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Abstract—Deep learning models have achieved state-of-the-art
accuracy in complex tasks, sometimes outperforming human-
level accuracy. Yet, they suffer from vulnerabilities known as
adversarial attacks, which are imperceptible input perturbations
that fool the models on inputs that were originally classified
correctly. The adversarial problem remains poorly understood
and commonly thought to be an inherent weakness of deep
learning models. We argue that understanding and alleviating
the adversarial phenomenon may require us to go beyond the
Euclidean view and consider the relationship between the input
and output spaces as a statistical manifold with the Fisher
Information as its Riemannian metric. Under this information
geometric view, the optimal attack is constructed as the direction
corresponding to the highest eigenvalue of the Fisher Information
Matrix - called the Fisher spectral attack. We show that an
orthogonal transformation of the data cleverly alters its manifold
by keeping the highest eigenvalue but changing the optimal
direction of attack; thus deceiving the attacker into adopting
the wrong direction. We demonstrate the defensive capabilities
of the proposed orthogonal scheme - against the Fisher spectral
attack and the popular fast gradient sign method - on standard
networks, e.g., LeNet and MobileNetV2 for benchmark data sets,
MNIST and CIFAR-10.

Index Terms—deep neural network, adversarial defense, infor-
mation geometry

I. INTRODUCTION

MODELS utilizing deep neural networks (DNNs) have
become ubiquitous in the machine learning research

community; yet, the same trend does not appear for criti-
cal tasks in industry. Although DNN models have achieved
human-level accuracy in many tasks, including object recog-
nition in computer vision and natural language processing,
they are vulnerable to adversarial examples, i.e., imperceptible
malicious input perturbations that cause well-trained state-
of-the-art models to fail “with high confidence”. Adversarial
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attacks were first discovered in computer vision [20] and later
induced in natural language processing [7] and reinforcement
learning [3] domains. More severely, it was found that adver-
sarial examples have cross-model generalization ability, i.e.,
that adversarial examples generated from one model can fool
another different model with a high probability [21]. Given
such evidence, we can justly assume that all DNN models
are vulnerable, and therefore the deployment of these models
in real-world applications is hinged on the understanding and
diminishing of the adversarial threat [4].

Currently, there is no consensus on why adversarial ex-
amples exist or how their transferability mechanism operates,
leading to further difficulty in addressing the problem. There
are, however, several speculative explanations to be consid-
ered. Starting with the seminal paper on the subject, it was
suspected that the high non-linearity of neural networks could
explain the existence of adversarial examples [20]. This was
later refuted by Goodfellow et al. when it was shown that
linear behavior in high-dimensional spaces is sufficient to
cause adversarial examples [4]. They argued that adversarial
examples are a result of models being too linear, rather than
too non-linear. This view enabled the design of fast methods of
generating adversarial examples. While the linear explanation
may seem possible, it only analyses the decision boundary
under the first-order approximation of the model non-linearity.
A further investigation by Moosavi-Dezfooli et al. derived a
more generic analysis in terms of the geometric properties –
notably curvature - of the boundary [13]. Specifically, they
showed that classifiers with curved decision boundaries are
vulnerable to malicious perturbations, and provided the exis-
tence of a shared subspace along which the decision boundary
is positively curved (for most directions).

The explanations thus far are limited to the Euclidean metric
and only analyze the decision boundary. An alternative view
analyzes the relationship between the input and output spaces,
which map vectors of real numbers to probability distributions
over classes. From an information geometric perspective, this



Fig. 1. Illustration of an orthogonal transformation on images from MNIST and CIFAR-10. The resulting images are unrecognizable to the human eye but
are congruent to the original image.

relationship can be defined as a statistical manifold. The inputs
represent coordinate points on the manifold while the outputs
determine the Fisher Information Metric (FIM), used as the
Riemannian structure [1]. The eigensystem of the FIM, there-
fore, represents the magnitudes and directions of curvature
on the manifold. An input constructed in the direction of
the eigenvector associated with the highest eigenvalue results
in the highest divergence of the output distribution and thus
can be considered an optimal attack under this formulation
[22]. Further analysis indicated that these attacks were highly
transferable implying a similarity in manifolds for separate
and unique networks.

