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Single-Snapshot Nested Virtual Array Completion:

Necessary and Sufficient Conditions
Pulak Sarangi , Member, IEEE, Mehmet Can Hücümenoğlu , and Piya Pal

Abstract—We study the problem of completing the virtual array
of a nested array with a single snapshot. This involves synthesizing
a virtual uniform linear array (ULA) with the same aperture
as the nested array by estimating (or interpolating) the missing
measurements. A popular approach for virtual array synthesis
involves completing a certain Hankel/Toeplitz matrix from partial
observations, by seeking low-rank solutions. However, existing the-
oretical guarantees for such structured rank minimization (which
mostly provide sufficient conditions) do not readily extend to nested
arrays. We provide the first necessary and sufficient conditions
under which it is possible to exactly complete the virtual array of
a nested array by minimizing the rank of a certain Toeplitz matrix
constructed using a single temporal snapshot. Our results exploit
the geometry of nested arrays and do not depend on the source
configuration or on the separation between sources.

Index Terms—Sparse Arrays, Nested Sampling, Array
interpolation, Matrix Completion, Direction-of-arrival estimation.

I. INTRODUCTION

S
PARSE linear arrays such as nested and coprime are well-
known for their enhanced spatial resolution and large de-

grees of freedom (DoF), which are attributed to their large
aperture (spanned using far fewer sensors than a Uniform Linear
Array) and the structure and cardinality of their difference coar-
rays [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The
large contiguous difference coarray is typically “synthesized”
in the correlation domain, where the unobserved correlation
values corresponding to missing sensors get implicitly inter-
polated by computing cross correlations between all pairs of
sensor measurements. However, these techniques rely on a large
number of temporal snapshots to estimate the spatial correlation
matrix [1], [5], [13], [14], [15], [16], [17], which may pose
challenges in applications such as automotive radar and joint
communication and radar sensing, where the sources/multi paths
may be coherent and the environment is dynamic due to the
high mobility of the sources. This can significantly limit the
number of temporal snapshots available for source localization
[18], [19].

In order to exploit the enhanced resolution of sparse arrays in
sample-starved regimes, several algorithms have been developed
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for DOA estimation with a single (or limited) snapshot(s), using
both off-grid and grid-based approaches [4], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. Another body of work
aims at “completing a virtual ULA” with the same aperture as the
sparse array, by estimating/interpolating the missing measure-
ments with a single snapshot [23]. The virtual measurements
can then be used for diverse tasks such as beamforming and
source localization, aided by the enhanced resolution of the
filled aperture of the virtual ULA [13], [16], [18], [20], [23]. A
popular approach is to synthesize the virtual ULA measurements
by using low-rank Toeplitz or Hankel matrix completion [13],
[20], [25]. Indeed, the virtual measurements can be arranged
in the form of a low-rank Hankel/Toeplitz matrix, and the
measurements acquired by the sparse array only reveal certain
entries of this matrix. In practice, for computational tractability,
the rank constraint is often relaxed to a suitable convex surrogate,
such as the nuclear norm or atomic norm [13], [18], [20], [25].
Although the aforementioned algorithms can also be applied
for nested virtual array completion with only one snapshot,
there is currently a disconnect between theory and practice.
Existing guarantees for deterministic sparse array completion
using nuclear norm minimization involve certain coherence
conditions on the virtual Toeplitz/Hankel matrix and utilize
specific graph-based array designs [18], [20]. On the other hand,
theoretical guarantees for atomic norm minimization typically
assume randomized sparse arrays, and require the source lo-
cations to satisfy a certain minimum separation even in the
absence of noise [23], [28], [29]. These results therefore do not
apply to deterministic spatial samplers such as nested arrays.
Moreover, tight necessary and sufficient conditions remain an
open question for single-snapshot virtual array completion via
rank minimization.

Our contributions: We address these open questions by pro-
viding the first necessary and sufficient conditions for rank-
minimization to succeed in synthesizing the virtual array of
a nested array with a single snapshot (Theorem 1). Since we
consider the original rank-minimization framework, our re-
sults also reveal fundamental performance limits of any subse-
quent relaxation/approximation of the rank function. We guar-
antee exact interpolation (in absence of noise) regardless of
the separation between sources, or coherence of the virtual
Toeplitz matrix. Our converse results (necessary conditions)
utilize the geometry of nested arrays in order to establish the
existence of “ambiguous” source configurations (which we ex-
plicitly construct) for which rank-minimization will provably
fail.

