
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 1

TRustworthy Uncertainty Propagation for
Sequential Time-Series Analysis in RNNs
Dimah Dera, Sabeen Ahmed, Nidhal C. Bouaynaya, and Ghulam Rasool, Members, IEEE

Abstract—The massive time-series production through the Internet of Things and digital healthcare requires novel data modeling and
prediction. Recurrent neural networks (RNNs) are extensively used for analyzing time-series data. However, these models are unable
to assess prediction uncertainty, which is particularly critical in heterogeneous and noisy environments. Bayesian inference allows
reasoning about predictive uncertainty by estimating the posterior distribution of the parameters. The challenge remains in propagating
the high-dimensional distribution through the sequential, non-linear layers of RNNs, resulting in mode collapse leading to erroneous
uncertainty estimation and exacerbating the gradient explosion problem. This paper proposes a TRustworthy Uncertainty propagation
for Sequential Time-series analysis (TRUST) in RNNs by introducing a Gaussian prior over network parameters and estimating the first
two moments of the Gaussian variational distribution using the evidence lower bound. We propagate the variational moments through
the sequential, non-linear layers of RNNs using the first-order Taylor approximation. The propagated covariance of the predictive
distribution captures uncertainty in the output decision. The extensive experiments using ECG5000 and PeMS-SF classification and
weather and power consumption prediction tasks demonstrate 1) significant robustness of TRUST-RNNs against noise and adversarial
attacks and 2) self-assessment through the uncertainty that increases significantly with increasing noise.

Index Terms—Recurrent neural networks, uncertainty propagation, variational inference, gated recurrent units and long short-term
memory networks.

✦

1 INTRODUCTION

T IME-SERIES analysis and prediction are essential areas of
machine learning (ML). Many critical applications rely on

time-series analysis, including earthquake prediction, economic
forecasting and healthcare monitoring. Recurrent neural networks
(RNNs) are specialized artificial neural networks designed to pro-
cess and learn from sequential and time-series data [1], [2]. Pop-
ular variants of RNNs include long short-term memory (LSTM)
and gated recurrent unit (GRU) networks [3], [4], [5]. LSTMs and
GRUs employ multiple gates in their architecture to control the
information flow and overcome the vanishing gradients problem
of traditional RNNs [4]. These models have shown remarkable
success in dealing with time dependencies of the sequential data
and have achieved promising performance in various time-series
classification and prediction tasks [1], [2], [3], [5]. Applications
that demonstrate the success of LSTMs and GRUs include power
consumption estimation [6], [7], weather forecasting [8], health-
care diagnoses and disease prognoses [9], [10].

RNNs, like other traditional artificial neural networks, use
training data to learn point estimates of network parameters by
minimizing a loss function—a measure of discrepancy between
a ground truth and model predictions. During testing, the learned
network’s parameters are used to provide deterministic predictions
for any new data examples. RNN architectures do not provide
an estimation of uncertainty (or confidence) in the learnable
parameters or model predictions. However, acknowledging the
level of uncertainty in the model’s parameters and predictions is

• Dimah Dera is with the Department of Electrical and Computer Engineer-
ing, The University of Texas Rio Grande Valley, Brownsville, TX 78520.
E-mail: dimah.dera@utrgv.edu

• Sabeen Ahmed and Nidhal C. Bouaynaya are with the Department of
Electrical and Computer Engineering, Rowan University, Glassboro, NJ
08028.E-mail: ahmedsa@rowan.edu, bouaynaya@rowan.edu

• Ghulam Rasool is with the Machine Learning Department of Moffit Cancer
Center, Tampa, FL 33612. Email: ghulam.rasool@moffitt.org

critical for high-stake applications, e.g., financial prediction, legal
decision-making and medical diagnosis. Consider examples of
detecting heart failure or life-threatening arrhythmias by analyzing
the electrocardiogram (ECG) signal [10] or monitoring smart
grids, gas pipelines or aircraft engines [11], [12], [13]. Missing a
prediction due to artifacts in the time-series signals could endanger
human lives and significantly impact productivity. Uncertainty in
models’ decisions may serve as a warning and allow users to
explore alternative solutions, such as recommending additional
diagnostic tests and thus preventing tragic health, financial or
societal damage due to highly uncertain decisions.

Quantifying uncertainty in model predictions can justify the
behavior of a model under input data distribution shift (due to
predictions in noisy environments) and improves the generaliza-
tion on the out-of-distribution inputs [14]. Moreover, the vul-
nerability of neural networks to adversarial attacks—i.e., crafted
imperceptible (to humans) noise that misleads ML algorithms to
make erroneous output—has raised concerns and even halted the
deployment of RNNs and their variants in healthcare or safety-
critical applications [15], [16], [17]. The uncertainty or model
confidence provides valuable information to users for detecting
and tackling adversarial attacks [14].

Bayesian formulation facilitates a mathematically grounded
approach for estimating uncertainty in deep neural networks
(DNNs) [14]. In the Bayesian settings, we define a prior distri-
bution over the network parameters and estimate their posterior
distribution using Bayes’ rule after observing the training data.
The predictive distribution of any new data example can then
be computed by marginalizing out the network parameters. The
variance (or variance-covariance matrix in the multivariate case)
of the predictive distribution provides a quantitative measure of
uncertainty associated with the model’s prediction. However, due
to the non-linear structure of DNNs and the high dimensionality
of the parameter space, the exact Bayesian inference on the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 2

parameters is intractable. Variational inference is an effective and
extensively used method in the literature for approximating the
posterior distribution of DNNs’ parameters [18], [19], [20], [21].

The variational inference turns the probability density estima-
tion problem into an optimization problem by approximating the
unknown true posterior with a parameterized distribution, which
is generally a Gaussian distribution, by minimizing the Kullback-
Leibler (KL) divergence between the approximate and the true
distribution. The objective function is known as the evidence lower
bound (ELBO) [14], [18], [19], [20], [21], [22], [23], [24], [25].
The recent state-of-the-art Bayesian DNNs that used variational
inference for estimating uncertainty focused on fully connected
and convolutional neural networks (CNNs), such as Bayes-by-
backprop (BBB) [18], Bayes-CNN [19], Dropout-CNN [20] and
PremiUm-CNN [14]. Quantifying uncertainty in RNNs using
Bayesian deep learning has endured multiple challenges, includ-
ing propagating the variational distribution through the recurrent
architecture of RNNs, which may result in 1) mode collapse and
catastrophic variance underestimation, which lead to erroneous
estimation of the uncertainty [26], [27]; and 2) exacerbation of the
well-known gradient explosion problem in RNNs [28], [29].

1.1 Our Contributions

In this paper, we propose new sequential machine learning models
(i.e., new Bayesian recurrent neural networks) that are robust to
artifacts, noise, and adversarial attacks. These models can quantify
uncertainty in the predictions and self-assess their performance.
We start by defining a Gaussian distribution as a prior over RNN
parameters. Later, the variational posterior distribution is esti-
mated by minimizing the evidence lower bound (ELBO) objective
function. In the proposed Bayesian framework, the learnable net-
work parameters are random variables defined with a probability
distribution function. Therefore, all operations at each layer of
an RNN, LSTM or GRU are derived, considering the parameters
as random variables. These operations include (1) inner products
between two random vectors; (2) Hadamard products between
two random vectors; and (3) non-linear transformations operating
over random vectors, such as hyperbolic tangent (Tanh), sigmoid
and rectified Linear Unit (ReLU). We use the first-order Taylor
series to approximate the mean and covariance matrix of the
variational distribution after the non-linear activation functions. At
the network’s output, the mean vector represents the prediction or
classification decision, and the variance-covariance matrix reflects
the uncertainty associated with the output decision. We evaluate
the models’ performance for sequential time-series analysis. More
specifically, the contributions are summarized as follows.
1) Introduce TRustworthy Uncertainty propagation for Sequential

Time-series analysis (TRUST) framework for RNNs and their
variants, including LSTMs and GRUs. We adopt powerful
and computationally efficient statistical frameworks from se-
quential Bayesian estimation used for tracking probability
distributions in non-linear dynamical systems [30].

2) Establish the mathematical foundations for propagating the first
two moments (mean and covariance matrix) of the variational
probability distribution through non-linear layers of various
RNN, LSTM, and GRU architectures for analyzing time-series
data and quantifying uncertainty in the networks’ predictions.

3) Perform an extensive performance evaluation and analysis on
a variety of benchmark supervised classification and prediction
time-series datasets. Our experiments include weather and

power consumption as prediction tasks [31], [32], and PeMS-
SF and ECG5000 datasets as classification tasks [33].

4) Demonstrate significant robustness of the proposed TRUST
models (compared to the state-of-the-art Bayesian and deter-
ministic models) against random noise and adversarial attacks.
The TRUST robustness is achieved without significantly in-
creasing the number of parameters or computational cost at the
inference time.

5) Exploit the uncertainty information at the TRUST models
output (in the form of the variance-covariance matrix of the
predictive distribution) to self-assess the performance degrada-
tion and failure under noisy conditions and adversarial attacks.

The remainder of this paper is organized as follows. Section 2
presents a review of the related work in the area of Bayesian
RNNs. Section 3 explains the proposed TRUST framework in
detail for RNNs, LSTMs and GRUs. Section 4 elaborates on the
experimental settings used to evaluate the proposed TRUST mod-
els compared to the state-of-the-art Bayesian and deterministic
homologs. Experimental results are presented and discussed in
Section 5. Finally, we conclude this paper in Section 6.

2 RELATED WORK

Recently, Fortunato et al. extended BBB to RNNs (BBB-RNNs)
by introducing a fully factorized Gaussian distribution over net-
work parameters and formulating the ELBO objective function
for a truncated sequence of an unrolled RNN [21]. The authors
introduced a hierarchical posterior distribution over the parameters
to allow the networks to adapt locally to batches of data. Gal and
Ghahramani extended dropout-CNN [22] formulation to RNNs,
termed variational RNNs or VAR-RNNs [23]. The dropout in
RNNs was implemented by removing the same recurrent network
units at each time step, and randomly eliminating inputs, outputs,
and recurrent connections. Molchanov et al. applied sparse varia-
tional dropout (SparseVD) to RNNs with unbounded dropout rates
as a Bayesian compression approach that induced sparsity during
the training of RNNs [34]. Lobacheva et al. extended SparseVD
to GRU and LSTM models [35]. Later, Goel and Bajpai used
VAR-LSTM to quantify uncertainty in forecasting global sales
in hotel businesses [36], and Zhu and Laptev used the same
network for time-series anomaly detection at Uber [37]. Gan et al.
applied stochastic gradient Markov Chain Monte Carlo to learn
uncertainty in RNNs’ weights by adding gradient noise during
training and model averaging when testing [38]. Rangapuram et
al. introduced a probabilistic time series forecasting approach that
combined linear state space models with a parametrized learned
recurrent neural network. The forecast distribution was presented
in terms of Monte Carlo samples [39]. Salinas et al. proposed
a DeepAR (DAR) model that made probabilistic forecasts using
Monte Carlo samples to compute consistent quantile estimates
for all sub-ranges in the prediction horizon [40]. DAR model
performed a univariate forecast using an encoder-decoder LSTM
architecture. The decoder consists of a fully-connected layer with
two outputs, one for the mean and one for the standard deviation,
followed by a softplus activation function. DAR model parameters
were learned by optimizing a log-likelihood loss function [40].

