
Mathematische Zeitschrift (2022) 302:1267–1278
https://doi.org/10.1007/s00209-022-03095-4 Mathematische Zeitschrift

Biquotient vector bundles with no inverse

Jason DeVito1 · David González-Álvaro2

Received: 13 May 2021 / Accepted: 30 June 2022 / Published online: 16 August 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In previouswork, the second author andothers have found conditions on ahomogeneous space
G/H which imply that, up to stabilization, all vector bundles over G/H admit Riemannian
metrics of non-negative sectional curvature. One important ingredient of their approach is
Segal’s result that the set of vector bundles of the form G ×H V for a representation V of H
contains inverses within the class. We show that this approach cannot work for biquotients
G//H , where we consider vector bundles of the form G ×H V . We call such vector bundles
biquotient bundles. Specifically, we show that in each dimension n ≥ 4 except n = 5, there
is a simply connected biquotient of dimension n with a biquotient bundle which does not
contain an inverse within the class of biquotient bundles. In addition, we show that for n ≥ 6
except n = 7, there are infinitely many homotopy types of biquotients with the property that
no non-trivial biquotient bundle has an inverse. Lastly, we show that every biquotient bundle
over every simply connected biquotient Mn = G//H with G simply connected and with
n ∈ {2, 3, 5} has an inverse in the class of biquotient bundles.

Mathematics Subject Classification Primary 53C20

1 Motivation and results

Throughout this article,M will denote a closedmanifold andVect(M) the set of isomorphism
classes of vector bundles overM .Wewill consider the case of real and complex vector bundles
simultaneously, unless otherwise stated. It is well known that given E ∈ Vect(M) one can
always find F ∈ Vect(M) such that theWhitney sum E ⊕ F is isomorphic to a trivial bundle,
see e.g. [1, Lemma 9.3.5]. We call such a bundle F an inverse for E . Observe that there are
infinitely many inverses for a given bundle, although they all lie in the same stable class. In
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this article we discuss whether particularly interesting subsets S ⊂ Vect(M) contain their
own inverses, motivated by certain K-theoretical and geometrical applications.

As a warm up example, suppose that M carries an action by a compact Lie group G,
and consider the natural subset VectG(M) of G-vector bundles. As observed by Segal, any
such bundle has an inverse in VectG(M), see [16, Proposition 2.4]. When the G-action is
transitive, M is a homogeneous space G/H and VectG(G/H) coincides with the set of the
so-called homogeneous (vector) bundles, i.e. those of the form G ×H V for a representation
H of V [16, p. 130, c)]. Hence, every homogeneous bundle has an inverse which is also
homogeneous. The purpose of this work is to show that the analogous property fails to hold,
in general, for the more general class of biquotient bundles.

We first recall the definition of biquotient, following the approach by Totaro in [20,
Lemma 1.1 (3)]. Let G be a compact Lie group and Z(G) its center, and let Z < G × G
be the diagonal normal subgroup Z ..= {(g, g) : g ∈ Z(G)}. Any homomorphism
f : H → (G × G)/Z can be written in the form f (h) = [ f1(h), f2(h)] and determines
a well-defined two-sided H -action � on G by the rule h�g = f1(h)g f2(h)−1. When this
action is free, the orbit space, denoted by G//H , inherits a manifold structure and is called a
biquotient.

By construction, associated to a biquotient G//H there is a principal H -bundle H →
G → G//H . Each representation V of H induces a vector bundle G ×H V over G//H ,
defined as the quotient of G × V via the diagonal action by H consisting of the �-action on
G and the representation action on V ; the projection map is given by [g, v] �→ [g]. A vector
bundle constructed in such a way will be called a biquotient (vector) bundle. A biquotient
bundle is real or complex depending on the nature of the representation V . We remark that,
even though a given biquotient has several descriptions as a biquotient, when we refer to
biquotient bundles over G//H we always mean a bundle of the form G ×H V . In general,
one can obtain different isomorphism classes of vector bundles by changing the description
of the biquotient. For example, as shown by the authors [9, Theorem 1.1], whether or not the
tangent bundle of CPk or HPk is a biquotient vector bundle varies with the presentation.

Theorem 1.1 In each dimension n with n �= 2, 3, 5, there is a simply connected biquotient
M = G//H and a biquotient bundle G ×H V with no inverse among biquotient bundles.

We stress that Theorem 1.1 equally holds for real and complex biquotient bundles.
Simple examples satisfying the statement in Theorem 1.1 include the connected sum
(S3)2//T 2 ≈ CP2�CP2 and Eschenburg’s inhomogeneous flag manifold SU (3)//T 2, see
Proposition 3.4. By taking appropriate products with certain bundles over CP2�CP2, we
can improve Theorem 1.1 in dimension n ≥ 6.

