n-type transport with high on–off ratios. Decoration with isolated MAPbI_3 nanoparticles qualitatively retains the transfer characteristics of the devices but dramatically increases their photoresponse in the entire visible range of spectrum. In particular, the photoresponse of the MAPbI_3 -decorated devices to the red light is entirely engineered by the perovskite modification of SnS_2 , which does not absorb in the red region of spectrum. The photoresponse characteristics of the perovskite-modified SnS_2 devices were shown to be consistent with the intrinsic optical properties of MAPbI_3 . The described perovskite decoration approach should be applicable to engineering photoresponse in a variety of other devices based on 2D electronic materials with low optical absorptivity.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsaelm.2c00947>.

Experimental procedures; microscopic characterization of as-grown SnS_2 crystals (Figure S1); AFM images of pristine SnS_2 devices (Figure S2); XRD pattern of MAPbI_3 accompanied by the Rietveld analysis (Figure S3); photoresponse of a MAPbI_3 -decorated SnS_2 device to lasers with different wavelengths (Figure S4); cyclic photoresponse of a pristine SnS_2 device to a green (517 nm) laser (Figure S5); comparison of the MAPbI_3 -decorated SnS_2 devices with other photodetectors based on 2D materials reported in the literature (Table S1) (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Alexander Sinitkii – Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States; Nebraska Center for Materials and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States; orcid.org/0000-0002-8688-3451; Email: sinitkii@unl.edu

Authors

Michael J. Loes – Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
Alexey Lipatov – Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States; Department of Chemistry, Biology & Health Sciences and Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and

Technology, Rapid City, South Dakota 57701, United States; orcid.org/0000-0001-5043-1616

Natalia S. Vorobeva — Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States

Haidong Lu — Department of Physics and Astronomy, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States

Jehad Abourahma — Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States

Dmitry S. Muratov — Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States; orcid.org/0000-0002-2027-4311

Alexei Gruverman — Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States; orcid.org/0000-0003-0492-2750

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acsaelm.2c00947>

Author Contributions

M.J.L. prepared SnS₂ devices and performed their modification with perovskite nanoparticles with assistance from N.S.V. SnS₂ crystals were grown by D.S.M. and J.A., who also did the XRD characterization. M.J.L. performed AFM, UV-vis-NIR measurements, and Raman spectroscopy. H.L. and A.G. performed KPFM experiments and analyzed their results. M.J.L. and A.L. performed the electrical measurements. M.J.L. and A.S. wrote the manuscript. A.S. conceived the idea of this study and supervised the project.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was supported by the Nebraska Center for Energy Sciences Research (NCESR) and the National Science Foundation (NSF) through EPSCoR RII Track-1: Emergent Quantum Materials and Technologies (EQUATE), Award OIA-2044049. The device fabrication was performed using the instrumentation at the Nebraska Nanoscale Facility, which is supported by the NSF (ECCS-2025298) and the Nebraska Research Initiative.

REFERENCES

- (1) Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H. S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. *2D Materials* **2020**, *7*, 022003.
- (2) Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. *Chem. Soc. Rev.* **2015**, *44*, 3691–3718.
- (3) Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. *Nano Today* **2015**, *10*, 355–396.
- (4) Kang, D.-H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J.-H. An Ultrahigh-Performance Photodetector based on a Perovskite–Transition-Metal-Dichalcogenide Hybrid Structure. *Adv. Mater.* **2016**, *28*, 7799–7806.
- (5) Lu, J.; Carvalho, A.; Liu, H.; Lim, S. X.; Castro Neto, A. H.; Sow, C. H. Hybrid Bilayer WSe₂–CH₃NH₃PbI₃ Organolead Halide Perovskite as a High-Performance Photodetector. *Angew. Chem., Int. Ed.* **2016**, *55*, 11945–11949.

(6) Ma, C.; Shi, Y.; Hu, W.; Chiu, M. H.; Liu, Z.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS₂/CH₃NH₃PbI₃ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. *Adv. Mater.* **2016**, *28*, 3683–3689.

(7) Liu, F.; Wang, J.; Wang, L.; Cai, X.; Jiang, C.; Wang, G. Enhancement of photodetection based on perovskite/MoS₂ hybrid thin film transistor. *Journal of Semiconductors* **2017**, *38*, 034002.