These state-of-the-art uncertainty quantification techniques in
RNNs and their variants rely on a frequentist probability approach
or adopt dropout to quantify uncertainty [21], [23], [36], [37],
[38]. They follow Monte Carlo (MC) sampling by drawing one
random sample from the variational distribution and passing it

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 3

forward through the network layers. The moments of the varia-
tional distribution are generally not propagated through recurrent
layers or various operations within the RNN network. At test time,
the uncertainty in the model prediction is always estimated by
performing multiple passes (MC sampling) through the trained
model and computing the sample variance of the predictions.
Moreover, such measures of uncertainty in the model output
have not been extensively analyzed under noisy conditions, out-
of-distribution inputs, or adversarial attacks, nor there was a
variance-covariance versus Signal-to-Noise-Ratio (SNR) analysis
to evaluate the proposed measure of uncertainty.

There are other methods in the literature for estimating con-
fidence intervals of point predictions, including ensemble and
frequentist approaches [41], [42], [43], [44]. These ensemble and
frequentist RNNs are built by creating multiple perturbed versions
of the original RNN by re-sampling the optimal parameters. These
methods are usually post-hoc, that is, the RNNs are trained using
deterministic settings, ignoring the computation of uncertainty
or confidence during the training phase. We direct the reader
to survey articles for further details on estimating confidence
intervals of point predictions [45], [46].

3 PROPOSED METHOD

3.1 Mathematical Foundations of TRUST Models
This section provides the mathematical foundations of TRUST
models, including RNNs, LSTMs and GRUs. We adopt variational
inference and propagate the first two moments, i.e., the mean
vector and the variance-covariance matrix of the (multivariate)
variational distribution qϕ(Ω) through RNN layers, including non-
linear activation functions. We derive mathematical relations for
various operations within one cell of an RNN and extend the
framework to LSTM and GRU cells. By propagating the mean and
the covariance of the variational distribution, we obtain the mean
and the covariance of the predictive distribution p(y∗|X∗,D)
at the network output for any test sample (X∗,y∗). The mean
of p(y∗|X∗,D) represents the network’s prediction, while the
covariance matrix reflects the uncertainty in the prediction.

3.2 Bayesian Approximation and Variational Inference
We consider an RNN with L stacked layers assuming the param-
eters (weights and biases) are random variables and are shared
across recurrent states. The parameters are represented by Ω =
{W(l)}Ll=1, with biases augmented in weight matrices. The train-
ing dataset D is a set of N sequences, D = {X(n),y(n)}Nn=1,
where X(n) ∈ Rτ×K with τ denoting the length of the sequences
andK is the input vector size (number of features) and y(n) ∈ RC

with C representing the number of classes for classification tasks
or the number of output neurons for prediction tasks.

We introduce a Gaussian distribution as a prior probability
distribution over the network parameters Ω ∼ p(Ω). We assume
the parameters are independent across layers to 1) extract uncor-
related features across different network layers and 2) develop
a feasible optimization problem, as estimating the joint distri-
bution of all layers is mathematically intractable in large ML
models. Given the training sequences D and the prior distribution
p(Ω), the estimation of the posterior distribution p(Ω|D) is
typically intractable. The variational inference approximates the
true posterior p(Ω|D) with a parametrized variational distribution
qϕ(Ω). The optimization problem is formulated by minimizing the
Kullback-Leibler (KL) divergence, KL [qϕ(Ω)∥p(Ω|D)], which

is equivalent to optimizing the evidence lower bound (ELBO)
objective (or loss) function L(ϕ;D) using gradient decent update
rule during training of the Bayesian neural network [47],

L(ϕ;D) = −Eqϕ(Ω) {log p(D|Ω)}+ KL [qϕ(Ω)∥p(Ω)] . (1)

The ELBO loss function consists of two parts: 1) the negative
expected log-likelihood of the training data given the network
parameters; and 2) the regularization term, which is defined by
the KL-divergence between the proposed variational distribution
qϕ(Ω) and the prior distribution p(Ω).

3.3 Variational Moments Propagation in TRUST-RNNs
The operations in an RNN cell include a matrix-vector multiplica-
tion followed by an element-wise non-linear activation function,
e.g., hyperbolic tangent (Tanh). Fig. 1 illustrates the propagation
of moments of the variational distribution through the recurrent
states with an expanded view of operations performed within one
RNN cell. The current state, s(t) at time t, is given by:

s(t) = ψ(Ux(t) +Ws(t−1)), (2)

where x(t) ∈ RK×1 is the input vector at the time step t, U ∈
RH×K is the input-hidden weight matrix, W ∈ RH×H is the
recurrent weight matrix, s(t−1) ∈ RH×1 is the hidden state at
time t − 1, H is the number of hidden units and ψ is the non-
linear activation function (Tanh in this case).

We concatenate the matrices U and W as one large matrix,
W =

[
U W

]
. Similarly, the vectors x(t) and s(t−1) are

concatenated as a column vector, x̃ =
[
x(t) s(t−1)

]T
, where T

represents the transpose operation. We eliminate the super-script t
from x̃ to simplify the notations. Equation (2) is re-written as:

s(t) = ψ(b), where b = W x̃. (3)

Let wT
i ∈ R1×(K+H) be the ith row of the matrix W , where i =

1, . . . ,K + H . We introduce a prior, i.e., Gaussian distribution,
over the weight vector wi. The variational posterior will also be

............

𝐱(𝟏) 𝐱(𝒕−𝟏) 𝐱(𝒕) 𝐱(𝝉)

𝒚

Tanh𝐬(𝟎) 𝐬(𝟏) 𝐬(𝒕−𝟏) 𝐬(𝝉)

𝐬(𝒕)

2
............

1

1

2

K

𝐱(𝒕)

1

2

H

𝐬(𝒕−𝟏) 𝒊

H

𝐛

2

𝐰𝑖

1

𝒊

H

2

Tanh

𝐬(𝒕)

Single Cell

𝐬(𝒕+𝟏)

𝐱(𝒕+𝟏)

Fig. 1. A schematic layout of the proposed TRUST-RNN with the vari-
ational moments propagation (represented by the bell-shaped distri-
bution). The bottom box shows an expanded view of operations per-
formed inside a single RNN cell. The blue, green, and yellow colors
represent the input, hidden state, and the non-linear activation function,
respectively. In the proposed settings, the weights wi, the recurrent
states s(t), the output of the inner product b (between weights and the
concatenated state and input) are all random vectors.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 4

a Gaussian distribution, wi ∼ N (µwi
,Σwi

) where the mean
and covariance are estimated by optimizing the ELBO objective
function (1) during training of the network. The input x(t) and the
state s(t) are assumed to be mutually independent random vectors
with the mean and covariance defined as x(t) ∼ (µx(t) ,Σx(t))
and s(t−1) ∼ (µs(t−1) ,Σs(t−1)), respectively. Although x(t) and
s(t) may not necessarily follow Gaussian distributions, we assume
that their distribution functions can be approximated by a mean
vector and a variance-covariance matrix. We further assume that
the weight vectors wi are independent of each other and also
independent of the input x(t) and the state s(t). The mean and the
covariance of the concatenated random vector x̃ are then given by:

µx̃ =
[
µx(t) µs(t−1)

]T
, Σx̃ =

[
Σx(t) 0
0 Σs(t−1)

]
. (4)

Every element of b in (3) is the result of an inner product between
two independent random vectors wi and x̃, that is, bi = wT

i x̃.
The mean and the covariance of the resulting random vector b
are derived using Proposition 1. The proof of Proposition 1 is in
Appendix A in the supplementary materials.
Proposition 1. (mean and covariance propagation through an inner

product of two independent random vectors)

µbi = µT
wi

µx̃, (5)

Σb =

{
tr
(
Σwi Σx̃

)
+ µT

wi
Σx̃ µwj + µT

x̃ Σwi µx̃, i = j

µT
wi

Σx̃ µT
wj
, i ̸= j

where i, j = 1, · · · ,K +H , and tr represents the trace operator.
Non-linear Activation Function: The non-linear activation

function ψ operates element-wise on b. The mean and the co-
variance at the output of ψ are approximated using the first-order
Taylor series [48] as:

µs(t) ≈ ψ(µb), Σs(t) ≈ Σb ⊙
(
∇ψ(µb) ∇ψ(µb)

T
)
, (6)

where ∇ represents the gradient of the function ψ with respect to
b and ⊙ is the Hadamard product. The Equations in (6) hold true
for any non-linear activation function that operates element-wise,
including Tanh, sigmoid, or rectified Linear Unit (ReLU).

3.4 Variational Moments Propagation in TRUST-LSTMs
3.4.1 The Structure of an LSTM
The LSTM network was introduced by [49] to overcome the
vanishing gradient problem in RNNs. An LSTM cell consists
of four gates, i.e., input, forget, output, and gate gates and an
additional state, referred to as the cell state or memory cell c(t).
The four gates, along with the two states (c(t) and s(t)), control
the flow of information inside the LSTM cell and help avoid
gradient vanishing/exploding problem. The input gate i(t) controls
the information from the gate gate, g(t), that is read into the cell
state c(t). The forget gate f (t) removes the content of the cell
state and the output gate o(t) reads the output from the cell state.
Similar to the RNN cell, the input and hidden state vectors are
concatenated together, x̃ =

[
x(t) s(t−1)

]T
. The input, forget,

output and gate gates perform the following operations:

i(t) = ψs(ĩ), where ĩ = W(i) x̃,

f (t) = ψs(f̃), where f̃ = W(f) x̃,

o(t) = ψs(õ), where õ = W(o) x̃,

g(t) = ψ(g̃), where g̃ = W(g) x̃,

(7)

where ψs and ψ refer to the sigmoid and Tanh activation functions
and W(i), W(f), W(o) and W(g) are the weight matrices of the
input, forget, output and gate gates, respectively. Note that we
have dropped the super-script t from the vectors ĩ, f̃ , õ, and g̃ to
simplify the mathematical notations. At time t, the cell state c(t)

and the hidden state s(t) are updated as follows:

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ g(t), (8)

s(t) = o(t) ⊙ ψ(c(t)). (9)

3.4.2 TRUST-LSTM
Fig. 2 presents the TRUST-LSTM network with detailed
operations performed inside one cell. We first consider
(wi

i)
T , (wf

i)
T , (wo

i)
T and (wg

i)
T ∈ R1×(K+H), which repre-

sent ith rows of the matrices W(i), W(f), W(o), and W(g),
respectively, where i = 1, . . . ,K + H . We introduce Gaussian
prior distributions over the weight vectors wi

i, w
f
i , wo

i , and wg
i .