Theorem 1.2 In each dimension n ≥ 6 with n �= 7 there are infinitely many homotopy types
of simply connected biquotients M = G//H with the following stronger property: if V is any
non-trivial representation of H, then the biquotient bundle G×H V does not have an inverse
among biquotient bundles. Moreover, when n = 7 there are infinitely many homeomorphism
types with this stronger property.

In fact, when n �= 7, we find infinitely many pairwise non-isomorphic cohomology rings.
Our examples in dimension 7 are certain S3-bundles over CP2�CP2 whose integral coho-
mology ring is isomorphic to that of S3 × CP2�CP2. We distinguish them by their first
Pontryagin class.

As mentioned previously, if one has diffeomorphic biquotients G1//H1 ∼= G2//H2, the
isomorphism classes of biquotient vector bundles obtained from each description do not
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necessarily coincide. However, for the examples we construct to prove Theorems 1.1 and 1.2,
this does not occur. Specifically, our descriptions are all of the form G1//T k for T k a torus. It
follows from Propsition 3.2 below and the fact that the irreducible representations of T k are
trivial or two (real) dimensional that the set of complex biquotient vector bundles obtained
from such a description are simply the sums of complex line bundles. Likewise, one concludes
that the real biquotient vector bundles are the realification of such a complex bundle, possibly
summed with a trivial bundle. On the other hand, if G2//H2 happens to be diffeomorphic to
one of our examples, [9, Propositions 2.2 and 2.5] implies that replacingG2 with its universal
cover and simplifying to its so-called reduced form can only enlarge the class of biquotient
vector bundles. Thus, we may assume G2 is simply connected and that G2//H2 is reduced.
Now [8, Proposition 3.4 and Corollary 3.5] imply that G2 is a product of SU (2)s and that
H2 is a torus. In particular, the set of biquotient vector bundles obtained agrees with that
obtained using our original description.

It would be interesting to derive sufficient conditions on a given closed biquotient G//H
for the existence of inverses within the class of biquotient bundles. As mentioned above, by
Segal’s work one such condition is that G//H is actually a homogeneous space. Here we
provide the following topological sufficient conditions.

Theorem 1.3 Let M = G//H be a closed biquotient. If ⊕i>0H4i (M, Q) = 0, then any real
biquotient bundle has an inverse among biquotient bundles.

Suppose moreover that one of the following stronger assumptions holds:

• ⊕i>0H2i (M, Q) = 0
• ⊕i>0H2i (M, Q) = H2(M, Q) = Q and M and G are simply connected.

Then any complex biquotient bundle has an inverse among biquotient bundles.

From the classification of low-dimensional biquotients [7, 15, 20], one easily sees that
Theorem 1.3 applies to all simply connected biquotients in dimension 2, 3, and 5. Thus, we
immediately deduce the following corollary which explains the exceptions in Theorem 1.1.

Corollary 1.4 For any presentation G//H of a simply connected biquotient of dimension 2, 3,
or 5withG simply connected, any biquotient bundle has an inverse among biquotient bundles.

As shown by Totaro [20, Lemma 3.1], every simply connected biquotient has such a
presentation.

Our interest in the existence of inverses within the class of biquotient bundles arises when
studying the following:

Question 1.5 Which vector bundles over a given biquotient are isomorphic to a biquotient
bundle?

The importance of Question 1.5 is that the presence of a biquotient bundle structure
has very nice topological and geometrical implications. On the topological side, Singhof
developed a method that allows the computation of certain characteristic classes [18]. On the
geometrical side, biquotient bundles admit metrics of non-negative sectional curvature with
very interesting properties, see e.g. [19].

Roughly speaking, the existence of inverses within a given subset S ⊂ Vect(M) allows the
use of K-theory in order to detect which bundles over M actually belong to S, up to stabiliza-
tion. To make this connection precise, let K(M) and K(S) denote the Grothendieck groups of
Vect(M) (i.e. topological K-theory) and of S respectively, and denote by ı : K(S) → K(M)

the induced group inclusion. Given an integer k, we denote also by k the trivial bundle of
rank k.
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Proposition 1.6 Suppose that S ⊂ Vect(M) satisfies the following properties:

(1) S contains all trivial bundles,
(2) the sum of two bundles in S belongs to S, and
(3) every bundle in S has an inverse in S.

Then, the following are equivalent:

• The natural inclusion ı : K(S) → K(M) is surjective.
• For every vector bundle E over M there exists an integer k (depending on E) such that

the Whitney sum E ⊕ k is isomorphic to a bundle in S.

We remark that Proposition 1.6 and its proof holds for both complex or real vector bundles;
note that in the real case the Grothendieck group of a set of vector bundles is usually denoted
by KO(−) instead of K(−).

