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Abstract

Changes in biodiversity may impact infectious disease transmission through multiple
mechanisms. We explored the impact of biodiversity changes on the transmission
of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine
sand flies (Psychodidae), which represent an important health burden in a region
where biodiversity is both rich and threatened. Using molecular analyses of sand fly
pools and blood-fed dipterans, we characterized the disease system in forest sites in
French Guiana undergoing different levels of human-induced disturbance. We show
that the prevalence of Leishmania parasites in sand flies correlates positively with the
relative abundance of mammal species known as Leishmania reservoirs. In addition,
Leishmania reservoirs tend to dominate in less diverse mammal communities, in ac-
cordance with the dilution effect hypothesis. This results in a negative relationship
between Leishmania prevalence and mammal diversity. On the other hand, higher
mammal diversity is associated with higher sand fly density, possibly because more
diverse mammal communities harbor higher biomass and more abundant feeding

resources for sand flies, although more research is needed to identify the factors
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1 | INTRODUCTION

The current biodiversity crisis alters ecosystem functioning and
human well-being through a variety of processes that are still de-
bated (Cardinale et al., 2012; Oliver et al., 2015). In this context, the
impact of biodiversity loss on infectious disease transmission and
spread has become an important research topic during the last two
decades. Particular attention has been given to the potential regu-
lation of pathogens in ecosystems by the presence of species that
are inefficient for their transmission, a mechanism referred to as
the “dilution effect” (Keesing et al., 2010; Ostfeld & Keesing, 2012).
Theoretical investigations as well as laboratory and field experiments
have allowed defining the conditions under which a dilution effect
is expected to occur (Dobson, 2004; Johnson et al., 2008, 2009;
Mihaljevic et al., 2014; Norman et al., 1999; Ostfeld & LoGiudice,
2003; Roche et al., 2012; Rudolf & Antonovics, 2005; Suzan et al.,
2009; Van Buskirk & Ostfeld, 1995), and empirical studies have sug-
gested its existence in numerous disease systems (Clay et al., 2009a,
2009b; Derne et al., 2011; Ezenwa et al., 2006; Gilbert et al., 2001;
Gottdenker et al., 2012; LoGiudice et al., 2003; Ostfeld & Keesing,
2000; Telfer et al., 2005; Weinstein et al., 2017). Considering a local
community of hosts composed of species that differ in their com-
petence for a given pathogen (i.e., their ability to get infected and
transmit), a dilution effect may occur if the presence of the least
competent hosts reduces contact rates between the most compe-
tent hosts and the pathogen or decreases the density of competent
hosts. Additionally, if the less competent hosts are also those that
tend to be extirpated from species-depleted communities, biodi-
versity loss should result in enhanced transmission. The idea that
the dilution effect may produce a beneficial impact of biodiversity
conservation on public health in most disease systems, has triggered
important interest as well as strong criticism (Civitello et al., 2015;
Halsey, 2019; Keesing et al., 2010; Lafferty & Wood, 2013; Levi
et al., 2016; Randolph & Dobson, 2012; Salkeld et al., 2013; Wood
et al., 2014). Advances in disease ecology have allowed a more de-
tailed understanding of biodiversity-disease relationships, and the
field has progressed beyond initial debates about the generality
of the dilution effect. Studies have highlighted the importance of

that shape sand fly communities. As a consequence of these antagonistic effects,
decreased mammal diversity comes with an increase of parasite prevalence in sand
flies, but has no detectable impact on the density of infected sand flies. These results
represent additional evidence that biodiversity changes may simultaneously dilute
and amplify vector-borne disease transmission through different mechanisms that

need to be better understood before drawing generalities on the biodiversity-disease

amplification effect, Culicidae, dilution effect, iDNA, metabarcoding, phlebotomine sand fly,

accounting for different factors such as the geographical scale, the
nature and extent of biodiversity changes, the transmission mode,
and the taxa involved in the disease system under consideration
(Cohen et al., 2016; Faust et al., 2017; Garcia-Pena et al., 2016; Gibb
et al., 2018; Halliday & Rohr, 2019; Halliday et al., 2020; Johnson
et al., 2015, 2019; Keesing & Ostfeld, 2021; Morand et al., 2014;
Rohr et al., 2020; Weinstein et al., 2017; Wood & Lafferty, 2013;
Young et al., 2017). It has been shown that changes in biodiversity
can either amplify or dilute pathogen transmission, through multi-
ple mechanisms which can sometimes occur within the same system
(Clay et al., 2009a; 2009b; Faust et al., 2017; Huang et al., 2015; Luis
et al., 2018; Miller & Huppert, 2013; Ogden & Tsao, 2009; Roche
& Guégan, 2011; Rohr et al,, 2015; Swei et al., 2011; Wood et al.,
2020). In the case of vector-borne diseases, it has been stressed that
the ecology and feeding habits of arthropod vectors must also be
considered (Carlson et al., 2009; Hamer et al., 2011; Laporta et al.,
2013; Loss et al., 2009; McGregor et al., 2018; Miller & Huppert,
2013; Ogden & Tsao, 2009; Park et al., 2016; Randolph & Dobson,
2012; Roche & Guégan, 2011; Roche et al., 2013; Swei et al., 2011;
Titcomb et al., 2017; Vinson & Park, 2019).

