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A B S T R A C T

Microgrids are useful solutions for integrating renewable energy resources and providing seamless green
electricity to minimize carbon footprint. In recent years, extreme weather events happened often worldwide
and caused significant economic and societal losses. Such events bring uncertainties to the microgrid energy
scheduling problems and increase the challenges of microgrid operation. Traditional optimization approaches
suffer from the inaccuracy of the uncertain microgrid model and the unseen events. Existing reinforcement
learning (RL) - based approaches are also hampered by the limited generalization and the increasing
computational burden when stochastic formulations are required to accommodate the uncertainties. This
paper proposes a new parallelized reinforcement learning (PRL) method based on the probabilistic events
to handle the microgrid energy uncertainties. Specifically, several local learning agents are employed to
interact with pertinent microgrid environments in a distributed manner and report outcomes to the global
agent, which will optimize microgrid energy resources online during extreme events. The stochastic microgrid
energy optimization problem is reformulated to include all possible scenarios with probabilities. The advantage
estimate functions of learning agents are designed with a backward sweep to transfer the outcomes to the value
function updating process. Two simulation studies, stochastic optimization and online testing, are performed to
compare with several existing RL approaches. Results substantiate that the proposed PRL method can achieve
up to 20% optimization performance improvement with 4 and 28 times less computation cost than Q-learning
with experience replay and multi-agent Q-learning approaches, respectively.
1. Introduction

Trends and impacts of recent extreme weather events and natural
disasters alarm us with the urgency of improving power infrastructure
resilience and the smart grid technologies. These extreme weather
events have been identified as one of the main causes of power out-
ages and blackouts in the U.S. [1]. As shown in Fig. 1, Climate Cen-
ral reports on U.S. power outages due to weather-related and non
eather-related incidents [2]. Note that the plot shows only the number
f outages affecting more than 50k customers, and the number of
eather-related outages is significantly higher than others.
More than 10 million customers have experienced the weather-

elated power intermittency between 2003 and 2012 with 58% of total
ower grid outages [3]. After 2012, more than 17 million customers
ave been affected by power outages due to severe weather events [4].
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One study shows that the annual economic impact of weather-related
blackout costs between $20 to $75 billion in the U.S., and such losses
keep increasing every year [5,6]. Thus, research on improving power
infrastructure resiliency has become one of the top priorities for the
U.S. electric utilities [1,7,8].

Microgrids attract researchers’ attention worldwide as a viable solu-
tion for improving power infrastructure resiliency [9]. In recent years,
many researchers have devoted on the optimization and control for
the microgrid operation. In [10], the authors proposed a mixed-integer
linear programming (MILP)-based optimization model for determining
the microgrid spinning reserve requirements by analyzing the charac-
teristics of unit outage events. A model-based centralized microgrid
design considering multi-period islanding constraints is proposed in
[11] to ensure microgrid resiliency. In [12,13], the authors proposed
vailable online 20 May 2023
142-0615/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.ijepes.2023.109210
eceived 6 October 2022; Received in revised form 10 January 2023; Accepted 27
 April 2023

https://www.elsevier.com/locate/ijepes
http://www.elsevier.com/locate/ijepes
mailto:avijit.das@pnnl.gov
mailto:zhenni@fau.edu
mailto:xzhong@fau.edu
https://doi.org/10.1016/j.ijepes.2023.109210
https://doi.org/10.1016/j.ijepes.2023.109210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2023.109210&domain=pdf


International Journal of Electrical Power and Energy Systems 152 (2023) 109210A. Das et al.

c
i
c
S
t
c
w
s
e
i
a

a
i
R
m
p
v
o
R
p
i
n
c
c
s
p
p
t
r
o

Fig. 1. U.S. power outages due to weather-related and non weather-related incidents [2].
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MILP formulations to solve the optimal service restoration problems
and determine operation strategy to avoid the possible power shortage
considering the control actions of coordinating switches, distributed
generators, and controllable loads. Model predictive control based
optimization strategies have been proposed for outage management
and resilient scheduling with the goal to minimize the load curtail-
ment of microgrid [14,15]. Stochastic optimization frameworks have
also been designed to solve microgrid scheduling problem for normal
and emergency situations, considering the challenges of generation-
demand balance [9,16] and renewable generation (RG) and load un-
ertainties [17]. These model-based approaches require accurate model
nformation, which is not a trivial task. They are usually limited to
ertain operation plans and are hardly adaptive to unseen instances.
ince the microgrid is a small distribution system with diverse dis-
ributed energy resources (DERs), the scheduling and dispatch are
rucial to utilize the DERs in a reliable way, especially during extreme
eather events. Stochastic formulation is recommended in microgrid
cheduling to consider the uncertain nature of the extreme weather
vents. In stochastic formulations, the size of the microgrid state space
ncreases exponentially with the scenarios. The occurring complexity
lso challenges the aforementioned optimization approaches.
During the past few years, model-free reinforcement learning (RL)

pproaches have been recognized and applied in the various engineer-
ng applications for online decision-making and control [18–21]. A
L framework for autonomous multi-state and multi-criteria decision-
aking of energy storage management in a microgrid system was
resented in [22]. In [23], the authors used RL to allow the ser-
ice provider to learn the behaviors of customers and the change
f electricity cost to make an optimal pricing decision. Multi-agent
L approaches were explored to solve microgrid energy management
roblems [24,25], where the agents interacted with the environment
n a cooperative manner. The size of the state space increases sig-
ificantly with the increment of sub-environments, and this incurred
onsiderable computation costs. In [26,27], the authors adopted a
onventional Q-learning method that is computationally expensive for
olving stochastic optimization problems and outputted optimization
olicy with extra operating costs. In order to improve the microgrid
ost-disaster resiliency, a multi-agent RL technique was proposed with
he goal to minimize the outage duration [6]. In the post-disaster
esilience study, microgrid spinning reserves were used to minimize the
utage duration and restore the loads that may output extra-operating
2

costs. Effective stochastic planning and efficient DER utilization dur-
ing the extreme weather events can be a cost-effective solution with
strengthening reliability and resiliency. Stochastic planning requires
considering different microgrid operating scenarios based on extreme
event uncertainties. This will introduce state space with a massive size
and an intensive computational burden for the existing RL approaches.