To defend against the FIM-based attack, Shen et al. de-
veloped an approach to suppress the eigenvalues, which was
shown to be equivalent to the well-known label smoothing
method [17]. Label smoothing was empirically shown to
prevent the network from becoming over-confident [14]. This
paper advances a very different and clever approach that aims
at deceiving the attacker - who is utilizing the eigensystem
of the FIM - by obfuscating the eigenvectors of the FIM.
While smoothing the data manifold does reduce adversarial
risk, the real danger of attack is from the directions of the
eigenvectors. By transforming the data with an orthogonal
transformation, we show that the eigenvectors are rotated -
causing the data manifold to be distinct (ideally orthogonal)
from the attacker’s data manifold - while the eigenvalues are
kept unchanged. Figure 1 shows an orthogonal transformation
on images from MNIST and CIFAR-10. The resulting images
are unrecognizable to the human eye but are congruent to the
original image.

The rest of the paper is organized as follows. Section II
describes the necessary background and common language

used throughout this work. Section III describes the optimal
adversarial problem from an information geometric perspec-
tive. Section IV formally introduces our defense approach
of preprocessing the data with an orthogonal transformation
and describes the effects on the model’s manifold. In Section
V, we present empirical evidence to validate our method.
Lastly, Section VI summarizes the main findings and proposes
directions for future work.

II. BACKGROUND

A. Deep Neural Network Image Classifiers

In image classification, a data-set, D = {(X,Y )}, is a set
of tuples containing an image x ∈ Rc×h×w, where c, h and
w represent channels, pixel height and width, respectively,
and a one-hot encoded label y ∈ Rk of k classes. A DNN
image classifier f(x; θ) is a parameterized statistical model
that maps an image x to a distribution over the k classes
f : X 7→ P (Y |X). The distribution is created by normalizing
the unbounded output of the DNN, known as scores or
logits, and denoted as Z(x). The logits are normalized to
a pseudo probability distribution over the k classes p(yi|x)
for score zi via the softmax function σ, and are given by
σ(zi) = ezi/

∑k
j=1 e

zj . The resulting softmax layer has the
properties: p(y|x; θ) > 0, ∀ y, and

∑
p(y|x; θ) = 1, and

therefore can be considered a probability distribution. The
predicted class is determined as the class with the highest
density, ŷ = arg maxi p(yi|x; θ).

The loss function calculates the error between the model’s
prediction and the ground truth. For instance, the cross-entropy
loss, or log loss, measures the difference between the true



distribution of the data and the model’s learned distribution as
follows:

LCE = −
∑

i yi log p(yi|x), (1)

where yi is the ith label from the dataset distribution and
p(yi|x) is the model’s learned distribution. Equation (1) sim-
plifies to −log p(ytrue|x) for datasets with one hot encoded
labels, where the probability of the true class label ytrue is 1,
while all others are 0; thus, removing the summation.

B. Adversarial Attacks

An adversarial image x′ is the summation of the original
image x and the attack perturbation δ ∈ Rc×h×w. The goal of
the attack is to solve the following constrained optimization
problem:

arg maxif(x) ̸= arg maxif(x+ δ) (2)
such that ||δ||p < ϵ,

where ||·||p is the p norm, p can be 0, 1, 2 or ∞ and ϵ ∈ R+. It
is important - from the attacker’s perspective - that p and ϵ are
chosen such that the resulting image (x′) is indistinguishable
from the original (x) to the naked human eye.