Overall, there is a need for more field studies on various sys-
tems to further disentangle the mechanisms underlying biodiversity-
disease relationships and to inform epidemiological predictions.
However, conducting such studies can be highly challenging, since it
requires generating data on wild vertebrate and arthropod fauna as
well as on circulating pathogens in numerous study sites and, often,
in difficult environmental contexts (e.g., tropical regions). Here, we
used recently developed molecular tools to explore the effects of
mammal diversity on the transmission of Amazonian leishmaniases.
Leishmaniases are a group of human vector-borne diseases endemic
to different tropical and subtropical regions, caused by parasites of
the genus Leishmania (Kinetoplastida: Trypanosomatidae) and trans-
mitted by hematophagous phlebotomine sand flies (Psychodidae)
(reviewed in Bafuls et al., 2007). In Amazonian ecosystems, several
zoonotic Leishmania species typically coexist, with distinct sylvatic
transmission cycles involving different sand fly vector species and
wild mammal reservoir hosts (Lainson & Shaw, 2010; Rotureau,
2006). Amazonian leishmaniases represent a significant public health
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burden in a biodiversity-rich region threatened by human activities
(Chavy et al., 2019; Pan American Health Organization, 2019; Rangel
et al., 2014). However, the mechanisms through which biodiversity
may impact the transmission of these wild zoonoses remain largely

unexplored.

2 | MATERIALS AND METHODS
2.1 | Sampling

Sampling was performed between 2015 and 2017 in 19 different for-
est sites in French Guiana (Figure 1, Table 1, Supporting Information
data S1). Sites were separated by at least ~5-km distance and chosen
to represent sylvatic environments with variable levels of human-
induced disturbance, ranging from remote and protected areas to
forest patches in the vicinity of urbanized zones. When several sites
were sampled within a same area (i.e., Saint-Georges, Belizon, Kaw
or Counami), those were specifically chosen to represent contrasting
situations with respect to hunting pressure (e.g., closer to or further
from the nearest city or accessible road, inside or outside of a pro-
tected area). Human-induced disturbance was measured using the
average Human FootPrint index (HFP; de Thoisy et al., 2010; up-
dated in 2012; Table 1, Supporting Information data S1). In each site,
sand flies were collected using US Centres for Disease Control and
Prevention (CDC) miniature light traps set up across a c. 1 ha plot.
Traps were separated by c. 50-m distance from each other and left
for up to six consecutive nights. Each morning, the contents of each
trap was collected. Sand fly females were sorted using a stereo mi-
croscope and kept in pools (corresponding to each trap-night) in mi-
crocentrifuge tubes with 95% ethanol for later molecular analyses. A
maximum of 50 individuals was included in a pool, and several pools
were made when more than 50 specimens were caught in a given
trap (with a maximum of four pools per trap, i.e., 200 individuals).
The total number of sand flies caught in each trap was systematically
recorded, unless the contents of the trap was importantly damaged
or partially lost (mainly due to rainy conditions or manipulation dur-
ing collection). Visibly blood-fed dipterans, including sand flies, mos-
quitoes (Culicidae), and biting midges (Ceratopogonidae), were kept
individually in microcentrifuge tubes with 95% ethanol for molecu-
lar analyses. Additional blood-fed dipterans resting during the day
along tree trunks were collected using a Prokopack aspirator (John

W. Hock Co.) and conserved in the same way.

2.2 | Laboratory

We analysed sand fly pools to identify their species composition
using a previously developed DNA metabarcoding protocol (Kocher,
Gantier, et al.,, 2017). Leishmania DNA detection and identifica-
tion was performed on the same pools using high-throughput se-
quencing of kDNA minicircle amplicons (Kocher et al., 2018). For
each blood-fed specimen, the dipteran species and blood meal

source were identified individually as previously described (Kocher,
de Thoisy, Catzeflis, Valiére, et al., 2017). Sand fly pools were ho-
mogenized using a Qiagen Tissuelyser 2 (Qiagen), and DNA was
extracted with the Qiagen DNeasy Blood and Tissue kit. For indi-
vidual blood-fed specimens, a modified Chelex (Bio-Rad) protocol
was used for DNA extraction (Casquet et al., 2012). The Ins16S_1 (F:
TRRGACGAGAAGACCCTATA; R: TCTTAATCCAACATCGAGGTC;
[Clarke et al., 2014]), 125-V5 (F: TAGAACAGGCTCCTCTAG; R:
TTAGATACCCCACTATGC; [Riaz et al., 2011]) and leishmini (F:
5-GGKAGGGGCGTTCTGC-3'; R: 5'-STATWTTACACCAACCCC-3';
Kocher et al., 2018) PCR primers were used to amplify short frag-
ments of dipteran, vertebrate and Leishmania DNA, respectively.
Tags of eight base pairs with at least five differences between them
were added at the 5’ end of each primer to enable multiplexing of
PCR products for subsequent sequencing (Binladen et al., 2007).
A Latin square design was used for PCR multiplexing to allow for
the detection and filtering of mistagged sequencing read (Esling
et al., 2015). For sand fly metabarcoding, two PCR replicates were
performed. PCR products were pooled according to the multiplex-
ing design and used for sequencing library preparation and high-
throughput sequencing on Illlumina Hiseq or Miseq platforms at the
GeT-PlaGe core facilities of Genotoul (Toulouse, France).