The concept of asynchronous and synchronous RL approaches have
been reported to train neural network controllers on a single multi-core
CPU for continuous motor control problems [28–30]. They are similar
with the existing multi-task RL approaches from certain aspects [31,
32]. Most of these approaches claimed to improve the data efficiency by
transferring knowledge (e.g., parameters) to the related tasks. However,
the gradients from various random tasks could cause the unstable
learning results and sometimes downgrade the performance [32]. These
pproaches have mainly been demonstrated to computer video games
nd are not yet readily applicable to complex engineering applications,
hich have many domain constraints and safety rules to satisfy. To the
est of the authors’ knowledge, none of the aforementioned techniques
ave been applied to address the uncertain weather events in the
icrogrid. The authors’ recent results [33] proved the concept of the

learning combination from both the normal and emergency operations
could benefit the operator’s decision-making process.

In this paper, we design a new parallelized RL (PRL) method to
accommodate the uncertain extreme events systematically and compare
it with several existing RL approaches on the microgrid stochastic opti-
mization problem. Specifically, in the proposed design, we reformulate
the microgrid energy scheduling problem with the stochastic operation
scenarios. The event probability matrix is incorporated in the ultimate
objective function so that the proposed PRL method could adapt to the
uncertainties. The proposed PRL method has two key steps: employing
local learning agents to interact with pertinent microgrid events in a
distributed way and aggregating state–action pairs together with the
value functions for the learning of the global agent. That being said,
the uncertain events are represented by the local state–action informa-
tion and are incorporated together with the event probabilities to the
ultimate optimization objective function. The knowledge aggregation
procedure assembles the state and action from the local agents and
builds the global state and action vectors for online microgrid decision
making process. This helps the global agent to adapt to the poten-
tial extreme weather in a timely manner. In addition, the proposed
PRL method is computed through an effective double-pass iterative

process. The local learning agents explore the designated microgrid
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Fig. 2. A schematic overview of the learning and testing procedures of the proposed approach.
nvironments in the forward pass, and the global agent’s value func-
ion is updated in backward pass through the advantage estimates.
urthermore, we conduct extensive simulation studies with various
vent scenarios as shown in Fig. 2. The stochastic scheduling evaluates
earning performance of time uncertainties of the extreme weather.
he online testing assesses the proposed approach’s adaptability con-
idering RG and load uncertainties during these events. Results show
hat the proposed PRL method can achieve up to 20% improvement of
ptimization performance and is much faster than existing approaches.

The rest of this paper is organized as follows. The model description
nd problem formulation are presented in Section 2. In Section 3, we
introduce solutions of the basic Q learning, Q learning with experi-
ence replay, multi-agent reinforcement learning, and the proposed PRL
methods. Simulation results and analysis are carried out in Section 4.
Finally, the conclusion is presented in Section 5.

2. Model description and problem formulation

Uncertain extreme weather could significantly impact the renew-
able generations, load demands and others. For example, the time
uncertainties of the weather events play an important factor for the op-
eration of microgrid energy system. To this end, stochastic optimization
formulation is recommended to incorporate the uncertain scenarios.
This is quite different and challenging than many existing microgrid
optimization problems. Our paper reformulates the microgrid stochastic
optimization to capture these probabilistic events. Thus, the state and
action spaces are much larger [34]. The traditional RL approaches are
not feasible to solve it in a timely manner, and this motivates our
proposed design.

Specifically, we consider a grid-connected microgrid with multi-
ple DERs, including RG, battery energy storage system (BESS), and
dispatchable distributed generator (DG). The RG unit contains photo-
voltaics and wind turbines. The residential community loads are used as
the microgrid load demand. In the grid-connected microgrid, the main
grid connection gives the flexibility to the microgrid to export/import
3

power to/from the utility network and maintain the reference voltage
and frequency of the system. During the islanded mode, microgrid
can use its DERs for the generation-demand balance and maintain the
ancillary services in accordance with the microgrid operation strategy.

2.1. Input and decision variables

The multi-time period microgrid decision-making problem with
stochasticity is formulated following the Markov decision process
(MDP). The probabilities of the outage scenarios are integrated while
defining the objective function. So that microgrid generation units can
be scheduled accordingly and the total expected operational cost will be
minimized. This is different from the existing works. We are working to
solve this optimization problem for a day with an hour interval. While
the microgrid scheduling problem usually uses DER input information
as the state variables regardless of uncertainties, this paper defines the
state variables with the microgrid input information considering the
extreme weather event scenarios in a vector form. The microgrid state
is defined as

𝑆𝑡 = (𝑠𝑡,1,… , 𝑠𝑡,𝑘,… , 𝑠𝑡,𝐾 ), 1 ≤ 𝑘 ≤ 𝐾, (1)

𝑠𝑡,𝑘 = (𝑆𝑂𝐶𝑡,𝑘, 𝑘𝐷𝐺𝑡,𝑘 , 𝑅𝑡,𝑘, 𝐺𝑡,𝑘, 𝐷𝑡,𝑘), (2)

where 𝑡 is the time index, 𝑘 is the scenario index, 1 ≤ 𝑘 ≤ 𝐾, and 𝐾
is the total number of scenarios. 𝑆𝑂𝐶𝑡,𝑘 is the state of charge (SOC) of
the BESS. 𝑘𝐷𝐺𝑡,𝑘 is a binary variable representing the ON/OFF status of
the DG. 𝑅𝑡,𝑘 is the available RG output. 𝐺𝑡,𝑘 is the grid price. 𝐷𝑡,𝑘 is the
microgrid load demand.

The decision/action variables are represented as the power output
of different microgrid units for the corresponding extreme weather
event scenarios. Microgrid decision vector at time 𝑡 is

𝑎𝑡 = (𝑎𝑡,1,… , 𝑎𝑡,𝑘,… , 𝑎𝑡,𝐾 ), 𝑎𝑡 ∈ 𝜒𝑡, (3)

𝑎𝑡,𝑘 = (𝑎𝐵,𝑐𝑡,𝑘 , 𝑎
𝐵,𝑑
𝑡,𝑘 , 𝑎

𝐷𝐺
𝑡,𝑘 , 𝑎

𝑚,𝐺
𝑡,𝑘 , 𝑎

𝐺,𝑚
𝑡,𝑘 , 𝑎

𝑑𝑙
𝑡,𝑘), (4)

where 𝜒𝑡 is the feasible action space constrained by the microgrid op-
𝐵,𝑐 𝐵,𝑑
erational constraints. 𝑎𝑡,𝑘 and 𝑎𝑡,𝑘 represent charging and discharging
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power of the BESS, respectively. 𝑎𝐷𝐺𝑡,𝑘 is the DG power output. 𝑎𝑚,𝐺𝑡,𝑘 and
𝐺,𝑚
𝑡,𝑘 represent the export and import powers to and from the main grid,
espectively. 𝑎𝑑𝑙𝑡,𝑘 is the dumped or unserved load.

