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ABSTRACT
Given a set S of spatial feature-types, its feature-instances, a study
area, and a neighbor relationship, the goal is to find pairs <a region
(𝑟𝑔), a subset C of S> such that C is a statistically significant re-
gional colocation pattern in region 𝑟𝑔 . For example Caribou Coffee
and Starbucks are significantly co-located in Minneapolis but not in
Dallas at present. This problem has applications in a wide variety of
domains including ecology, economics, and sociology. The problem
is computationally challenging due to the exponential number of
regional colocation patterns and candidate regions. The current lit-
erature on regional colocation pattern detection has not addressed
statistical significance which can result in spurious (chance) pattern
instances. In this paper, we propose a novel technique for mining
statistically significant regional colocation patterns. Our approach
determines regions based on geographically defined boundaries
(e.g., counties) unlike previous works which employed clustering, or
regular polygons to enumerate candidate regions. To reduce spuri-
ous patterns, we perform a statistical significance test by modeling
the observed data points with multiple Monte Carlo simulations
within the corresponding regions. Using Safegraph POI dataset,
this paper provides a case study on retail establishments in Min-
nesota for validation of proposed ideas. The paper also provides a
detailed interpretation of discovered patterns using game theory
and regional economics.
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1 INTRODUCTION
Given instances of a set S of spatial features (e.g., coffee shops,
restaurants), a study area, and a neighbor relationship (e.g., geo-
graphic proximity), the goal is to identify pairs <region 𝑟𝑔 , subset C
of S> such that regional colocation instances of C are statistically
significant in that region 𝑟𝑔 . Figure 1(a) shows a set of instances
input into a regional colocation miner, consisting of three different
spatial feature-types (Caribou Coffee, Dunn Brothers and Starbucks)
in the Twin Cities region (i.e., Minneapolis and St. Paul, MN). As
shown in Figure 1(b), the output is a set of statistically significant
regions of interest where the features are regionally co-located.
The patterns are statistically significant at a confidence level of
95% (p-value ≤ 0.05). The region within the green polygon lies in
Minneapolis and shows a strong regional colocation between all
the three features. Whereas, the region within the red rectangular
polygon lies in St. Paul and shows regional colocation between
two features (i.e., Caribou Coffee and Starbucks). Rest of the area
within the map shows very little spatial interaction between these
features.

The problem of mining statistically significant regional coloca-
tion patterns has societal importance with applications in retail,
public health, ecology, public security, transportation, etc. For eco-
nomic reasons (e.g., customer reach) retail establishments like fast
food chains or coffee shops often co-locate. These retail brands are
seen as substitutes for each other and are direct competitors. It is
counter-intuitive to see direct competitors locate close to each other.
Thus, empirically finding significant regional colocation patterns
among competing retail stores within certain economic boundaries
has tremendous value for retail analysis. Besides retail, regional
colocation patterns are important in public health, for example,
the 1894 plague outbreak in Hong Kong where the infected cases
co-located with the rats near the port helped inform local public
health policies. In addition, finding regional colocation patterns
across different biological species helps to identify new interdepen-
dence relationships governed by symbiosis. Table 1 provides a few
additional application domains and their example use-cases.

The problem of regional colocation pattern detection is compu-
tationally challenging due to an exponential number of candidate
patterns as well as a large number of candidate regions. For example,
our dataset consists of 1473 different retail brands and their loca-
tions in Minnesota resulting in 21473 different candidate patterns.
In addition, since our space is continuous, any space partitioning
based approach would lead to an infinite number of candidate re-
gion subsets. Significance testing also adds to the computational
complexity as we compare the value of our prevalence measure
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(a) Input: Instances of Caribou Coffee, Dunn Bros and Starbucks in a region of
Twin Cities

(b) Output: Subregions within which all or subsets of Caribou Coffee, Dunn Bros,
and Starbucks co-located.

Figure 1: Regions within which all or subsets of Caribou
Coffee, Dunn Bros and Starbucks co-locate in Twin Cities

for a candidate pattern against the value obtained in multiple null
hypotheses. For a 95% statistical confidence we need to perform 99
Monte Carlo simulations to generate the null hypotheses while for
a 99% confidence we need 499 Monte Carlo simulations. Besides
computational cost, challenges arise from explainability of system
identified regional patterns and spatially-variable thresholds. For
example, explaining an output regional pattern may prove difficult

Table 1: Regional colocation applications.

Application
Domain

Example

Retail <China, McDonald’s and KFC>, <USA, McDon-
ald’s and Jimmy John’s>

Public Health <Ports, Plague and rats>, <Middle East, Middle
East Respiratory Syndrome (MERS) and MERS-
CoV>

Ecology <Indian/Pacific Ocean, Anemone and Clown-
fish>, <Nile river delta, Nile Crocodile and
Egyptian Plover>

Public <Region around bars, Assault crimes and drunk
driving>

Transportation
Industry

<Near bus depots, High 𝑁𝑂𝑥 concentrations
and buses>

without additional local information. However, such interpreta-
tions are useful to domain experts such as economists, biologists,
etc. Similarly, consensus on predefined threshold is difficult as the
neighbor relationship (distance between co-located features) is not
consistent across different locations (e.g., retail colocations in New
York vs Minneapolis).

Previous works [3, 10] on regional colocation pattern detec-
tion can be divided into two categories. The first category is data
unaware space partitioning such as Quadtrees and grids. The ap-
proaches in this category do not consider spatial distribution and
an inappropriate partitioning might divide potential localities, e.g.
a Quadtree [3] based approach might not completely capture the
Minneapolis Downtown region of the colocation pattern around
the green polygon in Figure 1(b) and might break up geographic
entities, such as counties, cities, states. Also, prior works [3, 6, 13]
incorporating these techniques lacked statistical significance and
focused on data existing on a projected or planar surface.