The variational distributions are given by: wi
i ∼ N (µwi

i
,Σwi

i
),

wf
i ∼ N (µwf

i
,Σwf

i
), wo

i ∼ N (µwo
i
,Σwo

i
) and wg

i ∼
N (µwg

i
,Σwg

i
). The weight vectors are assumed to be indepen-

dent of each other and independent of the input x̃. We write the
individual elements of the vectors ĩ, f̃ , õ, and g̃ in (7) as follows:

ĩi = (wi
i)

T x̃, f̃i = (wf
i)

T x̃,

õi = (wo
i)

T x̃, g̃i = (wg
i)

T x̃.
(10)

Each of these elements is the result of an inner product between
two independent random vectors (weights-inputs vectors). There-
fore, the mean and the covariance of ĩ, f̃ , õ and g̃ are derived
using Proposition 1.

Gates Activation Functions in LSTM: The mean and
variance-covariance matrices at the output of the non-linear ac-
tivation functions ψs and ψ in (7) are derived using the first-order
Taylor series approximation [48],

µi(t) ≈ ψs(µĩ), Σi(t) ≈ Σĩ ⊙
(
∇ψs(µĩ) ∇ψs(µĩ)

T
)
,

µf (t) ≈ ψs(µf̃), Σf (t) ≈ Σf̃ ⊙
(
∇ψs(µf̃) ∇ψs(µf̃)

T
)
,

µo(t) ≈ ψs(µõ), Σo(t) ≈ Σõ ⊙
(
∇ψs(µõ) ∇ψs(µõ)

T
)
,

µg(t) ≈ ψ(µg̃), Σg(t) ≈ Σg̃ ⊙
(
∇ψ(µg̃) ∇ψ(µg̃)

T
)
.

(11)

Tanh SigmoidSigmoidSigmoid

Tanh

𝐱(𝒕)
𝐬(𝑡−1)

𝐜(𝑡−1) 𝐜(𝑡)

𝐬(𝑡)

𝐟(𝑡) 𝐢(𝑡) 𝐨(𝑡)𝐠(𝑡)

𝓦(𝐟) 𝓦(𝐠) 𝓦(𝐢) 𝓦(𝐨)

𝐢(𝑡)⨀𝐠(𝑡)

𝐟(𝑡)⨀ 𝐜(𝑡−1)
⨀

⨀ ⨀

෤𝐱

+

𝐱(𝟏) 𝐱(𝒕−𝟏) 𝐱(𝒕) 𝐱(𝝉)

𝒚

LSTM
Cell

𝐬(𝟎) 𝐬(𝟏) 𝐬(𝒕−𝟏) 𝐬(𝝉)

𝐬(𝒕)
Single Cell

𝐜(𝟎) 𝐜(𝟏) 𝐜(𝒕−𝟏) 𝐜(𝒕)

𝐱(𝒕+𝟏)

𝐬(𝒕+𝟏)
𝐜(𝒕+𝟏)

Fig. 2. A schematic layout of TRUST-LSTM with a detailed view of the
operations in an LSTM cell. The following color coding is used: blue color
for the input {x(t)}τt=1, green color for the hidden state {s(t)}τt=1, red
color for the concatenated input and hidden state x̃ =

[
x(t) s(t−1)

]T ,
purple color for outputs of gates, grey color for the cell memory/state
{c(t)}τt=1, and orange color for the activation functions.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 5

Cell State/Memory c(t): The derivation of the mean and
covariance of the cell state c(t) requires propagating the moments
through the Hadamard product. We rewrite (8) as:

c(t) = c̃1+ c̃2, where c̃1 = f (t)⊙c(t−1) and c̃2 = i(t)⊙g(t).
(12)

The three gates, f (t), g(t), i(t), and the cell state, c(t−1), are
assumed to be uncorrelated to each other, resultantly c̃1 and c̃2 are
also uncorrelated. Under this condition, the mean and covariance
of c̃1 (and similarly for c̃2) are derived according to Proposition
2 (the proof is in Appendix B in the supplementary materials).
Proposition 2. (mean and variance-covariance propagation

through a Hadamard product)

µc̃1 = µf (t) ⊙ µc(t−1) , (13)

Σc̃1 = Σf (t) ⊙Σc(t−1) + diag(µf (t)) Σc(t−1) diag(µf (t))

+ diag(µc(t−1)) Σf (t) diag(µc(t−1)),

where diag(µf (t)) represents the diagonal matrix whose entries
are given by the column vector µf (t) . Finally, the mean and
covariance of the cell state c(t) are derived as follows:

µc(t) = µc̃1
+ µc̃2

, Σc(t) = Σc̃1
+Σc̃2

. (14)

Hidden State s(t) in LSTM: To find the mean and
variance-covariance of the hidden state, we rewrite (9) as follows:

s(t) = o(t) ⊙ s̃(t), where s̃(t) = ψ(c(t)). (15)

The moments after the element-wise non-linear transformation in
(15) are approximated using Taylor series,

µs̃(t) ≈ ψ(µc(t)),

Σs̃(t) ≈ Σc(t) ⊙
(
∇ψ(µc(t)) ∇ψ(µc(t))T

)
.

(16)

Then, the moments of the hidden state s(t) in (15) are derived
using Proposition 2 (propagation through the Hadamard product).

3.5 Variational Moments Propagation in TRUST-GRUs
3.5.1 The Structure of a GRU
The GRU network, introduced by [50], has a simpler internal
structure than LSTM, i.e., two gates, a reset gate and an update
gate. The reset gate r(t) filters out previously retained irrelevant
information from the hidden layer, and the update gate z(t)

controls the information added to the hidden state. The input and
the hidden state from the previous time step are concatenated,
x̃ =

[
x(t) s(t−1)

]T
, and linearly combined with weight matrices.

Using sigmoid activation functions ψs, the outputs of reset and
update gates are given as the following:

r(t) = ψs(r̃), where r̃ = W(r) x̃,

z(t) = ψs(z̃), where z̃ = W(z) x̃,
(17)

where W(r) and W(z) are weight matrices of the reset and update
gates, respectively. Before we calculate the current hidden state
s(t), we need to build a candidate hidden state h(t) using the
concatenation of the input x(t) with [s(t−1) ⊙ r(t)], that is:

x̂ =
[
x(t) s(t−1) ⊙ r(t)

]T
, (18)

h(t) = ψ(h̃), where h̃ = W(h) x̂, (19)

where W(h) is the weight matrix of the candidate hidden state.
Now, the hidden state s(t) is given by the following:

s(t) = z(t) ⊙ s(t−1) + (1− z(t))⊙ h(t). (20)

3.5.2 TRUST-GRU
Fig. 3 presents the general structure of a TRUST-GRU network
and operations performed within one GRU cell. Similar to TRUST-
LSTM, we derive the propagation of the mean and the variance-
covariance matrix of the variational posterior distribution function
through a single GRU cell.

Consider (wr
i)

T , (wz
i)

T and (wh
i)

T ∈ R1×(K+H) to be the
ith rows of the matrices W(r), W(z) and W(h), respectively,
where i = 1, . . . ,K + H . We introduce a Gaussian distribution
as the prior over the weight vectors wr

i , wz
i , and wh

i . The
variational distributions are given as: wr

i ∼ N (µwr
i
,Σwr

i
),

wz
i ∼ N (µwz

i
,Σwz

i
), and wh

i ∼ N (µwh
i
,Σwh

i
). In our

settings, the weight vectors are assumed to be independent of each
other and of the input x̃ and x̂. Every element of the random
vectors r̃ and z̃ in (17) can be written as an inner product between
two independent random vectors, such as r̃i = (wr

i)
T x̃ and

z̃i = (wz
i)

T x̃. Therefore, the mean and covariance of the random
vectors r̃ and z̃ are derived using Proposition 1.

Gates Activation Functions in GRU: We approximate the
mean and covariance at the output of the non-linear activation
function ψs in the reset and update gates, given in (17), using the
first-order Taylor series as:

µr(t) ≈ ψs(µr̃), Σr(t) ≈ Σr̃ ⊙
(
∇ψs(µr̃) ∇ψs(µr̃)

T
)
,

µz(t) ≈ ψs(µz̃), Σz(t) ≈ Σz̃ ⊙
(
∇ψs(µz̃) ∇ψs(µz̃)

T
)
.