The upshot of Proposition 1.6 is that K-theory has been extensively investigated and there
is a powerful machinery at our disposal for studying the possible surjectivity of ı . This has
been done in various situation as we review next, where we restrict to the case of complex
bundles for simplicity. The assumptions on S are satisfied when M is a G-manifold and
S = VectG(M); its Grothendieck group K(S) is usually denoted by KG(M) [16]. When
M = G/H is homogeneous, KG(M) identifies naturally with the representation ring R(H).
In this case, the study of the surjectivity of the map ı : R(H) → K(G/H) was already
initiated by Atiyah and Hirzebruch in the seminal article in which K-theory was founded [3,
Section 5]. Recently, surjectivity of ı : R(H) → K(G/H) has been characterized in the case
where H ,G are connected and π1G is torsion-free, and it turns out that it is equivalent to
the condition rank G − rank H ≤ 1 (see [2, Theorem B] and its proof). Equivalently, every
complex bundle over such a homogeneous space is homogeneous, up to stabilization. This
property no longer holds for biquotients: our examplesG//H fromTheorems 1.1 and 1.2 have
rank G − rank H = 0 or 1 (depending on the parity of the dimension) and for any non-trivial
complex biquotient bundle E = G ×H V we have that F ⊕ k is not a biquotient bundle
for any k, where F denotes any inverse for E . In the case where M is a cohomogeneity one
G-space, sufficient conditions for the surjectivity of ı : KG(M) → K(M) have been given
in [5, Theorem 6.1].

We finish by providing a geometric application which motivated the present work. Some
particular cases of Proposition 1.6 were crucial in the series of papers [2, 11, 12]. Therein, the
surjectivity of the map ı : KG(M) → K(M), for certain manifolds M on which a compact
Lie group G acts transitively or by cohomogeneity one, is used to show that every vector
bundle over M (is a G-vector bundle and hence) carries a metric of non-negative sectional
curvature, up to stabilization. This partially answers the so-called Converse Question to the
Soul Theorem of Cheeger andGromoll [6] askingwhich vector bundles over a non-negatively
curved closed manifold admit a complete metric of non-negative curvature.

The set S of biquotient bundles over a given G//H satisfies the first two assumptions in
Proposition 1.6, since the rule that assigns biquotient bundles to representations commutes
with respect to direct sums (and tensor products). Unfortunately, the third condition is not
satisfied, in general, as Theorem 1.1 shows. Thus, Proposition 1.6 does not help to partially
answer Question 1.5 nor the Converse Question to the Soul Theorem over arbitrary biquo-
tients. In any case, we are not aware of any general result concerning the surjectivity of the
natural map ı : R(H) → K(G//H).

We now describe the outline of the paper. Section 2 is devoted to proving Proposition 1.6
as well as Theorem 1.3. The main tool used is K -theory. Section 3 contains the proof of
Theorems 1.1 and 1.2. In order to find examples, we identify a cohomological property
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which guarantees that the only biquotient bundles with inverses are trivial (Proposition 3.1).
We then just need to construct the relevant biquotients verifying this property; we do this in
Proposition 3.6.

2 K-theoretical proofs: biquotients bundles with inverses

Here we prove Theorem 1.3 and Proposition 1.6. The proofs use basics of K-theory and stable
classes of vector bundles. We refer e.g. to [1, Sect. 9] for the reader unfamiliar with the topic.

Lemma 2.1 Let M be a closed manifold satisfying ⊕i>0H2i (M, Q) = 0 (resp. ⊕i>0H4i

(M, Q) = 0). Let S be a set of complex (resp. real) vector bundles over M satisfying the
following properties:

(1) S contains all trivial bundles,
(2) the sum of two bundles in S belongs to S, and

Then every bundle in S has an inverse in S.

Proof Using the Atiyah–Hirzebruch spectral sequence for K-theory it follows that the con-
dition ⊕i>0H2i (M, Q) = 0 is equivalent to the reduced K-theory ring of M being finite (see
[3, Sect. 2.4]). The latter is equivalent to the fact that the set of stable classes of complex
bundles over M is finite. In particular, for any complex bundle E over M there exist integers
n, k such that nE ⊕ k is a trivial bundle, where nE denotes the Whitney sum E ⊕ · · · ⊕ E
of n copies of E . Thus F ..= (n − 1)E ⊕ k is an inverse for E . The assumptions on S imply
that F ∈ S, as desired. The same discussion applies in the case of real bundles under the
condition ⊕i>0H4i (M, Q) = 0 (see the proof of [2, Corollary 2.11] for more information).

�

Lemma 2.2 Let M ≈ G//H be a closed biquotient with G and M simply connected and
satisfying

⊕i>0H
2i (M, Q) = H2(M, Q) = Q.

Then any complex biquotient bundle has an inverse among biquotient bundles.