(8) Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C. E.; Yang, J.; Chen, C.; Du, S.; Lai, S. K.; Lau, S. P.; Voiry, D.; O’Carroll, D.; Gupta, G.; Mohite, A. D.; Zhang, S.; Zhou, H.; Chhowalla, M. Solution-Processed MoS₂/Organolead Trihalide Perovskite Photodetectors. *Adv. Mater.* **2017**, *29*, 1603995.

(9) Bai, F.; Qi, J.; Li, F.; Fang, Y.; Han, W.; Wu, H.; Zhang, Y. A High-Performance Self-Powered Photodetector Based on Monolayer MoS₂/Perovskite Heterostructures. *Advanced Materials Interfaces* **2018**, *5*, 1701275.

(10) Peng, Z.-Y.; Xu, J.-L.; Zhang, J.-Y.; Gao, X.; Wang, S.-D. Solution-Processed High-Performance Hybrid Photodetectors Enhanced by Perovskite/MoS₂ Bulk Heterojunction. *Advanced Materials Interfaces* **2018**, *5*, 1800505.

(11) Chandrasekar, P. V.; Yang, S.; Hu, J.; Sulaman, M.; Saleem, M. I.; Tang, Y.; Jiang, Y.; Zou, B. A one-step method to synthesize CH₃NH₃PbI₃:MoS₂ nanohybrids for high-performance solution-processed photodetectors in the visible region. *Nanotechnology* **2019**, *30*, 085707.

(12) Erkiliç, U.; Solís-Fernández, P.; Ji, H. G.; Shinokita, K.; Lin, Y.-C.; Maruyama, M.; Suenaga, K.; Okada, S.; Matsuda, K.; Ago, H. Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS₂ Heterostructures for Optoelectronic Applications. *ACS Appl. Mater. Interfaces* **2019**, *11*, 40503–40511.

(13) Yang, T.; Wang, X.; Zheng, B.; Qi, Z.; Ma, C.; Fu, Y.; Fu, Y.; Hautzinger, M. P.; Jiang, Y.; Li, Z.; Fan, P.; Li, F.; Zheng, W.; Luo, Z.; Liu, J.; Yang, B.; Chen, S.; Li, D.; Zhang, L.; Jin, S.; Pan, A. Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. *ACS Nano* **2019**, *13*, 7996–8003.

(14) Shin, D. H.; Ko, J. S.; Kang, S. K.; Choi, S.-H. Enhanced Flexibility and Stability in Perovskite Photodiode–Solar Cell Nanosystem Using MoS₂ Electron-Transport Layer. *ACS Appl. Mater. Interfaces* **2020**, *12*, 4586–4593.

(15) Wang, H.; Wang, X.; Chen, Y.; Zhang, S.; Jiang, W.; Zhang, X.; Qin, J.; Wang, J.; Li, X.; Pan, Y.; Liu, F.; Shi, Z.; Zhang, H.; Tu, L.; Wang, H.; Long, H.; Li, D.; Lin, T.; Wang, J.; Zhan, Y.; Shen, H.; Meng, X.; Chu, J. Extremely Low Dark Current MoS₂ Photodetector via 2D Halide Perovskite as the Electron Reservoir. *Adv. Opt. Mater.* **2020**, *8*, 1901402.

(16) Muratov, D. S.; Ishteev, A. R.; Lypenko, D. A.; Vanyushin, V. O.; Gostishev, P.; Perova, S.; Saranin, D. S.; Rossi, D.; Auf der Maur, M.; Volonakis, G.; Giustino, F.; Persson, P. O. Å.; Kuznetsov, D. V.; Sinitskii, A.; Di Carlo, A. Slot-Die-Printed Two-Dimensional ZrS₃ Charge Transport Layer for Perovskite Light-Emitting Diodes. *ACS Appl. Mater. Interfaces* **2019**, *11*, 48021–48028.

(17) Agresti, A.; Pazniak, A.; Pescetelli, S.; Di Vito, A.; Rossi, D.; Peccia, A.; Auf der Maur, M.; Liedl, A.; Larciprete, R.; Kuznetsov, D. V.; Saranin, D.; Di Carlo, A. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. *Nat. Mater.* **2019**, *18*, 1228–1234.