(21)

Hidden State s(t) in GRU: We start with the candidate
state h(t) and the concatenation operation as defined in (18) and
(19). By introducing a = s(t−1) ⊙ r(t), we can derive the mean
and the covariance of a using Proposition 2. Thus, the mean and
the covariance matrix of x̂ in (18) are given as follows:

µx̂ =
[
µx(t) µa

]T
, Σx̂ =

[
Σx(t) 0
0 Σa

]
. (22)

The mean and covariance matrix of h(t) as defined in (19)
are derived using Proposition 1 and then the first-order Taylor

TanhSigmoidSigmoid

+

𝐱(𝒕)

𝐬(𝑡−1)

𝐡(𝑡)

𝐬(𝑡)

𝒓(𝑡) 𝐳(𝑡)𝐚

𝓦(𝐫) 𝓦(𝐳) 𝓦(𝐡)

(𝟏 − 𝒛(𝑡)) ⨀𝐡(𝑡)

𝒛(𝑡)⨀ 𝐬(𝑡−1)
⨀

⨀ 𝟏 − ⨀

෤𝐱

ො𝐱

𝐱(𝟏) 𝐱(𝒕−𝟏) 𝐱(𝒕) 𝐱(𝝉)

𝒚

GRU
Cell

𝐬(𝟎) 𝐬(𝟏) 𝐬(𝒕−𝟏) 𝐬(𝝉)

𝐬(𝒕)

Single Cell

𝐬(𝒕+𝟏)

𝐱(𝒕+𝟏)

Fig. 3. A schematic layout of the proposed TRUST-GRU. One GRU cell
is expanded in the bottom view. The following color scheme is used:
blue for the input vector x(t), green for the hidden states s(t), red for
the concatenated input-state vector x̃ =

[
x(t) s(t−1)

]T , gray for the
concatenated vector x̂ =

[
x(t) s(t−1) ⊙ r(t)

]T , purple for the output
of Hadamard product between two vectors or an output of a non-linear
activation function, and orange for the activation functions.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 6

series approximation (following (21)). Finally, we rewrite the
hidden state s(t) (defined in (20)) as, s(t) = s̃1 + s̃2,, where
s̃1 = z(t) ⊙ s(t−1) and s̃2 = (1 − z(t)) ⊙ h(t). The mean and
the covariance of s̃1 and s̃2 are derived using Proposition 2. Since
s̃1 and s̃2 are correlated, the mean and the variance-covariance
matrix of the current hidden state s(t) are derived as follows:

µs(t) = µs̃1 + µs̃2 ,

= µz(t) ⊙ µs(t−1) + (1− µz(t))⊙ µh(t) . (23)

Σs(t) = Σs̃1 +Σs̃2 +Σs̃1s̃2 +ΣT
s̃1s̃2 ,

= Σz(t) ⊙Σs(t−1) + diag(µz(t)) Σs(t−1) diag(µz(t))

+ diag(µs(t−1)) Σz(t) diag(µs(t−1)) +Σz(t) ⊙Σh(t)

+ diag(1− µz(t)) Σh(t) diag(1− µz(t))

+ diag(µh(t)) Σz(t) diag(µh(t))−Σz(t) ⊙ µs(t−1) µT
h(t)

− Σz(t) ⊙ µh(t) µT
s(t−1) , (24)

where Σs̃1s̃2 is the cross-covariance matrix of the two random
vectors s̃1 and s̃1 (detailed derivation of Σs̃1s̃2 is in Appendix C
in the supplementary materials).

3.6 Model Output and Loss Function
For the prediction tasks, the output of the network (RNN, LSTM,
or GRU) consists of a fully-connected layer, ỹ = W(y) s(T),
where W(y) is the weight matrix. We use Proposition 1 to
propagate the mean and the variance of the output.

In the case of classification problems, the network’s output
layer has a softmax function φ, i.e., ŷ = φ(ỹ) after the fully-
connected layer. Even though the softmax function does not
operate element-wise, we can use the Taylor series to approximate
the mean µŷ and the covariance matrix Σŷ as follows [30]:

µŷ ≈ φ(µỹ), Σŷ ≈ JφΣỹJ
T
φ , (25)

where Jφ is the Jacobian matrix of the softmax function φ
evaluated at µỹ.

In the ELBO loss function in (1), we assume a diagonal
covariance matrix for the initial variational distribution and use
the first-order Taylor series to approximate the expectation. Thus,
the expected log-likelihood in (1) is written as:

Eqϕ(Ω){log p(D|Ω)} ≈ (26)

− 1

2N

N∑
i=1

τ∑
t=1

[
log(|Σi

ŷt
|) + (yi

t − µi
ŷt
)T (Σi

ŷt
)−1(yi

t − µi
ŷt
)
]
,

where N refers to independently and identically distributed (iid)
data points (i.e., sequences of data observations), yi

t is the ground
truth output of the ith data sequence (t = 1, . . . , τ time steps)
and µi

ŷt
and Σi

ŷt
are the mean and the covariance matrix of the

predicted output at time t, i.e., ŷt, of the TRUST model.
The regularization term in (1) is the KL-divergence between

two multivariate Gaussian distributions, i.e., the variational pos-
terior distribution and the prior distribution, defined over the
network parameters for all hidden units H in the RNN, LSTM,
or GRU network and the fully-connected layers [51]. KL regular-
ization terms for TRUST-RNN, TRUST-LSTM and TRUST-GRU,
are explained in Appendix D in the supplementary materials.

RNNs, LSTMs and GRUs can be set up in many different
ways depending upon the problem, and the dataset, such as one-
to-one, one-to-many, many-to-one, many-to-many, and many-to-
many with a bottleneck (encoder-decoder type) [52]. The expected

log-likelihood in the ELBO loss function presented in (26) is
applicable for all arrangements. For the one-to-one and many-
to-one arrangements, we have t = τ . The propagation of the
mean and the variance-covariance, as well as the KL divergence
regularization terms do not require any modification for handling
different output arrangements. Moreover, the mean and covariance
propagation through the TRUST models presented above can be
easily extended to different variations of LSTM and GRU models,
including stacked and bidirectional architectures [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62].

3.7 Back-propagation Through Time (BPTT)

The back-propagation operation, referred to as BPTT in sequence-
based models, involves computing the gradient of the ELBO loss
function L(ϕ;D) with respect to the variational parameters ϕ.
BPTT for the TRUST models is performed using libraries such as
PyTorch, TensorFlow or JAX. For the TRUST models, the set of
parameters ϕ includes the mean vectors and variance-covariance
matrices of weights and biases in RNN, LSTM or GRU networks
and in the output layer. Finally, the gradient ∇ϕL(ϕ;D) is used
to update the parameters ϕ using the gradient descent update rule.

4 EXPERIMENTS

This section explains the experimental settings used to evaluate the
proposed TRUST-LSTMs and TRUST-GRUs, against the state-
of-the-art Bayesian and deterministic homologs. We exclude the
simple RNN architecture (i.e., without the gates structure) from
the simulation because it is well-known that simple RNNs suffer
from vanishing and exploding gradient problems due to long-term
dependencies, which make RNNs very impractical [28], [63], [64],
[65], [66]. We focus on classification and univariate prediction (or
forecasting) tasks in the experiments. The simulation can be easily
extended to multivariate forecasting cases and other time-series
tasks. In our experiments, TRUST models are compared with
Bayes-by-backprop recurrent neural networks (BBB-RNNs) [21],
variational or VAR-RNNs [23], DeepAR (DAR) [40] and deter-
ministic (DET-RNNs) in both LSTM and GRU configurations us-
ing five different datasets. The original DAR model architecture in
the literature includes only the LSTM network for prediction tasks
[40]. Thus, we compare with DAR-LSTM in our simulation on
prediction datasets. The experiments include training, validating
and testing 34 different neural networks, i.e., four models (TRUST,
BBB, VAR and DET), two configurations (LSTM and GRU),
four datasets and the DAR model on the two prediction datasets.
The datasets include weather and power consumption datasets for
the prediction tasks [31], [32], and ECG5000 and PeMS-SF for
the classification tasks [33]. Appendix E in the supplementary
materials provides a detailed description of the datasets. Table 1
presents the architectural hyper-parameters, including the number
of layers, the number of hidden units in each layer, and the batch
size for each dataset. These hyper-parameters are the same for
all five models (TRUST, BBB, VAR, DAR, and DET) and both
configurations (LSTM and GRU). Adam algorithm is used as the
optimizer [67] with a decaying learning rate (LR) and polynomial
schedule [68]. The number of epochs, initial and final learning
rate (LR), and the KL weighting factors are presented for TRUST
models in Table 1 (columns 5 - 8). For all other models, we fine-
tune these four hyper-parameters to ensure the convergence of
each model to its best performance. The KL weighting factor for

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 7

the PeMS-SF dataset is set to 10−3 for the TRUST-LSTM model
and 0.01 for the TRUST-GRU model1.

4.1 Robustness Analysis
We establish the robustness of TRUST models against additive
Gaussian noise and adversarial attacks compared to BBB, VAR,
DAR, and DET models. The robustness analysis is performed on
the trained and validated models for respective datasets. First, we
evaluate the performance of each model on clean test data (without
noise). Then, different Gaussian or adversarial noise levels are
added to the test examples to evaluate each model’s performance.

Three levels of Gaussian noise are used, low, medium, and
high, determined by the noise required to introduce sufficient
distortion in the test examples. We use standard deviation (SD)
to define the noise levels for each dataset (Table 2).

The adversarial examples are generated using the fast gradient
sign method (FGSM) and the basic iterative method (BIM) [69],
[70]. We use untargeted attacks for the prediction tasks and both
targeted and untargeted attacks for the classification tasks. We use
three levels of severity for both types of adversarial attacks. The
severity of attacks is defined using ϵ as given below [70]:

XFGSM = X+ ϵ sign
[
∇X J(X, ytrue)

]
, (27)

XBIM
k+1 = ClipX,ϵ

{
XBIM

k α sign
(
∇X J(XBIM

k , ytrue)
)}
, (28)

where J is the ELBO objective function in (1), α is the step-size, k
is the number of iterations for the BIM attack, and XBIM

0 = X. We
choose α = 1 and set the maximum number of iteration to 100.
The clip operation in (28) is ∥α sign(∇X J(XBIM

k , ytrue))∥ < ϵ
and ∥XBIM

k + α sign(∇X J(XBIM
k , ytrue))∥ ∈ [0, 1]. Table 2

provides ϵ values for the three levels of attacks applied to the test
examples of each dataset.

4.2 Variance-vs-SNR Analysis
The proposed TRUST models provide the output prediction and
uncertainty information simultaneously in the form of the pre-
dictive distribution’s mean and variance-covariance matrix. The
analysis of uncertainty under noisy conditions (when the networks
are subject to Gaussian noise or adversarial attacks) provides
insights into the network’s performance after deployment and
possible detection of models’ failure due to changes in the input.

We perform a detailed analysis of the predictive variance for
TRUST, BBB, VAR and DAR models at various levels of Gaussian
noise and adversarial attacks. The variance analysis involves, first,
testing the trained models on clean test data and then gradually
increasing the noise level (Gaussian or adversarial) in the test data.
The amount of noise at each level is measured using the signal-to-
noise ratio (SNR). The average predictive variance is calculated
for all the test examples at each noise level.

For the prediction tasks, the outputs of the TRUST models
consist of a predictive mean value and a single variance value
for each sample at the next time step. In contrast, for the clas-
sification tasks, the outputs contain a predictive mean vector and
a variance-covariance matrix that shows uncertainty in all classes
(diagonal elements) and the correlation between different classes
(off-diagonal elements). We use the variance, i.e., the diagonal
value corresponding to the predicted class, for our analysis.

The predictive variance for BBB and VAR models is the
sample variance between different predictions using 20 forward

1Source code available at https://github.com/dimahdera/TRUST-RNNs.git

TABLE 1
Datasets and hyperparameters used in the experiments.