Adversarial attacks can be classified by the amount of
information known about the model being attacked. In a white
box setting, the adversary has full knowledge of the target
model, that is: architecture, parameters, and loss gradients. In
contrast, a black box attack is generated when the adversary
is completely ignorant. White box attacks are more powerful
but are less likely to occur in real-world scenarios because any
legitimate entity utilizing DNNs would not make their models’
information publicly available. It is then more probable that
the adversary will train their own model, generate a white
box attack on it, then transfer the attack. In good favor of
the adversary, adversarial attacks are transferable at a high
rate making black-box attacks a real threat to neural network
applications [4].

C. An Information Geometric Perspective of Deep Learning

Information geometry studies the intrinsic differential ge-
ometric structure over families of probability distributions.
It can be applied to statistical models, such as DNNs, by
considering the parameter space as points on a statistical
manifold and using the model’s estimation to generate the
Riemannian metric. It was shown that the Fischer Information
is a valid Riemannian metric, and it was further proven by
Chenstov’s Theorem that it is the only invariant measure for
statistical models [1].

Now, we will formally introduce the Fischer Information
Metric (FIM) for a n-dimensional statistical model p(y|x; ξ)
where (x, y) ∈ D and ξ ∈ Rn are the inputs, outputs and n
model parameters, respectively. Given a point ξ, the FIM of
the model is an n×n symmetric positive semi-definite matrix,
defined by

Gξ = Eξ

[
∇ξ log p(y|x; ξ)∇⊺

ξ logp(y|x; ξ)
]

(3)

= − Eξ

[
∇2

ξ log p(y|x; ξ)
]
. (4)

The distribution of the expectation in Eqs. (3)-(4) is p(y|x; ξ),
the random variable is the Hessian of the log likelihood
with respect to the parameters. The term −log p(y|x; ξ) is
interpreted as the amount of information at x. The FIM can
therefore be interpreted as the “interest level” of the data point
compared to the data used to fit the model [12]. When a low
probability event occurs, the interest is high because it does
not normally occur under the current distribution.

It should be noted that there are two forms of the FIM.
The first considers the weights and biases of a network as
parameters [15, 12]. The second view considers only the input
as parameters while keeping the weights and biases fixed [18,
22, 17]. The former describes a family of distributions given
a model’s architecture, while the latter describes a family of
distributions from one fixed weight model given a dataset (ξ =
x). We denote the latter as the data manifold of a trained
classifier, and is the form adopted in this work.

D. Orthogonal Transformations

An orthogonal (or orthonormal) matrix Q is a real square
matrix with orthonormal bases for its row and column spaces,
i.e., Q⊺Q = QQ⊺ = I and therefore Q⊺ = Q−1, making Q
always invertible. The matrix can be used as an operator for
a linear transformation Q : T 7→ T on a real inner product
space T . Such a transformation preserves the inner product
space, i.e., ⟨v, w⟩ = ⟨Qv,Qw⟩ , ∀ v, w ∈ T , thus, an isometry
of the Euclidean space.

The eigenvalues of an orthogonal matrix have modulus
one, and therefore orthogonal transformations only rotate or
reflect and do not scale. Suppose two matrices A and B are
related by an orthogonal transformation, i.e., A = QBQT ,
then the eigenvalues of A and B will be equal but the
eigenvectors are represented in different bases. An orthogonal
matrix generalized to complex numbers is called a unitary
matrix.

III. ATTACKS AND DEFENSES

A. Attacks

1) Fast Gradient Sign Method (FGSM): was developed
to make adversarial training, at any scale, fast and practical
[4]. In general, methods for producing adversarial examples
are computationally taxing, and result in unreasonably long
training times. Although other attack methods may surpass
the attack abilities of FGSM, few have the speed to enable
rapid adversarial training. To comprehend the attack, let us
first consider this linear single layer model below:

f(x; θ) = θ⊤x. (5)

The model simply takes the dot product of the image and
the model parameters. If a perturbation is added to the input
image, the output will grow by θ⊤δ as seen below:

f(x+ δ; θ) = θ⊤(x+ δ) = θ⊤x+ θ⊤δ. (6)

Under the max norm (largest element) constraint of the per-
turbation (||δ||∞ < ϵ), the greatest allowable increase is:

δ = ϵ · sign(θ). (7)



The max norm is the most accurate norm to use; the reason
being if the largest singular pixel perturbation is below human
perception, then none of the perturbations are detected.

