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Microgrids are useful solutions for integrating renewable energy resources and providing seamless green
electricity to minimize carbon footprint. In recent years, extreme weather events happened often worldwide
and caused significant economic and societal losses. Such events bring uncertainties to the microgrid energy
scheduling problems and increase the challenges of microgrid operation. Traditional optimization approaches
suffer from the inaccuracy of the uncertain microgrid model and the unseen events. Existing reinforcement
learning (RL) - based approaches are also hampered by the limited generalization and the increasing
computational burden when stochastic formulations are required to accommodate the uncertainties. This
paper proposes a new parallelized reinforcement learning (PRL) method based on the probabilistic events
to handle the microgrid energy uncertainties. Specifically, several local learning agents are employed to
interact with pertinent microgrid environments in a distributed manner and report outcomes to the global
agent, which will optimize microgrid energy resources online during extreme events. The stochastic microgrid
energy optimization problem is reformulated to include all possible scenarios with probabilities. The advantage
estimate functions of learning agents are designed with a backward sweep to transfer the outcomes to the value
function updating process. Two simulation studies, stochastic optimization and online testing, are performed to
compare with several existing RL approaches. Results substantiate that the proposed PRL method can achieve
up to 20% optimization performance improvement with 4 and 28 times less computation cost than Q-learning
with experience replay and multi-agent Q-learning approaches, respectively.

1. Introduction

Trends and impacts of recent extreme weather events and natural
disasters alarm us with the urgency of improving power infrastructure
resilience and the smart grid technologies. These extreme weather
events have been identified as one of the main causes of power out-
ages and blackouts in the U.S. [1]. As shown in Fig. 1, Climate Cen-
tral reports on U.S. power outages due to weather-related and non
weather-related incidents [2]. Note that the plot shows only the number
of outages affecting more than 50k customers, and the number of
weather-related outages is significantly higher than others.

More than 10 million customers have experienced the weather-
related power intermittency between 2003 and 2012 with 58% of total
power grid outages [3]. After 2012, more than 17 million customers
have been affected by power outages due to severe weather events [4].

One study shows that the annual economic impact of weather-related
blackout costs between $20 to $75 billion in the U.S., and such losses
keep increasing every year [5,6]. Thus, research on improving power
infrastructure resiliency has become one of the top priorities for the
U.S. electric utilities [1,7,8].

Microgrids attract researchers’ attention worldwide as a viable solu-
tion for improving power infrastructure resiliency [9]. In recent years,
many researchers have devoted on the optimization and control for
the microgrid operation. In [10], the authors proposed a mixed-integer
linear programming (MILP)-based optimization model for determining
the microgrid spinning reserve requirements by analyzing the charac-
teristics of unit outage events. A model-based centralized microgrid
design considering multi-period islanding constraints is proposed in
[11] to ensure microgrid resiliency. In [12,13], the authors proposed
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Fig. 1. U.S. power outages due to weather-related and non weather-related incidents [2].

MILP formulations to solve the optimal service restoration problems
and determine operation strategy to avoid the possible power shortage
considering the control actions of coordinating switches, distributed
generators, and controllable loads. Model predictive control based
optimization strategies have been proposed for outage management
and resilient scheduling with the goal to minimize the load curtail-
ment of microgrid [14,15]. Stochastic optimization frameworks have
also been designed to solve microgrid scheduling problem for normal
and emergency situations, considering the challenges of generation-
demand balance [9,16] and renewable generation (RG) and load un-
certainties [17]. These model-based approaches require accurate model
information, which is not a trivial task. They are usually limited to
certain operation plans and are hardly adaptive to unseen instances.
Since the microgrid is a small distribution system with diverse dis-
tributed energy resources (DERs), the scheduling and dispatch are
crucial to utilize the DERs in a reliable way, especially during extreme
weather events. Stochastic formulation is recommended in microgrid
scheduling to consider the uncertain nature of the extreme weather
events. In stochastic formulations, the size of the microgrid state space
increases exponentially with the scenarios. The occurring complexity
also challenges the aforementioned optimization approaches.

During the past few years, model-free reinforcement learning (RL)
approaches have been recognized and applied in the various engineer-
ing applications for online decision-making and control [18-21]. A
RL framework for autonomous multi-state and multi-criteria decision-
making of energy storage management in a microgrid system was
presented in [22]. In [23], the authors used RL to allow the ser-
vice provider to learn the behaviors of customers and the change
of electricity cost to make an optimal pricing decision. Multi-agent
RL approaches were explored to solve microgrid energy management
problems [24,25], where the agents interacted with the environment
in a cooperative manner. The size of the state space increases sig-
nificantly with the increment of sub-environments, and this incurred
considerable computation costs. In [26,27], the authors adopted a
conventional Q-learning method that is computationally expensive for
solving stochastic optimization problems and outputted optimization
policy with extra operating costs. In order to improve the microgrid
post-disaster resiliency, a multi-agent RL technique was proposed with
the goal to minimize the outage duration [6]. In the post-disaster
resilience study, microgrid spinning reserves were used to minimize the
outage duration and restore the loads that may output extra-operating

costs. Effective stochastic planning and efficient DER utilization dur-
ing the extreme weather events can be a cost-effective solution with
strengthening reliability and resiliency. Stochastic planning requires
considering different microgrid operating scenarios based on extreme
event uncertainties. This will introduce state space with a massive size
and an intensive computational burden for the existing RL approaches.