Proof Let E be a complex vector bundle over M . Recall that the Chern character induces an
isomorphism K(M) ⊗ Q → H even(M, Q) [3, Sect. 2.4]. By the cohomological assumption
on M , the only Chern class that survives is c1(E).

On the other hand, if M = G//H then, as M is simply connected, π2(M) ∼= H2(M)

is non-trivial, so H , up to cover, must split off a circle factor [8, Proposition 3.3]. From
Proposition 3.2 below, all complex line bundles over G//H are biquotient bundles, and there
is precisely one such bundle for any element in H2(M, Z). Let L the line bundle with
c1(L) = −c1(E). Then c1(E ⊕ L) = 0 and hence the Chern character maps the K-theory
class of E ⊕ L to the trivial element in H even(M, Q). Hence, the stable class of E ⊕ L
corresponds to a torsion element in K(M), and consequently there exist integers n, k for
which n(E ⊕ L) ⊕ k = nE ⊕ nL ⊕ k is a trivial bundle. Thus (n − 1)E ⊕ nL ⊕ k is an
inverse for E and also a biquotient bundle, as desired. �

Proof of Theorem 1.3 The first two statements follow directly from Lemma 2.1 applied to the
set S of real (resp. complex) biquotient bundles together with the fact that S is clearly closed
under taking Whitney sums. The third statement is precisely Lemma 2.2. �
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Proof of Corollary 1.4 By the classification in [7, 15, 20], such a biquotient is diffeomorphic to
one of the following: S2, S3, S5, S2×S3, SU (3)/SO(3) or the non-trivial S3-bundle over S2,
denoted by S3×̃S2. Their topology is well known. The real case in the corollary follows from
Lemma 2.1. The complex case follows from Lemma 2.1 in the cases of S3, SU (3)/SO(3)
and from Lemma 2.2 in the cases of S2, S2 × S3, S3×̃S2. �


We conclude this section with a proof of Proposition 1.6.

Proof of Proposition 1.6 Recall that the Grothendieck group of a set of vector bundles S is
defined as K(S) ..= {A − B : A, B ∈ S}, where A1 − B1 = A2 − B2 if and only if there
exists m for which the bundles A1 ⊕ B2 ⊕ m and A2 ⊕ B1 ⊕ m are isomorphic. We will
denote the image of an element A − B ∈ K(S) under ı : K(S) → K(M) simply by A − B.

Suppose first that ı is surjective. Then any E ∈ Vect(M) can be written as E = A − B in
K (M) for certain A, B ∈ S. By taking an inverse B ′ ∈ S of B (i.e. B ⊕ B ′ = n) and adding
the trivial element 0 = B ′ − B ′ we get

E = E + B ′ − B ′ = A − B + B ′ − B ′ = (A + B ′) − (B + B ′) = A + B ′ − n.

It follows that E ⊕ n ⊕ m = A ⊕ B ′ ⊕ m for some m. The bundle in the right-hand-side
belongs to S by assumption and hence the claim follows for k ..= n + m.

Suppose now that for every E ∈ Vect(M) there is k for which E ⊕ k ∈ S. Take any
element E1 − E2 ∈ K(M). By assumption, there is ki for which Fi ..= Ei ⊕ ki ∈ S, for
i = 1, 2. Clearly E1 − E2 = F1 − F2 ∈ K (S) and hence the claim follows. �


3 Biquotients bundles with no inverses

We now move towards proving Theorem 1.1. Given a manifold M , we say M has Property
(∗) if

for any x1, . . . , xn ∈ H2(M),
∑

x2i = 0 if and only if x1 = x2 = · · · = xn = 0,

where we use the notation Hk(M) as an abbreviation for Hk(M, Z). Our interest in Property
(∗) stems from the following proposition.

Proposition 3.1 Suppose M = G//T k is a closed simply connected manifold satisfying prop-
erty (∗). Then in both the complex and real cases, the only biquotient bundles over M which
have a biquotient inverse are the trivial vector bundles.

Proof Recall from e.g. [4], that all irreducible complex representations of T k are 1
dimensional over C and all real representations of T k are the realification of a complex
representation, possibly summed with a trivial rank 1 real vector bundle. It follows that all
complex biquotient bundles over M split as a sum of line bundles and that every real biquo-
tient bundle over M is the realification of a complex bundle over M , possibly summed with
a trivial rank 1 real vector bundle.

We shall show that if a sum of complex line bundles over M is trivial then each of the line
bundles in the sum is trivial. This implies that if the sum E ⊕ F of two biquotient bundles is
trivial then so are E and F , as claimed.

Suppose L1, . . . , Ln are line bundles over M and set L = ⊕
Li . Computing

the first and second Chern classes via the Whitney sum formula, we find c2(L) =
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∑
1≤i< j≤n c1(Li )c1(L j ) and c1(L) = ∑n

i=1 c1(Li ). Thus,

c1(L)2 − 2c2(L) =
n∑

i=1

c1(Li )
2.