Under the assumption that the gradient with respect to the
input yields the fastest changing direction in the output, the
formulation in Eq. (7) is extended to DNNs as follows

δ = ϵ · sign(∇xL(y, f(x))). (8)

The effectiveness of this attack validates the assumption that
training methods induce a linear structure to DNNs. As a
consequence, adversarial examples would then exist along di-
rections rather than pockets on the decision boundary. Indeed,
experiments of scaling attacks corroborated the theory but
furthermore these insights lead to the concept of the transfer-
ability property of adversarial examples. Since unique models
are fitted to data in similar ways, their decision boundaries may
be co-linear and therefore adversarial examples generated on
one model will fool other models as well.

2) One Step Spectral Attack (OSSA): exploits the knowl-
edge of the data manifold given by the FIM [22]. Let us first
build an intuition by analyzing the effect of the change in
input in the context of the output via the Kullback–Leibler
(KL) divergence,

DKL (p(y|x) || p(y|x+ δ)) = Ex

[
log

p(y|x)
p(y|x+ δ)

]
. (9)

Taking the 2nd order Taylor series expansion of log p(y|x+δ)
about point x, we obtain

DKL = Ex

log p(y|x)− log p(y|x)
= 0

−

δ∇xlog p(y|x)− 1

2
δ∇2

xlog p(y|x)δ
]

(10)

= Ex

[
−δ∇xlog p(y|x)

]
− Ex

[
1

2
δ∇2

xlog p(y|x)δ
]
(11)

= −δ

∫
p(y|x)∇xp(y|x)

p(y|x)
dx

= 0

−

1

2
δ Ex

[
∇2

xlog p(y|x)
]

−Gx

δ (12)

≈ 1

2
δGxδ +O

(
δ3) . (13)

The first term in Eq. (12) is equal to zero be-
cause

∫
p(y|x) [∇xp(y|x)/p(y|x)] dx =

∫
∇xp(y|x)dx =

∇x

∫
p(y|x) = ∇x1 = 0. Note that the final approximate KL-

divergence between the original and adversarial input - shown
in Eq. (13) - is a quadratic form of the FIM.

The objective of the attacker is to maximize Eq. (13) and
obtain the optimal perturbation δ. Maximizing Eq. (13) has a
well-known solution in mathematics given by the eigenvector
corresponding to the highest eigenvalue of Gx; thus, the name
‘Fisher spectral attack’ or ‘One Step Spectral Attack’ [22].

This direction can be viewed as the steepest direction in the
data manifold, i.e., a movement in this direction results in the
highest KL-divergence, and therefore the highest likelihood to
confuse the DNN.

B. Defenses

1) Suppressing the Eigenvalues of the Fisher Information
Matrix (EVS): The suppression of the FIM eigenvalues was
inspired by the derivation of the one-step spectral attack [17].
The intuition being if the highest eigenvalue of Gx indicates
the level of adversarial threat, then suppressing this value will
produce a more robust network. The max eigenvalue problem
is mathematically intractable. A reasonable approximation is
to consider instead the trace of Gx since it is equivalent to
the summation of the eigenvalues, tr Gx =

∑
λi. The new

training loss then becomes

LTotal = LCE + µ tr Gx. (14)

Calculating all eigenvalues directly is also intractable for
large input layers. The problem can be further simplified by
considering the softmax layer s(x) = [p1, ..., pk] rather than
the input layer since the number of classes is much smaller
than the input size. The two representations are related by the
Jacobian of the softmax layer with respect to the input, the
cmn× k matrix J = ∂s/∂x.