The concept of asynchronous and synchronous RL approaches have
been reported to train neural network controllers on a single multi-core
CPU for continuous motor control problems [28-30]. They are similar
with the existing multi-task RL approaches from certain aspects [31,
32]. Most of these approaches claimed to improve the data efficiency by
transferring knowledge (e.g., parameters) to the related tasks. However,
the gradients from various random tasks could cause the unstable
learning results and sometimes downgrade the performance [32]. These
approaches have mainly been demonstrated to computer video games
and are not yet readily applicable to complex engineering applications,
which have many domain constraints and safety rules to satisfy. To the
best of the authors’ knowledge, none of the aforementioned techniques
have been applied to address the uncertain weather events in the
microgrid. The authors’ recent results [33] proved the concept of the
learning combination from both the normal and emergency operations
could benefit the operator’s decision-making process.

In this paper, we design a new parallelized RL (PRL) method to
accommodate the uncertain extreme events systematically and compare
it with several existing RL approaches on the microgrid stochastic opti-
mization problem. Specifically, in the proposed design, we reformulate
the microgrid energy scheduling problem with the stochastic operation
scenarios. The event probability matrix is incorporated in the ultimate
objective function so that the proposed PRL method could adapt to the
uncertainties. The proposed PRL method has two key steps: employing
local learning agents to interact with pertinent microgrid events in a
distributed way and aggregating state-action pairs together with the
value functions for the learning of the global agent. That being said,
the uncertain events are represented by the local state-action informa-
tion and are incorporated together with the event probabilities to the
ultimate optimization objective function. The knowledge aggregation
procedure assembles the state and action from the local agents and
builds the global state and action vectors for online microgrid decision
making process. This helps the global agent to adapt to the poten-
tial extreme weather in a timely manner. In addition, the proposed
PRL method is computed through an effective double-pass iterative
process. The local learning agents explore the designated microgrid
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Fig. 2. A schematic overview of the learning and testing procedures of the proposed approach.

environments in the forward pass, and the global agent’s value func-
tion is updated in backward pass through the advantage estimates.
Furthermore, we conduct extensive simulation studies with various
event scenarios as shown in Fig. 2. The stochastic scheduling evaluates
learning performance of time uncertainties of the extreme weather.
The online testing assesses the proposed approach’s adaptability con-
sidering RG and load uncertainties during these events. Results show
that the proposed PRL method can achieve up to 20% improvement of
optimization performance and is much faster than existing approaches.

The rest of this paper is organized as follows. The model description
and problem formulation are presented in Section 2. In Section 3, we
introduce solutions of the basic Q learning, Q learning with experi-
ence replay, multi-agent reinforcement learning, and the proposed PRL
methods. Simulation results and analysis are carried out in Section 4.
Finally, the conclusion is presented in Section 5.

2. Model description and problem formulation

Uncertain extreme weather could significantly impact the renew-
able generations, load demands and others. For example, the time
uncertainties of the weather events play an important factor for the op-
eration of microgrid energy system. To this end, stochastic optimization
formulation is recommended to incorporate the uncertain scenarios.
This is quite different and challenging than many existing microgrid
optimization problems. Our paper reformulates the microgrid stochastic
optimization to capture these probabilistic events. Thus, the state and
action spaces are much larger [34]. The traditional RL approaches are
not feasible to solve it in a timely manner, and this motivates our
proposed design.

Specifically, we consider a grid-connected microgrid with multi-
ple DERs, including RG, battery energy storage system (BESS), and
dispatchable distributed generator (DG). The RG unit contains photo-
voltaics and wind turbines. The residential community loads are used as
the microgrid load demand. In the grid-connected microgrid, the main
grid connection gives the flexibility to the microgrid to export/import
power to/from the utility network and maintain the reference voltage

and frequency of the system. During the islanded mode, microgrid
can use its DERs for the generation-demand balance and maintain the
ancillary services in accordance with the microgrid operation strategy.

2.1. Input and decision variables

The multi-time period microgrid decision-making problem with
stochasticity is formulated following the Markov decision process
(MDP). The probabilities of the outage scenarios are integrated while
defining the objective function. So that microgrid generation units can
be scheduled accordingly and the total expected operational cost will be
minimized. This is different from the existing works. We are working to
solve this optimization problem for a day with an hour interval. While
the microgrid scheduling problem usually uses DER input information
as the state variables regardless of uncertainties, this paper defines the
state variables with the microgrid input information considering the
extreme weather event scenarios in a vector form. The microgrid state
is defined as

Sy = (8150 S1ks 81 k) 1 Sk K, 1
_ DG
Stk = (SOC; 4, k7 Ry Gr s Dy g, @

where ¢ is the time index, k is the scenario index, 1 < k < K, and K
is the total number of scenarios. SOC,  is the state of charge (SOC) of
the BESS. kfkc is a binary variable representing the ON/OFF status of
the DG. R, is the available RG output. G, is the grid price. D, is the
microgrid load demand.

