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AbstractÐThe problem of super-resolution is concerned with
the reconstruction of temporally/spatially localized events (or
spikes) from samples of their convolution with a low-pass filter.
Distinct from prior works which exploit sparsity in appropriate
domains in order to solve the resulting ill-posed problem, this
paper explores the role of binary priors in super-resolution, where
the spike (or source) amplitudes are assumed to be binary-valued.
Our study is inspired by the problem of neural spike deconvolution,
but also applies to other applications such as symbol detection
in hybrid millimeter wave communication systems. This paper
makes several theoretical and algorithmic contributions to enable
binary super-resolution with very few measurements. Our results
show that binary constraints offer much stronger identifiability
guarantees than sparsity, allowing us to operate in ªextreme
compression" regimes, where the number of measurements can
be significantly smaller than the sparsity level of the spikes. To
ensure exact recovery in this "extreme compression" regime, it
becomes necessary to design algorithms that exactly enforce binary
constraints without relaxation. In order to overcome the ensuing
computational challenges, we consider a first order auto-regressive
filter (which appears in neural spike deconvolution), and exploit
its special structure. This results in a novel formulation of the
super-resolution binary spike recovery in terms of binary search in
one dimension. We perform numerical experiments that validate
our theory and also show the benefits of binary constraints in
neural spike deconvolution from real calcium imaging datasets.

Index TermsÐBinary compressed sensing, super-resolution,
spike deconvolution, sparsity, binary search, beta-expansions

I. INTRODUCTION

The problem of recovering localized events (spikes) from

their convolution with a blurring kernel, arises in a wide range

of scientific and engineering applications such as fluorescence

microscopy [1], neural spike deconvolution [2]±[4], hybrid

millimeter wave (mmWave) communication [5], to name a few.

Consider K temporal spikes, which can be represented as:

xhi(t) =

K∑

k=1

ckδ(t− nkThi
)

Here, the high-rate spikes are supported on a fine temporal grid

with spacing T
hi
, nk ∈ Z is an integer corresponding to the

time index of the kth spike and ck denotes its amplitude. The

convolution of spikes with a filter h(t) is typically uniformly

(down)sampled at a (low) rate T
lo
= DT

hi
(D > 1), yielding

measurements:

y[n] = xhi(t) ⋆ h(t)|t=nT lo
=

K∑

k=1

ckh(nTlo
− nkThi

) (1)

The goal of super-resolution is to recover the spike locations nk
and amplitudes ck, k = 1, 2, · · · ,K from a limited number (M )

of low-rate samples {y[n]}M−1
n=0 . The problem is typically ill-

posed due to systematic attenuation of high-frequency contents

of the spikes by the low-pass filter h(t). In order to make the

problem well-posed, it becomes necessary to exploit priors such

as sparsity [6]±[9] and/or non-negativity [10], [11]. In recent

times, there has been a substantial progress towards developing

efficient algorithms for provably solving the super-resolution

problem [7]±[19].

In this paper, we investigate the problem of binary super-

resolution, where the amplitudes of the spikes are known

apriori to be ck = A, but their number (K) and locations

(nk) are unknown. Motivated by the problem of neural spike

deconvolution in two-photon calcium imaging [2], [20], we

will focus on a blurring kernel that can be represented as a

stable first order auto-regressive (AR(1)) filter. Each neural

spike results in a sharp rise in Ca2+ concentration followed by

a slow exponential decay (modeled as the impulse response of

an AR(1) filter), which results in an overlap of the responses

from nearby spiking events, leading to poor temporal resolution

[2], [21].

A. Related Works

Early works on super-resolution date back to

algebraic/subspace-based techniques such as Prony’s

method, MUSIC [12], [22], ESPRIT [8], [23] and matrix

pencil [9], [24]. Following the seminal work in [6], substantial

progress has been made in understanding the role of sparsity

as a prior for super-resolution [7], [25], [26]. In recent times,

convex optimization-based techniques have been developed

that employ Total Variational (TV) norm and atomic norm

regularizers, in order to promote sparsity [7], [18], [19], [25],

[26] and/or non-negativity [10], [11], [27]. These techniques

primarily employ sampling in the Fourier/frequency domain by

assuming the kernel h(t) to be (approximately) bandlimited.

However, selecting the appropriate cut-off frequency is crucial

for super-resolution and needs careful consideration [25],

[28]. Unlike subspace-based methods, theoretical guarantees

for these convex algorithms rely on a minimum separation

between the spikes, which is also shown to be necessary even

in absence of noise [29]. The finite rate of innovation (FRI)

framework [30]±[34] also considers the recovery of spikes

from measurements acquired using an exponentially decaying

kernel, which includes the AR(1) filter considered in this

paper. In the absence of noise, FRI enables the exact recovery

of K spikes with arbitrary amplitudes from M = Ω(K)1

measurements, without any separation condition [32]. It is

to be noted that all of the above methods require M > K
measurements for resolving K spikes. In contrast, we will

show that it is possible to recover K spikes from M ≪ K
measurements by exploiting the binary nature of the spiking

1This notation essentially means that there exists a positive constant c such
that M ≥ cK.
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signal. The above algorithms are designed to handle arbitrary

real-valued amplitudes and as such, they are oblivious to

binary priors. Therefore, they cannot successfully recover

spikes in the regime M < K, which is henceforth referred to

as the extreme compression regime.