2.3 | Bioinformatic analyses

Bioinformatic analyses were performed using the OBITools 1.2.9
package (Boyer et al., 2016) and R 4.0.3 (R Core Team, 2020). Paired-
end reads were merged with illuminapairedend and demultiplexed
based on PCR primer tags using ngsfilter. Reads were dereplicated
using obiuniq and sequences supported by <10 reads in a given
sample were discarded using obigrep. Taxonomic assignments were
performed using ecotag, with customized reference DNA sequence
data sets for each studied taxonomic group. For dipteran identifica-
tions, we used previously published reference data sets for neotropi-
cal sand flies (Kocher, Gantier, et al., 2017) and mosquitoes (Talaga
et al., 2017), to which we added mosquito reference sequences cor-
responding to the targeted 16S region, which we extracted from
NCBI GenBank using ecoPCR. For vertebrate identifications, we
used a previously published reference data set for Amazonian mam-
mals (Kocher, Thoisy, Catzeflis, Huguin, et al., 2017), completed with
vertebrate reference sequences corresponding to the targeted 12S
region extracted from GenBank. For Leishmania identifications, we
used a previously published data set of kDNA minicircle reference
sequences (Kocher et al., 2018). ecotag employs a lower common
ancestor algorithm that allows to perform taxonomic assignments
based on the percentage of identity with multiple matches in a
reference data set. In other words, a sequence matching similarly
to several members of a given taxon will be assigned to the cor-
responding taxon. For dipteran and vertebrate identifications, we
considered taxonomic assignments at the genus level at best if the
percentage of identity with the closest match was lower than 97%, in
order to avoid biases due to reference data set incompleteness (i.e.,
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(a) Location of study sites (French Guiana). (b) Regression of the Shannon index of mammals on human-induced disturbance.

Shannon indices of mammals were estimated through dipteran blood meals in each site. The level of human-induced disturbance was
measured using the human footprint index (de Thoisy et al., 2010). The mean prediction curve is depicted with 90% ClI. In the inlet figure,
the posterior density of the regression's slope coefficient is represented (dotted lines are positioned at 5 and 95% quantiles; the red line is

positioned at x = 0)

artefactual species-level identifications in cases where only one spe-
cies was represented in the data set for a given genus). We then per-
formed de novo sequence clustering using sumaclust 1.0.31 (Mercier
et al., 2013) with a 97% threshold. We defined molecular taxonomic
units (MOTU) based on ecotag results in case of species-level iden-
tifications, and based on de novo clustering otherwise, in order to
identify putative species within upper-level taxa. Vertebrate identi-
fications were adjusted when only a subset of the matched species
was known to be present in French Guiana. Because no reference
sequence was available for local biting midge species, we defined
MOTUs within the Ceratopogonidae family based on de novo clus-
tering only.

For each sequencing library, we used the number of sequenc-
ing reads found with non-used primer tag combinations to per-
form MOTU-based filtering of mistagged reads, as suggested
previously (Esling et al., 2015). Additionally, MOTUs supported by
less than 100 reads in a given sample were filtered out. For sand
fly metabarcoding, we further filtered MOTUs that (i) were not
identified as Phlebotominae, (ii) were not recovered in two PCR
replicates, and (iii) were supported by least 2% of the sequencing
reads in a given sample (a maximum of 50 sand flies were included
in each analysed pool). For individual blood-fed specimens, the
most supported dipteran and vertebrate MOTUs were retained
(i.e., we did not consider the possibility of multiple blood meal
sources, as a conservative measure). In a few cases, the result-
ing dipteran identification did not match the expected dipteran
group (sand fly, mosquito, or biting midge) and was therefore dis-
carded. For blood meal identifications, results were discarded if

the majority sequence was identified as human or other potential
laboratory contaminants which were not expected in our study
sites, as well as sequences assigned to above-order taxonomic lev-
els which probably represented molecular or sequencing artifacts.
For Leishmania detection, only species-level identifications were
considered, and the majority Leishmania species was retained in
each positive sample.

2.4 | Estimating mammal diversity from individual
dipteran blood meals

iDNA has recently emerged as a promising tool to perform verte-
brate inventories at lower cost and effort (Calvignac-Spencer et al.,
2013; Kocher, de Thoisy, Catzeflis, Valiére, et al., 2017; Schnell et al.,
2015). Here, we used a probabilistic approach to generate estimates
of host community composition and diversity from our iDNA data
(i.e., blood meal identifications of individual dipteran specimens)
while accounting for invertebrate host preferences. The model is
represented by a Bayesian network in Figure S1. We assume that the
probability p;, that a blood-fed invertebrate of species i has fed on a
host of species h in site s depends on r,, the relative abundance of h
in's, and on a, the relative preference of i for h. We further assume
that the relative probability of insect i feeding on host h]. rather than
on host h, in site s is given by:

Fsh, Xin,

=22 &)

Psin,  Tsh, i,
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sih
tebrate of species i has fed on host h in site s, given that it has fed on

From (equation 1) it follows that the probability p’. that an inver-

one of the H host species identified in our data set, is:

;o Tsn%in

bin = =R (2)
; Zk:1 Tk @ik

rences of invertebrate i having fed on each of the H host species in
site s. The probability of this data is given by the multinomial distri-
bution with parameters {p} = (p;;, -+, Pl } and Yy = Ty, nge

P({N}4I{p'}s Ys) = Multinomial ({(N}|{p' }5 Ys) (3)