The decision/action variables are represented as the power output
of different microgrid units for the corresponding extreme weather
event scenarios. Microgrid decision vector at time ¢ is

a,:(a,,],...,a,,k,...,a,,K), a € ¥y, 3
B.c B.d _D .G G,
g = (ayfayt all ale a)l al), 4

where y, is the feasible action space constrained by the microgrid op-

: : Bc B.d : . .
erational constraints. a,° and a, " represent charging and discharging
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power of the BESS, respectively. aDG is the DG power output. a'"’G and

G " represent the export and 1mport powers to and from the mam grid,

respectlvely a « is the dumped or unserved load.
2.2. Objective and cost functions

The proposed objective function in (5) is to minimize the expected
operation cost of microgrid, considering the defined extreme weather
event uncertainties and the cost function in (6) for each scenario.

Zpk ZC(s,k,a,k) )

Clspr @) = (" — @G,y At

+kPE (x(ah

) (6)
G)? 4 ya 91 2),

where, p, represents the probability of extreme weather event k, and
At is the time interval. In the cost function, as shown in (6), the first
part implies the cost of having energy exchange to/from the grid, and
the second part represents the fuel cost of the dispatchable DG unit.
The proposed cost function is scenario-sensitive and calculated using
the state-action pairs of the corresponding scenarios. The DG quadratic
cost function depends on the ON/OFF status (kDG) and the given x, y
and z are the DG fuel cost-curve coefficients. The proposed microgrid
stochastic optimization problem subjects to the operational constraints,
as shown in the next subsection.

2.3. Operational constraints

Operational constraints encompass the economic and technical as-
pects of the microgrid scheduling problem. Since stochastic optimiza-
tion formulations are used to consider the extreme event uncertainties,
the operational constraints are applied for each scenario so that the un-
certainties can be captured by the constraints and a healthy microgrid
operation can be maintained.

2.3.1. Power balance
Power balance is a crucial microgrid operational constraint, as
shown in (7).

Ba’ Be _ mG
+a +ll alvk [l,’k +

ali + Ry =Dy )
Here, the power balance is an equality constraint that balances the
microgrid’s generation and demand and helps to maintain the required

system ancillary service.

2.3.2. Battery constraints

BESS is one of the major DER units, and its charging and discharging
processes require to be maintained within a certain limit. The BESS
charging and discharging constraints are presented in (8) and (9),
respectively.

0<a’ <(1-byC, ®

0<ay! <by®, ©

where ¢ and y? represent the maximum charging and discharging
battery power limit, respectively. b, is a binary variable introduced to
maintain the BESS charging and discharging operation.

According to [35], the SOC of the BESS plays a vital role in the
battery lifetime, and a healthy operation can be achieved by keeping
the SOC within a certain range. Therefore, we also introduce the battery
SOC constraint, as shown in (10).

SOCpi, < SOC,;, < SOCppays (10)

min =

where, SOC,;, and SOC,,,, are the defined minimum and maximum

SOC of the BESS, respectively.
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After determining the battery charging/discharging operation, a
transition function is used to determine the change of SOC for the taken
action, as shown in (11).

B.d
tk

c
SOCsz—Soctk"'Bcap (d’ a; —¢—D>, (1mn
where ¢€ and ¢ are the BESS charging and discharging efficiency,
and B,, represents the energy capacity of the BESS.

2.3.3. DG constraints
The DG requires to be operated in a certain range. Therefore, the
DG power output is constrained as follows

kgenpratedkt[,)kG < a;?kG < pratedktDkG’ 12

where k8" is defined as a percentage of the DG rated power prated, The
value k8" can be obtained from the manufacturer’s dataset and can
be applied in the constraint so that the DG output can be determined
based on the operating requirement.

In the given context of stochastic formulation, the number of input
and output variables increases significantly with scenarios, adding
complexity in finding the solution. In this paper, we investigate this
challenge, propose the parallelized reinforcement learning agents, and
compare the performance with the existing RL approaches as follows.

3. RL approaches for microgrid optimization

In this section, we introduce several existing RL approaches, i.e., Q-
learning, Q-learning with experience replay (ER), and multi-agent RL,
as the comparable solutions to the microgrid application. We will also
introduce the unique designs of the proposed PRL approach to address
the aforementioned challenges.