The problem of recovering binary signals from underde-

termined linear measurements (with more unknowns than

equations/measurements) has been recently studied under the

parlance of Binary Compressed Sensing (BCS) [35]±[42].

In BCS, the undersampling operation employs random (and

typically dense) sampling matrices, whereas we consider a

deterministic and structured measurement matrix derived from

a filter, followed by uniform downsampling. Moreover, existing

theoretical guarantees for BCS crucially rely on sparsity

assumptions that will be shown to be inadequate for our

problem (discussed in Section II-C). Most importantly, in order

to achieve computational tractability, BCS relaxes the binary

constraints and solves continuous-valued optimization problems.

Consequently, their theoretical guarantees do not apply in the

extreme compression regime M < K.

As mentioned earlier, our study is motivated by the problem

of neural spike deconvolution arising in calcium imaging [3],

[4], [20], [32], [43]±[45]. A majority of the existing spike

deconvolution techniques [4], [43], [44] infer the spiking

activity at the same (low) rate at which the fluorescence signal

is sampled, and a single estimate such as spike counts or

rates are obtained over a temporal bin equal to the resolution

of the imaging rate. Although sequential Monte-Carlo based

techniques have been proposed that generate spikes at a rate

higher than the calcium frame rate [3], no theoretical guarantees

are available that prove that these methods can indeed uniquely

identify the high-rate spiking activity. Algorithms that rely

on sparsity and non-negativity [43], [44] alone are ineffective

for inferring the neural spiking activity that occurs at a much

higher rate than the calcium sampling rate. On the other hand,

at the high-rate, the spiking activity is often assumed to be

binary since the probability of two or more spikes occurring

within two time instants on the fine temporal grid is negligible

[2], [46]. Therefore, we propose to exploit the inherent binary

nature of the neural spikes and provide the first theoretical

guarantees that it is indeed possible to resolve the high-rate

binary neural spikes from calcium fluorescence signal acquired

at a much lower rate.

B. Our Contributions

We make both theoretical and algorithmic contributions to

the problem of binary super-resolution in the setting when

the spikes lie on a fine grid. We theoretically establish that

at very low sampling rates, sparsity and non-negativity are

inadequate for the exact reconstruction of binary spikes (Lemma

2). However, by exploiting the binary nature of the spiking

activity, much stronger identifiability results can be obtained

compared to classical sparsity-based results (Theorem 1). In the

absence of noise, we show that it is possible to uniquely recover

K binary spikes from only M = Ω(1) low-rate measurements.

The analysis also provides interesting insights into the interplay

between binary priors and the ªinfinite memory" of the AR(1)

filter.

Although it is possible to uniquely identify binary spikes in

the extreme compression regime (M ≪ K), the combinatorial

nature of binary constraints introduce computational hurdles in

exactly enforcing them. Our second contribution is to leverage

the special structure of the AR(1) measurements to overcome

this computational challenge in the extreme compression

regime M < K (Section III-A). Our formulation reveals

an interesting and novel connection between binary super-

resolution, and finding the generalized radix representation of

real numbers, known as β-expansion [47]±[49] (Section III). In

order to circumvent the problem of exhaustive search, we pre-

construct and store (in memory) a binary tree that is completely

determined by the model parameters (filter and undersampling

factor). When the low-rate measurements are acquired, we can

efficiently perform a binary search to traverse the tree and find

the desired binary solution. This ability to trade-off memory

for computational efficiency is made possible by the unique

structure of the measurement model governed by the AR(1)

filter. The algorithm guarantees exact super-resolution even

when the measurements are corrupted by a small bounded

(adversarial) noise, the strength of which depends on the

AR filter parameter and the undersampling factor. When the

measurements are corrupted by additive Gaussian noise, we

characterize the probability of erroneous decoding (Theorem

3) in the extreme compression regime M < K and indicate

the trade-off among the filter parameter, SNR and the extent

of compression. Finally, we also demonstrate how binary

priors can improve the performance of a popularly used spike

deconvolution algorithm (OASIS [43]) on real calcium imaging

datasets.