Gx = J⊺GsJ. (15)

Due to the linear mapping between the two FIMs, the suppres-
sion of the eigenvalues of one will result in a suppression of the
eigenvalues of the other. Lastly, to avoid direct computation of
the eigenvalues of Gs, the following derivation is performed,

tr Gs = tr Ey|s [∇s log p(y|s) · ∇⊺
s log p(y|s)]

=

∫
y|s

p(y|s) tr [∇s log p(y|s) · ∇⊺
s log p(y|s)]

=

∫
y|s

p(y|s)· ∥∇s log p(y|s)∥22

=
k∑

i=1

pi

k∑
j=1

[
∇pj

log p(yi|s)
]2

=
k∑

i=1

1

p(yi|x)
. (16)

By substituting Eq. (16) into (14), we have,

LTotal = LCE + µ ·
k∑

i=1

1

pi
. (17)

Intuitively, the new loss term in Eq. (17) will drive the output
towards a uniform distribution, s(x) = [1/k, ..., 1/k] while the
cross-entropy term will force the correct class to have more
density. In practice, this accomplishes label smoothing regu-
larization, a technique that is already understood to improve
robustness [14] but now has a strict mathematical deduction
as its foundation.



IV. PROPOSED ORTHOGONAL DEFENSE APPROACH

We now describe our approach for hardening a deep neural
network to the optimal OSSA adversarial attack. To begin,
we rely on the initial formulation of the quadratic form of
the Fisher Information matrix given in Eq. (13) and formally
define the objective function of the adversary as:

max
δ

1

2
δ⊺Gxδ (18)

s.t. ||δ||22 = ϵ

L (y, x+ δ) > L (y, x)

The expression v⊺Av is bounded by the eigenvalues of the
symmetric matrix A, such that λmin ≤ v⊺Av ≤ λmax, and
the vectors v that produce these bounds are the respectively
associated eigenvectors. The direction of the eigenvector as-
sociated with the highest eigenvalue will, therefore, produce
the greatest KL-divergence between the normal and attacked
output with a magnitude equal to the eigenvalue.

White-box attacks are the worst-case scenario for DNN
models; however, since Gx is derived with fixed model pa-
rameters θ, it is only valid as the Riemannian metric for
the training data manifold of this particular model while
other models will have their unique data representations. The
existence of the transferability property for adversarial attacks
indicates that - although networks have different architectures
and parameters - they represent the data in a similar fashion.
Under the Fisher Information matrix view, it is conjectured
that the eigenvectors associated with the largest eigenvalue of
two such networks are co-linear.

Given this knowledge, an obvious approach to defend
against black-box attacks is to suppress the eigenvalues of
the FIM. This was solved by Shen et al. in [17] and the
solution was shown to be equivalent to label smoothing. In
this paper, we propose a new approach that aims at deceiving
the attacker into adopting an erroneous direction of attack. To
achieve this goal, we transform the input (prior to training)
such that the highest eigenvalue of the FIM is preserved but
the corresponding direction (of attack) is changed.

Mapping the training dataset with an orthogonal transfor-
mation (Orthogonal PreProcess, OPP) will change the eigen-
vectors of the resulting FIM while maintaining the same
eigenvalues; thus fooling the attacker by changing the optimal
direction of attack.

V. EXPERIMENTS AND DISCUSSION

A. Data sets and Models

We evaluate the proposed OPP defense on two standard
benchmark data sets in image classification: MNIST [2] and
CIFAR-10 [9]. The former is relatively small, consisting of
60,000 single channel gray scale 28x28 images of hand-written
digits from zero to nine. The latter is the same size but
the images are three channel colored 32x32 natural images
encompassing 10 classes, including airplanes, cars and birds.
For standard preprocessing, both data sets are normalized

channel-wise and augmented in training via rotation, horizon-
tal flip, color jitter and affine transformation. We implement
LeNet-5 on MNIST, a small architecture of three convolutional
layers followed by two fully connected layers. It is one of
the earliest convolutional neural network (CNN) architectures
to be successfully implemented [10]. We trained using a
Stochastic Gradient Decent (SGD) optimizer with a batch size
of 512, a momentum of 0.9 and a weight decay of 0.0001. Our
learning rate was scheduled through Cosine Annealing [11]
starting at 0.5 and atrophying to 0.