If L is trivial, the left hand side vanishes, and so by Property (∗), we conclude c1(Li ) = 0
for all i . Since line bundles are classified by their first Chern class, each Li must then be
trivial.

Lastly, observe that if r L denotes the realification of L , then its first Pontryagin class
equals p1(r L) = c1(L)2 − 2c2(L) = ∑

c1(Li )
2, so p1(r L) is non-trivial if at least one Li

is non-trivial. �

Of course, in order to use Proposition 3.1, we must construct biquotients with Property

(∗) and verify that they admit non-trivial biquotient vector bundles. The latter statement is
a consequence of the following proposition, Proposition 3.2. This proposition is likely not
new, but we could not locate it in the literature (see [21, p. 227] or [13, pp. 473-474] for
particular cases of it).

Given a subgroup S1 ⊆ T k , we call a subgroup T k−1 ⊆ T k complementary to S1

if S1 · T k−1 = T k and S1 and T k−1 intersect only at the identity. If S1 and T k−1 are
complementary, then every element in T k has a unique expression of the form uw with
u ∈ S1 and w ∈ T k−1.

Proposition 3.2 Suppose M is a2-connectedmanifold anda torus T k acts freelywith quotient
N = M/T k and suppose L is any complex line bundle over N. Then there is a subgroup
S1 ⊆ T k with complementary T k−1 for which L is isomorphic to M/T k−1 ×S1 C where S1

acts on C via v ∗ z = vd z for some d ∈ Z. Equivalently, L is isomorphic to M ×T k C where
T k = S1 · T k−1 acts on C via (v(w1, . . . , wk−1)) ∗ z = vd z.

Before proving this proposition, we note the following obvious corollary.

Corollary 3.3 If G is a simply connected compact Lie group and T k, k ≥ 1, acts via a
biquotient action, then any line bundle L over G//T k is a biquotient bundle. In particular,
since line bundles are classified by H2(G//T k) ∼= Z

k , there are infinitely many pairwise
non-isomorphic non-trivial biquotient bundles.

Proof of Proposition 3.2 Because complex line bundles are classified by their first Chern class,
it is sufficient to show every element of H2(N ) can be realized as the first Chern class of a
bundle of the form M/T k−1 ×S1 C for some complementary S1, T k−1 in T k . Further, every
line bundle is naturally associated to a principal S1-bundle, and under this association, the
first Chern class of the line bundle agrees with the Euler class of the principal bundle. Thus,
it is enough to show that every element x ∈ H2(N ) can be realized as the Euler class of a
principal circle bundle of the form M/T k−1 ×S1 S1 where S1 acts on itself by rotations at
some speed.

The hypothesis onM together with the Serre spectral sequence for the principal T k-bundle
T k → M → N imply that there is a natural isomorphism H1(T k) ∼= H2(N ). We write vi
for the coordinates on T k and H∗(T k) ∼= �Z(z1, . . . , zk) with each zi corresponding to the
i-th factor of T k . Then H2(N ) = Z

k is generated by dz1, . . . , dzk , where d denotes the
differential for the spectral sequence associated to the bundle.

Now, let x = ∑
bi (dzi ) be any element of H2(N ). We may obviously assume x �=

0. Moreover, we may assume gcd(b1, . . . , bk) = 1, for if we have a bundle of the form
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M/T k−1 ×S1 S
1 with Euler class x/ gcd(b1, . . . , bk), we may obtain x as an Euler class by

having the S1 act on itself by gcd(b1, . . . , bk)-fold rotation.
We nowdefine T k−1

x and S1x . Because gcd(b1, . . . , bk) = 1, there is amatrix B ∈ Gl(k, Z)

whose first row is (b1, . . . , bk), see e.g. [17]. Then B defines an isomorphism B : T k → T k

given by

B(v1, . . . , vk) = (v
B11
1 v

B12
2 . . . v

B1k
k , . . . , v

Bk1
1 v

Bk2
2 . . . v

Bkk
k ).

We set

S1x = {B−1(v1, 1, . . . , 1) : (v1, 1, . . . , 1) ∈ T k}
T k−1
x = {B−1(1, v2, . . . , vk) : (1, v2, . . . , vk) ∈ T k}

Clearly S1x and T k−1
x are complementary.