Given S sites and | invertebrate species across all sites, we de-
note {N} = {{N},} the whole data set, {p'} = {{p},} the set of probabil-
ity vectors and {Y} = {Y_} the set of sample sizes, with i = 1,2,...I and
s=1,2,...,S. The likelihood of the full data set is then given by:

s I

PUNYIP' Y (YD) = [T [] Multinomial((N}gl{p' )5 Ys) — (4)

s=1 i=1

The model was implemented in a Bayesian framework in Stan
(Carpenter et al., 2017) through its R interface rstan, in order to sam-
ple the posterior probability density of the parameters using Monte
Carlo Markov chain (MCMC; see Supporting Information and Figure
S2 for details about the choice of priors and simulation results, as
well as the Stan code). Joint samples of mammal's relative abun-
dances in each site were used to derive the Shannon index of diver-
sity (— Y, ranloglrg,)) and the overall proportion of species known as
Leishmania reservoirs. Closely related dipteran species appeared to
feed on similar ranges of hosts (e.g., sand flies of the Nyssomyia genus
feeding mostly on arboreal mammals, sand flies of the Psychodopygus
genus feeding mostly on armadillos, mosquitoes of the Culex genus
feeding on a wide range of vertebrates or observed ceratopogonids
feeding mostly on amphibians; Table 2; Figure S3). Therefore, we es-
timated feeding preferences at the genus level (or at the family level
in the case of ceratopogonids), in order to increase statistical power.
Additionally, we assumed that dipterans had identical preferences
for vertebrates of the same order which exhibit similar morpholog-
ical and ecological features (with the exception of rodents which
were separated into terrestrial and arboreal rodents; Figure S3).
Sites in which less than five dipteran blood meals could be identi-
fied were not retained for the analysis. The posterior distribution of
the parameters was sampled using MCMC with 3 chains of 40,000
iterations, including 4000 iterations for warmup. Convergence and
mixing were assessed using trace plots and ESS values, which were
>200 for all parameters (Figures S4 and S5). The prior distribution of
the parameters was obtained by running the same MCMC sampling
scheme as for the posterior, with the likelihood fixed to a constant.
The comparison of posterior and prior densities allowed us to assess
to what extent the posterior was driven by the data (Figures S4 and

S5). The mean posterior estimates of parameters were computed
and used as variables for the generalized linear models (GLM) de-
scribed in the next section (we initially attempted to jointly estimate
mammal relative abundances and GLM's parameter but this led to
MCMC mixing issues).

2.5 | Effect of mammal diversity on Leishmania
transmission

In addition to the measures of vertebrate communities obtained
from individual blood meal identifications, sand fly counts in traps
and molecular analyses of sand fly pools were used to estimate the
abundance and diversity of sand flies as well as the Leishmania prev-
alence rate in sand flies. All of these variables were used in a series of
Bayesian GLMs to explore the impact of mammal diversity changes
on the disease system (Figure 1, Supporting Information data S2).
We assessed the relationship between human-induced disturbance
and mammal diversity using a regression of the Shannon index of
mammals on the HFP. We assessed whether changes of mammal di-
versity led to predictable changes of the mammal community com-
petence for Leishmania parasites using a regression of the relative
abundance of Leishmania reservoirs on the Shannon index of mam-
mals. Furthermore, we assessed the effect of changes of mammal
diversity on sand fly density and diversity by regressing the num-
ber of sand flies collected in each trap and the Shannon index of
sand flies (estimated from metabarcoding results with the R package
iNext [Hsieh et al., 2016]) on the Shannon index of mammals. We
then assessed the effect of mammal community competence, sand
fly density and sand fly diversity on Leishmania transmission using a
regression of Leishmania prevalence rates in sand flies on the rela-
tive abundance of Leishmania reservoirs, the expected number of
sand flies collected per trap and the Shannon index of sand flies
(used as predictor variables in the same regression). We checked for
spatial autocorrelation of the different variables with the Moran’s |
autocorrelation index as implemented in the R package ape (Paradis
et al., 2004), using the inverse of pairwise geographical distances
between sites as the weight matrix. For all regressions, predictor
variables were standardized, and weakly informative normal priors
were used for regression coefficients. Prior distributions of slope
coefficients were centred around O, while that of regression in-
tercepts were centered around the mid-range value of the corre-
sponding dependent variable. The posterior distributions of slope
coefficients were used to assess the significance of inferred rela-
tionships. We evaluated the cumulative effect of mammal diversity
changes on Leishmania transmission by generating posterior predic-
tions of the Leishmania prevalence rate and of the expected number
of infected sand flies per trap for different values of the Shannon
index of mammals. We visualized sampled mean prediction curves
against the Shannon index of mammals (across the range of values
observed in our study), and used the distribution of their average

slope to measure the predicted effects.
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TABLE 2 List of vertebrates identified in blood meals of each dipteran species or molecular taxonomic units (MOTU)

Species/MOTU

Ceratopogonidae MOTU 1
Ceratopogonidae MOTU 2
Ceratopogonidae MOTU 3
Ceratopogonidae MOTU 4
Ceratopogonidae MOTU 5
Aedini MOTU 1

Culex imitator

Culex MOTU 1

Culex MOTU 2

Culex MOTU 3

Culex sp.stJ

Culex sp.stK

Culex sp.stL

Culicinae MOTU 1
Limatus flavisetosus
Ochlerotatus serratus
Psorophora ferox
Sabethini MOTU 1
Bichromomyia flaviscutellata
Evandromyia brachyphalla
Ev. infraspinosa