3.1. Existing approaches

3.1.1. Q-learning approach

RL can be defined as an agent and environment (system model)
interactive system where the RL agent observes the environment state,
selects an action, receives a feedback reward, and learns the opti-
mization policy through the sequential decision-making process [36].
At each time step 7, the RL agent selects an action g, according to
its policy after receiving the state information .S,. In return, the en-
vironment sends next-state .S,,; and a reward/cost feedback r,. This
process continues until the agent reaches to the terminal state. At every
iteration, the agent receives the return as R, = Yo r*r,,, which
is the total cumulative from time step ¢ with discount factor y. The
agent’s goal is to minimize/maximize the expected return from each
state .S,. In the Q-learning approach, a Q-value function Q(s, a) is used
to map the relationship between state s and action a. The Q-value
O"(s,a) = E[R,|s;, = s,a] represents the expected return for taking
action « from state s following the policy . The optimal value function
can be obtained as Q*(s,a) = max,Q"(s,a) that returns the maximum
action value for the given state-action pair following the policy .

In this paper, the reward (r,) is replaced with the microgrid cost
function C(S,,q,). The Q-value function will be calculated recursively
using the Bellman equation. In terms of solving the given microgrid
stochastic optimization problem, multiple scenarios are combined to
define the state information. Therefore, the state space increases sig-
nificantly with the increment of scenarios. In this case, the Q-learning
agent will need intensive exploration to find the proper policy.
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Fig. 3. Replay buffer and its circulation (adding and removing tuples) process.

3.1.2. Q-learning with experience replay approach

In recent years, Q-learning with ER approach attracts researcher’s
attention due to its skill of improving learning efficiency. In this ap-
proach, a replay bulffer is used to store agent-environment interaction
experiences as tuples. They are used for off-policy training in future
episodes [37,38]. The replay buffer is usually defined as a circular
buffer, where the oldest transition is replaced by a new transition. A
graphical representation of the replay buffer is illustrated in Fig. 3. In
the figure, j represents the index of tuples in the replay buffer. When
a new tuple is available, the replay buffer checks its size. If the size
exceeds the defined capacity, the new tuple is added to the buffer to
replace the oldest tuple.

There are different sampling strategies to use tuples in the replay
buffer. This process could improve the sample efficiency by enabling
data to be reused multiple times for training and also improve the
training stability. For the problems with low variance in immediate
outcomes, the inclusion of ER in Q-learning also helps to find the proper
policy.

In this approach, at every iteration, the RL agent provides a new tu-
ple from interacting with the microgrid environment. The replay buffer
is updated as shown in Fig. 3, and the Q-values are calculated using the
state—action pairs of each tuple [37]. This procedure continues until the
maximum iteration is reached, and the trained value functions are used
to determine microgrid operations. Since Q-learning with ER leverages
the past experiences, this approach may struggle to reach to the optimal
solution for the stochastic optimization problem if there are exploration
gaps or unvisited states due to lack of iterations. Also, training with
ER adds the computation cost, which is proportional to the experience
replay buffer size.

3.1.3. Multi-agent RL approach

Multi-agent RL approach uses multiple RL agents to solve sequential
decision-making problem operating in a common environment. In this
approach, the agents aim to optimize their own objective by inter-
acting with the environment and other agents. Based on the problem
requirement, the agents can be designed to employ in cooperative,
independent and mix manner. In this approach, inspired by [24],
we use a multi-agent Q-learning approach where the agents interact
with the environment independently. The Q-table is updated based on
the experiences observed through the agent-environment interactions.
At every iteration, the environment sends the state information to
all agents, which will take decision independently and update its Q-
table accordingly. While the traditional Q-learning approach interacts
with the environment once in an iteration, the M learning agents can

interact M times and thus can improve the exploration capacity per
iteration. The Q-value update can be expressed as
o(S!.ah oS}, q] )

o(S?, ,) (S}, a7)
=1-a)

o(sM.aM)
Cc(S!,al)
C(S?,d%)

Q(SM aM)

+ a
13)

min Q(Sr+1’ a,)
a

1+1
mm 0(S?

t+1° t+l)
+ay a1+]

min oM, Q(S M

t+1° z+1

where M is the total number of agents employed to interact with the
microgrid environment, and « is the learning rate.

3.2. Proposed parallelized reinforcement learning approach

We propose a new PRL approach with multiple local agents for
solving stochastic microgrid scheduling problem. The proposed ap-
proach solves the given stochastic optimization problem following two
key steps: distributed learning for local agents and knowledge aggre-
gation for the global agent. In the distributed learning, the local RL
agents are employed to interact with pertinent microgrid environments
and obtain their own learned knowledge. Next, we aggregate state—
action information and build the value function of the global agent
with a probabilistic cost. The proposed approach is illustrated in the
grid-connected microgrid application in Fig. 4.