We now compute the Euler class of Mx = M/T k−1
x ×S1x

S1 where S1x acts on S
1 as v∗w =

vw. Define a map φ : T k → S1 by φ(v1, . . . , vk) = π1(B(v1, . . . , vk)) = v
b1
1 . . . v

bk
k , where

π1 : T k → S1 is projection onto the first coordinate, π1(v1, . . . , vk) = v1. Also, define
ψ : M → Mx by ψ(m) = [mT k−1

x , 1] and consider the diagram of fiber bundles

T k φ� S1

M

iT k

�
ψ� Mx

iS1
�

N
� I dN� N

�

where the bottom vertical maps are the obvious projections and iT k , iS1 are the inclusion of
a fiber. Fixing m0 ∈ M and considering the corresponding point ψ(m0) ∈ Mx , we have
iT k (v1, . . . , vk) = (v1, . . . , vk)m0 and iS1(v) = [m0T k−1

x , v].
We claim the diagram commutes. Indeed, the bottom square obviously commutes. For the

top square, we then observe the top square commutes if and only if for any (v1, . . . , vk) ∈ T k ,

[(v1, . . . , vk)m0T
k−1
x , 1] = [m0T

k−1
x , v

b1
1 . . . v

bk
k ].

Writing (v1, . . . , vk) = B−1(w1, 1, . . . , 1)B−1(1, w2, . . . , wk) for some (w1, w2, . . . , wk) ∈
T k , we find w1 = π1(B(v1, . . . , vk)) = v

b1
1 . . . v

bk
k , so

[(v1, . . . , vk)m0T
k−1
x , 1] = [B−1(w1, 1, . . . , 1)m0T

k−1
x , 1]

= [m0T
k−1
x , w1]

= [m0T
k−1
x , v

b1
1 . . . v

bk
k ].

Thus, there is a map of spectral sequences for the two bundles. Writing H∗(S1) = �Z(z),
and using d and dx for the differential for the M and Mx bundles respectively, we now see
that the Euler class e(Mx ) of Mx satisfies e(Mx ) = dx (z) = dφ∗(z). But, φ(v1, . . . , vk) =
v
b1
1 . . . v

bk
k , so obviously dφ∗(z) = d

∑
bi zi = x . �


We now find examples of biquotients of the form G//T k with Property (∗).
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Proposition 3.4 The space CP2�CP2 (which is a biquotient of the form (S3)2//T 2 [20,
p. 404]) as well as the inhomogeneous biquotient SU (3)//T 2 both have Property (∗).

Proof For CP2�CP2, recall that H∗(CP2�CP2) ∼= Z[u, v]/〈u2 − v2, uv〉 with both |u| =
|v| = 2. Then given elements xi = aiu + biv, one easily computes that

∑
x2i = ∑

(a2i +
b2i )u

2, so obviously vanishes if and only if all xi = 0.
For SU (3)//T 2, recall from [10] that H∗(SU (3)//T 2) ∼= Z[u, v]/〈v2 − u2 − uv, u3〉 with

|u| = |v| = 2. Given elements xi = aiu + biv, we compute that
∑

x2i = ∑
i a

2
i u

2 +
b2i v

2 + 2aibi uv = ∑
i (a

2
i + b2i )u

2 + (2aibi + b2i )uv. From the u2 component, it follows
that

∑
x2i = 0 if and only if ai = bi = 0 for all i , i.e., if and only if xi = 0 for every i . �


We next construct in each even dimension n = 2k ≥ 4 biquotients of the form (S3)k//T k

having Property (∗).
Suppose k ≥ 2. We call a k × k integer matrix A admissible if

Ai j =

⎧
⎪⎨

⎪⎩

1 i = j or (i, j) = (2, 1)

2 (i, j) = (1, 2)

0 i < j with (i, j) �= (1, 2)

.

For example, a typical 5 × 5 example has the form

A =

⎡

⎢⎢⎢⎢⎣

1 2 0 0 0
1 1 0 0 0

A3,1 A3,2 1 0 0
A4,1 A4,2 A4,3 1 0
A5,1 A5,2 A5,3 A5,4 1

⎤

⎥⎥⎥⎥⎦
.

Given an admissible A, we define a biquotient action of T k on (S3)k as follows. Viewing
S3 ⊆ C

2, on the i-th coordinate (ai , bi ) of (S3)k we have

(w1, ..., wk) ∗ (ai , bi ) = (wi ai , w
Ai1
1 · ... · w

Aik
k bi ).

Proposition 3.5 For any admissible A, the above action is free.

Proof We prove this by induction on k. The case k = 2 is [7, Proposition 3.2].
Suppose A is any k × k admissible matrix with k ≥ 3. Because of the last column of

zeros, any element (1, ..., 1, wk) ∈ T k acts only on the last S3 factor of (S3)k , and on this
S3 factor, it acts as the Hopf map with quotient S2. Writing T k−1 for the set of points of the
form (w1, ..., wk−1, 1), we may therefore view (S3)k//T k as (S3)k−1 ×T k−1 S2. The T k−1

action on (S3)k−1 is given by the (k − 1) × (k − 1) matrix A′ formed by deleting the last
row and last column of A. In particular, A′ is admissible and so the T k−1 action on (S3)k−1

is free, and thus, the T k action on (S3)k is free. �

Since the action corresponding to an admissible matrix A is free, the quotient space is

a manifold which we denote by R(A). Then R(A) is simply connected and has dimension
2k. Further, from the proof of Proposition 3.5, we see that if k ≥ 3, R(A) naturally has the
structure of an S2-bundle over R(A′), where A′ is obtained from A be deleting the last row and

last column. When k = 2, the conditions force A =
[
1 2
1 1

]
. In this case, R(A) ∼= CP2�CP2

[7, Proposition 3.3].