Ev. monstruosa

Ev. sericea

Ev. walkeri

Pintomyia serrana
Micropygomyia rorotaensis
Nyssomyia sylvicola

Ny. umbratilis

Ny. yuilli pajoti

Pi. pacae
Pressatia choti

Psychodopygus amazonensis

Ps. ayrozai
Ps. claustrei
Ps. hirsutus
Ps. MOTU 1
Ps. MOTU 10

14

N P R R N R DN R, R, WRr R RN

138

18

32

79
11
34

Vertebrates identified

Rhinella cf. margaritifera (67%); Hyloidea MOTU 1 (33%)
Osteocephalus MOTU 1 (50%); R. cf. margaritifera (50%)
Choloepus didactylus (100%)

Osteocephalus MOTU 1 (100%)

Osteocephalus MOTU 1 (100%)

Adenomera andreae (100%)

Squamata MOTU 1 (100%)

Proechimys cuvieri (36%); Thamnophilus nigrocinereus (28%); Cuniculus paca (7%); Dasyprocta
leporina (3%); Didelphis marsupialis (3%); Mazama nemorivaga (3%); Proechimys guyannensis
(3%); Thamnophilus MOTU 1 (3%); Bradypus tridactylus (2%); Chelonoidis denticulatus (2%);
Dasypus novemcinctus (2%); Echimys chrysurus (2%); Metachirus nudicaudatus (2%); Oecomys
rutilus (2%); Tapirus terrestris (2%)

Squamata MOTU 1 (14%); T. nigrocinereus (14%); Accipitrinae MOTU 1 (7%); Anolis fuscoauratus
(7%); Bothrops atrox (7%); D. leporina (7%); D. novemcinctus (7%); Gonatodes humeralis (7%);
Hypsiboas MOTU 1 (7%); Philander opossum (7%); Polychrus marmoratus (7%); Thamnophilus
MOTU 1 (7%)

D. marsupialis (50%); T. nigrocinereus (50%)

Thamnophilus MOTU 2 (100%)

D. leporina (100%)

Osteocephalus MOTU 1 (100%)

P. cuvieri (67%); Thamnophilus MOTU 1 (33%)

Tinamus major (100%)

D. leporina (40%); Thamnophilus MOTU 1 (40%); M. nemorivaga (20%)
Myoprocta acouchy (100%)

D. leporina (25%); D. novemcinctus (25%); G. humeralis (25%); P. opossum (25%)
D. leporina (40%); P. guyannensis (40%); P. cuvieri (20%)

P. cuvieri (100%)

D. novemcinctus (50%); C. didactylus (25%); M. acouchy (25%)

D. leporina (100%)

Lachesis muta (60%); M. acouchy (40%)

Isothrix sinnamariensis (100%)

Alouatta seniculus macconnelli (60%); C. didactylus (20%); Pithecia pithecia (20%)
Squamata MOTU 1 (100%)

D. leporina (100%)

C. didactylus (49%); Coendou melanurus (15%); A. macconnelli (14%); Ateles paniscus (9%); D.
novemcinctus (4%); Coendou prehensilis (3%); Tamandua tetradactyla (2%); Cebus olivaceus
(1%); Nasua nasua (1%); P. pithecia (1%); Psophia crepitans (1%)

A. macconnelli (17%); C. didactylus (17%); A. paniscus (11%); C. melanurus (11%); D. novemcinctus
(11%); P. crepitans (11%); T. tetradactyla (11%); C. prehensilis (6%); T. terrestris (6%)

M. nemorivaga (100%)
D. leporina (86%); G. humeralis (14%)

D. novemcinctus (44%); D. leporina (16%); T. terrestris (16%); Dasypus kappleri (12%); D. marsupialis
(6%); Mazama americana (3%); Tayassu pecari (3%)

D. novemcinctus (84%); D. kappleri (15%); Thamnophilus MOTU 1 (1%)

C. paca (36%); M. acouchy (36%); D. leporina (18%); M. nemorivaga (9%)

D. novemcinctus (59%); M. americana (15%); T. terrestris (15%); D. kappleri (12%)

D. novemcinctus (50%); D. leporina (12%); D. kappleri (12%); M. acouchy (12%); T. terrestris (12%)

D. novemcinctus (100%)
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TABLE 2 (Continued)

Species/MOTU Nb. Vertebrates identified
Ps. MOTU 2 5

Ps. MOTU 3 5

Ps. MOTU 5 3 D. novemcinctus (100%)
Ps. panamensis 3 D. leporina (100%)

Ps. s. maripaensis 120

D. novemcinctus (40%); T. terrestris (40%); Pecari tajacu (20%)
D. novemcinctus (60%); D. kappleri (40%)

D. novemcinctus (67%); M. americana (11%); D. kappleri (10%); T. terrestris (5%); M. nemorivaga

(3%); C. paca (2%); A. paniscus (1%); P. guyannensis (1%); Thamnophilus MOTU 1 (1%)

Sciopemyia sordellii 2
Trichophoromyia ininii 1 C. paca (100%)
Trichopygomyia trichopyga 6
Viannamyia tuberculata 1 C. melanurus (100%)
3 | RESULTS
3.1 | Sampling and molecular analyses

In total, we collected 18,508 sand fly females, which were gathered
in 666 pools used for sand fly metabarcoding and Leishmania detec-
tion (Table 1, Supporting Information data S1). After DNA extraction
and amplification, high-throughput sequencing and bioinformatic
filtering, 600 (90.1%) sand fly pools could be characterized with
metabarcoding, and Leishmania DNA was detected in 175 (26.3%)
of them. We further collected 855 blood-fed dipterans, including
715 sand flies, 123 mosquitoes and 17 biting midges that were ana-
lysed individually (Table S1). Dipteran identification was successful
in 91.7% of the individuals (although not necessarily at the species
level), and their blood meal content was identified in 75.9% of the
cases. Both dipteran and blood meal identifications were successful
for 602 (70.4%) individuals. Three sites in which less than five blood-
fed dipterans could be identified were not retained for statistical

analyses (Figure 1, Table 1).