Dataset No. of Hidden Batch No. of Initial Final KL Weight
Layers units size epochs LR LR Factor

Weather 2 30 200 50 10−3 10−6 10−3

Power 4 100 14 200 10−4 10−5 10−4

ECG5000 2 200 50 100 10−3 10−5 10−4

PeMS-SF 2 400 10 600 10−4 10−6 10−3 / 0.01

TABLE 2
The levels of Gaussian noise (standard deviation (SD)) and the severity
of adversarial attacks (ϵ) used in the experiments for all four datasets.

Dataset Gaussian Noise (SD) Adversarial Attacks (ϵ)
Low Med High Low Med High

Weather 0.05 0.1 0.2 0.05 0.1 0.2
Power consumption 0.05 0.1 0.2 0.05 0.1 0.2

ECG5000 0.1 0.3 0.5 0.001 0.05 0.07
PeMS-SF 0.05 0.1 0.2 10−4 0.003 0.005

passes (MC samples) through the respective network for each test
example. We subtract the average predictive variance at zero noise
(clean test examples) from the variance values at each noise level.
The resulting average predictive variance values are plotted against
the respective SNR values to produce variance-vs-SNR curves.

The variance-vs-SNR curves in Section 5 are interpreted from
right to left. The average predictive variance for test data, having
very high SNR (low noise), is plotted as a point on the extreme
right side of the graph. The addition of noise leads to a decrease in
the SNR values, moving from right to left. The extreme left point
presents average variance at the lowest SNR (highest noise).

4.3 Statistical Analysis

We perform statistical analysis to establish whether TRUST
models perform significantly better as compared to BBB, VAR,
DAR, and DET models. Given the non-normal nature of the
data, i.e., RMSE and classification accuracy, we use the two-
sided Wilcoxon signed-rank test to perform pair-wise comparisons
between TRUST and other models, e.g., TRUST-GRU vs. BBB-
GRU or TRUST-LSTM vs. VAR-LSTM. We highlight the statisti-
cally significant differences in RMSE or classification accuracy
of TRUST models compared to BBB, VAR, DAR, or DET
models using a (†) or a (⋆). The former symbol shows statistical
significance at the level of 99% and the latter at 95%.

In the variance-vs-SNR analysis, we aim to identify the noise
level that results in a statistically significant increase in the
predictive variance. Therefore, we perform pair-wise comparisons
between the average predictive variance at each noise level and
the variance at zero noise (clean test data) using the Wilcoxon
signed-rank test. The significance level is 95%, and the point of
the significant increase in the predictive variance is marked with a
(∗) on the variance-vs-SNR curves.

5 RESULTS AND DISCUSSION

5.1 Performance Analysis and Robustness

This section evaluates the performance and establishes the ro-
bustness of the proposed TRUST models compared to BBB,
VAR, DAR, and DET models. The Root Mean Square Error
(RMSE) demonstrates the performance metric of the models on
the prediction tasks, and the classification accuracy is the metric
for the classification tasks.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 8

5.1.1 Prediction Tasks

Table 3 presents RMSE values of the TRUST, BBB, VAR, and
DET models in both LSTM and GRU configurations and the DAR-
LSTM model for the weather and power consumption datasets.
The RMSE values are reported for the test data before and after
adding three levels of Gaussian noise and adversarial attacks.
Lower RMSE values demonstrate better performance. We observe
that increasing the level of Gaussian noise or adversarial attacks
results in an increase in the RMSE for all models. However, at
higher noise levels, TRUST models perform significantly better
than all other models. The bold font refers to the model that
significantly outperforms all tested models.

Weather dataset: In Table 3(a), we observe that for the noise-
free case, the proposed TRUST-LSTM/GRU models perform sig-
nificantly better than VAR, DAR, and DET models yet slightly
worse than BBB models. However, as the level of Gaussian noise
increases, the TRUST models maintain significantly lower RMSE.
On the other hand, TRUST models significantly outperform all
other models (p < .01 for all pair-wise comparisons) for higher
levels of FGSM and BIM adversarial noise.

Power consumption dataset: Table 3(b) shows that TRUST-
LSTM significantly outperforms all other models (p < .01) when
Gaussian noise or adversarial attack is added to the test set. Yet,
TRUST-GRU performs significantly better than all other models,
only at high levels of Gaussian noise and adversarial attacks.

5.1.2 Classification Tasks

Table 4 presents classification accuracy for TRUST, BBB, VAR,
and DET models in both LSTM and GRU configurations for
PeMS-SF and ECG5000 datasets. The classification accuracy is

TABLE 3
Test RMSE of TRUST-LSTM/GRU compared to BBB, VAR, DAR, and
DET models. All models are tested using (1) noise-free test data, (2)

three levels of Gaussian noise, and (3) two types of adversarial attacks,
FGSM and BIM, with three levels of attack severity.

Noise LSTM Models GRU Models
TRUST BBB VAR DAR DET TRUST BBB VAR DET

(a) Weather Dataset
No noise .024 .021† .034† .032† .025 .028 .026† .037† .039†

G
au

ss
ia

n Low .028 .026† .036† .034† .029 .031 .031 .039† .047†

Med .036 .036 .041† .037 .037 .04 .042† .042† .062†

High .063 .065† .066† .064† .067† .063 .07† .056† .105†

FG
SM

Low .058 .102† .091† .058 .083† .059 .083† .095† .135†

Med .105 .179† .146† .105 .142† .104 .142† .152† .226†

High .199 .302† .243† .217† .248† .197 .255† .252† .387†

B
IM

Low .059 .102† .091† .059 .083† .059 .083† .096† .135†

Med .105 .179† .146† .161 .142† .105 .143† .154† .226†

High .2 .302† .243† .220† .248† .198 .256† .253† .387†

(b) Power Consumption Dataset
No noise .508 .511† .5 .544† .496† .508 .519† .497† .495†

G
au

ss
ia

n Low .546 .583† .55⋆ .582† .573† .566 .591† .542† .585†

Med .619 .745† .67† .673† .75† .653 .755† .651 .798†

High .802 1.172† 1.012† .867† 1.2† .862 1.211† .968† 1.386†

FG
SM

Low .788 .937† .844† .857† .957† .877 .938† .812† .999†

Med 1.01 1.315† 1.143† 1.141† 1.349† 1.101 1.315† 1.093 1.404†

High 1.353 1.973† 1.666† 1.589† 1.993† 1.368 1.958† 1.612† 2.107†

B
IM

Low .768 .937† .836† .902† .946† .857 .949† .817† .999†

Med 1.001 1.326† 1.134† 1.165† 1.348† 1.107 1.343† 1.097 .1.416†

High 1.319 1.998† 1.663† 1.547† 2.054† 1.306 2.039† 1.612† 2.131†

measured on the clean test data and after adding three levels of
Gaussian and adversarial noise (using targeted and untargeted
settings) to the test data. For the targeted adversarial attacks,
the target class is class label 3. We notice that there are no
statistical differences between the performance of TRUST and
other models on the clean test dataset. However, when Gaussian
and particularly targeted/untargeted adversarial noise is added to
the test data, the TRUST models significantly outperform BBB,
VAR, and DET models. The bold font in Table 4 refers to the
model that significantly outperforms all tested models.

5.2 Uncertainty and Self-Assessment

We use the predictive variance, at the output of the TRUST mod-
els, as a quantitative metric to assess their performance without
any additional data processing or computational burden. We refer
to this as self-assessment since the TRUST models can ascertain
whether their predictions are trustworthy based on the variance
information. For example, high variance reflects high uncertainty
or low confidence in the prediction.

5.2.1 Prediction Tasks
Figs. 4(i) and 5(i) present variance-vs-SNR (left sub-figures) and
RMSE-vs-SNR (right sub-figures) for TRUST, BBB, VAR, and
DAR LSTMs using weather and power consumption datasets,
respectively. Figs. 4(ii) and 5(ii) present similar plots for TRUST,
BBB, and VAR GRUs. We interpret variance-vs-SNR curves from
right to left in all plots. The (∗) in the variance plots (left sub-
figures) indicates the significant increase (p < .05) in the average
predictive variance and the corresponding SNR value. In the
RMSE plots (right sub-figures), the (∗) refers to the corresponding
RMSE values when the variance becomes significantly higher.

We notice that with the increasing noise level (or equivalently
decreasing SNR) for both Gaussian and adversarial noise, the
RMSE values of all models increase. However, TRUST models
maintain lower RMSE, and the average predictive variance of the
TRUST models increases significantly. The TRUST models can
use this significant increase in the predictive variance to assess
their own performance (self-assessment). Predictive variance in
BBB, VAR, and DAR models does not show such behavior.

Weather dataset: With a decreasing SNR, we observe that the
TRUST-LSTM variance significantly increases at SNR ≤ 8 dB for
the Gaussian noise (Fig. 4(i)(a)) and for both types of adversarial
attacks, FGSM (Fig. 4(i)(c)) and BIM (Fig. 4(i)(e)). The right sub-
figures in Fig. 4(i) show that the RMSE increases from 0.024 at
high SNR values to 0.063 for Gaussian noise (Fig. 4(i)(b)) and 0.2
for both FGSM and BIM (Fig. 4(i)(d and f)) at the (∗) point. Thus,
when the TRUST models are less accurate (higher RMSE values),
they become uncertain (significant increase in the variance). The
DAR variance increases at high levels of adversarial attacks (SNR
≤ 4 dB), failing to detect the attacks at multiple earlier levels.