II. FUNDAMENTAL SAMPLE COMPLEXITY OF BINARY

SUPER-RESOLUTION

Let yhi[n] be the output of a stable first-order Autoregressive

AR(1) filter with parameter α, 0 < α < 1, driven by an

unknown binary-valued input signal xhi[n] ∈ {0, A}, A > 0:

yhi[n] = αyhi[n− 1] + xhi[n] (2)

In this paper, we consider a super-resolution setting where

we do not directly observe yhi[n], and instead acquire M
measurements {ylo[n]}M−1

n=0 at a lower-rate by uniformly

subsampling yhi[n] by a factor of D:

ylo[n] = yhi[Dn], n = 0, 1, · · · ,M − 1, (3)

The signal ylo[n] corresponds to a filtered and downsampled

version of the signal xhi[n] where the filter is an infinite impulse

response (IIR) filter with a single pole at α. Let ylo ∈ R
M

be a vector obtained by stacking the low-rate measurements

{ylo[n]}M−1
n=0 :

ylo = [ylo[0], ylo[1], · · · , ylo[M − 1]]⊤

Since (2) represents a causal filtering operation, the low rate

signal ylo only depends on the present and past high-rate

binary signal. Denote L := (M − 1)D + 1. The M low-rate

measurements in ylo are a function of L samples of the high

rate binary input signal {xhi[n]}L−1
n=0 . These L samples are

given by the following vector xhi ∈ {0, A}L:

xhi := [xhi[0], xhi[1], · · · , xhi[L− 1]]⊤.
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Assuming the system to be initially at rest, i.e., yhi[n] = 0, n <
0, we can represent the M samples from (3) in a compact

matrix-vector form as:

ylo := SDyhi = SDGαxhi (4)

where Gα ∈ R
L×L is a Toeplitz matrix given by:

Gα =




1 0 · · · 0
α 1 · · · 0
...

...
. . .

...

αL−1 αL−2 · · · 1


 (5)

and SD ∈ R
M×L is defined as:

[SD]i,j =

{
1, j = (i− 1)D + 1

0, else
.

The matrix SD represents the D−fold downsampling operation.

Our goal is to infer the unknown high-rate binary input signal

xhi[n] from the low-rate measurements ylo[n]. This is essentially

a ªsuper-resolution" problem because the AR(1) filter first

attenuates the high-frequency components of xhi[n], and

the uniform downsampling operation systematically discards

measurements. As a result, it may seem that the spiking activity

{xhi[(n− 1)D + k]}D
k=1 occurring ªin-between" two low-rate

measurements ylo[n− 1] and ylo[n] is apparently lost. One can

potentially interpolate arbitrarily, making the problem hopeless.

In the next section, we will show that surprisingly, xhi still

remains identifiable from ylo in the absence of noise, due to

the binary nature of xhi and ªinfinite memory" of the AR(1)

filter.

A. Identifiability Conditions for Binary super-resolution

Consider the following partition of xhi into M disjoint blocks,

where the first block is a scalar and the remaining M−1 blocks

are of length D, xhi = [xhi
(0),xhi

(1)⊤, . . . ,xhi
(M−1)⊤]⊤. Here,

xhi
(0) = xhi[0] and xhi

(n) ∈ {0, A}D is given by:

[xhi
(n)]k = xhi[(n− 1)D + k], 1 ≤ n ≤M − 1 (6)

The sub-vectors xhi
(n), and xhi

(n−1) (n ≥ 1) represent consec-

utive and disjoint blocks (of length D) of the high-rate binary

spike signal. In order to study the identifiability of xhi from ylo,

we first introduce an alternative (but equivalent) representation

for (4), by constructing a sequence c[n] as follows c[0] = ylo[0],

c[n] = ylo[n]− αDylo[n− 1], 1 ≤ n ≤M − 1 (7)

Given the high rate AR(1) model defined in (2), it is possible

to recursively represent yhi[Dn] in terms of yhi[Dn− 1], which

in turn, can be represented in terms of yhi[Dn − 2], and so

on. By this recursive relation, we can represent yhi[Dn− 1] in

terms of yhi[Dn−D] and {xhi[Dn− i]}D−1
i=0 and re-write ylo[n]

as

ylo[n] = yhi[Dn] = αyhi[Dn− 1] + xhi[Dn]

= αDyhi[Dn− D] + αD−1xhi[D(n− 1) + 1] + · · ·
+ αxhi[Dn− 1] + xhi[Dn],

ylo[n]− αDylo[n− 1] = αD−1xhi[D(n− 1) + 1] + · · ·
+ αxhi[Dn− 1] + xhi[Dn] (8)

The last equality holds due to the fact that ylo[n−1] = yhi[Dn−
D]. Combining (7) and (8), the sequence c[n] can be re-written

as c[0] = ylo[0] = xhi
(0), and for 1 ≤ n ≤M − 1

c[n] =

D∑

i=1

αD−ixhi[(n− 1)D + i] = hTαxhi
(n) (9)

where hα = [αD−1, αD−2, . . . , α, 1]T ∈ R
D. This implies

that c[n] depends only on the block xhi
(n). Denote c :=

[c[0], c[1], . . . , c[M − 1]]⊤ ∈ R
M . For any D, (9) can be

compactly represented as:

c = HD(α)xhi (10)

where HD(α) ∈ R
M×L is given by:

HD(α) =




1 0⊤ 0⊤ · · · 0⊤

0 h⊤
α 0⊤ · · · 0⊤

0 0⊤ h⊤
α · · · 0⊤

...
...