Proposition 3.6 Suppose Ai1 �= 0 for all 1 ≤ i ≤ k. Then R(A) satisfies (∗).
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Proof Following [8, Sect. 2.4 and Proposition 4.26], it is easy to see that H∗(R(A)) ∼=
Z[u1, . . . , uk]/I where all the ui have degree 2 and I is the ideal I = 〈∑k

j=1 Ai j ui u j 〉 with
1 ≤ i ≤ k. Hence modulo I , we have u21 = −2u1u2 and u2i = −∑

j �=i Ai j ui u j for i ≥ 2.

In particular H4(R(A)) has as a basis all uiu j with 1 ≤ i < j ≤ k.
Now, suppose x j = ∑k

i=1 αi j ui and that
∑

j x
2
j = 0. A simple computation shows that

the u1u2 component of x2j is −2α2
1 j − α2

2 j + 2α1 jα2 j = −α2
1 j − (α1 j − α2 j )

2. Thus, the

u1u2 component of the equation
∑

j x
2
j = 0 is

∑

j

−α2
1 j − (α1 j − α2 j )

2 = 0,

so clearly α1 j = α2 j = 0 for every j .
Fix any i ≥ 3. Since α1 j = 0 for every j , it now follows that the u1ui component of

(x j )2 is −Ai1α
2
i j , so the u1ui component of the equation

∑
j x

2
j = 0 is −Ai1

∑
j α

2
i j = 0.

As Ai1 �= 0 by hypothesis, we find that αi j = 0 for all j . Hence, αi j = 0 for all i ≥ 3 and
all j . That is, all x j are zero. �

Remark 3.7 Note that the cohomology ringZ[u1, u2]/〈u21+2u1u2, u22+u1u2〉 of R(A)with
k = 2 is isomorphic to the usual cohomology ring Z[u, v]/〈u2 − v2, uv〉 of CP2�CP2 from
Proposition 3.4. An isomorphism can be given by identifying u = u1 + u2 and v = u2.

Proposition 3.8 For each fixed k ≥ 3, there are infinitely many homotopy types among R(A)

having Property (∗).

Proof For each odd prime p ≥ 3, we let R(p) denote R(A) where A has first column
(1, 1, p, . . . , p)t , second column (2, 1, 0, . . . , 0)t , and for all 3 ≤ i ≤ k, with the i-th
column of the form (0, . . . , 0, 1, 0 . . . , 0)t with a 1 in the i-th position. For example, when
k = 5,

A =

⎡

⎢⎢⎢⎢⎣

1 2 0 0 0
1 1 0 0 0
p 0 1 0 0
p 0 0 1 0
p 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

By Proposition 3.6, all the R(p) satisfy Property (∗). We claim that H∗(R(p)) is not iso-
morphic to H∗(R(p′)) for distinct odd primes p, p′.

The cohomology ring for R(p) is then given via H∗(R(p)) ∼= Z[u1, . . . , uk]/I where all
|ui | = 2 and I is the ideal 〈u21 + 2u1u2, u22 + u1u2, u2i + pu1ui 〉 for 3 ≤ i ≤ k. In particular,
we observe that u22 = (u1 + u2)2 and u2(u1 + u2) = 0 for any k ≥ 2 and any p. We denote
by U12 the subgroup of H2(R(p)) generated by u1 and u2.

We claim that if x, y ∈ H2(R(p)) are primitive elements and satisfy x2 = y2 and xy = 0,
then x, y ∈ U12. To see this, write x = ∑

αi ui and y = ∑
βi ui with gcd(α1, . . . , αk) =

gcd(β1, . . . , βk) = 1. The uiu j components of the equations x2 = y2 and xy = 0 are

Component x2 = y2 xy = 0
u1ui , i ≥ 3 −pα2

i + 2αiα1 = −pβ2
i + 2βiβ1 α1βi + αiβ1 − pαiβi = 0

uiu j , i, j ≥ 2, i �= j 2αiα j = 2βiβ j αiβ j + α jβi = 0.

Assume for a contradiction that, without loss of generality, α3 �= 0. By replacing x with −x ,
we may assume α3 > 0. If β3 = 0, then components of the equation xy = 0 easily yield
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β j = 0 for all j . This contradicts primitivity of y. So, β3 �= 0 and we may likewise assume
β3 > 0.