As shown in this figure, our proposed approach receives system pa-
rameters and scenario environments from the microgrid, and employs
local agents to interact with the environments in a parallel manner.
Note that we employ a local RL agent for dealing with a certain problem
scenario. Therefore, the number of agents should be equal to the num-
ber of scenarios, and we use k as the scenario/local agent index. In our
proposed approach, we use double-pass action value updating process.
In forward pass, local RL agents interact with different environment
scenarios using e — greedy technique. In this technique, at any state s, ,
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Fig. 4. The diagram of the proposed PRL approach with a double-pass structure of information computation. The parallelized agents interact with scenarios and the aggregator
combines the learned knowledge. The global agent’s value function is updated in the backward pass and will be used for the microgrid stochastic energy scheduling online.

the action g, is determined either selecting a random action from the
feasible actions or using the greedy formula as

a = rrgn O (s 4> @- 14)

This paper uses the physical state variables such as discretized
battery SOC and DG ON/OFF status to define the states since other
information state variables are the same as the forecast information and
do not vary over iteration. For any local learning agent, to determine
the action variables, the main idea is to first find all feasible BESS power
solutions based on the current SOC and feasible SOC at the next time

step. Next, the power output of DG and grid’s export and import powers
are determined using a rule-based dispatch strategy for each feasible
BESS power solution [39]. Note that the proposed decision-making
strategy is applicable for microgrids with DGs, and it guarantees the
dispatch solution. The steps for determining the action variables are
detailed as follows.

1. At any time 7, we first find all feasible BESS SOCs at the next
time step from the current BESS SOC SOC, ;, which satisfy (10).
A feasible SOC must also needs to satisfy (15), which can be
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Algorithm 1 Decision-making strategy.

i . Bd
1: Set the required power: p? = D, — R, —a A

2: Determine power output of DG:
aerG = min(max( kIDkG prated’ pf), prated)
3: Update the required power: p* « p* — abf

4: if p® > 0 then
G,m

B,c
« Tay

[ — m,G_
=p%5a, =0

N -

: Calculate a:] f{ based on (7)
8: Calculate C(sy,a, ) using (6)

derived from (8)—(11):

D A c, C A
VAL (50, < SOC,, + PV AL
cap Bcap
The BESS power for each feasible BESS SOC SOC,,,, can be
calculated using (16):

S0C,, — 15)

(SO, -SOC, x)B .
aB.c _ 1+1,k 1,k)Bcap aB,d :0’ lf SOCt,k < SOC1+1,k

tk — 1€ >k
B.c B.d (SOC; ;=SOC,41 1) By ¢D .
a,=0a," = gy P, if SOC,; > SOC,,,.

(16)

2. Next, the power output of DG and grid’s export and import
powers are determined for each feasible BESS power solution,
as detailed in Algorithm 1. If DG’s status is OFF at any feasible
state, the power output and generation cost are set to be zero.
Otherwise, the power output of DG is determined based on the
net load and DG’s rated capacity and operating requirements,
and the corresponding cost is calculated. Then, the export and
import powers of the grid are determined based on the net
load of the system. Finally, the dumped or unserved load is
calculated, which is usually zero, unless the power cannot be
exported/imported to or from the main grid.

3. Thus after determining the action variables of all the feasible
actions, the learning agent takes action using the ¢ — greedy
technique.

After each interaction between the local-agent and the scenario
environment, the aggregator collects tuples with state s,,, action a,,
cost C(s,.a,;), and next-state s,, information from all agents. To
update the action value functions, this paper uses a function to estimate
the advantage of taking action g, in state s, ,, which provides feedback
on how much better or worse the action taken was compared to the
overall expected return. The theoretical foundation of the advantage
estimate is well-explained in [28,36,40] and therefore is omitted here
to conserve space. We calculate the advantage estimate as
A(Siparp) = (C(Snka a.) + 7V(Sr+1,k)) = V(s a7
and
A(Si—1 o Gyt ) = ( CCsi—ke> @r—1,) + Y CSp 4 a1 1)
(18)
+ 72V(Sx+|,k) ) =V (si—1 0

where V (s, ) = min, O, (s, . a). The action value Q, (s, . a, ) is updated
using the advantage estimate as

O (40 rg) = Q5145 rg0) + CA(S1 g5 ar g ). 19

From the given distributed interactions, the aggregator collects
individual microgrid state as in (2) and action as in (4) from the local
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agents and assembles them to determine the global agent’s state and
action vectors, which are basically the state in (1) and action in (3).
The global agent’s cost function is calculated with the combination of
the probabilistic local agents’ cost functions as
K
C(Spa) = Y, kClsip ). (20)
k=1

Traditionally, solving stochastic optimization problem using Q-
learning requires combining scenario states to define the state in-
formation. In this case, the number of states per time step could
increase intensively and traditional single- and multi-agent Q-learning
approaches are computationally expensive to find the near optimal
policy. Our proposed design employs local learning agents to interact
with the individual microgrid scenarios. Therefore, each microgrid
scenario has a dedicated local learning agent, and every agent has a Q-
table which can be initialized with zeros or an approximated solution.
Through distributed learning, the local learning agents interact with
their individual microgrid environments and learn control policies up-
dating the action values of their Q-tables. Due to the distributed design,
the number of states per time step decreases considerably compared
to traditional approaches, and the agents can effectively explore the
solution space. Next, the knowledge obtained from the local agents
are used to (1) build the state and action vectors for the global agent;
(2) calculate the expected cost; and (3) learn the policy of the overall
stochastic optimization problem. This procedure significantly improves
the global agent’s learning capacity and helps direct the global agent
to approximate the optimization policy efficiently.