The second category uses clusters of colocation instances but
ignores regions without clusters. This approach is susceptible to
spatial auto-correlation and enumerates patterns which might not
be statistically significant resulting in the enumeration of spurious
(chance) regions. Such methods [5, 6] perform poorly when the
feature instances are uniformly distributed (i.e., not clustered) in the
study area. Finally, they are dependent on a pre-defined distance and
participation index threshold which is geographically inconsistent.
For example, New York being a busier city than Minneapolis, the
expected distance between features of candidate patterns is much
less. Paper [1] discussed statistical significance in the context of
global colocation pattern detection, but does not mention colocation
patterns which might be local. In this paper we focus on statistically
significant regional (or local) colocation patterns which might have
a positive spatial interaction only within certain regions or subsets
of the study area but not within the whole study area. This is done
by enumerating candidate regions which are geographically and
economically explainable.

Overall, we propose a spatial graph-based approach where, we
use statistical significance and a dynamic distance threshold param-
eter for enumerating candidate regions. Our approach preserves
topological relation between regions, reduces chance patterns, and
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Figure 2: A decision tree comparing our work with previous
approaches.

does not rely on predefined distance or participation index (𝑝𝑖)
threshold parameters. In addition, we provide a game-theory based
interpretation of the identified regional colocation using local de-
mographic and economic information.
Contributions: The contributions of this paper are as follows:
– The paper formally defines the problem of statistically significant
regional colocation pattern detection.
– The paper proposes a spatial graph-based approach to enumerate
spatial aware regions of interest which are statistically significant
and economically explainable.
– The paper provides a case study on retail establishments in Min-
nesota using the Safegraph POI dataset.
– The paper provides a domain interpretation of the discovered
patterns using game theory. An additional interpretation based on
county level macroeconomic indices can be found in the Appendix.
Scope: For simplicity, this paper focuses on colocation patterns
consisting of two or three different features (retail brands). However,
the proposed technique can apply to larger feature sets as well.
In our experiments, we enumerated regions based on contiguous
collection of counties. Nevertheless this work can be extended to
the other types of neighboring regions (e.g., grids).
Organization: The paper is organized as follows: Section 2 intro-
duces basic concepts and the problem statement. In Section 3 we
provide an overview of the maximal sub-graph based approach to
finding statistically significant regional colocation patterns. A Case
study is presented in Section 4 and Section 5 provides a domain
interpretation using game theory. A literature survey appears in
Section 6. Finally, Section 7 concludes this work and briefly lists
potential future directions.

2 BASIC CONCEPTS AND PROBLEM
DEFINITION

2.1 Basic concepts for Colocation Detection
A feature instance is a geo-located spatial entity which is a type
of boolean feature 𝑓 with a geo-reference point location 𝑝 (e.g.,
latitude, longitude), represented as <𝑓 , 𝑝>. Multiple instances of
a feature are represented as 𝑓𝑖 and can be related to other feature
instances 𝑓𝑗 via a neighborhood relation R. For example, ge-
ographic proximity is represented as R𝑓𝑖 ,𝑓𝑗 ≤ 𝜃 , where 𝜃 is the
neighborhood threshold. In a neighborhood graph, we represent
features which satisfy such relations as a node and this relationship
between two related features as an 𝑒𝑑𝑔𝑒 .

Figure 3: Colocation pattern instances and candidate locality

An instance of a colocation satisfies the neighborhood relation
R and forms a clique. A colocation candidate𝐶 is a set of features
defined in the given study area (𝑆𝐴) or a region (𝑟𝑔) where 𝑟𝑔 ∈ 𝑆𝐴 .
For example, figure 3 shows 20 spatial objects of type 𝑓𝐴 (circle)
and 18 spatial objects of type 𝑓𝑏 (triangle). It also shows 8 instances
of colocation pattern {𝑓𝐴 , 𝑓𝐵 }.

A Participation Ratio (𝑝𝑟 ) is the ratio of feature instances
participating in a relation R to the total number of instances inside
the study region (𝑆𝐴). For a given colocation candidate𝐶 and feature
𝑓 it is represented as 𝑝𝑟 (𝑓 ,𝐶). Mathematically, it can be written as
follows,

𝑝𝑟 (𝑓 ,𝐶) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

(1)

For example, in Figure 3, 𝑝𝑟 (𝑓𝐴, {𝑓𝐴, 𝑓𝐵}) and 𝑝𝑟 (𝑓𝐵, {𝑓𝐴, 𝑓𝐵}) are
8/20 and 7/18 respectively.
Participation ratio within a region (𝑟𝑔) is defined as 𝑝𝑟 (𝑓 , [𝑟𝑔,𝐶]).
For example, 𝑝𝑟 (𝑓𝐴, [𝑟𝑔, {𝑓𝐴, 𝑓𝐵}]) and 𝑝𝑟 (𝑓𝐵, [𝑟𝑔, {𝑓𝐴, 𝑓𝐵}]) defined
in locality 𝑟𝑔 is 4/7 and 3/7 respectively.

A Participation Index (𝑝𝑖) is the minimal participation ratio of
all feature types in a colocation candidate.

𝑝𝑖(𝐶) =𝑚𝑖𝑛
𝑓 ∈𝐶

(𝑝𝑟 (𝑓 ,𝐶)) (2)

For example, in figure 3, 𝑝𝑖({𝑓𝐴, 𝑓𝐵}) = 𝑚𝑖𝑛(8/20, 7/18) = 7/18.
The participation index quantifies the spatial interaction within
features.

Colocation patterns are the set of prevalent colocation can-
didates i.e., candidates comprised of features which have a high
positive spatial interaction between them.