.2. Objective and cost functions

The proposed objective function in (5) is to minimize the expected
operation cost of microgrid, considering the defined extreme weather
event uncertainties and the cost function in (6) for each scenario.

min
𝑎𝑡,1 ,…,𝑎𝑡,𝐾

𝐾
∑

𝑘=1
𝑝𝑘

𝑇
∑

𝑡=0
𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘), (5)

𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) = (𝑎𝐺,𝑚𝑡,𝑘 − 𝑎𝑚,𝐺𝑡,𝑘 )𝐺𝑡,𝑘𝛥𝑡

+ 𝑘𝐷𝐺𝑡,𝑘 (𝑥(𝑎𝐷𝐺𝑡,𝑘 )2 + 𝑦𝑎𝐷𝐺𝑡,𝑘 + 𝑧),
(6)

where, 𝑝𝑘 represents the probability of extreme weather event 𝑘, and
𝛥𝑡 is the time interval. In the cost function, as shown in (6), the first
part implies the cost of having energy exchange to/from the grid, and
the second part represents the fuel cost of the dispatchable DG unit.
The proposed cost function is scenario-sensitive and calculated using
the state–action pairs of the corresponding scenarios. The DG quadratic
cost function depends on the ON/OFF status (𝑘𝐷𝐺𝑡,𝑘 ) and the given 𝑥, 𝑦
and 𝑧 are the DG fuel cost-curve coefficients. The proposed microgrid
stochastic optimization problem subjects to the operational constraints,
as shown in the next subsection.

2.3. Operational constraints

Operational constraints encompass the economic and technical as-
pects of the microgrid scheduling problem. Since stochastic optimiza-
tion formulations are used to consider the extreme event uncertainties,
the operational constraints are applied for each scenario so that the un-
certainties can be captured by the constraints and a healthy microgrid
operation can be maintained.

2.3.1. Power balance
Power balance is a crucial microgrid operational constraint, as

shown in (7).

𝑎𝐷𝐺𝑡,𝑘 + 𝑎𝐺,𝑚𝑡,𝑘 + 𝑎𝐵,𝑑𝑡,𝑘 − 𝑎𝐵,𝑐𝑡,𝑘 − 𝑎𝑚,𝐺𝑡,𝑘 + 𝑎𝑑𝑙𝑡,𝑘 + 𝑅𝑡,𝑘 = 𝐷𝑡,𝑘. (7)

Here, the power balance is an equality constraint that balances the
microgrid’s generation and demand and helps to maintain the required
system ancillary service.

2.3.2. Battery constraints
BESS is one of the major DER units, and its charging and discharging

processes require to be maintained within a certain limit. The BESS
charging and discharging constraints are presented in (8) and (9),
respectively.

0 ≤ 𝑎𝐵,𝑐𝑡,𝑘 ≤ (1 − 𝑏𝑡)𝜓𝐶 , (8)

0 ≤ 𝑎𝐵,𝑑𝑡,𝑘 ≤ 𝑏𝑡𝜓
𝐷, (9)

where 𝜓𝐶 and 𝜓𝐷 represent the maximum charging and discharging
battery power limit, respectively. 𝑏𝑡 is a binary variable introduced to
maintain the BESS charging and discharging operation.

According to [35], the SOC of the BESS plays a vital role in the
battery lifetime, and a healthy operation can be achieved by keeping
the SOC within a certain range. Therefore, we also introduce the battery
SOC constraint, as shown in (10).

𝑆𝑂𝐶min ≤ 𝑆𝑂𝐶𝑡,𝑘 ≤ 𝑆𝑂𝐶max, (10)

where, 𝑆𝑂𝐶min and 𝑆𝑂𝐶max are the defined minimum and maximum
SOC of the BESS, respectively.
4

After determining the battery charging/discharging operation, a
transition function is used to determine the change of SOC for the taken
action, as shown in (11).

𝑆𝑂𝐶𝑡+1,𝑘 = 𝑆𝑂𝐶𝑡,𝑘 +
1

𝐵cap

(

𝜙𝐶𝑎𝐵,𝑐𝑡,𝑘 −
𝑎𝐵,𝑑𝑡,𝑘
𝜙𝐷

)

, (11)

where 𝜙𝐶 and 𝜙𝐷 are the BESS charging and discharging efficiency,
and 𝐵cap represents the energy capacity of the BESS.

2.3.3. DG constraints
The DG requires to be operated in a certain range. Therefore, the

DG power output is constrained as follows

𝑘gen𝑝rated𝑘𝐷𝐺𝑡,𝑘 ≤ 𝑎𝐷𝐺𝑡,𝑘 ≤ 𝑝rated𝑘𝐷𝐺𝑡,𝑘 , (12)

where 𝑘gen is defined as a percentage of the DG rated power 𝑝rated. The
value 𝑘gen can be obtained from the manufacturer’s dataset and can
be applied in the constraint so that the DG output can be determined
based on the operating requirement.

In the given context of stochastic formulation, the number of input
and output variables increases significantly with scenarios, adding
complexity in finding the solution. In this paper, we investigate this
challenge, propose the parallelized reinforcement learning agents, and
compare the performance with the existing RL approaches as follows.

3. RL approaches for microgrid optimization

In this section, we introduce several existing RL approaches, i.e., Q-
learning, Q-learning with experience replay (ER), and multi-agent RL,
as the comparable solutions to the microgrid application. We will also
introduce the unique designs of the proposed PRL approach to address
the aforementioned challenges.