On CIFAR-10, a light weight network called MobileNetV2
[16] is fitted. MobileNet uses depth-wise separable convolu-
tions, which reduces the model complexity leading to less over
fitting [6]. It is trained with the Adam optimizer [8] using
a batch size of 124 and the same momentum and weight
decay values of 0.9 and 0.0001, respectively. In this case, the
learning rate was scheduled using One Cycle LR [19] starting
at 0.00004 escalating to 0.001 then deescalating to 0.

B. Model Analysis

It is hypothesized that attacks live along directions and
not pockets and therefore can span directions with scalar
multiplication [4]. In our experiments, the scaling factor is
based on the ratio of the Euclidean norms of the perturbation
and the original image, i.e.,

ϵ =
∥δ∥2
∥x∥2

. (19)

The Euclidean norm measures the energy of the signal. If
the energy of the perturbation is too low, the image will
overpower the signal resulting in an unsuccessful attack. If the
perturbation is too high then the resulting attack will no longer
be considered adversarial, as a human could easily identify the
perturbation. In our experiments, we exhaustively analyzed
different ϵ values to check if they could be detected by the
human eye. It was determined heuristically, from Figure 2,
that ϵ = 0.3 is the threshold for both MNIST and CIFAR-10
under FGSM attacks.

The effectiveness of an attack is measured by its fooling
ratio or the percentage of images misclassified that were
originally correctly classified. Images already misclassified
before the attack are not considered because it is already
known that the model is confused by such inputs. Thus, the
fooling ratio is defined as

Fooling Ratio =
|Atest −Aadversary|

Atest
, (20)

where A represents the accuracy in terms of the ratio of images
correctly classified. A fooling ratio of 0 would be the result
of the adversarial accuracy equaling the original accuracy
indicating no change occurred to the network’s performance.
A fooling ratio of 1 occurs when the adversarial accuracy is
0% and therefore the network is completely fooled.

C. Classification Accuracy

In this study, the orthogonal matrices are generated from a
QR decomposition of a randomly generated matrix. Figure 1



Fig. 2. Progression of FGSM perturbation visibility with respect to the noise-to-signal ratio, ϵ, for each class of MNIST and CIFAR-10. It can be observed
that the threshold at which the perturbations remains imperceptible is at ϵ = 0.3 for both MNIST and CIFAR-10.

TABLE I
A COMPARISON OF CLASSIFICATION ACCURACY AND TRAINING TIME FOR THE STANDARD AND OPP MODELS ON MNIST AND CIFAR-10.

Dataset Metric Standard Model OPP Model

MNIST
Training Time 5m 49s 5m 45s

Classification Accuracy 0.9824 0.9448

CIFAR-10
Training Time 4h 33m 44s 5h 24m 2s

Classification Accuracy 0.9327 0.7682

shows sample orthogonally-transformed inputs from MNIST
and CIFAR-10 datasets. Although the resulting images are
indiscernible, a deep neural network is still theoretically guar-
anteed to learn by the universal approximation theorem [5].
For training outcomes to be comparable between a standard
network and an OPP network, identical training regimens and
computer resources were used, as described earlier in Section
V-A.