In Fig. 4(ii), the significant increase in the TRUST-GRU
variance is observed at SNR ≤ 8 dB for the Gaussian noise (Fig.
4(ii)(a)) and at SNR ≤ 14 dB for the FGSM (Fig. 4(ii)(c)) and
BIM (Fig. 4(ii)(e)). The right sub-figures in Fig. 4(ii) show that
the RMSE of TRUST-GRU increases from 0.028 at high SNR
values to 0.063 for Gaussian noise (Fig. 4(ii)(b)) and 0.11 for both
FGSM and BIM (Fig. 4(ii)(d and f)). The variance-vs-SNR curves
of BBB and VAR models (Fig. 4(i) and 4(ii)) do not demonstrate
a significant increase in the predictive variance with the increasing
levels of Gaussian noise or severity of adversarial attacks.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 9

SNR (dB)

(e)

SNR (dB)

(c)

R
M

SE

(d)

SNR (dB)

R
M

SE

(b)

SNR (dB) SNR (dB)

(a)

FG
SM

 A
tt

ac
k

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

(f)

B
IM

 A
tta

ck

R
M

SE

SNR (dB)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

G
au

ss
ia

n
N

oi
se

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

(i) LSTM Configuration

SNR (dB) SNR (dB)

(f)

R
M

SE

FG
SM

 A
tt

ac
k

SNR (dB)

(c)

R
M

SE

SNR (dB)

(d)

SNR (dB)

G
au

ss
ia

n
N

oi
se

(b)

R
M

SE

(e)

(a)

B
IM

 A
tta

ck

SNR (dB)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐂

°)
𝟐

(ii) GRU Configuration

Fig. 4. Weather Dataset: The average predictive variance and RMSE, both plotted against SNR for TRUST, BBB, and VAR models in both (i) LSTM
and (ii) GRU configurations and DeepAR (DAR) LSTM. Various levels of noise (Gaussian, FGSM or BIM) are added to the test data, and the SNR
values are calculated and plotted on the x-axes in all sub-figures. The variance values are averaged over all test samples. Interpreting sub-figures
from right to left: we observe a significant increase (indicated by ∗) in the predictive variance of TRUST models with increasing noise levels or
severity of adversarial attacks (or equivalently decreasing SNR); however, BBB, VAR and DAR models do not demonstrate such behavior.

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐤
𝐖
)𝟐

FG
SM

 A
tt

ac
k

B
IM

 A
tta

ck

SNR (dB) SNR (dB)

(f)(e)

SNR (dB)
(d)

SNR (dB) SNR (dB)

(c)
SNR (dB)

(a)

R
M

SE

(b)

R
M

SE

R
M

SE

Pr
ed

ic
tiv

e
V

ar
ia

nc
e
(𝐤
𝐖
)𝟐

G
au

ss
ia

n
N

oi
se

Pr

ed
ic

tiv
e

V
ar

ia
nc

e
(𝐤
𝐖
)𝟐

(i) LSTM Configuration

SNR (dB) SNR (dB)

R
M

SE

R
M

SE

FG
SM

 A
tt

ac
k

(c)

(d)

SNR (dB) SNR (dB)

(a) (b)

(e)

(f)

B
IM

 A
tta

ck

SNR (dB)

R
M

SE

SNR (dB)

G
au

ss
ia

n
N

oi
se

Pr

ed
ic

tiv
e

V
ar

ia
nc

e
(𝐤
𝐖
)𝟐

Pr

ed
ic

tiv
e

V
ar

ia
nc

e
(𝐤
𝐖
)𝟐

Pr

ed
ic

tiv
e

V
ar

ia
nc

e
(𝐤
𝐖
)𝟐

(ii) GRU Configuration

Fig. 5. Power Consumption Dataset: The average predictive variance and RMSE, both plotted against SNR for TRUST, BBB, and VAR models in
both (i) LSTM and (ii) GRU configurations and DeepAR (DAR) LSTM. Various levels of noise (Gaussian, FGSM or BIM) are added to the test data,
and the SNR values are calculated and plotted on the x-axes in all sub-figures. The variance values are averaged over all test samples. Interpreting
sub-figures from right to left: we observe a significant increase (indicated by ∗) in the predictive variance of TRUST models with increasing noise
levels or severity of adversarial attacks (or equivalently decreasing SNR). BBB and VAR variance shows an increase when Gaussian noise is
added; however, no significant increase in the variance is noticed when models are subject to FGSM or BIM attacks.

Power consumption dataset: The TRUST-LSTM variance
significantly increases at SNR ≤ 18 dB for the Gaussian noise
(Fig. 5(i)(a)) and at SNR ≤ 36 dB for both FGSM (Fig. 5(i)(c))
and BIM (Fig. 5(i)(e)). The RMSE increases from 0.5 at high SNR

values to 0.54 for Gaussian noise (Fig. 5(i)(b)) and 0.6 for both
FGSM and BIM attacks (Fig. 5(i)(d and f)).

In Fig. 5(ii), the significant increase in the TRUST-GRU
variance is observed at SNR ≤ 30 dB for the Gaussian noise

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 10

TABLE 4
The classification accuracy of TRUST, BBB, VAR, and DET models. All

models are tested using (1) noise-free test data, (2) three levels of
Gaussian noise, and (3) two types of adversarial attacks, FGSM and
BIM (targeted / untargeted), each with three levels of attack severity.

Noise LSTM Models GRU Models

TRUST BBB VAR DET TRUST BBB VAR DET

(a) PeMS-SF Dataset

No noise 87.1 87.2 87.1 86.8 88.7 86.5 88.8 88.8

G
au

ss
ia

n Low 87.1 84.4 85.1 81.7⋆ 86.5 77.4† 83.6 83.5
Med 84.1 74.5† 79.5 80.0 76.5 45.6† 76.2 71.2
High 64.1 42.9† 59.3 60.0 52.4 19.6† 52.3 47.0

FG
SM

(T
)

Low 87.1 86.8 87.2 84.7 88.7 81.8† 87.6⋆ 88.8⋆

Med 49.4 32.0† 37.1 30.0† 40.0 26.4† 24.7† 7.6†

High 43.5 18.1† 29.4† 12.9† 33.5 11.9† 14.7† 5.3†

FG
SM

(U
)

Low 85.3 85.5 87.1 83.5 87.1 78.9† 82.9 83.5
Med 31.8 23.2† 22.4 ⋆ 19.4† 17.6 16.6 8.8⋆ 11.1⋆

High 31.2 10.1† 19.4 ⋆ 10.6† 7.6 5.2 7.0 5.1

B
IM

(T
) Low 87.1 86.1 87.2 84.7 88.7 81.4† 87.6⋆ 88.8⋆

Med 49.4 31.8† 37.0 30.0† 40.0 25.6† 24.6† 7.6†

High 43.5 17.6† 29.2† 12.7† 33.2 11.5† 14.6† 5.2†

B
IM

(U
) Low 85.2 84.6 87.1 83.5 87.1 80.5† 82.9 83.5

Med 31.7 22.5† 22.3⋆ 19.4† 17.5 16.4 8.8⋆ 11.1⋆

High 31.2 8.8† 19.4⋆ 10.5† 7.6 4.9⋆ 7.1 5.0⋆

(b) ECG5000 Dataset

No noise 93.2 92.4 95.2 95.2 93.8 92.6 93.2 96.2

G
au

ss
ia

n Low 93.0 90.8 92.4 92.0 90.6 93.3 93.6 93.6
Med 82.0 80.7 80.1 79.4 87.2 82.2 ⋆ 85.6 78.6⋆

High 73.0 68.9⋆ 70.4 65.2† 76.4 67.7⋆ 73.4 64.8⋆

FG
SM

(T
)

Low 92.0 92.2 94.5 93.6 91.6 92.9 91.7 92.8
Med 87.0 56.7† 68.8† 8.0† 87.2 45.9† 64.6† 28.9†

High 84.2 4.2† 8.8† 2.6† 85.9 8.6† 16.2† 2.2†

FG
SM

(U
)

Low 92.2 92.8 93.3 93.8 92.4 93.6 91.3 90.7
Med 41.2 40.7† 40.2⋆ 40.2 50.2 36.9⋆ 27.4⋆ 10.2⋆

High 2.4 2.2 1.4⋆ 1.0⋆ 40.0 3.7† 3.8† 3.4†

B
IM

(T
) Low 92.0 93.2 94.5 93.6 91.5 92.6 91.6 92.7

Med 87.0 56.2† 68.2† 8.0† 87.1 45.8† 64.0† 28.5†

High 84.0 4.0† 8.7† 2.6† 85.5 8.6† 16.1† 2.2†

B
IM

(U
) Low 92.2 92.8 93.3 93.8 92.3 93.4 91.2 90.5

Med 41.2 40.1⋆ 40.2⋆ 40.1 50.1 36.5⋆ 27.2⋆ 10.0⋆

High 2.4 2.2 1.4⋆ 1.0⋆ 39.9 3.6† 3.7† 3.3†

and BIM attack (Fig. 5(ii)(a and e)) and at SNR ≤ 16 dB for the
FGSM (Fig. 5(ii)(c)). The RMSE of TRUST-GRU increases from
0.5 at high SNR values to 0.51 for Gaussian noise (Fig. 5(ii)(b)),
0.88 for FGSM (Fig. 5(ii)(d)) and 0.56 for BIM (Fig. 5(ii)(f)).
We also notice that the average predictive variance for BBB
and VAR models increases significantly with decreasing SNR for
the Gaussian noise only (Fig. 5(i)(a) and 5(ii)(a)). However, the
TRUST-LSTM/GRU models are more sensitive to noise, i.e., they
detect the noise at higher SNR values than their BBB and VAR
homologs. The variance-vs-SNR curves of BBB, VAR and DAR
models do not demonstrate a significant increase in the predictive
variance with the increasing severity of FGSM or BIM adversarial
attacks (Fig. 5(i)(c and e) and 5(ii)(c and e)).

5.2.2 Classification Tasks
Figs. 6(i) and 6(ii) present the predictive variance (left sub-figures)
and the classification accuracy (right sub-figures) plotted against

SNR in the LSTM configuration for PeMS-SF and ECG5000.
PeMS-SF dataset: With a decreasing SNR, the TRUST-LSTM

variance significantly increases at SNR ≤ -8 dB for Gaussian noise
(Fig. 6(i)(a)) and SNR ≤ 23 dB for both targeted and untargeted
adversarial attacks, FGSM (Fig. 6(i)(c and e)) and BIM (Fig. 6(i)(g
and i)). The right sub-figures in Fig. 6(i) show that the TRUST-
LSTM classification accuracy declines from 87% at high SNR
values to ∼ 64% for Gaussian noise, ∼ 43% for targeted FGSM
and BIM, and ∼ 31% for untargeted FGSM and BIM.

Although the classification accuracy of BBB and VAR LSTMs
severely declines with the low SNR values (for both Gaussian and
adversarial noise), the variance-vs-SNR curves (Fig. 6(i)) do not
demonstrate a significant increase in the predictive variance.