A regional colocation pattern [10] is a pair of region (𝑟𝑔) and
colocation pattern (𝐶), i.e., [𝑟𝑔,𝐶] where the features in pattern 𝐶
have a positive spatial interaction in 𝑟𝑔 .



GeoSim’22, Seattle, WA, USA,
Ghosh, Gupta, Sharma, and An

Regional Participation Index is the minimal participation
ratio of all feature types in the colocation candidate within region
𝑟𝑔 .

𝑝𝑖([𝑟𝑔,𝐶]) =𝑚𝑖𝑛
𝑓 ∈𝐶

(𝑝𝑟 (𝑓 , [𝑟𝑔,𝐶])) (3)

For example in Figure 3, 𝑝𝑖([𝑟𝑔, {𝑓𝐴, 𝑓𝐵}]) =𝑚𝑖𝑛(3/7, 4/7) = 3/7.

2.2 Basic concepts for Statistical Significance
Framework: A statistically significant colocationminer determines
whether an assigned positive spatial interaction between features
is statistically significant or could have been observed if the fea-
tures were in complete spatial randomness (CSR). Figure 4 shows a
flowchart of the steps involved in testing if a candidate pattern is a
statistically significant global colocation pattern or not. We later
expand this framework to detect statistically significant regional
colocation patterns (Section 3).

Figure 4: Flowchart depicting the steps involved in the statis-
tical significance test of a candidate colocation pattern

Complete Spatial Randomness (CSR): In CSR:
(1) Every feature instance has an equal probability of existing

at any point in the study area.
(2) The location of any instance is unaffected or independent of

the location of any other instance in the study area.
As participation index (𝑝𝑖) is used to quantify the strength of a
spatial interaction. The objective is to determine the probability
of a pattern’s 𝑝𝑖 in the observed data. Assuming the features were
independent of each other, if the probability (i.e., p-value) is low we
consider the pattern statistically significant. We assign an observed
𝑝𝑖 value for a candidate pattern as statistically significant at level 𝛼
if the p-value ≤ 𝛼 .
Null Model Design: Null Hypothesis models complete spatial
randomness and our null model is designed as follows.

• For equal probability of feature instances, we have gener-
ate an equal number of instances of each feature in every
candidate region.

• For feature instance independence, We sample the instances
from a Poisson Point Process [9]. To check for acceptable
auto-correlation, we use Pair Correlation Function (pcf) upto
a distance of 2000 meters.

Figure 5(b) gives an example of our Null model.
Point distribution: A collection of geo-distributed points referring
to an event (e.g., road accident) in a spatial domain.
Point Process (𝑃𝑃): It is a statistical process which governs the
data generation of a point distribution. It defines the probability
distribution of a point over a region. For example, a homogeneous
point process such as CSR has an equal probability for each point
existing at any location in the study area. Point processes are es-
sential for defining a null or alternate hypothesis which we utilize
for our statistical significance test.
Poisson Point Process (𝑃𝑃𝑃 ): A point process 𝑃𝑃 defined on some
underlying space 𝑆𝑃 is a Poisson Point Process with intensity Λ if
it has the following properties:

(1) The number of points in a bounded Borel set (bounded sets
that can be constructed from open or closed sets by repeat-
edly taking countable unions and intersections) 𝐵 ⊂ 𝑆𝑃 is a
Poisson random variable with mean Λ(𝐵).

(2) The number of points in 𝑛 disjoint Borel sets forms 𝑛 inde-
pendent random variables.

A 𝑃𝑃𝑃 can be defined on any generalized mathematical spaces. An
essential property of 𝑃𝑃𝑃 is that the number of points of the point
process located in two (or more) disjoint regions form independent
random variables. This property results in independent scattering
or complete independence.
Statistical Significance Test: Let 𝑝𝑖∅(𝐶) denote participation in-
dex for pattern 𝐶 in the Null Hypothesis and 𝑝𝑖𝑜𝑏𝑠 (𝐶) represent
participation index for candidate colocation C in the observed data.
Then, we compute the following probability [1],

𝑝 = 𝑝𝑟 (𝑝𝑖∅(𝐶) ≥ 𝑝𝑖𝑜𝑏𝑠 (𝐶)) =
𝑅≥𝑝𝑖𝑜𝑏𝑠 + 1
𝑅 + 1 ,

where 𝑅≥𝑝𝑖𝑜𝑏𝑠 represents the number of Monte Carlo simulations
within which the participation index (𝑝𝑖∅(𝐶)) for pattern𝐶 is greater
than that in the observed data (𝑝𝑖𝑜𝑏𝑠 (𝐶)), 𝑅 represents the total num-
ber of Null Hypotheses datasets generated. If 𝑝 ≤ 𝛼 , we consider
𝑝𝑖𝑜𝑏𝑠 (𝐶) as statistically significant at level 𝛼 .
Regional Statistical Significance Test: In this test we perform
the significance test as above using simulated (i.e., computer gener-
ated) candidate regions. For example, if we are trying to determine
if 𝑓𝐴 and 𝑓𝐵 are statistically significant in locality 𝑟𝑔 (Figure 3),
we generate null hypothesis samples within its boundary and use
the participation index result from each sample to information to
perform the significance test for 𝑟𝑔 .

Figure 5(a) shows a plot of different instances of Jimmy John’s
andMcDonald’s in Hennepin County and Figure 5(b) displays one of
the 𝑅 different Null Hypotheses which are used to compare the par-
ticipation index of the colocation pattern {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷𝑜𝑛𝑎𝑙
𝑑 ′𝑠} in the observed data. At a distance of 800 meters the observed
participation index (𝑝𝑖𝑜𝑏𝑠 ([“𝐻𝑒𝑛𝑛𝑒𝑝𝑖𝑛”, {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷𝑜𝑛𝑎𝑙𝑑′𝑠}])) is 0.429, while for one of the generated null hypothesis (𝑝𝑖∅52
([“𝐻𝑒𝑛𝑛𝑒𝑝𝑖𝑛”, {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷𝑜𝑛𝑎𝑙𝑑 ′𝑠}])) it is 0.0476. where
𝑝𝑖∅52 is the 52𝑛𝑑 Null Hypothesis.