3.1. Existing approaches

3.1.1. Q-learning approach
RL can be defined as an agent and environment (system model)

interactive system where the RL agent observes the environment state,
selects an action, receives a feedback reward, and learns the opti-
mization policy through the sequential decision-making process [36].
At each time step 𝑡, the RL agent selects an action 𝑎𝑡 according to
its policy after receiving the state information 𝑆𝑡. In return, the en-
vironment sends next-state 𝑆𝑡+1 and a reward/cost feedback 𝑟𝑡. This
process continues until the agent reaches to the terminal state. At every
iteration, the agent receives the return as 𝑅𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 which
is the total cumulative from time step 𝑡 with discount factor 𝛾. The
agent’s goal is to minimize/maximize the expected return from each
state 𝑆𝑡. In the Q-learning approach, a Q-value function 𝑄(𝑠, 𝑎) is used
to map the relationship between state 𝑠 and action 𝑎. The 𝑄-value
𝑄𝜋 (𝑠, 𝑎) = E[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎] represents the expected return for taking
action 𝑎 from state 𝑠 following the policy 𝜋. The optimal value function
can be obtained as 𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋 (𝑠, 𝑎) that returns the maximum
action value for the given state–action pair following the policy 𝜋.

In this paper, the reward (𝑟𝑡) is replaced with the microgrid cost
function 𝐶(𝑆𝑡, 𝑎𝑡). The Q-value function will be calculated recursively
using the Bellman equation. In terms of solving the given microgrid
stochastic optimization problem, multiple scenarios are combined to
define the state information. Therefore, the state space increases sig-
nificantly with the increment of scenarios. In this case, the Q-learning
agent will need intensive exploration to find the proper policy.
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Fig. 3. Replay buffer and its circulation (adding and removing tuples) process.
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3.1.2. Q-learning with experience replay approach
In recent years, Q-learning with ER approach attracts researcher’s

attention due to its skill of improving learning efficiency. In this ap-
proach, a replay buffer is used to store agent-environment interaction
experiences as tuples. They are used for off-policy training in future
episodes [37,38]. The replay buffer is usually defined as a circular
buffer, where the oldest transition is replaced by a new transition. A
graphical representation of the replay buffer is illustrated in Fig. 3. In
the figure, 𝑗 represents the index of tuples in the replay buffer. When
a new tuple is available, the replay buffer checks its size. If the size
exceeds the defined capacity, the new tuple is added to the buffer to
replace the oldest tuple.

There are different sampling strategies to use tuples in the replay
buffer. This process could improve the sample efficiency by enabling
data to be reused multiple times for training and also improve the
training stability. For the problems with low variance in immediate
outcomes, the inclusion of ER in Q-learning also helps to find the proper
policy.

In this approach, at every iteration, the RL agent provides a new tu-
ple from interacting with the microgrid environment. The replay buffer
is updated as shown in Fig. 3, and the Q-values are calculated using the
state–action pairs of each tuple [37]. This procedure continues until the
maximum iteration is reached, and the trained value functions are used
to determine microgrid operations. Since Q-learning with ER leverages
the past experiences, this approach may struggle to reach to the optimal
solution for the stochastic optimization problem if there are exploration
gaps or unvisited states due to lack of iterations. Also, training with
ER adds the computation cost, which is proportional to the experience
replay buffer size.

3.1.3. Multi-agent RL approach
Multi-agent RL approach uses multiple RL agents to solve sequential

decision-making problem operating in a common environment. In this
approach, the agents aim to optimize their own objective by inter-
acting with the environment and other agents. Based on the problem
requirement, the agents can be designed to employ in cooperative,
independent and mix manner. In this approach, inspired by [24],
we use a multi-agent Q-learning approach where the agents interact
with the environment independently. The Q-table is updated based on
the experiences observed through the agent-environment interactions.
At every iteration, the environment sends the state information to
all agents, which will take decision independently and update its Q-
table accordingly. While the traditional Q-learning approach interacts
with the environment once in an iteration, the 𝑀 learning agents can
5

s

interact 𝑀 times and thus can improve the exploration capacity per
iteration. The Q-value update can be expressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑄(𝑆1
𝑡 , 𝑎

1
𝑡 )

𝑄(𝑆2
𝑡 , 𝑎

2
𝑡 )

.

.
𝑄(𝑆𝑀𝑡 , 𝑎𝑀𝑡 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= (1 − 𝛼)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑄(𝑆1
𝑡 , 𝑎

1
𝑡 )

𝑄(𝑆2
𝑡 , 𝑎
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𝑡 )

.

.
𝑄(𝑆𝑀𝑡 , 𝑎𝑀𝑡 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝛼

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶(𝑆1
𝑡 , 𝑎

1
𝑡 )

𝐶(𝑆2
𝑡 , 𝑎

2
𝑡 )

.

.
𝐶(𝑆𝑀𝑡 , 𝑎𝑀𝑡 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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⎡

⎢

⎢

⎢

⎢

⎢
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⎣

min
𝑎1𝑡+1

𝑄(𝑆1
𝑡+1, 𝑎

1
𝑡+1)

min
𝑎2𝑡+1

𝑄(𝑆2
𝑡+1, 𝑎

2
𝑡+1)

.

.
min𝑎𝑀𝑡+1

𝑄(𝑆𝑀𝑡+1, 𝑎
𝑀
𝑡+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(13)

here 𝑀 is the total number of agents employed to interact with the
icrogrid environment, and 𝛼 is the learning rate.

.2. Proposed parallelized reinforcement learning approach

We propose a new PRL approach with multiple local agents for
olving stochastic microgrid scheduling problem. The proposed ap-
roach solves the given stochastic optimization problem following two
ey steps: distributed learning for local agents and knowledge aggre-
ation for the global agent. In the distributed learning, the local RL
gents are employed to interact with pertinent microgrid environments
nd obtain their own learned knowledge. Next, we aggregate state–
ction information and build the value function of the global agent
ith a probabilistic cost. The proposed approach is illustrated in the
rid-connected microgrid application in Fig. 4.
As shown in this figure, our proposed approach receives system pa-

ameters and scenario environments from the microgrid, and employs
ocal agents to interact with the environments in a parallel manner.
ote that we employ a local RL agent for dealing with a certain problem
cenario. Therefore, the number of agents should be equal to the num-
er of scenarios, and we use 𝑘 as the scenario/local agent index. In our
roposed approach, we use double-pass action value updating process.
n forward pass, local RL agents interact with different environment

cenarios using 𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 technique. In this technique, at any state 𝑠𝑡,𝑘,
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Fig. 4. The diagram of the proposed PRL approach with a double-pass structure of information computation. The parallelized agents interact with scenarios and the aggregator
combines the learned knowledge. The global agent’s value function is updated in the backward pass and will be used for the microgrid stochastic energy scheduling online.
s
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the action 𝑎𝑡,𝑘 is determined either selecting a random action from the
easible actions or using the greedy formula as