ECG5000 dataset: With a decreasing SNR, we observe that
the TRUST-LSTM variance significantly increases at SNR ≤ 8 dB
for Gaussian noise (Fig. 6(ii)(a)) and SNR ≤ 22 dB for targeted
FGSM and BIM (Fig. 6(ii)(c and g)). For untargeted FGSM and
BIM, the TRUST-LSTM variance significantly increases at SNR
≤ 36 dB (Fig. 6(ii)(e and i)). The right sub-figures in Fig. 6(ii)
show that the TRUST-LSTM classification accuracy declines from
93% at high SNR values to ∼ 90% under Gaussian noise (Fig.
6(ii)(b)), ∼ 84% under targeted or untargeted FGSM and BIM
at the (∗) point (Fig. 6(ii)(d, f, h and j)). The variance-vs-SNR
curves of BBB and VAR models (Fig. 6(ii)) do not demonstrate a
significant increase in the predictive variance with the increasing
levels of Gaussian noise or adversarial attacks. The variance-
vs-SNR and classification accuracy-vs-SNR curves of TRUST,
BBB and VAR models in the GRU configuration are provided
in Appendix F in the supplementary materials.

5.3 Computational Comparison

The computational demand of the proposed TRUST models is
comparable to that of DET and VAR homologs and significantly
less than that of BBB and DAR models. Since the prior variational
distribution has a diagonal covariance matrix, TRUST models add
a single parameter (the variance) for every weight vector in a
fully-connected (FC) layer. Thus, for an FC layer with H hidden
units, the number of additional parameters is H . While for an
LSTM or GRU layer, the number of additional parameters is
H× the number of weight matrices. The first-order Taylor series
approximation of the mean and the variance-covariance matrix
after non-linear activation functions operates without additional
parameters.

Table 5 presents the total number of parameters for one LSTM
layer (4 gates), one GRU layer (3 gates), and one FC layer for
TRUST, BBB, DAR, and VAR/DET models. We assume that the
total number of hidden units is H = 100, the input vector size
is K = 30, and the number of output neurons (or classes for
classification problems) is C = 5. The increase in the number of
parameters for TRUST models is ≈ 1.5% for the LSTM/GRU
layers and ≈ 1% for the FC layer compared to DET/VAR
models. The increase in the number of parameters of TRUST
models is significantly lower than that of the BBB models, which
require twice the number of parameters compared to DET/VAR
models. The number of parameters for the DAR-LSTM model
is comparable to the number of DET-LSTM parameters with an
additional FC layer with two outputs for the mean and the standard
deviation. The VAR models have the same number of parameters
as DET models because VAR models use dropout approximation
to estimate the variational distribution without adding parameters.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 11

U
nt

ar
ge

te
d

B
IM

A

tta
ck

SNR (dB)

(j)

(i)

T
es

t A
cc

ur
ac

y

SNR (dB)

SNR (dB)

SNR (dB)

SNR (dB)

T
es

t A
cc

ur
ac

y

(h)

SNR (dB) U
nt

ar
ge

te
d

FG
SM

A

tta
ck

Pr

ed
ic

tiv
e

V
ar

ia
nc

e

SNR (dB)

T
es

t A
cc

ur
ac

y

T
es

t A
cc

ur
ac

y

T
ar

ge
te

d
FG

SM

A
tta

ck

Pr
ed

ic
tiv

e
V

ar
ia

nc
e (c)

SNR (dB) SNR (dB)

(a) (b)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

(f)

T
ar

ge
te

d
 B

IM

A
tta

ck

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

SNR (dB)

T
es

t A
cc

ur
ac

y

G
au

ss
ia

n
N

oi
se

(g)

(d)

(e)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

(i) PeMS-SF Dataset - LSTMs

T
es

t A
cc

ur
ac

y

SNR (dB)

(f)

SNR (dB)

T
es

t A
cc

ur
ac

y

SNR (dB)

(d)

T
es

t A
cc

ur
ac

y

T
es

t A
cc

ur
ac

y
 (b)

U
nt

ar
ge

te
d

B
IM

A

tta
ck

SNR (dB)
(j)

(i)

SNR (dB)

SNR (dB)

SNR (dB)

T
es

t A
cc

ur
ac

y

(h)

SNR (dB)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

T
ar

ge
te

d
FG

SM

A
tta

ck

Pr
ed

ic
tiv

e
V

ar
ia

nc
e (c)

SNR (dB)

(a)

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

T
ar

ge
te

d
 B

IM

A
tta

ck

Pr
ed

ic
tiv

e
V

ar
ia

nc
e

G
au

ss
ia

n
N

oi
se

(g)

(e)

U
nt

ar
ge

te
d

FG
SM

A

tta
ck

Pr

ed
ic

tiv
e

V
ar

ia
nc

e

SNR (dB)

(ii) ECG5000 Dataset - LSTMs

Fig. 6. The average predictive variance and classification accuracy, both plotted against SNR for TRUST, BBB, and VAR LSTMs for (i) PeMS-SF
and (ii) ECG5000 datasets. Various noise levels (Gaussian, FGSM, and BIM, targeted and untargeted) are added to the test data, and the SNR
values are calculated and plotted on the x-axes in all sub-figures. The variance values are averaged over all test samples. The (∗) indicates the
statistical increase in the predictive variance when the noise increases, or the SNR decreases.

Table 6 presents inference time measured in seconds and
calculated using all the test examples for each one of the five
datasets. We notice that the inference time of the TRUST models
is higher than that of DET models but generally lower than the
inference time of BBB, VAR and DAR models. The BBB, VAR,
and DAR models require Monte Carlo sampling at the test time to
compute average prediction and sample variance, which increases
the inference time. Therefore, the robustness of TRUST models
is maintained without a notable increase in the computational
complexity and inference time, which allows the proposed models
to be applicable to real-world applications.

5.4 Discussion

This paper introduces uncertainty estimation in deep sequence
models, RNNs, LSTMs, and GRUs, focusing on time-series anal-
ysis. We propose the TRUST models based on Bayesian density
propagation. TRUST-LSTMs and GRUs propagate the first two
moments of the variational posterior distribution of the models’
parameters and estimate the uncertainty in models’ predictions via
the variance of the predictive distribution.

A detailed analysis of the proposed TRUST models is per-
formed using five different time-series prediction and classification
datasets. The performance of TRUST models is compared with
the state-of-the-art LSTM/GRU networks, including BBB, VAR,
DAR, and DET, under various levels of Gaussian noise and two

TABLE 5
Total number of parameters of an LSTM layer (4 gates), a GRU layer (3

gates) and an output FC layer for TRUST, BBB, VAR, DAR, and DET
models. The number of hidden units is H = 100, the size of the input

vector is K = 30 and the number output neurons is C = 5.

Model Layer type Parameter Calculation Total
LSTM 4×K ×H + 4×H ×H + 8×H 52, 800

TRUST GRU 3×K ×H + 3×H ×H + 6×H 39, 600
FC H × C + C 505

LSTM 2× (4×K ×H + 4×H ×H) 104, 000
BBB GRU 2× (3×K ×H + 3×H ×H) 78, 000

FC 2× (H × C) 1, 000
DAR LSTM 4×K ×H + 4×H ×H 52, 000

FC H ×H + 2× (H × C) 11, 000
DET LSTM 4×K ×H + 4×H ×H 52, 000
VAR GRU 3×K ×H + 3×H ×H 39, 000

FC H × C 500

different types of adversarial attacks, i.e., FGSM and BIM in both
targeted and untargeted settings.

Our analysis reveals that TRUST models maintain their per-
formance and outperform other models (BBB, VAR, DAR, and
DET) when subject to Gaussian noise or adversarial attacks.
Furthermore, the predictive variance of the TRUST models has
shown a statistically significant increase when the noise is high
and the performance of models starts to decrease. In general, we
do not observe an increase in the average predictive variance for

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 12

TABLE 6
The inference time in seconds for all models in both LSTM and GRU

configurations, calculated using clean test examples.

Dataset LSTM Models GRU Models
TRUST BBB VAR DAR DET TRUST BBB VAR DET

Weather 6.3 28.1 21.7 21.8 1.6 4.5 24.4 21.2 2.2
Power 19.9 43.5 28.8 22.3 2.1 22.8 35.4 33.1 1.9

PeMS-SF 14.0 31.0 21.8 - 1.7 12.6 26.8 20.3 1.6
ECG5000 5.7 2.9 0.8 - 0.4 3.1 2.7 0.8 0.3

BBB, VAR or DAR models, which indicates that the variance at
the output of BBB, VAR and DAR models does not capture the
uncertainty in the model decision. We believe that propagating
moments of the variational distribution through the network layers
transmits vital information about the strong and weak features of
the data from the hidden states to the output layer. The second
moment (i.e., the variance) of the variational distribution over the
parameters acts as a filter on the input features and modulates these
features according to their importance. This additional filtering of
features via the variance of the variational distribution forces the
predictive variance to statistically increase when these features are
corrupted with noise or adversarial attacks.

6 CONCLUSION

This paper proposes a new framework for TRustworthy Uncer-
tainty propagation for Sequential Time-series analysis in recurrent
neural networks, i.e., RNN, LSTM, and GRU networks, named
TRUST-RNNs. TRUST models consider network parameters as
random variables and approximate the variational posterior distri-
bution by minimizing the evidence lower bound, which allows
for estimating the output uncertainty. TRUST-RNNs propagate
the first two moments of the variational distribution through the
sequential network layers. The extensive experiments on various
time-series classification and prediction datasets have demon-
strated statistically significant robustness against Gaussian noise
and adversarial attacks compared to the state-of-the-art Bayesian
and deterministic RNNs. We have also shown that propagating
uncertainty in RNNs and their variants inherently results in self-
aware models that can assess their own performance and produce
a statistically significant increase in the output uncertainty (mea-
sured by the predictive variance) in the presence of Gaussian noise
and particularly adversarial attacks (targeted or untargeted).

ACKNOWLEDGMENTS
The work was supported by the National Science Foundation
Awards CRII-2153413, ECCS-1903466 and OAC-2008690. The au-
thors gratefully acknowledge the financial support by the Lockheed
Martin Corporation, including the insightful discussions with Sanipa
K. Arnold, Integrated Warfare Systems and Sensors Artificial Intel-
ligence/Machine Learning Strategy Lead, and Jeff Cammerata, Lead
Member Engineering Staff. We are also grateful to UK EPSRC sup-
port through EP/T013265/1 project NSF-EPSRC: ShiRAS - Towards
Safe and Reliable Autonomy in Sensor Driven Systems.

REFERENCES

[1] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Funaya, “Robust
online time series prediction with recurrent neural networks,” in 2016
IEEE International Conference on Data Science and Advanced Analytics
(DSAA). Ieee, 2016, pp. 816–825.

[2] C. Choi, “Time series forecasting with recurrent neural networks in
presence of missing data,” Master’s thesis, UiT The Arctic University
of Norway, 2018.

[3] G. V. Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-
term memory model,” Artificial Intelligence Review, pp. 1–27, 2020.