For a statistical confidence of 95% the following inequality should
hold:
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(a) Observed data of [“Hennepin”, {Jimmy John’s, McDonald’s}].

(b) Testing null hypothesis for [“Hennepin”, {Jimmy John’s, Mc-
Donald’s}].

Figure 5: Significance testing of regional colocations.

h 𝑅∑︁
𝑟=1

1(𝑝𝑖𝑜𝑏𝑠 (𝑟𝑔, {𝑓𝐴, 𝑓𝐵}]) ≤ 𝑝𝑖∅𝑟 ([𝑟𝑔, {𝑓𝐴, 𝑓𝐵}]))
i

< 5 (4)

where 𝑅 = 100 refers to the total number of Monte Carlo simu-
lations, 𝑟𝑔 is the region of interest and 1 denotes the Indicator
function. We can compute 𝑅 from 𝛼 using 𝛼(𝑅 + 1) = 5 [2].

2.3 Other Basic Concepts
Maximal Connected Sub-graph: For a simple graph 𝐺 = (𝑉 , 𝐸),
the maximum connected component of𝐺 is the maximal connected
sub-graph 𝐻 . Sub-graph 𝐻 of 𝐺 is connected if ∃ a path for every
pair of distinct vertices 𝑢 ∈ 𝑉𝐻 , 𝑣 ∈ 𝑉𝐻 in 𝐻 .

If𝐺 = 𝐺𝑛1
1 ∪𝐺𝑛2

2 ∪𝐺𝑛3
3 ∪...where𝐺𝑛𝑖

𝑖 represents the 𝑖𝑡ℎ connected
component of 𝐺 , then

(1) 𝑛𝑖𝑚𝑎𝑥 =𝑚𝑎𝑥(𝑛𝑖 |𝐺𝑛𝑖
𝑖 ⊂ 𝐺)

(2) 𝐻 = {𝐺𝑛 𝑗

𝑗 |𝐺𝑛 𝑗

𝑗 ⊂ 𝐺,𝑛 𝑗 = 𝑛𝑖𝑚𝑎𝑥 }.

2.4 Formal Problem Formulation
The problem of statistically significant regional colocation pattern
detection is formulated as follows:
Input:

(1) A set of spatial-feature 𝑁 geo-located spatial feature in-
stances.

(2) A Study Area 𝑆𝐴 composed of predefined regional bound-
aries (e.g., county).

(3) A statistical significance level 𝛼 .
(4) Neighbor relationship (R).

Variables: Distance between feature instances, 𝑑 ∈ (𝜃𝑙 : 𝜃𝑢 ), which
is data driven
Output:

(1) Statistically Significant Colocation Patterns 𝐶 : {𝑓𝐴, 𝑓𝐵, ...}
(if they exist)

(2) Region 𝑟𝑔 such that 𝑟𝑔 ⊂ 𝑆𝐴
Objective: Reducing chance patterns.
Constraints: Correctness and Completeness.

Figure 6(a) shows the input with two types of features and their
instances. Figures 6(b) shows the regions where the regional colo-
cation of the two features is significant. Figure 6(c) shows the re-
fined output with the largest contiguous region where the regional
colocation is significant. Finally, Figure 6(d) shows a sub-graph
representation of the contiguous output regions.

3 MAXIMAL SUB-GRAPH BASED APPROACH
WITH STATISTICAL SIGNIFICANCE

We represent our dataset as a graph 𝐺 = (𝑉 , 𝐸). Here the vertices V
represent the counties which are our candidate regions, while the
edges E denote the neighborhood relationship between the counties.
Our candidate regions can be composed of one or more counties.
Then we find the largest connected sub-graph composed of neigh-
boring counties which form a region within which a candidate
pattern 𝐶 is statistically significant.

Detecting Prevalent Regions: Our regions of interest are com-
posed of counties or a union of neighboring counties. We start
by considering counties with at least 3 instances of each of the
features which comprise the colocation pattern. Our experiments
primarily focus on retail establishments with themaximum distance
between instances of features being 2000 meters. This is necessary
since with increasing distance the participation index approaches
1. Then, we perform a statistical significance test for the candidate
colocation patterns within each county. After that, we form an
undirected unweighted graph (G = V, E) using the counties which
share a geographic border between them. This graph representa-
tion makes it easier to find the largest region composed of counties
within which the candidate pattern is statistically significant. For
example in Figure 6(b), we find that at a distance of 400 meters
between the features (i.e., Caribou Coffee and Starbucks) 7 counties,
namely ‘Carver’, ‘Hennepin’, ‘Olmsted’, ‘Ramsey’, ‘Scott’, ‘Stearns’,
and ‘Washington’ provide statistical significance for the pattern.
This results in multiple sub-regions where pattern are statistically
significant.
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(a) Input locations of Caribou Coffee & Starbucks in Minnesota

(b) Output regions where pattern is signif-
icant

(c) Contiguous output regions where pat-
tern is significant

(d) Sub-graph representation of Contiguous output
regions where pattern is significant

Figure 6: Significance testing of regional colocation for [𝑟𝑔,
{Caribou Coffee, Starbucks}]

Since all counties within which a pattern is statistically signif-
icant may not be neighbors, we find all the contiguous regions
composed of these counties which share geographic borders among

them. By applying spatial join we can form larger regions com-
posed of these counties within which the pattern is significant. Our
final output is the largest connected component from the sub-
graph obtained above and can be found using a graph traversal
algorithm (e.g., breadth-first search). Figure 6(c) shows the largest
contiguous sub-region composed of 5 counties ‘Carver’, ‘Hennepin’,
‘Ramsey’, ‘Scott’, ‘Washington’ within which the pattern is statisti-
cally significant and Figure 6(d) presents the maximal sub-graph
representation of the same. We further validate our output region
by performing a significance test on the area obtained from the
spatial join of these significant counties.