𝑡,𝑘 = min
𝑎
𝑄𝑘(𝑠𝑡,𝑘, 𝑎). (14)

This paper uses the physical state variables such as discretized
attery SOC and DG ON/OFF status to define the states since other
nformation state variables are the same as the forecast information and
o not vary over iteration. For any local learning agent, to determine
he action variables, the main idea is to first find all feasible BESS power
olutions based on the current SOC and feasible SOC at the next time
6

tep. Next, the power output of DG and grid’s export and import powers
re determined using a rule-based dispatch strategy for each feasible
ESS power solution [39]. Note that the proposed decision-making
trategy is applicable for microgrids with DGs, and it guarantees the
ispatch solution. The steps for determining the action variables are
etailed as follows.

1. At any time 𝑡, we first find all feasible BESS SOCs at the next
time step from the current BESS SOC 𝑆𝑂𝐶𝑡,𝑘, which satisfy (10).
A feasible SOC must also needs to satisfy (15), which can be
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Algorithm 1 Decision-making strategy.

1: Set the required power: 𝑝𝑎 = 𝐷𝑡,𝑘 − 𝑅𝑡,𝑘 − 𝑎
𝐵,𝑑
𝑡,𝑘 + 𝑎𝐵,𝑐𝑡,𝑘

2: Determine power output of DG:
𝑎𝐷𝐺𝑡,𝑘 = min(max(𝑘𝐷𝐺𝑡,𝑘 𝑝

rated, 𝑝𝑎𝑡 ), 𝑝
rated)

3: Update the required power: 𝑝𝑎 ← 𝑝𝑎 − 𝑎𝐷𝐺𝑡,𝑘
4: if 𝑝𝑎 ≥ 0 then

𝑎𝐺,𝑚𝑡,𝑘 = 𝑝𝑎; 𝑎𝑚,𝐺𝑡,𝑘 = 0
5: else

𝑎𝐺,𝑚𝑡,𝑘 = 0; 𝑎𝑚,𝐺𝑡,𝑘 = −𝑝𝑎

6: end if
7: Calculate 𝑎𝑑𝑙𝑡,𝑘 based on (7)
8: Calculate 𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) using (6)

derived from (8)–(11):

𝑆𝑂𝐶𝑡,𝑘 −
𝜓𝐷𝛥𝑡
𝜙𝐷𝐵cap

≤ 𝑆𝑂𝐶𝑡+1,𝑘 ≤ 𝑆𝑂𝐶𝑡,𝑘 +
𝜙𝐶𝜓𝐶𝛥𝑡
𝐵cap

. (15)

The BESS power for each feasible BESS SOC 𝑆𝑂𝐶𝑡+1,𝑘 can be
calculated using (16):

⎧

⎪

⎨

⎪

⎩

𝑎𝐵,𝑐𝑡,𝑘 =
(𝑆𝑂𝐶𝑡+1,𝑘−𝑆𝑂𝐶𝑡,𝑘)𝐵cap

𝛥𝑡𝜙𝐶 , 𝑎𝐵,𝑑𝑡,𝑘 = 0, if 𝑆𝑂𝐶𝑡,𝑘 ≤ 𝑆𝑂𝐶𝑡+1,𝑘

𝑎𝐵,𝑐𝑡,𝑘 = 0, 𝑎𝐵,𝑑𝑡,𝑘 =
(𝑆𝑂𝐶𝑡,𝑘−𝑆𝑂𝐶𝑡+1,𝑘)𝐵cap𝜙𝐷

𝛥𝑡 , if 𝑆𝑂𝐶𝑡,𝑘 ≥ 𝑆𝑂𝐶𝑡+1,𝑘.

(16)

2. Next, the power output of DG and grid’s export and import
powers are determined for each feasible BESS power solution,
as detailed in Algorithm 1. If DG’s status is OFF at any feasible
state, the power output and generation cost are set to be zero.
Otherwise, the power output of DG is determined based on the
net load and DG’s rated capacity and operating requirements,
and the corresponding cost is calculated. Then, the export and
import powers of the grid are determined based on the net
load of the system. Finally, the dumped or unserved load is
calculated, which is usually zero, unless the power cannot be
exported/imported to or from the main grid.

3. Thus after determining the action variables of all the feasible
actions, the learning agent takes action using the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦
technique.

After each interaction between the local-agent and the scenario
nvironment, the aggregator collects tuples with state 𝑠𝑡,𝑘, action 𝑎𝑡,𝑘,
cost 𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘), and next-state 𝑠𝑡′ ,𝑘 information from all agents. To
update the action value functions, this paper uses a function to estimate
the advantage of taking action 𝑎𝑡,𝑘 in state 𝑠𝑡,𝑘, which provides feedback
on how much better or worse the action taken was compared to the
overall expected return. The theoretical foundation of the advantage
estimate is well-explained in [28,36,40] and therefore is omitted here
to conserve space. We calculate the advantage estimate as

𝐴(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) =
(

𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) + 𝛾𝑉 (𝑠𝑡+1,𝑘)
)

− 𝑉 (𝑠𝑡,𝑘), (17)

and

𝐴(𝑠𝑡−1,𝑘, 𝑎𝑡−1,𝑘) =
(

𝐶(𝑠𝑡−1,𝑘, 𝑎𝑡−1,𝑘) + 𝛾𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘)

+ 𝛾2𝑉 (𝑠𝑡+1,𝑘)
)

−𝑉 (𝑠𝑡−1,𝑘),
(18)

where 𝑉 (𝑠𝑡,𝑘) = min𝑎𝑄𝑘(𝑠𝑡,𝑘, 𝑎). The action value 𝑄𝑘(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) is updated
using the advantage estimate as

𝑄𝑘(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) = 𝑄𝑘(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) + 𝛼𝐴(𝑠𝑡,𝑘, 𝑎𝑡,𝑘). (19)