3.2 | Sand fly, vertebrate and Leishmania
identifications

In total, we identified 63 sand fly MOTUs in sand fly pools (Table
S1, Supporting Information data S1), which is fairly consistent
with the known sand fly species richness of French Guiana (about
80 species recorded so far). A total of 34 of these were identi-
fied at the species level, including seven known or suspected
Leishmania vector species in the region: Bichromomyia flavis-
cutellata, Nyssomyia umbratilis, Psychodopygus ayrozai, Ps. pana-
mensis, Ps. squamiventris maripaensis, Trichophoromyia ubiquitalis,
Viannamyia furcata (Rotureau, 2006). The most abundant spe-
cies were Ps. squamiventris maripaensis, Th. ininii, Trichopygomyia
trichopyga and Th. ubiquitalis (25.2%, 18.3%, 18.0% and 10.9%
of the estimated number of individuals, respectively). Five
Leishmania species were detected in sand fly pools: L. lainsoni,
L. amazonensis, L. naiffi, L. braziliensis, L. guyanensis; the most

Chiasmocleis shudikarensis (50%); Hyloidea MOTU 2 (50%)

D. novemcinctus (50%); C. paca (33%); D. kappleri (17 %)

frequent being L. lainsoni and L. naiffi (48.6% and 43.4% of the
positive samples, respectively). Blood-fed specimens belonged to
51 dipteran MOTUs, and blood meal analyses revealed a total of
52 vertebrate MOTUs (Table 2, Figure S3, Supporting Information
data S1), including 28 mammals, among which 11 were recognized
Leishmania reservoir hosts in the region: Didelphis marsupialis,
Philander opossum, Metachirus nudicaudatus, Choloepus didactylus,
Dasypus novemcinctus, Tamandua tetradactyla, Coendou melanurus,
C. prehensilis, Dasyprocta leporina, Proechymis cuvieri and P. guy-
annensis (Rotureau, 2006). Our results revealed contrasting host
preferences across sand fly species, and were consistent with ex-
isting knowledge (e.g., Nyssomyia spp. feeding mostly on sloth and
other arboreal mammals [Christensen et al., 1982], B. flaviscutel-
lata feeding mostly on terrestrial rodents [Lainson & Shaw, 1968],
and Psychodopygus spp. feeding mostly on armadillos [Le Pont,
1990]; Table 2; Figure S3).

3.3 | Statistical analyses

We estimated mammal diversity (Shannon index) and the relative
abundance of Leishmania reservoirs in each site based on dipteran
blood meal identifications using a probabilistic approach (Figures
S1 and S2). We then used these estimates in a series of Bayesian
regressions to investigate the effect of mammal diversity on the
transmission of Leishmania parasites. MCMC trace plots and ESS
values indicated convergence and correct sampling of the posterior
distribution for all parameters (Figures S4-S5). Mean estimates of
the Shannon index of mammals across our study sites ranged from
0.46 to 2.7 (Table 1), and these correlated negatively with the human
footprint index (HFP; (de Thoisy et al., 2010); mean effect: -0.34,
90% Cl: -0.61, -0.07; Figure 1b). Spatial autocorrelation was not
detected for the HFP (expected/observed Moran’s I: -0.067/0.056;
p-value: .3), nor for the Shannon index of mammals (expected/ob-
served Moran'’s I: -0.067/-0.13; p-value: .6). The Shannon index
of mammals correlated negatively with the relative abundance of
Leishmania reservoirs (-0.68, 90% Cl: -0.99, -0.38; Figure 2a), posi-
tively with sand fly density (0.4, 90% Cl: 0.13, 0.67; Figure 2b), and
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negatively (but weakly) with the Shannon index of sand flies (-0.19,
90% Cl: -0.38,0; Figure S4A). Furthermore, we estimated that the
prevalence rate of Leishmania in sand flies correlated positively with
the relative abundance of Leishmania reservoirs (0.43, 90% Cl: 0.27,
0.59; Figure 2c), but did not correlate with sand fly density or di-
versity (0.03, 90% CI: -0.12, 0.17 and 0.08, 90% Cl: -0.07, 0.23,
respectively; Figures S7B,C). Finally, posterior predictions indicated
that the Shannon index of mammals correlated negatively with the
Leishmania prevalence rate in sand flies but did not correlate with
the density of infected sand flies (Figure 2d,e).