Statistical Significance: Significance testing ensures that a
pattern is not detected happen by chance. Thus, we want to find
prevalent patterns which are rare if the constituent features are
spatially independent of each other. To do this we compare the value
of a prevalence measure (e.g., participation index 𝑝𝑖) of a candidate
pattern (𝐶) in the observed data against that in the multiple Null
Hypotheses data. These Null Hypothesesmodel the complete spatial
randomness and have similar summary statistics (e.g., intensity i.e.,
instances per unit area, pair correlation function) as our observed
data. Since we want the data points in the Null Hypotheses to have
no spatial interaction we sample them from a Poisson Point Process
with the same intensity as that of the observed data. To test for
regional colocation patterns we need to ensure that the simulated
data is being generated in a simulated region whose area is of a
similar size as that of our region of interest (i.e., counties). For each
candidate colocation pattern we then calculate the participation
index in observed data and that in each of the Null Hypotheses. For
a statistical confidence level of 95% we want the number of Null
Hypotheses where the 𝑝𝑖 is greater than that in the observed data
to be less than 5 (for 100 generated Null Hypotheses).

Algorithm 1 provides the pseudo-code of maximal sub-graph
based approach to find statistically significant regional colocations.

4 CASE STUDY ON SAFEGRAPH POI DATASET
The goal of the experiment is to provide a case study of the pro-
posed Maximal Connected Sub-graph algorithm on the real-world
retail establishments based on null hypothesis and varying param-
eter threshold (e.g., distance) to validate our proposed approach.
We provide extensive interpretation of results via validation ques-
tions related to changing parameters, geographic explainability and
micro-economics. Figure 7 shows the overall validation framework
with detailed comparison analysis description.

Real World Dataset: We used data from SafeGraph, a mobility
data vendor who provided anonymized aggregated location data to
researchers studying the effects of COVID-19 on citizen mobility
patterns towards numerous Points Of Interests (POIs). The dataset
consists of 1473 retail brands in Minnesota with USPS (776) and
Western Union (548) having the maximum number of instances. To
ensure that features in our enumerated regions had a significant
presence, we only considered counties which had at least 3 instances
of each feature/retail brand.

For example, experiments were performed on colocation pat-
terns consisting of two (𝑒 .𝑔., Caribou Coffee, Starbucks) or three
(𝑒 .𝑔., Caribou Coffee, Dunn Bros, Starbucks) features which can
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Algorithm 1Maximal Sub-Graph based approach
Input:
A Spatial Dataset S consisting of features {𝑓𝐴, 𝑓𝐵, ...}
Statistical significance level 𝛼
Maximum Pattern size 𝑁
Output:
A Colocation pattern C which is a subset of features {𝑓𝐴, 𝑓𝐵, ...}

from S
Region 𝑟𝑔 within which the pattern C is statistically significant
Variables:
Distance between feature instances 𝑑 ∈ (𝜃𝑙 : 𝜃𝑢 )

1: procedure :
2: for each: 𝑓𝑘 in {𝑓𝐴, 𝑓𝐵, ...} do
3: Generate 𝑅 (dependent on 𝛼) null hypotheses from its

summary statistics in the study area
4: for each: candidate pattern 𝐶𝑚 ∈ {𝐶1,𝐶2, ...,𝐶𝑀 } do
5: for distance 𝑑 ∈ (𝜃𝑙 : 𝜃𝑢 ) do
6: for each: county ∈ county list do
7: Reset counter 𝑅≥𝑝𝑖𝑜𝑏𝑠 to 0
8: Calculate 𝑝𝑖𝑜𝑏𝑠 (observed data) for𝐶𝑚 in county

at distance 𝑑
9: for i ∈ [1,𝑅] do
10: Calculate 𝑝𝑖∅ of 𝐶𝑚 in 𝑅𝑡ℎ null hypothesis
11: if 𝑝𝑖∅ ≥ 𝑝𝑖𝑜𝑏𝑠 then
12: Increment 𝑅≥𝑝𝑖𝑜𝑏𝑠
13: 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐶𝑚 = 𝑅≥𝑝𝑖𝑜𝑏𝑠 +1

𝑅+1
14: if 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐶𝑚 ≤ 𝛼 then
15: Add county to Significant Counties
16: Use graph traversal (𝐵𝐹𝑆) to find connected signifi-

cant components
17: if number of connected significant components < 1

then
18: continue
19: else
20: 𝑟𝑔 = largest connected significant component
21: Add 𝐶𝑚 and 𝑟𝑔 to output list
22: Continue to next pattern 𝐶𝑚+1

Figure 7: Overall validation framework

be considered as interchangeable. Our approach is applicable to
patterns with higher numbers of constituent features as well.