Notations: Given a vector z ∈ C
L, the operator TL(z) re-

turns a L× L Hermitian Toeplitz matrix whose first column is
given by z. R(A) represents the range space of a given ma-
trix A. We denote AS(ω) = [aS(ω1),aS(ω2), . . . ,aS(ωK)] ∈
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C
P×K as the array manifold matrix of an array with sensors

located at nλ/2, n ∈ S = {d1, d2, . . . , dP } (with source wave-
length λ), and source frequencies are given by the set ω =
{ω1, ω2, . . . , ωK}, with [aS(ωk)]m = ejωkdm . We use [v]i1:i2
to denote a vector whose entries are given by those at indices
i1, i1 + 1, .., i2 of the vector v.

II. PROBLEM FORMULATION

Consider K far-field narrowband sources impinging from
directions {θi}

K
i=1 on a one-dimensional nested array with

P = 2M sensors whose locations are given by Snest, where

Snest := S1 ∪ S2 is the union of integer sets S1 = {m− 1}M+1
m=1

and S2 = {m(M + 1)− 1}Mm=2. The signal received at the
nested array is given by:

ynest = ASnest
(ω)x+ n, (1)

where x ∈ R
K denotes real-valued 1 (deterministic) source sig-

nals and n is an additive noise term. The normalized spatial
frequencies are denoted by ω = {ωk}

K
k=1, with ωi = π sin(θi).

The difference set DSnest
of Snest is defined as DSnest

:= {m−
n|m,n ∈ Snest}. It is well known that the set of non-negative
elements in DSnest

are given by U := {0, 1, . . . , N − 1} where
N=M(M + 1)[1]. In the absence of noise, we can rewrite (1)
as

ynest = Snestyfull, yfull := AU(ω)x, (2)

where Snest ∈ R
P×N is a row-selection matrix given by:

[Snest]i,j =

{
1, if di + 1 = j, di ∈ Snest

0, otherwise

The vector yfull is a “virtual measurement,” received by the vir-
tual array U, with identical source configurations (same DOAs
ω and source signal x).

Key Question: We are interested in the problem of “sparse
array interpolation” with only a single snapshot, where the goal
is to estimate yfull from ynest. As discussed earlier, theoretical
guarantees for matrix-completion or atomic norm mimimization
based virtual array synthesis do not readily extend to nested
arrays. This raises the open question: What are the necessary
and sufficient conditions under which rank-minimization with
nested arrays leads to exact virtual array completion?

III. GUARANTEED SINGLE SNAPSHOT INTERPOLATION WITH

NESTED MATRIX COMPLETION

Consider the noiseless measurement model (1) with n = 0.
From (2), it can be seen that when x is real, the matrix TN (yfull)
admits the following Vandermonde decomposition:

TN (yfull) = AU(ω)diag(x)AH
U (ω). (3)

Consider the rank-minimization problem

min
u∈CN

rank[TN (u)] subject to Snestu = ynest. (P1)

The following theorem provides necessary and sufficient con-
ditions under which perfect interpolation is possible (in absence
of noise) by solving (P1).

1A similar setting with real source signals has been considered in [24]. In
future, we will extend our theoretical results for the complex case.

Theorem 1: Consider the measurement model (1) with n =
0. If K ≤ M , then (P1) has a unique solution u� satisfying
u� = yfull = AU(ω)x, for every ω and x. Conversely if K >
M , there exist source configurations withK source anglesω0 ∈
[−π, π)K , and amplitudes x0 ∈ R

K , such that one can find a
vector ŷ, with ŷ �= yfull (where yfull = AU(ω0)x0), satisfying

Snestŷ = Snestyfull, rank (TN (ŷ)) ≤ K (4)

Proof: We first show that there exists no feasible point ỹ ∈
C

N of (P1) such that rank(TN (ỹ)) < K. Consider a feasible
point ỹ ∈ C

N and the following block partitioning of the matrix
TN (ỹ):

TN (ỹ) =

[
T1 T2

X Z

]
, (5)

where T1 ∈ C
(M+1)×(M+1),T2 ∈ C

M+1×(N−M−1). We also
define a partitioning of the inner ULA manifold AS1

(ω) as:

AS1
(ω) =

[
1�

B(ω)

]
, (6)

where B(ω) ∈ C
M×K is also a Vandermonde matrix due to

the structure of the nested array. Since ỹ is feasible, we have
Snestỹ = ynest, which implies

T1 = TM+1([ỹ]1:M+1) = TM+1([ynest]1:M+1) = TM+1(yS1
).

where yS1
= AS1

(ω)x. Since S1 is a ULA, from (3), we have

TM+1(yS1
) = AS1

(ω)diag(x)AH
S1
(ω). (7)

Since K ≤ M , rank(TM+1(yS1
))=K. Hence, rank(TN (ỹ)) ≥

K, i.e., there exists no feasible point with rank strictly smaller
than K.

Suppose rank(TN (ỹ)) = K. We show that ỹ = yfull is the
only feasible solution satisfying this property and this will prove
that yfull is the unique solution to (P1). We need to show that
[ỹ]i = [yfull]i for all 1 ≤ i ≤ N . In other words, for every j′ =
M + 1,M + 2, . . . , N , we will show that

[ỹ]i = [yfull]i, ∀ i ≤ j ′. (8)

We establish this by induction on j′. The base case j ′ = M + 1
follows because ỹ is feasible and due to the structure of nested ar-
ray, we also have [ỹ]i = [yS1

]i = [yfull]i, 1 ≤ i ≤ M + 1. Next,
suppose (8) holds for j′ = j0 (j0 ≥ M + 1), and we will show
that (8) also holds for j0 + 1. Due to the induction hypothesis,
showing (8) holds for j ′ = j0 + 1 is equivalent to showing
[ỹ]j0+1 = [yfull]j0+1. Denote T̄ := [T1 T2] ∈ C

M+1×N . Due

to the Toeplitz structure, the (j0 + 1)th column of T̄ is given by:

t̄j0+1 =
[
[ỹ]∗j0+1, [ỹ]

∗
j0
, . . . , [ỹ]∗j0−M+1

]� (a)
=

[
[ỹ]∗j0+1, v̄

�
]�

,

(9)

where v̄ = [[yfull]
∗
j0
, . . . , [yfull]

∗
j0−M+1]

� and (a) follows from
the induction hypothesis. From (2), for i = 1, 2, . . . ,M :

[v̄]i =

K∑

k=1

e−jωk(j0−i)xk =

K∑

k=1

ejωkie−jωkj0xk, (10)

Define x̃ ∈ C
K as [x̃]k = e−jωkj0xk. From (6), we obtain

v̄ = B(ω)x̃. (11)

Now, we use the fact that rank(TN (ỹ)) = K = rank(T1)which
implies that rank(T̄) = K. Therefore, the (j0 + 1)th column
of T̄ (̄tj0+1) satisfies t̄j0+1 ∈ R(T1). From the Vandermonde
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decomposition (7), it can be seen that AS1
(ω) is a basis for

R(T1), and hence there exists c ∈ C
K such that

t̄j0+1 = AS1
(ω)c =

[
1�

B(ω)

]
c. (12)

By combining (9), (11), and (12) we have the following:

t̄j0+1 =

[
[ỹ]∗j0+1

v̄

]
=

[
1�c

B(ω)c

]
(a)
=

[
1�c

B(ω)x̃

]
. (13)

From the equality (a), we have B(ω)c = B(ω)x̃. Since K ≤
M , B(ω) is a Vandermonde matrix with full column rank and
thus c = x̃. The proof is complete by plugging c = x̃ in (13)

[ỹ]∗j0+1 =
∑K

k=1[x̃]k =
∑K

k=1 e
−jωkj0xk = [yfull]

∗
j0+1.

For the converse results, we will show the existence of ω0,x0

and ŷ with the desired properties by considering two cases (1)
2M + 1 ≤ K ≤ N/2 and (2) M < K ≤ 2M :

1) (2M + 1 ≤ K ≤ N/2): Consider any 2K distinct source
angles denoted by the set Ω2K := {ω1, ω2, . . . , ω2K}. We de-
fine a concatenated matrix M(Ω2K) ∈ R

4M×2K :

M(Ω2K) =
[
Re(ASnest

(Ω2K))� Im(ASnest
(Ω2K))�

]�
.