...
. . .

...

0 0⊤ 0⊤ · · · h⊤
α




The following Lemma establishes the equivalence between (4)

and (10).

Lemma 1. Given ylo, construct c following (7). Then, there

is a unique binary xhi ∈ {0, A}L satisfying (4) if and only if

xhi is a unique binary vector satisfying (10).

Proof. First suppose that there is a unique binary xhi ∈ {0, A}L
satisfying (4) but (10) has a non-unique binary solution, i.e.,

there exists xhi
′ ∈ {0, A}L, xhi

′ ̸= xhi, such that

c = HD(α)xhi = HD(α)xhi
′ (11)

Define yhi
′ := Gαxhi

′ whose entries are given by:

yhi
′[n] =

n∑

k=0

αn−kxhi
′[k], 0 ≤ n ≤ L− 1 (12)

Notice that (7) can be re-written as

ylo[0] = c[0] = xhi[0], ylo[1] = c[1] + αDylo[0] = c[1] + αDc[0]

ylo[2] = c[2] + αDylo[1] = c[2] + αDc[1] + α2Dc[0]
...

Following this recursive relation, and using (9) and (11), we

can further re-write ylo[n] as:

ylo[n] =

n∑

i=0

α(n−i)Dc[i] = αnDx′hi
(0) +

n∑

i=1

α(n−i)Dh⊤
αxhi

′(i)

= αnDx′hi
(0) +

n∑

i=1

D∑

j=1

αnD−(i−1)D−jx′hi[(i− 1)D + j]

(a)
=

nD∑

k=0

αnD−kx′hi[k]
(b)
= y′hi[nD] (13)

The equality (a) follows by a re-indexing of the summation

into a single sum, and (b) follows from (12). By arranging

(13) in a matrix form we obtain the following relation:

ylo = SDGαxhi
′

However from (4), we have ylo = SDGαxhi. This contradicts

the supposition that (4) has a unique binary solution.
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Next, suppose that (10) has a unique binary solution but the

binary solution to (4) is non-unique, i.e., there exists xhi
′ ∈

{0, A}L, xhi
′ ̸= xhi such that

ylo = SDGαxhi
′ = SDGαxhi

By following (7) and (10), we also have c = HD(α)xhi
′ =

HD(α)xhi which contradicts the assumption that solution of

(10) is unique.

Lemma 1 assures that a binary xhi is uniquely identifiable

from measurements ylo if and only if there is a unique binary

solution xhi ∈ {0, A}L to (10). From (9), it can be seen that

c[n] and c[n− 1] have contributions from only disjoint blocks

of high rate spikes xhi
(n), and xhi

(n−1). Hence effectively,

we only have a single scalar measurement c[n] to decode an

entire block xhi
(n) of length D, regardless of how sparse it

is. The task of decoding xhi
(n) from a single measurement

seems like a hopelessly ªill-posed" problem, caused by the

uniform downsampling operation. But this is precisely where

the binary nature of xhi can be used as a powerful prior to

make the problem well-posed. Theorem 1 specifies conditions

under which it is possible to do so.

Theorem 1. (Identifiability) For any α ∈ (0, 1), with the

possible exception of α belonging to a set of Lebesgue measure

zero, there is a unique xhi ∈ {0, A}L that satisfies (10) for

every D ≥ 1.

Proof. In Appendix A.

Using Lemma 1 and Theorem 1, we can conclude that xhi

is uniquely identifiable from ylo for almost all α ∈ (0, 1). It

can be verified that for α = 1 the mapping is non-injective.

Theorem 1 establishes that it is fundamentally possible to

decode each block xhi
(n) of length D, from effectively a single

measurement c[n]. Since xhi
(n) can take 2D possible values, in

principle, one can always perform an exhaustive search over

these 2D possible binary sequences and by Theorem 1, only

one of them will satisfy c[n] = h⊤
αxhi

(n). Since exhaustive

search is computationally prohibitive, this leads to the natural

question regarding alternative solutions. In Section III, we will

develop an alternative algorithm that leverages the trade-off

between memory and computation to achieve a significantly

lower run-time decoding complexity.