Null hypothesis generation Our Null Hypothesis models the
complete spatial randomness where there exists no spatial interac-
tion between the features which constitute the candidate pattern.
The main utility of this data is to ensure that our output patterns
have a very low probability of existing if the features within the
pattern were spatially independent of each other. To check for
auto-correlation within the individual features we used the Pair
Correlation Function (PCF) or 𝑔(𝑑). When 𝑔(𝑑) > 1, it suggests
there is clustering at distance 𝑑 within the feature instances, while
𝑔(𝑑) = 1 represents complete spatial randomness. Since our exper-
iments were primarily focused on retail brands we found almost
no auto-correlation within instances of the same feature till 2000
meters. For example, no two Starbucks were located very close to
each other. This makes sense from an economic perspective as the
operation cost of a larger-sized Starbucks shop is lower than the
costs of two smaller Starbucks combined because of the scale of
economy. Therefore, for these features, i.e. those without any spa-
tial interaction within the feature instances, we generated the Null
Hypothesis data by fitting a Poisson point process to the observed
data with similar intensity. This ensures that within each candidate
locality, each constituent feature of a pattern has the same number
of instances as that in the 𝑅 different Null Hypotheses generated.
Figure 5(a) shows an example of our original data for Jimmy John’s
and McDonald’s while Figure 5(b) shows one of the Monte Carlo
simulations to model the corresponding Null Hypothesis.

4.1 Experimental Results
4.1.1 Effect of dynamic distance threshold on output region. For the
pattern [𝑟𝑔, {𝑓𝐴, 𝑓𝐵}] : [𝑟𝑔, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}], where
𝑟𝑔 :{Hennepin County, Scott County} we found
𝑝𝑖𝑜𝑏𝑠,𝑑=200(𝐻𝑒𝑛𝑛𝑒𝑝𝑖𝑛, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.34 while
𝑝𝑖𝑜𝑏𝑠,𝑑=200(𝑆𝑐𝑜𝑡𝑡, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.25 at a dis-
tance of 200𝑚𝑒𝑡𝑒𝑟𝑠 between the feature instances with 42 𝑎𝑛𝑑 2
instances of the pattern in those counties respectively. With an
increase in the distance threshold we get a larger region within
which the pattern is statistically significant. For example at a dis-
tance of 400 meters between the instances of the features, we get a
significant region composed of Carver, Hennepin, Ramsey, Scott
and Washington Counties.
𝑝𝑖𝑜𝑏𝑠,𝑑=400(𝐶𝑎𝑟𝑣𝑒𝑟 , {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.5,
𝑝𝑖𝑜𝑏𝑠,𝑑=400(𝐻𝑒𝑛𝑛𝑒𝑝𝑖𝑛, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.51,
𝑝𝑖𝑜𝑏𝑠,𝑑=400(𝑅𝑎𝑚𝑠𝑒𝑦, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.34375,
𝑝𝑖𝑜𝑏𝑠,𝑑=400(𝑆𝑐𝑜𝑡𝑡, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.375 and
𝑝𝑖𝑜𝑏𝑠,𝑑=400(𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}) = 0.41176
with 4, 75, 11, 3 𝑎𝑛𝑑 7 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of the pattern in the counties re-
spectively. Figures 6(b), 6(c) and 6(d) present the output significant
regions, output largest contiguous region and sub-graph represent-
ing the contiguous region for the pattern at a distance of 400 meters
respectively.

To ensure that the union of contiguous counties also formed a
significant region we performed a statistical significance test on
them as well. Our final output shown in Figure 6(c) represents the
region within which the pattern is significant not only in the indi-
vidual counties but also in the union of the contiguous counties. To
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ensure this, we applied a spatial join to obtain a new boundary for
the contiguous counties and then applied the statistical significance
test to this new region. Figure 8 presents a plot of the change in
the participation index in the observed data in this final output re-
gion (𝑝𝑖𝑜𝑏𝑠 (𝑂𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑔𝑖𝑜𝑛, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠})) against
the mean of the participation index in the Null hypotheses gen-
erated for the same region (𝑚𝑒𝑎𝑛(𝑝𝑖𝑁𝑢𝑙𝑙 (𝑂𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑔𝑖𝑜𝑛, {𝐶𝑎𝑟𝑖𝑏𝑜𝑢
𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠}))) with varying distance. In our experiments
with different patterns, this contiguous region was found to be
statistically significant, though it is possible to obtain subsets of
this contiguous region by applying a graph traversal algorithm and
check for significance within them.

Figure 8: Change in participation index for pattern {Caribou
Coffee, Starbucks} in observed data (𝑝𝑖𝑜𝑏𝑠 ) vs participation
index in Null Hypotheses (𝑝𝑖𝑚𝑒𝑎𝑛 𝑜𝑓 𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 ) against
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in meters

Our experiments were performed on patterns consisting of 2
and 3 features. This approach is applicable to patterns consisting of
more features as well, although the computational cost increases
with the pattern size.
For the pattern {𝑓𝐴, 𝑓𝐵, 𝑓𝐶 } : {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷𝑜𝑛𝑎𝑙𝑑 ′𝑠, 𝑆𝑢𝑏𝑤𝑎𝑦},
the colocation was evident in different regions across the study area.
At a distance of about 1200 meters between the feature instances
we observed colocations in Hennepin and Washington Counties,
with 17 instances of the pattern in Hennepin and 4 instances in
Washington at this distance. On increasing the distance threshold to
1600 meters we obtained richer results. Figure 9(a) shows ‘Carver’,
‘Dakota’, ‘Hennepin’ and ‘Washington’ counties across which the
pattern was found to be statistically significant while Figure 9(b)
shows the sub-graph representation of the region.
𝑝𝑖𝑜𝑏𝑠,𝑑=1600(𝐶𝑎𝑟𝑣𝑒𝑟 , {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷, 𝑆𝑢𝑏𝑤𝑎𝑦}) = 0.2857,
𝑝𝑖𝑜𝑏𝑠,𝑑=1600(𝐷𝑎𝑘𝑜𝑡𝑎, {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷, 𝑆𝑢𝑏𝑤𝑎𝑦}) = 0.3428,

(a) Significant regions for the pattern
{Jimmy John’s, McDonald’s, Subway} at
1600 meters.