Since K ≥ 2M + 1, M(Ω2K) has a non-trivial null space, i.e.,
there exists v ∈ R

2K ,v �= 0 such that

M(Ω2K)v = 0. (14)

Suppose v has L ≤ 2K non-zero entries, and without loss
of generality, let the indices of the non-zero elements be
{1, 2, . . . , L} 2. We select ω0 as ω0 = {ω1, ω2, . . . , ωK}. Now,
there can be two possibilities: either L > K, or L ≤ K. Sup-
pose L > K. In this case, let x0 = −[v]1:K ∈ R

K and con-
struct ŷ as follows. Define ω̄ := {ωK+1, . . . , ωL} and x̄ :=
[v](K+1):L. Let ŷ be given by ŷ = AU(ω̄)x̄. In this case, since

[AU(ω̄),AU(ω0)] is a Vandermonde matrix with L distinct
columns, it has full column-rank, since L ≤ 2K ≤ N . This
implies that AU(ω̄)x̄ �= AU(ω0)x0 for non-zero x0, x̄, and
therefore ŷ �= yfull. Next consider the case L ≤ K. In this case,
let x0 be given by x0=[[v]�1:L,1

�
K−L]

� (where 1K−L ∈ R
K−L

is a vector of all 1’s), ω̄ := [ωL+1, . . . , ωK ], x̄=1K−L, and again
construct ŷ as ŷ = AU(ω̄)x̄. Once again, it can be verified
that yfull �= ŷ, otherwise it would imply (from the construc-

tions of x0, x̄ and ω̄) that
∑L

i=1 aU(ωi)[x0]i = 0. This cannot

happen since {aU(ωi)}
L
i=1 are L distinct columns of a N × L

Vandermonde matrix (with L ≤ N ), and are therefore linearly
independent. Therefore, for each construction of ŷ, we have
yfull �= ŷ, and (14) also implies that Snestyfull = ASnest

(ω0)x0 =
ASnest

(ω̄)x̄ = SnestAU(ω̄)x̄ = Snestŷ. Since ŷ = AU(ω̄)x̄, it
also holds that rank(TN (ŷ)) = rank(AU(ω̄)diag(x̄)AH

U
(ω̄)) =

|K − L| ≤ K, as L ≤ 2K.
2) (M < K ≤ 2M ): We begin by proving the following

fact about the nested array. For every K in the range M <
K ≤ 2M , there is at most one i ∈ {2, . . . , 2M} (i.e. exclud-
ing the sensor at 0) such that di satisfies mod (di,K) = 0.
Suppose there exist two sensor locations dl and dm for which
mod (dl,K)= mod (dm,K) = 0. SinceM < K < 2M + 1,
and di = (i− 1), di ∈ S1, this would imply that dl, dm ∈ S2.
Therefore, there exist integers z1, z2 and k1, k2 ∈ {2, . . . ,M},
such that k1(M + 1)− 1 = z1 K and k2(M + 1)− 1 = z2 K,
which implies that (k2 − k1)/K = z2k1 − z1k2. Since 2 ≤
k1, k2 ≤ M , we have −(M − 2) ≤ k2 − k1 ≤ M − 2. But we

2The elements of the set Ω2K can always be permuted to ensure this.

also have M < K ≤ 2M . Hence, (k2 − k1)/K ∈ Z can be
satisfied only if k1 = k2. This implies that dl = dm, and the
statement is proved. We now construct ω0 as ω0 = {2π k

K
}K−1
k=0

3 and let ω̄ = ω0 + 2π α
K

, where α is chosen as follows. If
there exists an integer i0 ∈ {2, 3, . . . , 2M} such that the sensor
location di0 = zK for some positive integer z > 0, then we
choose α = 1

z
. Else, α is chosen as an arbitrary real number

satisfying 0 < α < 1. Redefine Ω2K as Ω2K := ω0 ∪ ω̄. We
construct w ∈ R

2K as follows: [w]i = 1, [w]K+i = −1, 1 ≤
i ≤ K. Clearly, [w]i �= 0 for all i. We will show that w satisfies
M(Ω2K)w = 0. Since the first sensor in nested array is assumed
to be at the origin (i.e. d1 = 0), we have [M(Ω2K)w]1 =
1�w = 0, and [M(Ω2K)w]2M+1 = 0�w = 0. Consider any
i in the range 2 ≤ i ≤ 2M . First assume that the sensor loca-

tion di satisfies mod (di,K) �= 0, implying that sin(πdi

K
) �= 0.