(18) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* **2012**, *7*, 699–712.

(19) Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. *ACS Nano* **2014**, *8*, 1102–1120.

(20) Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Rake, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A.; Sutter, P. Tin Disulfide—An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics. *ACS Nano* **2014**, *8*, 10743–10755.

(21) Burton, L. A.; Whittles, T. J.; Hesp, D.; Linhart, W. M.; Skelton, J. M.; Hou, B.; Webster, R. F.; O'Dowd, G.; Reece, C.; Cherns, D.; Fermin, D. J.; Veal, T. D.; Dhanak, V. R.; Walsh, A. Electronic and optical properties of single crystal SnS_2 : an earth-abundant disulfide photocatalyst. *J. Mater. Chem. A* **2016**, *4*, 1312–1318.

(22) Wei, S.; Ge, C.; Zhou, L.; Zhang, S.; Dai, M.; Gao, F.; Sun, Y.; Qiu, Y.; Wang, Z.; Zhang, J.; Hu, P. Performance Improvement of Multilayered SnS_2 Field Effect Transistors through Synergistic Effect of Vacancy Repairing and Electron Doping Introduced by EDTA. *ACS Appl. Electron. Mater.* **2019**, *1*, 2380–2388.

(23) Wang, Y.; Huang, L.; Wei, Z. Photoresponsive field-effect transistors based on multilayer SnS_2 nanosheets. *Journal of Semiconductors* **2017**, *38*, 034001.

(24) Sriv, T.; Kim, K.; Cheong, H. Low-Frequency Raman Spectroscopy of Few-Layer 2H- SnS_2 . *Sci. Rep.* **2018**, *8*, 10194.

(25) Fan, C.; Li, Y.; Lu, F.; Deng, H.-X.; Wei, Z.; Li, J. Wavelength dependent UV-Vis photodetectors from SnS_2 flakes. *RSC Adv.* **2016**, *6*, 422–427.

(26) Zschieschang, U.; Holzmann, T.; Kuhn, A.; Aghamohammadi, M.; Lotsch, B. V.; Klauk, H. Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. *J. Appl. Phys.* **2015**, *117*, 104509.

(27) Chu, D.; Pak, S. W.; Kim, E. K. Locally Gated SnS_2 /hBN Thin Film Transistors with a Broadband Photoresponse. *Sci. Rep.* **2018**, *8*, 10585.

(28) Lipatov, A.; Wilson, P. M.; Shekhirev, M.; Teeter, J. D.; Netusil, R.; Sinitkii, A. Few-layered titanium trisulfide (TiS_3) field-effect transistors. *Nanoscale* **2015**, *7*, 12291–12296.

(29) Choi, Y. C.; Lee, S. W.; Kim, D.-H. Antisolvent-assisted powder engineering for controlled growth of hybrid $\text{CH}_3\text{NH}_3\text{PbI}_3$ perovskite thin films. *APL Materials* **2017**, *5*, 026101.

(30) Zobel, A.; Boson, A.; Wilson, P. M.; Muratov, D. S.; Kuznetsov, D. V.; Sinitkii, A. Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS_2 crystals. *J. Mater. Chem. C* **2016**, *4*, 11081–11087.

(31) Lipatov, A.; Li, T.; Vorobeva, N. S.; Sinitkii, A.; Gruverman, A. Nanodomain Engineering for Programmable Ferroelectric Devices. *Nano Lett.* **2019**, *19*, 3194–3198.

(32) Troughton, J.; Hooper, K.; Watson, T. M. Humidity resistant fabrication of $\text{CH}_3\text{NH}_3\text{PbI}_3$ perovskite solar cells and modules. *Nano Energy* **2017**, *39*, 60–68.

(33) Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. *J. Phys. Chem. Lett.* **2015**, *6*, 898–907.

(34) Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. *Nat. Rev. Mater.* **2017**, *2*, 17042.

(35) Xie, C.; Mak, C.; Tao, X.; Yan, F. Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene. *Adv. Funct. Mater.* **2017**, *27*, 1603886.

(36) Lin, J.; Li, H.; Zhang, H.; Chen, W. Plasmonic enhancement of photocurrent in MoS_2 field-effect-transistor. *Appl. Phys. Lett.* **2013**, *102*, 203109.