4 | DISCUSSION

With this work, we show that wild vector-borne disease systems
can be efficiently studied using DNA metabarcoding of arthropod
vectors, which allows measuring arthropod, vertebrate and parasite
communities altogether. Dipteran blood meal analyses allowed to
identify a large variety of vertebrates across our study sites, confirm-
ing the potential of invertebrate-derived DNA (iDNA) approaches
for biodiversity monitoring (Calvignac-Spencer et al., 2013; Kocher,
de Thoisy, Catzeflis, Valiére, et al., 2017; Schnell et al., 2015). Based
on blood meal identifications, we estimated the Shannon index of
mammals, which correlated negatively with the human footprint
index (Figure 1b), as expected (de Thoisy et al., 2010). This suggests
that the variation of mammal diversity across our study sites was, at
least partly, linked to human-induced disturbance. We then explored
the effect of mammal diversity on Leishmania disease systems and
transmission. In particular, we assessed the occurrence of a dilution
effect potentially leading to reduced transmission with higher mam-
mal diversity. In the case of vector-borne diseases, a dilution effect
can be expected only if arthropod vectors feed on various host spe-
cies, including some that are poorly competent for pathogen trans-
mission. This is the case for Amazonian leishmaniases, since sand
fly vector species from which blood meals could be analysed were
observed to have fed on different hosts, including some that are not
known as Leishmania reservoirs (Table 2, Figure S3). For example,
while most Ny. umbratilis individuals had fed on two-toed sloths
(main vector and reservoir of L. guyanensis, respectively), and most
Psychodopygus spp. had fed on nine-banded armadillos (main vec-
tor and reservoirs of L. naiffi), a significant proportion of them had
fed, respectively, on different primates and large terrestrial mam-
mals which are not known to act as Leishmania reservoirs. Therefore,
Leishmania parasites may indeed end up in “diluting” hosts which
could contribute to reduced transmission of these disease agents.
This was further supported by the observation of a positive correla-
tion between the relative abundance of Leishmania reservoir hosts
and Leishmania prevalence rate in sand flies (Figure 2c).

Another important assumption of the dilution effect hypothe-
sis is that species contributing the most to pathogen transmission
dominate in disturbed and less diverse communities. Ecological and
evolutionary hypotheses have suggested the existence of such a
positive relationship between host competence for pathogens and

resilience to disturbance, leading to a general increase of the over-
all community competence with biodiversity loss (Johnson et al.,
2015; Keesing et al., 2010; Ostfeld & Keesing, 2012). Species that
are resilient to changing environments are frequently characterized
by fast life history strategies, including low investment in adaptive
immunity and high reproductive rate, yielding an important influx of
susceptible individuals in the population. In addition, pathogens may
adapt predominantly to resilient host species, because these hosts
are generally widespread, mobile and abundant, therefore constitut-
ing the most frequently encountered resource. Empirical evidence
has supported these ideas (Garcia-Pena et al., 2016; Han et al., 2015;
Johnson et al., 2012, 2013, 2019), although it seems that the sit-
uation may vary depending on the taxa under consideration (Gibb
etal., 2018; Young et al., 2013). Here, we show that mammal species
known as Leishmania reservoirs indeed dominate less diverse mam-
mal communities, with a 233.6% (90% Cl: 293.0%, 190.8%) increase
of their relative abundance along the range of estimated mammal’s
Shannon index (Figure 2a). In sum, these results suggest a predict-
able effect of local mammal diversity changes on the overall host
community competence for Leishmania parasites, contributing to an
increase of vectorial transmission with decreasing mammal diversity,
in accordance with the dilution effect hypothesis.

However, arthropod vector ecology should also be accounted
for when investigating the impact of biodiversity changes on a
vector-borne disease. In particular, higher vector density should
be associated with more frequent host-pathogen contacts and in-
crease transmission (Smith et al., 2012). Additionally, when several
arthropod species can act as vectors for a given pathogen, higher
arthropod diversity can result in higher pathogen transmission
through an overall increase of vector abundance, or due to func-
tional complementarity between vector species (Park et al., 2016;
Roche et al., 2013). Given that vertebrates constitute trophic re-
sources for blood-feeding arthropods, it can be expected that ar-
thropod communities are partially driven by the abundance and
composition of local vertebrate fauna. This might, however, depend
on the ecology of the considered arthropod species. For instance,
highly mobile mosquitoes might be little affected by changes in host
density, which is a classical assumption in epidemiological models
(Dobson, 2004), while ticks may be more sensitive to the presence of
suitable hosts in their immediate environment (Ogden & Tsao, 2009;
Randolph & Dobson, 2012; Swei et al., 2011; Titcomb et al., 2017).
Little is known in this regard for sand flies, which, despite being fly-
ing insects, have relatively small flight ranges (Casanova et al., 2005;
Morrison et al., 1993). Here, we observed a positive relationship
between mammal diversity and sand fly density (Figure 2b), which
suggests that sand flies may indeed be affected by changes in local
mammal communities. Such a relationship could be mediated by a
correlation between mammal diversity and overall mammal biomass,
resulting in greater availability of blood meal resources for sand flies
in more diverse ecosystems. However, our data does not provide
information regarding the absolute abundance of mammals, and it is
difficult draw conclusions about the causality of such a relationship
since some environmental factors could affect both mammal and

AsuRDI'] suowrtoy) aanear) d[qesridde ayy £q pauIaA0S are SA[ONIE Y 18N JO SI[NI 10§ AIRIGIT SUI[UQ AJ[IAY UO (SUONIPUOD-PUB-SULIA)/WOD A[IM"AIRIqI[aur[uo//:sd)y) SUONIPUO)) PUE SWIA, 3y 23S *[£707/90/8¢] U0 Kreiqr auruQ K3[1p “ANsIoAtun) ae1s ueSIyorN £q 1491 23wy | [ [°01/10p/wod K3[im°Kreiqrjaurjuo//:sdny woiy papeoumo(] ‘8 ‘€70T “Xr67S9E 1



KOCHER ET AL.