The backward pass of the proposed approach is dedicated to update
the global agent’s action values using the advantage estimate functions
and learn the policy for the stochastic microgrid scheduling problem.
At the end of forward-pass, the global agent’s tuples are extracted from
the data storage, and the advantage function is used to estimate the
return of the steps in the backward sweeps as

A(S,.a,) = (C(S,, a)+ yV(S,+])) —V(S). @D

and the global agent’s action value Q(S,,q,) is updated using the
advantage estimate as

O(S;, a,) = O(S;, a,) + aA(S,, a,). (22)

This process helps to efficiently pass the future outcomes to the ear-
lier time steps and improves the learning efficiency. After finishing
the backward-pass process, the algorithm increments the iteration n
and restarts the procedure again until the algorithm reaches to the
maximum iteration number N. The detailed algorithm is presented in
Algorithm 2.

4. Simulation results and analysis

In this section, we provide the simulation setup information and
report different case studies to examine the performance of the pro-
posed approach. We report the microgrid operating costs, computation
time, and percentage of improvements for results analysis. Also, we
present the comparisons with several existing approaches to justify the
performance improvement.

The microgrid DER parameters are listed in Table 1. The microgrid
exogenous information including a small residential community load-
demand, RG output, and electricity price are plotted in Fig. 5. The
system advisory model by National Renewable Energy Laboratory is
used to obtain RG system parameters and outputs for the city of
Phoenix, AZ [41]. A small residential community load-demand data is
collected from [42] and used as the microgrid load. For the BESS, we
assume charging and discharging efficiencies and maximum powers are
the same. The optimization problem time horizon is set to be T = 24
hours with an one-hour interval.

According to [34], some natural disasters like hurricanes and bliz-
zards are predictable 24 — 72 hours before happening. In our case
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Fig. 5. Microgrid system load, RG output, and electricity price from the utility grid.
Algorithm 2 The proposed PRL algorithm. Table 1
— - Microgrid DER parameters.
1: Initialization: Photovoltaic Capacity 50 kw
Define global Q-table (Q) and local Q-tables (Q,), set the iteration RG Wind Turbine Capacity 100 kW
n =1, and N, set the initial state Sll, set exploration probability Capacity 150 kWh
rates, € BESS Char. and Dischar. Eff. 90%
2: fort=1:T do > Forward Pass Maximum Power 30 kw
3: fork=1:Kdo > Local Agents Rated Power 100 kw
. . Min. Dispatch Percentage 0.3
4: if n;mlj > ei:h?n d ining decisi DG Cost Coefficients 0.0009 ($/(kW)?),
5: | olve (14) for determining decision %, y, and z 0.0213 ($/kW) and 1.1 (§)
6: else
7: Choose a decision randomly
8: end if
9: if < T then the lookup table implementation is a suitable option to approximate the
10: Find the next state, s” action values in a timely manner. With the binary DG ON/OFF status
11: Update action value 5}:("5”( a,,) as (19) and 9 discretized BESS states, each scenario has 18 discretized states.
12: end if o Therefore, the given stochastic optimization problem has 1.9x10° = 183
13: end for states after combining all five scenarios, challenging existing learning
14: Determine S, and S,,, as (1), g, as (3), and C(S,.q,) as (20) approaches with computational complexity to find a near-optimal so-
15: Store the transitions in a buffer lution. The proposed PRL approach employs local RL agents to interact
16: end for with the environments in a distributed manner. Hence at any time step,
17: for t=T : 1 do > Backward Pass each local RL agent has 18 or fewer possible actions which significantly
18: Calculate the advantage estimate as (21) reduces the action space and lets the RL agents explore the solution
19: Update the global Q-value functions as (22) space effectively and report the promising solutions to the global agent.
20: end for Note that the training of the local and global agents happens offline

N
—_

: Increment n. If n < N go to Step 2.
: Return the global and local Q-value functions (QV )IT=1 and (QF )thl

N
N

studies, we assume the forecast of having extreme event at 12 PM with
2 hours of uncertainty. Therefore, we have a total of five scenarios,
and the proposed PRL approach uses five local learning agents with
a dedicated Q-table for each. U.S. EIA data shows that, on average,
4 hours of power interruption may occur due to extreme events [43].
Hence, we set the extreme event duration as 4 hours in our case study.
Since the problem is formulated with discrete state and action variables,

using the forecast data. The proposed PRL approach is trained for 4000
iterations, where local RL agents are trained synchronously at each
iteration. The replay buffer capacity is defined as 10 tuples for the Q-
learning with ER approach. For the multi-agent Q-learning, M = 4 is
used while defining the number of agents. We set iteration number as
4000 and exploration probability as 0.6. We assume equal probability
for all the microgrid operating scenarios. Load and RG power output
uncertainties are considered using the following equations as [44]

Rt,k = min{max(ﬁt,k + €5, Ripin)s Rimax 1 (23)
and
D, = min{max(D, ; + €4, Dpyin) Dpnax }» 24)
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Table 2
Stochastic optimization results with expected cost and computation time.