(b) Sub-graph representing signifi-
cant regions for the pattern {Jimmy
John’s, McDonald’s, Subway} at
1600 meters.

Figure 9: Significant regions for the pattern {Jimmy John’s,
McDonald’s, Subway} at 1600 meters.

𝑝𝑖𝑜𝑏𝑠,𝑑=1600(𝐻𝑒𝑛𝑛𝑒𝑝𝑖𝑛, {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷, 𝑆𝑢𝑏𝑤𝑎𝑦}) = 0.4166,
𝑝𝑖𝑜𝑏𝑠,𝑑=1600(𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛, {𝐽𝑖𝑚𝑚𝑦𝐽𝑜ℎ𝑛′𝑠,𝑀𝑐𝐷, 𝑆𝑢𝑏𝑤𝑎𝑦}) = 0.3125
with 2, 12, 49 𝑎𝑛𝑑 5 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of the pattern in the counties respec-
tively.

4.1.2 Preliminary comparison with related work. : This section dis-
cusses the baseline approach for regional colocation pattern de-
tection with Minimum Orthogonal Bounding Rectangles (MOBRs).
This paper employs a space partitioning based approach to find
geographic entities within which a colocation pattern is statistically
significant. Our baseline methods were Quad & QGFR algorithms
by Li et al. [10] whose data-aware space partitioning approach is
based on Minimum Orthogonal Bounding Rectangle (𝑀𝑂𝐵𝑅). Quad
uses a threshold (𝜃 ) on the participation index (𝑝𝑖) for a candidate
pattern 𝐶 and enumerated MOBRs within which the pattern satis-
fied the 𝑝𝑖 threshold and also had atleast 𝛾 instances of the pattern
𝐶 . QGFR uses a new measure 𝑀𝑎𝑥𝑃𝐼 bound which serves as the
smallest upper-bound on the participation ratio (𝑝𝑟 ) of any feature
in the colocation pattern 𝐶 . These algorithms lack statistical sig-
nificance and only work for data points on a projected plane. We
compare our results with this work. Since our dataset is not pla-
nar we constructed Minimum Bounding Rectangles (MBRs) while
keeping the algorithms unchanged. The MBR based approach with
𝑝𝑖-threshold (𝜃 ) = 0.6 and minimum number of colocation pattern
instances (𝛾 ) produced 3368 MBRs or potential localities for the
pattern {𝑟𝑔, [𝐶𝑎𝑟𝑖𝑏𝑜𝑢 𝐶𝑜 𝑓 𝑓 𝑒𝑒, 𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠]} in our study area. We
performed a statistical significance test similar to our approach for
a confidence level of 95%. This resulted in 451 non-significant
pattern regions and 2917 significant pattern regions within which
the pattern was significant. Hence, a regional colocation miner
without a statistical significant test results in enumerating output
regions where the colocation might have occurred by chance.

5 DOMAIN INTERPRETATION BASED ON
GAME THEORY

In this section, we describe a basic two-player Hotelling model
to explain why Starbucks and Caribou Coffee co-locate from a
game theory perspective. We also provide the conclusions of a
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three-player Hotelling model to show why Starbucks, Dunn Broth-
ers Coffee, and Caribou Coffee co-locate. Since we used county
boundaries rather than MOBRs in our analysis, we further used
macroeconomic data at a county level to explain why coffee shops
co-locate in some counties but not in others from a macroeconomic
angle, which can be found in Appendix A.

Harold Hotelling [7] proposed a location competition model to
explain why retail stores of the same kind tend to co-locate. The
basic model had the following assumptions: (1) The city is a linear
line from 0 to 1. (2) There are only two firms selling homogeneous
products, for example Starbucks and Caribou Coffee. (3) The cus-
tomers are uniformly distributed between 0 and 1. (4) The unit
cost of transportation for each customer is the same, thus the total
cost is linear in distance. (5) The two firms compete for location,
not for prices. (6) Each consumer needs only one unit of goods.
The Hotelling model shows that under these assumptions, the two
sellers will simultaneously choose to co-locate in the middle point,
which is known as a pure strategy Nash equilibrium in game theory.

A Nash equilibrium in non-cooperative game theory means that
the chosen strategy of any player is the best response to the strate-
gies of all other players. None of the players has an incentive to
deviate from this set of strategies. In our study, Starbucks chose
the middle point as the best response to Caribou Coffee if Caribou
Coffee chose the middle point and vice versa. The choice of any
other point will cause a decrease of profit.

Suppose the initial locations of a Starbucks (𝑠) store and a Caribou
Coffee store (𝑐) are as shown in Figure 10(a). The middle point𝑚
is between 𝑠 and 𝑐 . Since Starbucks and Caribou Coffee provide
homogeneous products at similar prices, consumers are indifferent
to the choice of the products, but are sensitive to transportation
costs. The consumer at point m is indifferent between the two
stores since the distance to either store is the same. However, any
consumer located to the left of m will go to Starbucks, while any
consumer to the right of m will go to Caribou Coffee because the
travel cost is lower. The stores compete for the best location to
attract as many customers as possible. The profits of stores in
any initial scenarios can be simply represented by the number of
customers they attract as shown in the following functions:

If 𝑠 < 𝑐 (Figure 10(a)):
𝑃𝑟𝑜 𝑓 𝑖𝑡𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠 = 𝑠+𝑐

2 𝑃𝑟𝑜 𝑓 𝑖𝑡𝐶𝑎𝑟𝑖𝑏𝑜𝑢𝐶𝑜𝑓 𝑓 𝑒𝑒 = 1 − 𝑠+𝑐
2

If 𝑠 = 𝑐 :
𝑃𝑟𝑜 𝑓 𝑖𝑡𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠 = 𝑃𝑟𝑜 𝑓 𝑖𝑡𝐶𝑎𝑟𝑖𝑏𝑜𝑢𝐶𝑜𝑓 𝑓 𝑒𝑒 = 0.5
If 𝑠 > 𝑐 :
𝑃𝑟𝑜 𝑓 𝑖𝑡𝑆𝑡𝑎𝑟𝑏𝑢𝑐𝑘𝑠 = 1 − 𝑠+𝑐

2 𝑃𝑟𝑜 𝑓 𝑖𝑡𝐶𝑎𝑟𝑖𝑏𝑜𝑢𝐶𝑜𝑓 𝑓 𝑒𝑒 = 𝑠+𝑐
2

According to these profit functions, the competition process with
the initial state in Figure 10(a) is shown below.