1826
—I—WI |l A& MOLECULAR ECOLOGY

Mammal-community

competence
(relative abundance of reservoir hosts)

A: dilution effect

Mammal diversity
(Shannon index)

——

B: amplification effect

\ @ Sand fly density
~N

(mean number of individuals per trap)

~
—

— —

0.50 -

0.25 -

Relative abundance of
Leishmania reservoir hosts

I I I I
-2 -1 0 1

Shannon index of mammals (standardized)

Leishmania prevalence

(c)
o) 1
8 0.03 0o 02 04 os
Q@
<R
g8
o
© 2 002-
s3
[
£
K%)
o 001-
~
| | | |
-2 -1 0 1
Relative abundance of
Leishmania reservoir hosts (standardized)
(e) 4 -
e}
o
88
p—=——
5 2-
58
88
IS
S 0-
C ko) =
% c
38
=
_2 —

| | | |
-2 -1 0 1
Shannon index of mammals (standardized)

@

C

Density of infected
sand flies

f

/
e

rate in sand flies

p—

—_—

_

E®

:\ U \: U
00 02 04 05 08

N
|

w
|

Mean number of
sand fly per trap (log scale)

N
|

| | | |
-2 -1 0 1
Shannon index of mammals (standardized)

(d)
0.04

[0 |
o T T
[ -0.010 -0.005
o
S @ 0031
Sp
S <
S & 002

C
£
@
(V)
— 001

| | | |
-2 -1 0 1
Shannon index of mammals (standardized)

AsuRDI'] suowrtoy) aanear) d[qesridde ayy £q pauIaA0S are SA[ONIE Y 18N JO SI[NI 10§ AIRIGIT SUI[UQ AJ[IAY UO (SUONIPUOD-PUB-SULIA)/WOD A[IM"AIRIqI[aur[uo//:sd)y) SUONIPUO)) PUE SWIA, 3y 23S *[£707/90/8¢] U0 Kreiqr auruQ K3[1p “ANsIoAtun) ae1s ueSIyorN £q 1491 23wy | [ [°01/10p/wod K3[im°Kreiqrjaurjuo//:sdny woiy papeoumo(] ‘8 ‘€70T “Xr67S9E 1



KOCHER ET AL.

1827
MOLECULAR ECOLOGY Vi LEYJ—

FIGURE 2 Effect of mammal diversity changes on Leishmania transmission, assessed by a series of Bayesian regressions and posterior
simulations. The most significant relationships are summarized in the top-panel diagram (but see Figure S7 for the complete model).

Direct and indirect relationships are represented with solid and dashed arrows, respectively. Positive, negative, and nonsignificant effects
are represented by red, blue and black arrows, respectively. Light grey arrows represent deterministic relationships. For each studied
relationship, regression plots are presented and referenced with the corresponding letter in the lower panels. (a-c) Regression curves are
depicted with 90% Cl, and the posterior density of regression's slopes are represented in inlet plots (dotted lines are positioned at 5 and
95% quantiles; the red line is positioned at x = 0). (d, ) The indirect (cumulative) effect of mammal diversity on Leishmania transmission was
assessed by using posterior samples of model parameters to predict the Leishmania prevalence rate and the expected number of infected
sand flies per trap. Sampled mean prediction curves are plotted (a subset of 200 curves, in order to facilitate visualization). Curves indicating
an overall increase or decrease across the range of predictor values are depicted in red and blue, respectively. Inner plots represent the

posterior density of the average slope of mean prediction curves

arthropod species communities. On the other hand, our results point
to a negative correlation between mammal and sand fly diversity
(although weakly significant; effect 90% Cl: -0.38%, 0.00%; Figure
S7A), which suggest that different factors might shape mammal and
sand fly communities. This further highlights the need for more re-
search to understand the factors shaping sand fly assemblages in
sylvatic systems and their potential consequences for Leishmania
transmission.

Our results did not reveal an effect of sand fly density or di-
versity on the prevalence rate of Leishmania parasites in sand flies
(Figures S7B,C). Thus, the proportion of Leishmania reservoir hosts
in mammal communities appeared as the main driver of Leishmania
transmission, resulting in a negative effect of mammal diversity
on Leishmania prevalence rate, through host dilution (Figure 2d).
However, the prevalence of a pathogen in vectors is not necessar-
ily a relevant measure of disease transmission, and the density of
infected vectors should rather be considered for this matter. For a
given prevalence rate, higher vector density should be associated
with a higher density of infected vectors. Therefore, the positive
relationship observed between mammal diversity and sand fly den-
sity across our study sites might act on leishmaniasis transmission
in opposition to the dilution effect, which it may attenuate, cancel,
or even reverse. This shows that the alteration of mammal diver-
sity is associated with changes in the ecosystem that independently
impact Leishmania transmission in contrasting ways. Posterior pre-
dictions of the density of infected sand flies indicate a weak over-
all impact of mammal diversity changes on Leishmania transmission
(Figure 2e). Therefore, it seems that the observed dilution and am-
plification effects compensate for each other in the system studied
here. However, one or the other could predominate in other con-
texts depending on characteristics of the considered system and
environmental conditions that need to be further determined. This
constitutes additional evidence that biodiversity changes may im-
pact vector-borne pathogen transmission through concurrent mech-
anisms, and further stresses the importance of better accounting for
arthropod vector ecology in biodiversity-disease research.
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