Table I shows the evaluation accuracy and training time
of the standard model and the proposed OPP model for
the MNIST and CIFAR-10 datasets. Note that both models
perform similarly on the MNIST data. For the CIFAR-10 data,
it seems that the OPP model underperforms with a drop in
accuracy of ∼16% and an additional 1h in training time. How-
ever, this is due to the fact that the adopted model (architecture
and hyperparameters) was optimized for the standard dataset
and not its OPP counterpart, i.e., the orthogonally-transformed
dataset. The OPP accuracy could match the standard training
model by using a network with higher model capacity and
more advanced training precautions. The time requirement
issue could also be mitigated if the orthogonal transformation
is done once prior to testing. In this experiment, the prepro-
cessing is done online, one image at a time.

D. Adversarial Robustness Evaluation

Figure 3 plots the fooling ratios of an undefended model
(blue curve) and the OPP defense approach (orange curve)
against FGSM and OSSA attacks, for MNIST and CIFAR-
10 datasets. There is a noticeable increase in robustness with

the proposed OPP - orthogonal transformation - approach for
both MNIST and CIFAR-10. Although the fooling tends to
increase monotonically with the ratio of noise to signal ϵ,
the real adversarial attack stops much earlier at the point of
being perceived by the naked human eye. In Figure 2, we
heuristically determined the maximum value of ϵ to be 0.3 for
MNIST and CIFAR-10 attacks to be perceptible.

E. OPP vs. EVS

To the best of our knowledge, our method and the method of
suppressing eigenvalues of the FIM (EVS) are the only defense
methods that intentionally manipulate the data manifold as
formulated in Eq. (13). In this section, we show that although
eigenvalues indicate the severity of the adversarial threat,
it is the directions, i.e., the eigenvectors, of the associated
eigenvalues that are the real menace.

Table II displays the fooling ratios of the proposed OPP
defense and the EVS technique at the perception threshold
of ϵ = 0.3. The OPP model achieves nearly half the fooling
ratio of the EVS model. Both methods are based on theoretical
foundations and manipulate the data manifold in such a way
to diminish the transferability property of black box attacks.

VI. CONCLUSION

In this study, the adversarial attack and defense were viewed
through an information geometric lens. From this perspective,
we introduced a method of orthogonally transforming the data
to directly manipulate the data manifold of a deep learning
model. More specifically, our defense changes the basis of



Fig. 3. Fooling Ratio of the proposed OPP defense. The y-axis displays the fooling ratio and the x-axis displays the noise to signal ratio. The blue curves
denote a standard (undefended) model and the orange curves denote the proposed OPP defense model - trained with orthogonal transformation of the data. The
attacks were generated using the FGSM and OSSA models. Observe that OPP consistently mitigates the effects of the attack as compared to an undefended
model.

TABLE II
COMPARISON OF THE FOOLING RATIOS BETWEEN THE PROPOSED OPP MODEL AND THE EVS MODEL AT THE PERCEPTION THRESHOLD OF

NOISE-TO-SIGNAL RATIO ϵ = 0.30.

Dataset
Attack Type

ϵ = 0.30

Fooling Ratio

OPP Model EVS Model

MNIST
FGSM 15% 34%

OSSA 28% 52%

CIFAR-10
FGSM 25% 49%

OSSA 24% 38%

the eigenvectors of the Fisher Information metric at each
point of the data manifold. The manipulation is unique to
the choice of the orthogonal matrix; thus, attackers without
knowledge of the specific orthogonal matrix are unable to
form black box attacks. We validated our method on two
poplar benchmark datasets, MNIST and CIFAR-10, against
two attack methods, FGSM and OSSA. In comparison with
the eigenvalue suppression (EVS) defense - the only other
method to our knowledge to leverage an information geometric
formulation - we consistently scored half fooling ratio.

The experiments were limited to image classification; yet,
the theory generalizes to many other machine learning tasks
that are vulnerable to adversarial attacks. An important obser-
vation is that the orthogonal matrix acts as a lock and key for
the data representation - like an encryption.

This paper considered a fixed random orthogonal transfor-
mation. Future work will investigate the effect of different
orthogonal transformations, or even a distribution of these
transformations, which could lead to theoretical properties and
bounds of the proposed OPP defense.
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