Approach Expected cost Computation time

Offline DP (reference) $19.1 6.5 hours
Proposed PRL $20.2 2.2 min
Q-learning with ER $22.2 9.1 min

Online Multi-agent Q-learning $23 1.1h
Q-learning $26.5 3.9 min

where R, and D, represent the day-ahead RG and load data, re-
spectively. ¢, and ¢, are the RG and load demand noises, respectively.
The Egs. (23) and (24) are used to generate RG and load information
for training and testing purposes. All the simulations are conducted in
MATLAB R2019b on a PC with Intel Core i7 — 8650U 4.2GHz and 16GB
RAM. A MATLAB script is used to define the DER parameters of the mi-
crogrid, and the parameters of the proposed PRL approach. We define a
MATLAB function which provides microgrid state information to the lo-
cal RL agents based on their scheduling scenarios. The decision-making
process of the RL agents and the value function updates are conducted
in the main MATLAB script file. All the approaches are implemented in
the same environment during the performance comparison.

4.1. Stochastic optimization

Stochastic optimization case study is important to evaluate the
performance of an approach under uncertainties. This case study as-
sumes that a power outage may happen at 12 PM with two hours of
uncertainty. Considering that, we have five different scenarios with
the outage happening time frame 10 AM to 2 PM. The results and key
observations in terms of expected operation cost and different net loads
are discussed as follows.

4.1.1. Expected cost

The expected cost represents the expected form of total microgrid
operational cost of five different scenarios. The results are summa-
rized in Table 2. Note that we use dynamic programming (DP) as
the reference approach. DP is used offline as it requires accurate
forecast information to achieve the optimal solution, which may not
be obtainable in practice. Also, the DP approach is computationally
expensive in order to achieve the optimal solution in this benchmark.
The table shows that our proposed PRL approach can reach very close
to the optimal solution with the expected operational cost as $20.2
and computation time 2.2 minutes. The existing learning approaches
output stochastic microgrid scheduling results with extra-operating
costs and considerable computation costs. The Q-learning with ER and
multi-agent Q-learning takes around 4 times and 30 times longer to
output the scheduling decisions, indicating our proposed approach’s
computational efficiency. The traditional Q-learning approach provides
the most expensive expected cost and requires intensive training.

The average expected cost curves and microgrid scheduling results
are plotted in Fig. 6. The expected cost curves in Fig. 6 are obtained
averaging after 30 runs. The fluctuations on the curves represent the
agent’s explorations, and the exploration rate degraded after every 50
iterations by 1.1. The results show that the expected cost curve of the
proposed approach drops rapidly comparing to the other approaches
and converges to the minimum expected daily cost. Q-learning with
ER and multi-agent Q-learning approaches show competitive perfor-
mance till 2000 iterations. After that, due to decay of exploration rate,
multi-agent Q-learning approach struggles to find the proper schedul-
ing decision and stuck at a local minima. Note, for the multi-agent
Q-learning approach, we employ four agents, therefore obtain four
expected costs. The minimum expected cost at every iteration is plotted
in the figure. In contrast, Q-learning with ER approach explores replay
buffer every iteration, and shows better performance in later iterations.
However, it also presents a noticeable gap in comparison with our
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Table 3
Distribution functions for generating test scenar-
ios.

Problem RG Load
NO. Noise Noise
1 U(-5,5) U(-3,3)
2 U(-5,5) N(0,3)
3 N(,1) U(-3,3)
4 N(0,2) N(0,1.5)
Table 4
Online testing results with performance improvement.
Approach Average Improvement
cost ($) (%)
Proposed PRL 21.9 20.94
Q-learning with ER 22.7 18.05
Multi-agent Q-learning 23.1 16.61

proposed approach. Overall, our proposed approach outperforms three
existing approaches in terms of both the expected operational cost and
computational time.

4.1.2. Different net loads

Extreme weather events may also affect RG output. Therefore, a
case study is conducted with different net loads by varying the RG
outputs during the extreme event to analyze the effect. The microgrid
operations for an outage time frame at 12 PM - 3 PM (time step
13-16) with different net loads are obtained using the proposed PRL
approach and plotted in Fig. 7. In the figure, grid exchange represents

(a,G,’('" - a:";(G), which means the value is positive when the microgrid

imports power from the grid. The battery output represents (af,‘cd —af,f ),
which means the value is positive when the battery is discharging. The
results show that the proposed approach effectively utilizes RG outputs,
uses the battery for intraday energy shifting in a cost-effective manner,
and dispatches DG if needed to prevent load shedding. Therefore,
the proposed approach is useful for cost-efficient microgrid operations
during the extreme weather events.