From the given distributed interactions, the aggregator collects
7

individual microgrid state as in (2) and action as in (4) from the local
agents and assembles them to determine the global agent’s state and
action vectors, which are basically the state in (1) and action in (3).
The global agent’s cost function is calculated with the combination of
the probabilistic local agents’ cost functions as

𝐶(𝑆𝑡, 𝑎𝑡) =
𝐾
∑

𝑘=1
𝑝𝑘𝐶(𝑠𝑡,𝑘, 𝑎𝑡,𝑘). (20)

Traditionally, solving stochastic optimization problem using Q-
learning requires combining scenario states to define the state in-
formation. In this case, the number of states per time step could
increase intensively and traditional single- and multi-agent Q-learning
approaches are computationally expensive to find the near optimal
policy. Our proposed design employs local learning agents to interact
with the individual microgrid scenarios. Therefore, each microgrid
scenario has a dedicated local learning agent, and every agent has a Q-
table which can be initialized with zeros or an approximated solution.
Through distributed learning, the local learning agents interact with
their individual microgrid environments and learn control policies up-
dating the action values of their Q-tables. Due to the distributed design,
the number of states per time step decreases considerably compared
to traditional approaches, and the agents can effectively explore the
solution space. Next, the knowledge obtained from the local agents
are used to (1) build the state and action vectors for the global agent;
(2) calculate the expected cost; and (3) learn the policy of the overall
stochastic optimization problem. This procedure significantly improves
the global agent’s learning capacity and helps direct the global agent
to approximate the optimization policy efficiently.

The backward pass of the proposed approach is dedicated to update
the global agent’s action values using the advantage estimate functions
and learn the policy for the stochastic microgrid scheduling problem.
At the end of forward-pass, the global agent’s tuples are extracted from
the data storage, and the advantage function is used to estimate the
return of the steps in the backward sweeps as

𝐴(𝑆𝑡, 𝑎𝑡) =
(

𝐶(𝑆𝑡, 𝑎𝑡) + 𝛾𝑉 (𝑆𝑡+1)
)

− 𝑉 (𝑆𝑡), (21)

and the global agent’s action value 𝑄(𝑆𝑡, 𝑎𝑡) is updated using the
advantage estimate as

𝑄(𝑆𝑡, 𝑎𝑡) = 𝑄(𝑆𝑡, 𝑎𝑡) + 𝛼𝐴(𝑆𝑡, 𝑎𝑡). (22)

This process helps to efficiently pass the future outcomes to the ear-
lier time steps and improves the learning efficiency. After finishing
the backward-pass process, the algorithm increments the iteration 𝑛
and restarts the procedure again until the algorithm reaches to the
maximum iteration number 𝑁 . The detailed algorithm is presented in
Algorithm 2.

4. Simulation results and analysis

In this section, we provide the simulation setup information and
report different case studies to examine the performance of the pro-
posed approach. We report the microgrid operating costs, computation
time, and percentage of improvements for results analysis. Also, we
present the comparisons with several existing approaches to justify the
performance improvement.

The microgrid DER parameters are listed in Table 1. The microgrid
exogenous information including a small residential community load-
demand, RG output, and electricity price are plotted in Fig. 5. The
system advisory model by National Renewable Energy Laboratory is
used to obtain RG system parameters and outputs for the city of
Phoenix, AZ [41]. A small residential community load-demand data is
collected from [42] and used as the microgrid load. For the BESS, we
assume charging and discharging efficiencies and maximum powers are
the same. The optimization problem time horizon is set to be 𝑇 = 24
hours with an one-hour interval.

According to [34], some natural disasters like hurricanes and bliz-
zards are predictable 24 − 72 hours before happening. In our case
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Fig. 5. Microgrid system load, RG output, and electricity price from the utility grid.
Algorithm 2 The proposed PRL algorithm.
1: Initialization:
Define global Q-table (𝑄) and local Q-tables (𝑄𝑘), set the iteration
𝑛 = 1, and N, set the initial state 𝑆1

1 , set exploration probability
rates, 𝜖

2: for 𝑡 = 1 ∶ 𝑇 do ⊳ Forward Pass
3: for 𝑘 = 1 ∶ 𝐾 do ⊳ Local Agents
4: if 𝑟𝑎𝑛𝑑 > 𝜖1 then
5: Solve (14) for determining decision
6: else
7: Choose a decision randomly
8: end if
9: if 𝑡 < 𝑇 then
10: Find the next state, 𝑠𝑛𝑡+1,𝑘
11: Update action value 𝑄𝑘(𝑠𝑡,𝑘, 𝑎𝑡,𝑘) as (19)
12: end if
13: end for
14: Determine 𝑆𝑡 and 𝑆𝑡+1 as (1), 𝑎𝑡 as (3), and 𝐶(𝑆𝑡, 𝑎𝑡) as (20)
15: Store the transitions in a buffer
16: end for
17: for 𝑡 = 𝑇 ∶ 1 do ⊳ Backward Pass
18: Calculate the advantage estimate as (21)
19: Update the global Q-value functions as (22)
20: end for
21: Increment 𝑛. If 𝑛 ≤ 𝑁 go to Step 2.
22: Return the global and local Q-value functions (𝑄𝑁 )𝑇𝑡=1 and (𝑄𝑁𝑘 )𝑇𝑡=1

studies, we assume the forecast of having extreme event at 12 PM with
2 hours of uncertainty. Therefore, we have a total of five scenarios,
and the proposed PRL approach uses five local learning agents with
a dedicated Q-table for each. U.S. EIA data shows that, on average,
4 hours of power interruption may occur due to extreme events [43].
Hence, we set the extreme event duration as 4 hours in our case study.
Since the problem is formulated with discrete state and action variables,
8

Table 1
Microgrid DER parameters.