(37) Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. *Science* **2013**, *340*, 1311–1314.

(38) Sinitkii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. M. Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes. *ACS Nano* **2010**, *4*, 5405–5413.

(39) Deretzis, I.; Alberti, A.; Pellegrino, G.; Smecca, E.; Giannazzo, F.; Sakai, N.; Miyasaka, T.; La Magna, A. Atomistic origins of $\text{CH}_3\text{NH}_3\text{PbI}_3$ degradation to PbI_2 in vacuum. *Appl. Phys. Lett.* **2015**, *106*, 131904.

(40) Vorobeva, N. S.; Bagheri, S.; Torres, A.; Sinitkii, A. Negative photoresponse in $\text{Ti}_3\text{C}_2\text{T}_x$ MXene monolayers. *Nanophotonics* **2022**, *11*, 3953–3960.

(41) Vorobeva, N. S.; Lipatov, A.; Torres, A.; Dai, J.; Abourahma, J.; Le, D.; Dhingra, A.; Gilbert, S. J.; Galiv, P. V.; Nenchuk, T. M.; Muratov, D. S.; Rahman, T. S.; Zeng, X. C.; Dowben, P. A.; Sinitkii, A. Anisotropic Properties of Quasi-1D In_4Se_3 : Mechanical Exfoliation, Electronic Transport, and Polarization-Dependent Photoresponse. *Adv. Funct. Mater.* **2021**, *31*, 2106459.

(42) Lipatov, A.; Vorobeva, N. S.; Li, T.; Gruverman, A.; Sinitkii, A. Using Light for Better Programming of Ferroelectric Devices: Optoelectronic $\text{MoS}_2\text{-Pb}(\text{Zr},\text{Ti})\text{O}_3$ Memories with Improved On-Off Ratios. *Adv. Electron. Mater.* **2021**, *7*, 2001223.

(43) Wu, J.-J.; Tao, Y.-R.; Wu, Y.; Wu, X.-C. Ultrathin SnS_2 nanosheets of ultrasonic synthesis and their photoresponses from ultraviolet to near-infrared. *Sens. Actuators, B* **2016**, *231*, 211–217.

(44) Huang, Y.; Deng, H.-X.; Xu, K.; Wang, Z.-X.; Wang, Q.-S.; Wang, F.-M.; Wang, F.; Zhan, X.-Y.; Li, S.-S.; Luo, J.-W.; He, J. Highly sensitive and fast phototransistor based on large size CVD-grown SnS_2 nanosheets. *Nanoscale* **2015**, *7*, 14093–14099.

(45) Im, H. S.; Myung, Y.; Cho, Y. J.; Kim, C. H.; Kim, H. S.; Back, S. H.; Jung, C. S.; Jang, D. M.; Lim, Y. R.; Park, J.; Ahn, J.-P. Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. *RSC Adv.* **2013**, *3*, 10349–10354.

□ Recommended by ACS

Phenyl-Terminated Coupling Interface Enabled Highly Efficient and Stable Multiwavelength Perovskite Single Crystal/Silicon Integrated Photodetector

Zining Li, Haizheng Zhong, et al.

MARCH 23, 2023

ACS APPLIED MATERIALS & INTERFACES

READ ▶

Parallel Integration of Nanoscale Atomic Layer Deposited $\text{Ge}_2\text{Sb}_2\text{Te}_5$ Phase-Change Memory with an Indium Gallium Zinc Oxide Thin-Film Transistor

Wonho Choi, Cheol Seong Hwang, et al.

MARCH 06, 2023

ACS APPLIED ELECTRONIC MATERIALS

READ ▶

Direct Writing of Aligned Conjugated Polymer Micro-Ribbons for High-Performance Organic Electronics

Weilin Liu, Guodong Zhu, et al.

JANUARY 25, 2023

ACS APPLIED ELECTRONIC MATERIALS

READ ▶

Ferroelectric Electroresistance after a Breakdown in Epitaxial $\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2$ Tunnel Junctions

Xiao Long, Josep Fontcuberta, et al.

JANUARY 30, 2023

ACS APPLIED ELECTRONIC MATERIALS

READ ▶

Get More Suggestions >