B. Comparison with Finite Rate of Innovation Approach

In a related line of work [30]±[32], [34], the FRI framework

has been developed to reconstruct spikes from the measurement

model considered here. However, in the general FRI framework,

there is no assumption on the amplitude of the spikes, and there

are a total of 2D real valued unknowns corresponding to the

locations and amplitudes of D spikes. In [32], it was shown that

by leveraging the property of exponentially reproducing kernels,

it is possible to recover arbitrary amplitudes and spike locations

using Prony-type algorithms, provided at least 2D+1(> D) low-

rate measurements are available. However, since we exploit

the binary nature of spiking activity, we can operate at a

much smaller sample complexity than FRI. In fact, Theorem

1 shows that when we exploit the fact that the spikes occur

on a high-resolution grid with binary amplitudes, M = Ω(1)

measurements suffice to identify D spikes regardless of how

large D is. A direct application of the FRI approach cannot

succeed in this regime, since the number of spikes is larger than

the number of measurements. That being said, with enough

measurements, FRI techniques are powerful, and they can also

identify off-grid spikes. In future, it would be interesting to

combine the two approaches by incorporating binary priors to

FRI based techniques and remove the grid assumptions.

C. Curse of Uniform Downsampling: Inadequacy of sparsity

and non-negativity

By virtue of being a binary signal, xhi is naturally sparse and

non-negative. Therefore, one may ask if sparsity and/or non-

negativity are sufficient to uniquely identify xhi from c, without

the need for imposing any binary constraints. In particular, we

would like to understand if the solution to the following problem

that seeks the sparsest non-negative vector in R
L satisfying

(10) indeed coincides with the true xhi ∈ {0, A}L

min
x∈RL

∥x∥0 subject to c = HD(α)x, x ≥ 0 (P0)

Lemma 2. For every xhi ∈ {0, A}L (except xhi = Ae1),

and c ∈ R
M satisfying (10), the following are true

(i) There exists a solution x⋆ ̸= xhi to (P0) satisfying

∥x⋆∥0 ≤ ∥xhi∥0 (14)

(ii) The inequality in (14) is strict as long as there exists an

integer n0 ≥ 1 such that the block x
(n0)
hi of xhi (defined

in (6)) satisfies ∥x(n0)
hi ∥0 ≥ 2.

Proof. The proof is in Appendix B.

Lemma 2 shows there exist other non-binary solution(s) to

(10) (different from xhi) that have the same or smaller sparsity

as the binary signal xhi ∈ {0, A}L. Furthermore, there exist

problem instances where the sparsest solution to (P0) is strictly

sparser than xhi. Hence, sparsity and/or non-negativity are

inadequate to identify the ground truth xhi uniquely.

Implicit Bias of Relaxation: The optimization problem (P0)

is non-convex and the binary constraints are not enforced. In

binary compressed sensing [35], [36], it is common to relax the

binary constraints using box-constraint and l0 norm is relaxed

to l1 norm in the following manner:

min
x∈RL

∥x∥1 subject to c = HD(α)x, 0 ≤ x ≤ A1 (P1-B)

In the following Lemma, we show that there is an implicit bias

introduced to the solution of (P1-B).

Lemma 3. For every xhi ∈ {0, A}L, and c ∈ R
M satisfying

(10). There exists a solution x⋆ to (P1-B) satisfying

∥x⋆∥1 ≤ ∥xhi∥1. (15)

Moreover, for all n ≥ 1, the blocks x(n)⋆∈RD of x⋆ satisfy:

supp(x(n)⋆) = {D,D− 1, · · · ,D− jn}, if c[n] ̸= 0 (16)

for some 0 ≤ jn ≤ D − 1 and x(n)⋆ = 0 if c[n] = 0,

irrespective of the support of xhi.

Proof. The proof is in Appendix B.
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Lemma 3 shows that even in the noiseless setting, introducing

the box-constraint as a means of relaxing the binary constraint

introduces a bias in the support of the recovered spikes.

The optimal solution always results in spikes with support

clustered towards the end of each block of length D, irrespective

of the ground truth spiking pattern xhi that generated the

measurements. This bias is a consequence of the nature of

relaxation, as well as the specific structure of the measurement

matrix HD(α) arising in the problem.

D. Role of Memory in Super-resolution: IIR vs. FIR filters

The ability to identify the high-rate binary signal xhi ∈
{0, A}L from D−fold undersampled measurements ylo (for

arbitrarily large D) in the absence of noise, is in parts also due to

the ªinfinite memory" or infinite impulse response of the AR(1)

filter. Indeed, for an Finite Impulse Response (FIR) filter, there

is a limit to downsampling without losing identifiability. This

was recently studied in our earlier work [40] where we showed

that the undersampling limit is determined by the length of

the FIR filter. To see this, consider the convolution of a binary

valued signal xhi with a FIR filter u = [u[0], u[1], · · · , u[r −
1]]T ∈ R

r of length r: zf [n] =
∑r−1
i=0 u[r − 1 − i]xhi[n + i].