RG Photovoltaic Capacity 50 kW
Wind Turbine Capacity 100 kW

BESS
Capacity 150 kWh
Char. and Dischar. Eff. 90%
Maximum Power 30 kW

DG

Rated Power 100 kW
Min. Dispatch Percentage 0.3
Cost Coefficients 0.0009 ($∕(kW)2),
x, y, and z 0.0213 ($∕kW) and 1.1 ($)

the lookup table implementation is a suitable option to approximate the
action values in a timely manner. With the binary DG ON/OFF status
and 9 discretized BESS states, each scenario has 18 discretized states.
Therefore, the given stochastic optimization problem has 1.9×106 = 185

states after combining all five scenarios, challenging existing learning
approaches with computational complexity to find a near-optimal so-
lution. The proposed PRL approach employs local RL agents to interact
with the environments in a distributed manner. Hence at any time step,
each local RL agent has 18 or fewer possible actions which significantly
reduces the action space and lets the RL agents explore the solution
space effectively and report the promising solutions to the global agent.
Note that the training of the local and global agents happens offline
using the forecast data. The proposed PRL approach is trained for 4000
iterations, where local RL agents are trained synchronously at each
iteration. The replay buffer capacity is defined as 10 tuples for the Q-
learning with ER approach. For the multi-agent Q-learning, 𝑀 = 4 is
used while defining the number of agents. We set iteration number as
4000 and exploration probability as 0.6. We assume equal probability
for all the microgrid operating scenarios. Load and RG power output
uncertainties are considered using the following equations as [44]

𝑅𝑡,𝑘 = min{max(𝑅̂𝑡,𝑘 + 𝜀𝑟, 𝑅min), 𝑅max}, (23)

and

̂
𝐷𝑡,𝑘 = min{max(𝐷𝑡,𝑘 + 𝜀𝑑 , 𝐷min), 𝐷max}, (24)
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Table 2
Stochastic optimization results with expected cost and computation time.
Approach Expected cost Computation time

Offline DP (reference) $19.1 6.5 hours

Online

Proposed PRL $20.2 2.2 min
Q-learning with ER $22.2 9.1 min
Multi-agent Q-learning $23 1.1 h
Q-learning $26.5 3.9 min

where 𝑅̂𝑡,𝑘 and 𝐷̂𝑡,𝑘 represent the day-ahead RG and load data, re-
pectively. 𝜀𝑟 and 𝜀𝑑 are the RG and load demand noises, respectively.
The Eqs. (23) and (24) are used to generate RG and load information
for training and testing purposes. All the simulations are conducted in
MATLAB 𝑅2019𝑏 on a PC with Intel Core i7 − 8650U 4.2GHz and 16GB
RAM. A MATLAB script is used to define the DER parameters of the mi-
crogrid, and the parameters of the proposed PRL approach. We define a
MATLAB function which provides microgrid state information to the lo-
cal RL agents based on their scheduling scenarios. The decision-making
process of the RL agents and the value function updates are conducted
in the main MATLAB script file. All the approaches are implemented in
the same environment during the performance comparison.

4.1. Stochastic optimization

Stochastic optimization case study is important to evaluate the
performance of an approach under uncertainties. This case study as-
sumes that a power outage may happen at 12 PM with two hours of
uncertainty. Considering that, we have five different scenarios with
the outage happening time frame 10 AM to 2 PM. The results and key
observations in terms of expected operation cost and different net loads
are discussed as follows.

4.1.1. Expected cost
The expected cost represents the expected form of total microgrid

operational cost of five different scenarios. The results are summa-
rized in Table 2. Note that we use dynamic programming (DP) as
the reference approach. DP is used offline as it requires accurate
forecast information to achieve the optimal solution, which may not
be obtainable in practice. Also, the DP approach is computationally
expensive in order to achieve the optimal solution in this benchmark.
The table shows that our proposed PRL approach can reach very close
to the optimal solution with the expected operational cost as $20.2
and computation time 2.2 minutes. The existing learning approaches
output stochastic microgrid scheduling results with extra-operating
costs and considerable computation costs. The Q-learning with ER and
multi-agent Q-learning takes around 4 times and 30 times longer to
output the scheduling decisions, indicating our proposed approach’s
computational efficiency. The traditional Q-learning approach provides
the most expensive expected cost and requires intensive training.

The average expected cost curves and microgrid scheduling results
are plotted in Fig. 6. The expected cost curves in Fig. 6 are obtained
averaging after 30 runs. The fluctuations on the curves represent the
agent’s explorations, and the exploration rate degraded after every 50
terations by 1.1. The results show that the expected cost curve of the
roposed approach drops rapidly comparing to the other approaches
nd converges to the minimum expected daily cost. Q-learning with
R and multi-agent Q-learning approaches show competitive perfor-
ance till 2000 iterations. After that, due to decay of exploration rate,
ulti-agent Q-learning approach struggles to find the proper schedul-
ng decision and stuck at a local minima. Note, for the multi-agent
-learning approach, we employ four agents, therefore obtain four
xpected costs. The minimum expected cost at every iteration is plotted
n the figure. In contrast, Q-learning with ER approach explores replay
uffer every iteration, and shows better performance in later iterations.
9

owever, it also presents a noticeable gap in comparison with our i
Table 3
Distribution functions for generating test scenar-
ios.
Problem RG Load

NO. Noise Noise
1 𝑈 (−5, 5) 𝑈 (−3, 3)
2 𝑈 (−5, 5) 𝑁(0, 3)
3 𝑁(0, 1) 𝑈 (−3, 3)
4 𝑁(0, 2) 𝑁(0, 1.5)

Table 4
Online testing results with performance improvement.
Approach Average Improvement

cost ($) (%)

Proposed PRL 21.9 20.94
Q-learning with ER 22.7 18.05
Multi-agent Q-learning 23.1 16.61

proposed approach. Overall, our proposed approach outperforms three
existing approaches in terms of both the expected operational cost and
computational time.

4.1.2. Different net loads
Extreme weather events may also affect RG output. Therefore, a

case study is conducted with different net loads by varying the RG
outputs during the extreme event to analyze the effect. The microgrid
operations for an outage time frame at 12 PM - 3 PM (time step
13–16) with different net loads are obtained using the proposed PRL
approach and plotted in Fig. 7. In the figure, grid exchange represents
(𝑎𝐺,𝑚𝑡,𝑘 − 𝑎𝑚,𝐺𝑡,𝑘 ), which means the value is positive when the microgrid
mports power from the grid. The battery output represents (𝑎𝐵,𝑑𝑡,𝑘 −𝑎𝐵,𝑐𝑡,𝑘 ),
hich means the value is positive when the battery is discharging. The
esults show that the proposed approach effectively utilizes RG outputs,
ses the battery for intraday energy shifting in a cost-effective manner,
nd dispatches DG if needed to prevent load shedding. Therefore,
he proposed approach is useful for cost-efficient microgrid operations
uring the extreme weather events.