Then,

[M (Ω2K)w]i =

K−1∑

k=0

cos

(
di
2πk

K

)
−

K−1∑

k=0

cos

(
di
2π (k+α)

K

)

=
sin (πdi)

sin
(
πdi

K

)
[
cos

(π
K

di(K−1)
)
−cos

(π
K

di (K−1+2α)
)]

= 0

since sin(πdi) = 0 for integer di. Similarly,

[M (Ω2K)w]2M+i=

K−1∑

k=0

sin

(
di
2πk

K

)
−

K−1∑

k=0

sin

(
di
2π(k+α)

K

)

=
sin (πdi)

sin
(
π
K
di
)
[
sin

(π
K

di(K−1)
)
−sin

(π
K

di (K−1+2α)
)]

= 0.

Finally, suppose there exists i0 such that di0=zK. 4

Then, with the aforementioned choice of α = 1
z

, we

have cos(di0
2πk
K

) = cos(2πkz) = 1 and cos(di0
2π(k+α)

K
) =

cos(2πkz + 2π) = 1. This implies that [M(Ω2K)w]i0 =
0, as

∑
i[w]i = 0. Similarly, we have sin(di0

2πk
K

) =

sin(2πkz) = 0 and sin(di0
2π(k+α)

K
) = sin(2πkz + 2π) = 0,

which implies that [M(Ω2K)w]i0+2M = 0 as well. Com-
bining the above results, we showed that M(Ω2K)w =
0. Let x0, x̄ ∈ R

K be defined as [x0]i = −[w]i, [x̄]i =
[w]K+i, 1 ≤ i ≤ K. As before, construct ŷ = AU(ω̄)x̄. Since
M(Ω2K)w = 0, we again have Snestyfull = ASnest

(ω0)x0 =
ASnest

(ω̄)x̄ = SnestAU(ω̄)x̄ = Snestŷ. Since K ≤ N/2, us-
ing a similar argument as the previous case, it can
again be shown that ŷ �= yfull. Furthermore, rank(TN (ŷ)) =
rank(AU(ω̄)diag(x̄)AH

U
(ω̄)) = K. This concludes the proof.�

Theorem 1 guarantees that when K ≤ M , it is possible to
perfectly interpolate the missing sensors in a nested array, by
solving the rank-minimization problem (P1) regardless of the
separation between the sources. In fact, it can be shown that the
sufficient condition broadly applies to any sparse array with a
ULA segment of length at least K. It also shows that, even with
a single snapshot, a nested array can identify O(M) sources
(by applying any subspace based technique on the output of
(P1)). While an ULA can also identify K ≤ M sources us-
ing single-snapshot MUSIC (SS-MUSIC) [30], an interpolated
nested array can resolve sources with much smaller separation,

3Note that each ωi = π sin θi maps to a unique angle in [−π, π), which can
again be uniquely mapped to ωi ∈ [0, 2π).

4From our previous argument, there can be at most one such sensor.
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Fig. 1. Comparison of beamforming on the nested array and interpolated
virtual array with K = 3 sources located at (left) ω = {0.0, 0.1, 0.2} and
(right) ω = {0.0, 0.2, 0.4}. The total number of sensors is P = 14 and the
interpolation was performed up toN = 56 sensors corresponding to the aperture
of the nested array.

Fig. 2. (Left) MSE in DOA vs. SNR for K = 5 sources with a nested
array with P = 12 sensors and ULA (with P = 12 and P = 42). (Right)
Normalized interpolation error vs. SNR for interpolating up to N = 42 sensors
corresponding to the aperture of the P = 12 sensor nested array.

especially in presence of noise. This is demonstrated in Fig. 2.
In the future, we will analyze how the outer ULA S2 controls
this noisy interpolation error.

Theoretical conditions under which nested arrays will prov-
ably fail to identify sources with one snapshot were also un-
available. 5 An important contribution of Theorem 1 is to settle
this question by showing that the sufficient condition is also
necessary. This is done by constructing ambiguous source con-
figurations that exploit the nested geometry.