4.2. Online testing

In this case study, we evaluate the optimization performance of
the learning approaches in the uncertain environments and test the
adaptivity of the proposed approach. For introducing uncertainties in
the microgrid scheduling operation, we use RG noise for representing
intermittent nature of RG, and load noise for addressing uncertain
load situations. We define RG and load noises using uniform and
normal probability distribution functions. We use four test problems
with uncertainties, and the problems are summarized in Table 3. In the
table, U and N represent uniform and normal probability distribution
functions, respectively. In the table, U(a, b) represents uniform proba-
bility distribution function with the range [a, b]. And N (I, m) represents
normal probability distribution function with the mean / and standard
deviation m. For the RG, we consider the noise range of [-5kW ,5kW]
and for the load demand, we use the noise range of [-3kW , 3kW].
The noises to generate RG output and load demand profiles for testing
purposes are around 25% and 6% of deviations.

4.2.1. Expected cost

We assess the performance in terms of microgrid expected opera-
tional cost during the extreme weather events for all the test problems.
For each test problem, we generate 500 test scenarios, and the statistical
results are plotted in Fig. 8. From the results, we can observe that
the proposed PRL approach achieves minimum microgrid expected
operational cost for all cases.

We calculate the performance improvements for this experiment
in a similar way as that in [44], and the results are presented in
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Table 4. The proposed PRL, Q-learning with ER, and multi-agent Q-
learning methods output average expected daily operational costs as
$21.9, $22.7, and $23.1, respectively. The performance improvements
of these approaches are determined by comparing the results with
the traditional Q-learning approach. In this case study, the proposed
approach shows promising performance with a maximum of 20.94% of
improvement in comparison.

4.2.2. Outage time uncertainties

In addition, we analyze the effect of uncertainties in different out-
age times and evaluate the decision-making skills of the learning ap-
proaches. For this case study, we use test problem 4 from Table 3,
and the statistical results are obtained using 500 test scenarios. The
results are reported in terms of microgrid operational cost for all

10

possible outage hours and illustrated in Fig. 9. The results show the
impact of having an outage in all different possible hours in terms of
operation costs. The statistical box plots show how much microgrid
operational cost we should expect of using the learning approaches
at different outage times under uncertainties. The proposed approach
achieves the minimum operation cost for all cases. The trends show that
outage at hour 10 AM and 1 PM may cause maximum and minimum
microgrid operating costs compared to other possible outage hours.
For all cases, the proposed PRL approach shows promising adaptive
performance and can be used for the economic assessment of extreme
events. It also provides the microgrid scheduling decisions to minimize
the operational loss of the events.

Moreover, we conduct a case study with outage time uncertainty
and assess the adaptability performance of the learning approaches. In
this case study, we use the test problem 3 from Table 3 to generate 500
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Fig. 9. The statistical results showing the impact of extreme weather event at different outage time with RG and load uncertainties.

test scenarios and randomly vary outage time within the outage time operation obtained from the learning approaches. When the agent
frame at each scenario. Specifically, in this cases study, we generate a senses an outage due to the extreme event, the agent follows the
random outage time for each test sample and evaluate the microgrid learned policy obtained for the corresponding scenario and determines

11
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Table 5
Online testing with random outage time results.
Approach Average Improvement
cost ($) (%)
Proposed PRL 21.9 19.8
Q-learning with ER 22.8 16.5
Multi-agent Q-learning 23.2 15

microgrid operation accordingly. The Q-value function of the learning
approaches is used to generate the scheduling decisions using a greedy
technique. Statistical box plots are illustrated in Fig. 10 to summarize
the results. The proposed PRL approach handles the outage time uncer-
tainty well and outputs the minimum average expected cost comparing
to other existing RL approaches.

Numerical results are also reported in Table 5. The proposed PRL ap-
proach outputs the minimum average cost with 19.8% of improvement
comparing to the traditional Q-learning approach and outperforms
other existing approaches. The existing Q-learning with ER and multi-
agent Q-learning approaches also show 16.5% and 15% improvements
and need an average of 4 and 28 times more computational time than
the proposed approach, respectively. In conclusion, the proposed PRL
approach shows promising performances in all case studies, indicating
a potential advanced learning-based method for microgrid scheduling
under extreme natural events.

5. Conclusion

This paper proposes a new RL approach with parallelized agents
to efficiently solve the microgrid stochastic scheduling problem with
resiliency considerations. Our proposed design employs local learning
agents to interact with different microgrid operating environments un-
der an extreme weather event in a distributed manner. It addresses the
challenge of handling stochastic operation conditions in a timely man-
ner. The information obtained from the local agents are used to build
the state and action vectors for the global agent. Thus, we can compute
the expected cost and efficiently generate the policy for the microgrid
stochastic optimization problem. We formulate the proposed approach
as a double-pass process, and the advantage estimate functions are used
with a backward sweep to transfer the outcomes to the value function
calculations efficiently. In the case study, stochastic optimization re-
sults show that the proposed PRL method is a computationally efficient
approach that can achieve minimum expected microgrid operating
costs compared to existing learning approaches. The proposed PRL
approach also obtain around 20% of improvement in online testing
case studies with 4 and 28 times less computation cost than Q-learning
with ER and multi-agent Q-learning, respectively. Overall, the proposed
PRL method performs microgrid scheduling efficiently considering the
extreme event uncertainties.
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