Step 1: Starbucks will move to the right and stay as close as
possible to Caribou’s left-hand side. This will allow Starbucks to
receive the biggest possible market share.

Step 2: Caribou will move to the left-hand side of Starbucks
and stay as close as possible to receive the biggest possible market
share.

Step 3: The competition process in Step 1 and Step 2 will keep go-
ing and the two coffee shops will move to the left together until they
reach the middle point. This is the pure strategy Nash equilibrium.

(a) Initial state of a Starbucks store (s) and a Cari-
bou Coffee (c)

(b) Step 1

(c) Step 2

(d) Step 3

(e) Step 4

Figure 10: Competition process of Starbucks and Caribou

Step 4: Any shop that deviates from the middle point will receive
a smaller market share.

The result with this competition process is that the Starbucks
store and the Caribou Coffee store co-locate at the middle point,
and no one wants to deviate. A similar competition process can
be applied for any other initial states, where the same colocation
patterns will appear at the end.

For the Hotelling model with three brands, there is no pure
strategy Nash equilibrium found. However, the three brands will
stay near the middle point (not exactly in the middle) without
settled locations. This situation is not stable, as every brand wants
to stay near the others while still changing positions to undercut
the others. However, shops cannot move freely as the sunk cost is
high in the real world. Our empirical results for Starbucks, Caribou
Coffee, and Dunn Brothers Coffee have shown that they do co-
locate. Thus, the location competition result of three players is
unstable in theory but is stable in practice. This finding can help
expand the application of game theory as some non-Nash equilibria
have the same explaining power as Nash equilibria.

6 RELATEDWORK
The concept of colocation was introduced by Shekhar et al. in [12].
Huang et al. [8] provided extensive experiments and rigorous discus-
sions regarding the topic and the participation index as a prevalence
measure between constituent features. Barua et al. [1] introduced
statistical significance testing in global colocation and segregation
pattern detection to avoid enumeration of chance patterns in the
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dataset for both aggregation and segregation patterns but did not
mention patterns which are regional (or local). Regional colocation
was studied by Li et al. [10]. Our work extends their paper by the
incorporation of statistical significance and enumeration of more
explainable regions by space partitioning.

Prior works on Colocation pattern detection have primarily fo-
cused on generalized pattern detection where the search space
would encompass the complete dataset [8], [12]. Other works on
local pattern detection have focused on shapes [13], zonal patterns
[3], and regional colocation patterns for sets of continuous vari-
ables [6]. This paper uses a pruning-based approach to reduce the
search space of candidate colocations and a statistical test to verify
the confidence level of our detection result. Thus, our results are
statistically more robust than the previous literature.

Amajor focus of colocation patternmining has been using spatial
data to find aggregation patterns. The authors in [15] discuss the
dynamics of events whichmutually evolve with time. In [11] and [4],
the focus is drawnmore towards the temporal change in data points
generated from complete spatial random data. Our work is primarily
targeting emerging and vanishing colocation patterns where the
spatial pattern might or might not exist at various instances of time.
This type of analysis is made possible by newer datasets such as
Safegraph and ours is the first work to explore such an approach
with geographically meaningful regions as the output.

We also aim to make our detection algorithm robust by adding
statistical significance to our method. The existing colocation detec-
tion literature [8], [6], [14] uses a threshold on prevalence measures
such as the participation index (𝑝𝑖) to categorize a pattern as an
aggregation or segregation. Recently an adaptive density threshold
has been proposed [5] to find clusters of colocation instances. We
intend to compare the 𝑝𝑖 of a candidate pattern observed in the
dataset against the 𝑝𝑖s of the patterns in complete spatially random
datasets, which serve as the null hypothesis. This would give us the
probability of whether the observed pattern is rare in a complete
spatial random dataset.

7 CONCLUSION AND FUTUREWORK
In this paper we discussed the problem of statistically significant
regional colocation pattern detection. We proposed a maximal sub-
graph based approach which can enumerate candidate regions that
are geographically and economically explainable. Experimental
results on a real world data show that the proposed approach enu-
merates regional colocation patterns which are more statistically
significant than the current space partitioning based methods. We
also provided a case study using the maximal sub-graph based ap-
proach and provided a domain interpretation via game theory and
regional economics.

Future Work: In future, we plan to explore the task while ad-
dressing the multiple comparisons problem. In this paper we per-
form multiple hypotheses tests simultaneously without addressing
the effect of increased false positives with more inferences. We also
plan to expand towards country-level retail establishment location
data so as to apply our approach to enumerate states and other
geographic regions within which a colocation pattern might be
significant. Regional colocation pattern detection is a very com-
putationally intensive problem. Adding statistical significance to

the mining algorithm greatly increases the computational cost.
Thus, we want to improve upon our current work to make it more
computationally efficient. Finally, we plan to include the temporal
component of emerging and vanishing regional colocation patterns
with statistical significance.
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