IV. SIMULATIONS

We solve a relaxed version of (P1) by replacing the rank
with nuclear norm6 and the equality constraint by a norm
constraint ‖Snestu− ynest‖2 ≤ ε, assuming that the noise is
bounded as ‖n‖2 ≤ ε. We call this approach Toeplitz Com-
pletion (TC). We first show the benefits of interpolation in
beamforming with nested arrays using a single snapshot. We
consider noiseless measurements acquired by a nested array with
P = 14 sensors, comprised of three sources with amplitudes
x = [1,−1, 1]. In Fig. 1, we plot the beam pattern obtained
by interpolating the nested array measurements using TC, and
then beamforming with the interpolated measurements for two
different DOA configurations. For comparison, we plot the beam
pattern obtained from beamforming with the physical nested
array (without interpolation). We also perform interpolation with

5Most existing works focus on the multi-snapshot setting [1], [27], [31]
6Nuclear norm is just one among many approaches to replace “rank” by a

suitable surrogate in order to attain computational tractability.

Atomic Norm Minimization (ANM) [23] and plot the resulting
beam pattern in Fig. 1 (last row). Due to large side lobes of
the nested array, the source locations are not distinguishable
when using the physical measurements. On the other hand,
using the interpolated signal produced by TC, we can identify
three closely spaced sources. Beamforming with the interpolated
measurements using ANM fails to resolve sources with small
separation (left), and succeeds only when the separation is large
enough (right).

We next study the DOA estimation error and the interpo-
lation error in presence of noise. We consider a nested ar-
ray with P = 12 sensors and K = 5 sources with spatial fre-
quencies ω = {π/20 + 0.1k}4k=0, and fixed amplitudes x =
[1,−1, 1, 1,−1]�. The additive noise is generated as n ∼
U(−σ/2, σ/2) and the SNR=10 log(1/σ2) is controlled by
varying σ. In Fig. 2 (left) we plot the MSE of DOA estimates
(computed over 200 trials) as a function of SNR, by perform-
ing Root-MUSIC [32] on the output of TC. We also compare
against Successive cancellation beamforming (SC-Beam) [21],
ANM [33], and Hankel Completion (HC) [20], all of which
permit single-snapshot DOA estimation with (arbitrary) sparse
arrays, although their performances vary. We also compare the
performance of SS-MUSIC on ULA (with 12 and 42 sensors).
The 12-element nested array outperforms the ULA with 12
sensors and comes close to the performance of the 42-element
ULA.

In Fig. 2 (right) we also plot the interpolation error ‖ŷfull −
yfull‖2/N versus SNR where ŷfull is the estimated virtual mea-
surement. For algorithms such as SC-Beam that does not per-
form explicit interpolation, we generate the interpolated sig-
nal using the DOA and source amplitude estimates as ŷfull =
AU(ω̂)x̂. In both plots, we observe that the MSE of TC decays
sharply with SNR while the other algorithms exhibit saturation.
It is to be noted that the theoretical guarantees for these algo-
rithms (if available) do not necessarily apply to deterministic
sampling patterns such as nested arrays. Therefore, these tech-
niques may fail to correctly identify all K sources (especially
with small separation) with nested arrays, leading to saturation.
The steady decay in the MSE of TC with increasing SNR is
consistent with Theorem 1, which guarantees that exact inter-
polation is possible with nested arrays with K ≤ M sources by
seeking low-rank solutions.

V. CONCLUSION

We provided necessary and sufficient conditions for rank-
minimization based techniques to successfully complete the
virtual array of nested arrays in the absence of noise. We
showed that if K ≤ M , one can exactly recover the missing
measurements (and synthesize the virtual array) for any source
configuration, by solving a Toeplitz matrix completion problem
via rank-minimization. In contrast, when K > M , there exist
source configurations (which depend on the nested geometry)
where the recovery will provably fail. Our results indicate that
the unique geometry of the nested array allows it to leverage
the enhanced resolution of the virtual coarray (via non-linear
interpolation), even with a single snapshot. In numerical sim-
ulations, the Toeplitz completion approach is observed to be
robust to noise and outperforms other single snapshot source
localization methods with nested arrays.
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