These samples are represented in the vector form as zf :=
u⋆xhi ∈ R

L (by suitable zero padding). Suppose, as before, we

only observe a D−fold downsampling of the output zD[n] =
zf [Dn]. Two consecutive samples zD[p], zD[p+ 1] of the low-

rate observation are given by:

zD[p] =

r−1∑

i=0

u[r − 1− i]xhi[Dp+ i],

zD[p+ 1] =
r−1∑

i=0

u[r − 1− i]xhi[D(p+ 1) + i]

If D > r, notice that none of the measurements is a function of

the samples xhi[Dp+ r], xhi[Dp+ r+1], · · · , xhi[D(p+1)−1].
Hence, it is possible to assign them arbitrary binary values and

yet be consistent with the low-rate measurements zD[n]. This

makes it impossible to exactly recover xhi (even if it is known

to be binary valued) if the decimation is larger than the filter

length (D > r). The following lemma summarizes this result.

Lemma 4. For every FIR filter u ∈ R
r, if the undersampling

factor exceeds the filter length, i.e. D > r, there exist x0,x1 ∈
{0, A}L, x0 ̸= x1 such that SD(u ⋆ x0) = SD(u ⋆ x1).

This shows that the identifiability result presented in Theorem

1 is not merely a consequence of binary priors but the infinite

memory of the autoregressive process is also critical in allowing

arbitrary undersampling D > 1 in absence of noise. For such

IIR filters, the memory of all past (binary) spiking activity

is encoded (with suitable weighting) into every measurement

captured after the spike, which would not be the case for a

finite impulse response filter.

III. EFFICIENT BINARY SUPER-RESOLUTION USING

BINARY SEARCH WITH STRUCTURED MEASUREMENTS

By Theorem 1, we already know that it is possible to uniquely

identify xhi from c (or equivalently, each block xhi
(n) from

a single measurement c[n]) by exhaustive search. We now

demonstrate how this exhaustive search can be avoided by

formulating the decoding problem in terms of ªbinary search"

over an appropriate set, and thereby attaining computational

efficiency. We begin by introducing some notations and

definitions. Given a non-negative integer k, 0 ≤ k ≤ 2D − 1,

let (b1(k), b2(k), · · · , bD(k)) be the unique D-bit binary repre-

sentation of k: k =
∑D

d=1 2
D−dbd(k), bd(k) ∈ {0, 1} ∀ 1 ≤

d ≤ D. Here b1(k) is the most significant bit and bD(k) is

the least significant bit. Using this notation, we define the

following set:

Sall := {v0,v1,v2, · · · ,v2D−1}, (17)

where each vk ∈ {0, A}D is a binary vector given by

[vk]d = Abd(k). 1 ≤ d ≤ D (18)

In other words, the binary vector 1
A
vk is the D-bit binary

representation of its index k. Using this convention, v0 = 0

(i.e., a binary sequence of all 0′s) and v2D−1 = A1 (i.e., a

binary sequence of all A′s). Recall the partition of xhi defined

in (6), where each block xhi
(n) (n ≥ 1) is a binary vector of

length D and xhi
(0) ∈ {0, A} is a scalar. It is easy to see that

(17) comprises of all possible values that each block xhi
(n) can

assume. According to (9) each scalar measurement c[n] can be

written as: c[0] = x(0), c[n] = hα
⊤xhi

(n), 1 ≤ n ≤M − 1.
For every α, we define the following set:

Θα := {θ0, θ1, · · · , θ2D−1}, where θk := h⊤
αvk (19)

Observe that every measurement c[n] =
∑D

i=1 α
D−ixhi[(n −

1)D+ i] takes values from this set Θα, depending on the value

taken by the underlying block of spiking pattern from Sall. Our

goal is to recover the spikes {xhi[(n− 1)D + i]}D
i=1 from c[n].

In the following, we show that this problem is equivalent to

finding the representation of a real number over an arbitrary

radix, which is known as ªβ-expansion" [49]. Given a real

(potentially non-integer) number β > 1, the representation of

another real number p ≥ 0 of the form:

p =

∞∑

n=1

anβ
−n, where 0 ≤ an < ⌊β⌋ (20)

is referred to as a β-expansion of p. The coefficients 0 ≤ an <
⌊β⌋ are integers. This is a generalization of the representation

of numbers beyond integer-radix to a system where the radix

can be chosen as an arbitrary real number. This notion of

representation over arbitrary radix was first introduced by Renyi

in [49], and since then has been extensively studied [47], [48],

[50]. There is a direct connection between β-expansion and

the binary super-resolution problem considered here. In the

problem at hand, any element θk ∈ Θα can be written as:

θk = h⊤
αvk =

D∑

i=1

αD−i[vk]i

When 1/2 < α < 1, by letting β = 1/α, we see that the

coefficients in (20) must satisfy 0 ≤ an < ⌊1/α⌋ < 2, i.e.,

they are restricted to be binary valued an ∈ {0, 1}. Therefore,

decoding the spikes vk from the observation θk is equivalent

to finding a D−bit representation for the number θk/A over

the non-integer radix β = 1/α. Questions regarding the

existence of β-expansion, and finding the coefficients of a finite

β−expansion (whenever it exists) has been an active topic of
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research [47], [48], [50], [51]. When β ≥ 2 (equivalently,

0 < α ≤ 1/2), it is possible to find the coefficients using

a greedy algorithm which proceeds in a fashion similar to

finding the D-bit binary representation of an integer [47], [51].

However, the regime β ∈ (1, 2) (equivalently 1/2 < α < 1),

is significantly more complicated and is of continued research

interest [47], [48], [50]. To the best of our knowledge, there

are no known computationally efficient ways to find the finite

β-expansion when 1/2 < α < 1 (if it exists) [N. Sidorov,

personal communication, May 24, 2022]. In practice, we

encounter filter values α (= 1/β) that are much closer to

1, and hence, we need an alternative approach to find this

finite β-radix representation for θk. In the next section, we

show that by performing a suitable preprocessing, finite β-radix

representation can be formulated as a binary search problem

which is guaranteed to succeed for all values of β that permit

unique finite β−expansions.

A. Formulation as a Binary Search Problem

Before describing the algorithm, we first introduce the notion

of a collision-free set.

Definition 1 (Collision Free set). Given an undersampling

factor D, define a class of ªcollision free" AR(1) filters as:

GD = {α ∈ (0, 1) s.t. h⊤
αvi ̸= h⊤

αvj ∀ i ̸= j,vi,vj ∈ Sall}

The set GD denotes permissible values of the AR(1) filter

parameter α such that each of the 2D binary sequences in

Sall maps to a unique element in the set Θα. In other words,

every θk ∈ Θα has a unique D−bit expansion for all α ∈ GD.

This naturally raises the question ªHow large is the set GD?".

Theorem 1 already provided the answer to this question, where

the identifiability result implies that for every D, almost all

α ∈ (0, 1) belong to this set GD (with the possible exception

of a measure zero set). Hence, Theorem 1 ensures that there

are infinite choices for collision-free filter parameters.

Lemma 5. For every α ∈ GD, the mapping Φα(.) : Sall → Θα,

Φα(v) = h⊤
αv forms a bijection between Sall and Θα.

Proof. Since α ∈ GD, from the definition of the set GD, it is

clear that for any vi,vj ∈ Sall, vi ̸= vj we have hα
⊤vi ̸=

hα
⊤vj . Therefore, the mapping is injective. Furthermore, from

(19) we also have |Θα| ≤ |Sall| = 2D. Since Φα(·) is injective,

we must also have |Θα| = 2D and hence the mapping Φα(.)
forms a bijection between Sall and Θα.

When α ∈ GD, Lemma 5 states that the finite beta expansion

for every θk ∈ Θα is unique. Lemma 5 provides a way to avoid

exhaustive search over Sall, and yet identify xhi
(n) from c[n] in

a computationally efficient way. From Lemma 5, we know that

each of the 2D spiking patterns in Sall maps to a unique element

in Θα, and each element in Θα has a corresponding spiking

pattern. Hence instead of searching Sall, we can equivalently

search the set Θα in order to determine the unknown spiking

pattern. Since Θα permits ªordering", searching Θα has a

distinct computational advantage over searching Sall. This

ordering enables us to employ binary search over (an ordered)

Θα and find the desired element in a computationally efficient

manner. To do this, we first sort the set Θα (in ascending order)

and arrange the corresponding elements of Sall in the same

order. Given Θα as an input, the function SORT(·) returns

a sorted list Θsort
α , and an index set I = {i0, i1, · · · , i2D−1}

containing the indices of the sorted elements in the list Θα.

Θsort
α , I ← SORT(Θα)

Let us denote the elements of the sorted lists as Θsort
α =

{θ̃0, · · · , θ̃2D−1}, and Ssort
all = {ṽ0, · · · , ṽ2D−1} where:

θ̃0 < θ̃1 < · · · < θ̃2D−1 and θ̃j = θij , ṽj = vij ∀j.
It is important to note that this sorting step does not depend

on the measurements c, and can therefore be part of a pre-

processing pipeline that can be performed offline. However,

it does require memory to store the sorted lists. In the

Algorithm 1 Noiseless Spike Recovery

1: Input: Measurement c[n], Sorted list Θsort
α and the corre-

sponding (ordered) spike patterns Ssort
all

2: Output: Decoded spike block x̂hi
(n)

3: i⋆ ← BINSEARCH(Θsort
α , c[n])