.2. Online testing

In this case study, we evaluate the optimization performance of
he learning approaches in the uncertain environments and test the
daptivity of the proposed approach. For introducing uncertainties in
he microgrid scheduling operation, we use RG noise for representing
ntermittent nature of RG, and load noise for addressing uncertain
oad situations. We define RG and load noises using uniform and
ormal probability distribution functions. We use four test problems
ith uncertainties, and the problems are summarized in Table 3. In the
able, 𝑈 and 𝑁 represent uniform and normal probability distribution
unctions, respectively. In the table, 𝑈 (𝑎, 𝑏) represents uniform proba-
ility distribution function with the range [𝑎, 𝑏]. And 𝑁(𝑙, 𝑚) represents
ormal probability distribution function with the mean 𝑙 and standard
eviation 𝑚. For the RG, we consider the noise range of [−5𝑘𝑊 , 5𝑘𝑊 ]
nd for the load demand, we use the noise range of [−3𝑘𝑊 , 3𝑘𝑊 ].
he noises to generate RG output and load demand profiles for testing
urposes are around 25% and 6% of deviations.

.2.1. Expected cost
We assess the performance in terms of microgrid expected opera-

ional cost during the extreme weather events for all the test problems.
or each test problem, we generate 500 test scenarios, and the statistical
esults are plotted in Fig. 8. From the results, we can observe that
he proposed PRL approach achieves minimum microgrid expected
perational cost for all cases.
We calculate the performance improvements for this experiment
n a similar way as that in [44], and the results are presented in
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Fig. 6. Average expected cost convergence curve of the learning approaches after 30 runs.
Fig. 7. Microgrid operations for an outage time frame at 12 PM - 3 PM (time step 13-16) with different RG outputs during the extreme weather event, (a) net load (𝐷𝑡,𝑘 - 𝑅𝑡,𝑘),
(b) microgrid operation with 100% RG, (c) microgrid operation with 50% RG, and (d) microgrid operation with 10% RG.
Table 4. The proposed PRL, Q-learning with ER, and multi-agent Q-
learning methods output average expected daily operational costs as
$21.9, $22.7, and $23.1, respectively. The performance improvements
of these approaches are determined by comparing the results with
the traditional Q-learning approach. In this case study, the proposed
approach shows promising performance with a maximum of 20.94% of
improvement in comparison.

4.2.2. Outage time uncertainties
In addition, we analyze the effect of uncertainties in different out-

age times and evaluate the decision-making skills of the learning ap-
proaches. For this case study, we use test problem 4 from Table 3,
and the statistical results are obtained using 500 test scenarios. The
10

results are reported in terms of microgrid operational cost for all
possible outage hours and illustrated in Fig. 9. The results show the
impact of having an outage in all different possible hours in terms of
operation costs. The statistical box plots show how much microgrid
operational cost we should expect of using the learning approaches
at different outage times under uncertainties. The proposed approach
achieves the minimum operation cost for all cases. The trends show that
outage at hour 10 AM and 1 PM may cause maximum and minimum
microgrid operating costs compared to other possible outage hours.
For all cases, the proposed PRL approach shows promising adaptive
performance and can be used for the economic assessment of extreme
events. It also provides the microgrid scheduling decisions to minimize
the operational loss of the events.

Moreover, we conduct a case study with outage time uncertainty
and assess the adaptability performance of the learning approaches. In

this case study, we use the test problem 3 from Table 3 to generate 500
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Fig. 8. Statistical results on microgrid expected cost with RG and load uncertainties during extreme weather events considering 500 test cases for each test problem.
Fig. 9. The statistical results showing the impact of extreme weather event at different outage time with RG and load uncertainties.
test scenarios and randomly vary outage time within the outage time
frame at each scenario. Specifically, in this cases study, we generate a
random outage time for each test sample and evaluate the microgrid
11
operation obtained from the learning approaches. When the agent
senses an outage due to the extreme event, the agent follows the
learned policy obtained for the corresponding scenario and determines
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Fig. 10. Box plot for the online testing case study with random outage time.
Table 5
Online testing with random outage time results.
Approach Average Improvement

cost ($) (%)

Proposed PRL 21.9 19.8
Q-learning with ER 22.8 16.5
Multi-agent Q-learning 23.2 15

microgrid operation accordingly. The Q-value function of the learning
approaches is used to generate the scheduling decisions using a greedy
technique. Statistical box plots are illustrated in Fig. 10 to summarize
the results. The proposed PRL approach handles the outage time uncer-
tainty well and outputs the minimum average expected cost comparing
to other existing RL approaches.

Numerical results are also reported in Table 5. The proposed PRL ap-
proach outputs the minimum average cost with 19.8% of improvement
comparing to the traditional Q-learning approach and outperforms
other existing approaches. The existing Q-learning with ER and multi-
agent Q-learning approaches also show 16.5% and 15% improvements
and need an average of 4 and 28 times more computational time than
the proposed approach, respectively. In conclusion, the proposed PRL
approach shows promising performances in all case studies, indicating
a potential advanced learning-based method for microgrid scheduling
under extreme natural events.

5. Conclusion

This paper proposes a new RL approach with parallelized agents
to efficiently solve the microgrid stochastic scheduling problem with
resiliency considerations. Our proposed design employs local learning
agents to interact with different microgrid operating environments un-
der an extreme weather event in a distributed manner. It addresses the
challenge of handling stochastic operation conditions in a timely man-
ner. The information obtained from the local agents are used to build
the state and action vectors for the global agent. Thus, we can compute
the expected cost and efficiently generate the policy for the microgrid
stochastic optimization problem. We formulate the proposed approach
as a double-pass process, and the advantage estimate functions are used
with a backward sweep to transfer the outcomes to the value function
calculations efficiently. In the case study, stochastic optimization re-
sults show that the proposed PRL method is a computationally efficient
approach that can achieve minimum expected microgrid operating
costs compared to existing learning approaches. The proposed PRL
approach also obtain around 20% of improvement in online testing
case studies with 4 and 28 times less computation cost than Q-learning
with ER and multi-agent Q-learning, respectively. Overall, the proposed
PRL method performs microgrid scheduling efficiently considering the
extreme event uncertainties.
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