We will now show that α3 = β3. Indeed, if α3 �= β3, then up to swapping α3 and β3,
there is a prime q and an integer k ≥ 1 for which qk divides α3 but not β3. Reducing
the equation α3β j + α jβ3 = 0 mod qk , we see that q|α j for all j ≥ 2. Likewise, from
α1β3 + α3β1 − pα3β3 = 0, we deduce that q|α1 as well. This contradicts primitivity of x ,
establishing that α3 = β3.

Returning to the equations αiα3 = βiβ3, they now obviously imply that αi = βi for all
i ≥ 2. Further, from the equation −pα2

3 + 2α3α1 = −pβ2
3 + 2β3β1, we now deduce that

α1 = β1.
Thus, if α3 �= 0, we must have x = y. But then the equation 0 = xy = x2 contradicts the

fact that H∗(R(p)) has Property (∗) by Proposition 3.6. Thus, the claim is established.
Now, suppose there is an isomorphism φ : H∗(R(p)) → H∗(R(p′)) ∼= Z[u′

1, . . . , u
′
k]/I ′

and let U ′
12 be the subgroup of H2(R(p′)) generated by u′

1 and u′
2. Then the claim implies

that φ(U12) = U ′
12. Thus φ(u1) = α1u′

1 + α2u′
2 and φ(u3) = ∑

γi u′
i for some integers

αi , γi . Because u23 = −pu1u3, we must have φ(u3)2 = −pφ(u1)φ(u3).
For i, j ≥ 3 with i �= j , the coefficient of u′

i u
′
j in φ(u3)2 = (

∑
γi u′

i )
2 is 2γiγ j . For

φ(u3)2 = −pφ(u1)φ(u3), the same coefficient is obviously 0. It now follows that γi �= 0
for at most one i ≥ 3. On the other hand, since u3 /∈ U12, φ(u3) /∈ U ′

12, so some γi �= 0 for
at least one i ≥ 3. Thus, there is some unique i for which φ(u3) = γ1u′

1 + γ2u′
2 + γi u′

i .
Since γi �= 0, it follows that the equation φ(u3)2 = −pφ(u1)φ(u3) is equivalent to the

following three equations, corresponding to the components u′
1u

′
2, u

′
1u

′
3, u

′
2u

′
3, respectively.

−γ 2
1 − (γ1 − γ2)

2 = −p(α1γ2 + α2γ1 − 2α1γ1 − α2γ2)

−p′γi + 2γ1 = −pα1

2γ2 = −pα2.

Reducing all three equations mod p, one easily sees that p| gcd(γ1, γ2, γi ), so φ(u3) is not
primitive. However, φ is a isomorphism and u3 is primitive, so we have a contradiction. �


We are now ready to prove Theorems 1.1 and 1.2. The n = 4 case of Theorem 1.1 is
provided by (S3)2//T 2 ∼= CP2�CP2, see Propositions 3.4 and 3.1. The case n ≥ 6 of
Theorem 1.1 is a special case of Theorem 1.2, so we just focus on the latter theorem.

Proof of Theorem 1.2 The existence of infinitely many homotopy types in each even dimen-
sion n ≥ 6 is provided by the biquotients R(p) with p ≥ 3 prime thanks to Proposi-
tions 3.1, 3.6 and 3.8.

For odd n = 2k+1 ≥ 9, the examples are likewise provided by R(p)×S3 ∼= (S3)k//T k−1.
By the Künneth formula, R(p) × S3 has Property (∗) since R(p) does. Further, the proof
that H∗(R(p)) � H∗(R(p′)) for p �= p′ only used the cup product from H2(R(p)) to
H4(R(p)), so R(p) × S3 is homotopy equivalent to R(p′) × S3 if and only if p = p′.

Lastly, in dimension 7, we use biquotients of the form Q(s, t) := (S3 × (S3)2)//T 2

where T 2 acts on (S3)2 with quotient CP2�CP2 and T 2 acts on S3 ⊆ C
2 via (z, w) ∗

(a, b) = (zswt a, b). As shown in [8, Proposition 4.35], H∗(Q(s, t)) ∼= H∗(CP2�CP2×S3),
independent of s and t . In particular, these have Property (∗) and hence Proposition 3.1
applies. Moreover, p1(Q(s, t)) = ±(6 − s2 − (s − t)2)u, where u ∈ H4(Q(s, t)) ∼= Z is
a generator. Since rational Pontryagin classes are homeomorphism invariants [14] we have
infinitely many homeomorphism types among these manifolds. �
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Remark 3.9 We point out that the formula for p1 in [8, Proposition 4.35] contains a misprint.
In the notation of that proposition, the correct formula is p1((S3)3//T 2) = ∑3

i=1(ki −
mi )

2t2 + (li − ni )2u2. In addition, the ideal J is missing a generator x2.
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