[4] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
LSTM cells and network architectures,” Neural computation, vol. 31,
no. 7, pp. 1235–1270, 2019.

[5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[6] H. Hippert, C. Pedreira, and R. Souza, “Neural networks for short-term
load forecasting: a review and evaluation,” IEEE Transactions on Power
Systems, vol. 16, no. 1, pp. 44–55, 2001.

[7] M. Rana, I. Koprinska, and A. Troncoso, “Forecasting hourly electricity
load profile using neural networks,” in International Joint Conference on
Neural Networks (IJCNN), 2014, pp. 824–831.

[8] Q. Zhang, H. Wang, J. Dong, G. Zhong, and X. Sun, “Prediction of sea
surface temperature using long short-term memory,” IEEE Geoscience
and Remote Sensing Letters, vol. 14, no. 10, pp. 1745–1749, 2017.

[9] J. Gao, H. Zhang, P. Lu, and Z. Wang, “An effective LSTM recurrent
network to detect arrhythmia on imbalanced ECG dataset,” Journal of
Healthcare Engineering, 2019.

[10] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals,” circulation, vol. 101,
no. 23, pp. e215–e220, 2000.

[11] F. Eichinger, P. Efros, S. Karnouskos, and K. Böhm, “A time-series
compression technique and its application to the smart grid,” The VLDB
Journal, vol. 24, 04 2014.

[12] S. S. Aljameel, D. M. Alomari, S. Alismail, F. Khawaher, A. A.
Alkhudhair, F. Aljubran, and R. M. Alzannan, “An anomaly detection
model for oil and gas pipelines using machine learning,” Computation,
vol. 10, no. 8, 2022.

[13] S. Ning, J. Sun, C. Liu, and Y. Yi, “Applications of deep learning
in big data analytics for aircraft complex system anomaly detection,”
Proceedings of the Institution of Mechanical Engineers, Part O: Journal
of Risk and Reliability, vol. 235, no. 5, pp. 923–940, 2021.

[14] D. Dera, N. C. Bouaynaya, G. Rasool, R. Shterenberg, and H. M.
Fathallah-Shaykh, “PremiUm-CNN: Propagating uncertainty towards
robust convolutional neural networks,” IEEE Transactions on Signal
Processing, vol. 69, pp. 4669–4684, 2021.

[15] F. Karim, S. Majumdar, and H. Darabi, “Adversarial attacks on time
series,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 10, pp. 3309–3320, 2021.

[16] M. G. Abdu-Aguye, W. Gomaa, Y. Makihara, and Y. Yagi, “Detecting
adversarial attacks in time-series data,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, 2020, pp. 3092–3096.

[17] G. R. Mode and K. A. Hoque, “Adversarial examples in deep learning
for multivariate time series regression,” in IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), 2020, pp. 1–10.

[18] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning, (ICML),
vol. 37, 2015, pp. 1613–1622.

[19] K. Shridhar, F. Laumann, A. Llopart Maurin, and M. Liwicki, “Bayesian
convolutional neural networks,” arXiv preprint arXiv:1806.05978, 2018.

[20] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural networks
with Bernoulli approximate variational inference,” in Proceedings of 4th
International Conference on Learning Representations, (ICLR) workshop
track, 2016.

[21] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

[22] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of
Cambridge, 2016.

[23] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” Proceedings of the 29th Inter-
national Conference on Neural Information Processing Systems, (NIPS),
vol. 29, pp. 1019–1027, 2016.

[24] D. Dera, G. Rasool, and N. Bouaynaya, “Extended variational inference
for propagating uncertainty in convolutional neural networks,” in 2019
IEEE 29th International Workshop on Machine Learning for Signal
Processing (MLSP), 2019, pp. 1–6.

[25] D. Dera, G. Rasool, N. C. Bouaynaya, A. Eichen, S. Shanko, J. Cam-
merata, and S. Arnold, “Bayes-SAR Net: Robust SAR image classifi-
cation with uncertainty estimation using Bayesian convolutional neural
network,” in 2020 IEEE International Radar Conference (RADAR), 2020,
pp. 362–367.

[26] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems,” Probability
and Statistics: Essays in Honor of David A. Freedman, p. 316–334, 2008.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MAY 2022 13

[27] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, “Obstacles to high-
dimensional particle filtering,” Monthly Weather Review, vol. 136, no. 12,
pp. 4629–4640, 2008.

[28] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on International Conference on Machine Learning, (ICML),
2013, pp. 1310–1318.

[29] S. Kanai, Y. Fujiwara, and S. Iwamura, “Preventing gradient explosions
in gated recurrent units,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, (NIPS), 2017.

[30] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Non-linear
Approaches. Wiley-Interscience, 2006.

[31] W. S. Beutenberg, “Max planck institute for biogeochemistry:
Weather time series dataset,” 2020. [Online]. Available: https:
//www.bgc-jena.mpg.de/wetter/

[32] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[33] T. Bagnall, “Time series classification. created by William Vickers,”
2021. [Online]. Available: http://www.timeseriesclassification.com/
dataset.php

[34] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in Proceedings of the 34th International
Conference on International Conference on Machine Learning, (ICML),
2017, pp. 2498–2507.

[35] E. Lobacheva, N. Chirkova, and D. Vetrov, “Bayesian sparsification
of gated recurrent neural networks,” in Proceedings of the Workshop
on Compact Deep Neural Networks with industrial applications, NIPS,
2018.

[36] S. Goel and R. Bajpai, “Impact of uncertainty in the input variables and
model parameters on predictions of a long short term memory (LSTM)
based sales forecasting model,” Machine Learning and Knowledge Ex-
traction, vol. 2, pp. 256–270, 2020.

[37] L. Zhu and N. Laptev, “Deep and confident prediction for time series
at uber,” in IEEE International Conference on Data Mining Workshops
(ICDMW), Nov 2017.

[38] Z. Gan, C. Li, C. Chen, Y. Pu, Q. Su, and L. Carin, “Scalable Bayesian
learning of recurrent neural networks for language modeling,” in Pro-
ceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics, ACL, Vancouver, Canada, July 30 - August 4, Volume
1, 2017, pp. 321–331.

[39] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, “Deep state space models for time series forecasting,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, (NIPS), vol. 31, 2018.

[40] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Inter-
national Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.

[41] A. Alaa and M. Van Der Schaar, “Frequentist uncertainty in recurrent
neural networks via blockwise influence functions,” in Proceedings of the
37th International Conference on International Conference on Machine
Learning, (ICML), 2020, pp. 175–190.

[42] S. Krstanovic and H. Paulheim, “Ensembles of recurrent neural networks
for robust time series forecasting,” in International Conference on Inno-
vative Techniques and Applications of Artificial Intelligence. Springer,
2017, pp. 34–46.

[43] B. Wang, J. Lu, Z. Yan, H. Luo, T. Li, Y. Zheng, and G. Zhang, “Deep
uncertainty quantification: A machine learning approach for weather
forecasting,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[44] T. Song, W. Ding, H. Liu, J. Wu, H. Zhou, and J. Chu, “Uncertainty
quantification in machine learning modeling for multi-step time series
forecasting: Example of recurrent neural networks in discharge simula-
tions,” Water, vol. 12, no. 3, 2020.

[45] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Compre-
hensive review of neural network-based prediction intervals and new
advances,” IEEE Transactions on neural networks, vol. 22, no. 9, pp.
1341–1356, 2011.

[46] H. D. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi, “Neural
network-based uncertainty quantification: A survey of methodologies and
applications,” IEEE access, vol. 6, pp. 36 218–36 234, 2018.

[47] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A
review for statisticians,” Journal of the American Statistical Association,
vol. 112, no. 518, pp. 859–877, 2017.

[48] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochas-
tic Processes, 4th ed. McGraw-Hill Higher Education, 2002.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[50] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8), 2014.

[51] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[52] A. Karpathy, “The unreasonable effectiveness of recurrent neural
networks,” May 2015. [Online]. Available: http://karpathy.github.io/
2015/05/21/rnn-effectiveness/

[53] F. Gers and J. Schmidhuber, “Recurrent nets that time and count,”
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol. 3, pp. 189–194 vol.3, 2000.

[54] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12, pp.
2451–2471, 1999.

[55] Y. Lu and F. M. Salem, “Simplified gating in long short-term memory
(LSTM) recurrent neural networks,” in IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS), 2017, pp. 1601–1604.

[56] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
WOO, “Convolutional LSTM network: A machine learning approach
for precipitation nowcasting,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems, (NIPS), 2015.

[57] K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer, “Depth-gated
LSTM,” arXiv preprint arXiv:1508.03790, 2015.

[58] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent
neural networks,” in International conference on machine learning, 2015,
pp. 2067–2075.

[59] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[60] P. Liu, X. Qiu, J. Chen, and X.-J. Huang, “Deep fusion LSTMs for
text semantic matching,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2016, pp. 1034–1043.

[61] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU)
neural networks,” in IEEE 60th international midwest symposium on
circuits and systems (MWSCAS), 2017, pp. 1597–1600.

[62] A. H. Mirza, “Variants of combinations of additive and multiplicative
updates for GRU neural networks,” in IEEE 26th Signal Processing and
Communications Applications Conference (SIU), 2018, pp. 1–4.

[63] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[64] F. Gers, “Long short-term memory in recurrent neural networks,” Ph.D.
dissertation, Verlag nicht ermittelbar, 2001.

[65] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping accel-
erates training: A theoretical justification for adaptivity,” in Proceedings
of 7th International Conference on Learning Representations, (ICLR),
2019.

[66] A. H. Ribeiro, K. Tiels, L. A. Aguirre, and T. Schön, “Beyond exploding
and vanishing gradients: analysing RNN training using attractors and
smoothness,” in International Conference on Artificial Intelligence and
Statistics, 2020, pp. 2370–2380.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of 3th International Conference on Learning Representa-
tions, (ICLR), 2015.

[68] M. Abadi, et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/api
docs/python/tf/keras/optimizers/schedules/PolynomialDecay

[69] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proceedings of 3rd International Conference
on Learning Representations, (ICLR), 2015.

[70] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Proceedings of 5th International Conference on
Learning Representations, (ICLR) workshop track, 2017.

[71] M. Cuturi, “Fast global alignment kernels,” in Proceedings of the 28th
international conference on machine learning (ICML), 2011.

[72] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” Journal of the American statistical Association, vol. 102,
no. 477, pp. 359–378, 2007.

[73] G. Biau and B. Patra, “Sequential quantile prediction of time series,”
IEEE Transactions on Information Theory, vol. 57, pp. 1664–1674, 2011.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3288628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