4: Return x̂hi
(n) ← ṽi⋆

noiseless setting, we know that every scalar measurement

c[n] = h⊤
αxhi

(n) belongs to the set Θsort
α . Therefore, if we

identify its index, say i⋆, then we can successfully recover

xhi
(n) by returning the corresponding binary vector ṽi⋆ from

Ssort
all . Therefore, we can formulate the decoding problem as

searching for the input c[n] in the sorted list Θsort
α . This can be

efficiently done by using ªBinary Search". The noiseless spike

decoding procedure is summarized as Algorithm 1. Since the

complexity of performing a binary search over an ordered list

of N elements is O(logN), the complexity of Algorithm 1
is logarithmic in the cardinality of Θsort

α , which results in a

complexity of O(log(2D)) = O(D). We summarize this result

in the following Lemma.

Lemma 6. Assume α ∈ GD. Given the ordered set Θsort
α , and

an input c[n] = h⊤
αxhi

(n), Algorithm 1 terminates in O(D)
steps and its output x̂hi

(n) satisfies x̂hi
(n) = xhi

(n).

B. Noisy Measurements and 1 D Nearest Neighbor Search

We demonstrate how binary search can still be useful in

presence of noise by formulating noisy spike detection as a

one dimensional nearest neighbor search problem. Suppose

{zlo[n]}M−1
n=0 denote noisy D-fold decimated filter output

zlo[n] = ylo[n] + w[n], 0 ≤ n ≤M − 1 (21)

Here w[n] represents the additive noise term that corrupts the

(noiseless) low-rate measurements ylo[n]. Similar to (7), we

compute ce[n] from zlo[n] as follows:

ce[n] = zlo[n]− αDzlo[n− 1] (22)

=

D∑

i=1

αD−ixhi[(n− 1)D + i] + e[n]= c[n] + e[n] (23)

where c[n] = h⊤
αxhi

(n) ∈ Θsort
α , and e[n] = w[n] − αDw[n −

1]. We can interpret ce[n] as a noisy/perturbed version of an

element c[n] ∈ Θsort
α , with e[n] representing the noise. This
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perturbed signal may no longer belong to Θsort
α (i.e. ce[n] ̸∈

Θsort
α ) and hence, we cannot find an exact match in the set

Θsort
α . Instead, we aim to find the closest element in Θsort

α (the

nearest neighbor of ce[n]) by solving the following problem:

x̂hi
(n) = arg min

v∈Ssort
all

|ce[n]− h⊤
αv| (24)

Solving (24) is equivalent to finding the spike sequence

ṽ ∈ Ssort
all that maps to the nearest neighbor of ce[n] in the

set Θsort
α . By leveraging the sorted list Θsort

α , it is no longer

necessary to parse the list sequentially (which would incur

O(2D) complexity), instead we can perform a modified binary

search as summarized in Algorithm 2, that keeps track of

additional indices compared to the vanilla binary search. Finally,

we return the unique spiking pattern from Ssort
α that gets

mapped to the nearest neighbor of the noisy measurement

ce[n]. It is well-known that the nearest neighbor for any query

could be found in O(log(2D)) = O(D) steps, instead of the

linear complexity of O(2D). This guarantees a computationally

efficient decoding of spikes by solving (24).

Next, we characterize the error events that lead to erroneous

detection of a block of spikes. Recall that the set Θsort
α is sorted,

and its elements satisfy the ordering:

0 = θ̃0 < θ̃1 < · · · < θ̃lD = 1 + α+ · · ·+ αD−1

where lD := 2D−1. We also have θ̃k = h⊤
α ṽk, where ṽk ∈ Ssort

all

is a binary spiking sequence of length D.

For each ṽk and each n, we will determine the error event

x̂hi
(n) ̸= xhi

(n), when xhi
(n) = ṽk. First, consider the scenario

when xhi
(n) = ṽk for some 0 < k < lD (excluding ṽ0, ṽlD ).

The corresponding noiseless measurement is c[n] = θ̃k =
h⊤
α ṽk which satisfies θ̃k−1 < c[n] = θ̃k < θ̃k+1. Since Θsort

α is

sorted, it can be easily verified that the nearest neighbor of

ce[n] will be θ̃k, if and only if ce[n] satisfies the following

condition:

(θ̃k−1 + θ̃k)/2 ≤ ce[n] ≤ (θ̃k+1 + θ̃k)/2 (25)

Since θ̃k = h⊤
α ṽk, the solution to (24) is attained at ṽk ∈ Ssort

all ,

and the decoding is successful. Therefore Algorithm 2 produces

an erroneous estimate of ṽk if and only if ce[n] violates (25).

The event ce[n] ̸∈ [ θ̃k−1+θ̃k
2 , θ̃k+1+θ̃k

2 ] is equivalent to e[n] ∈
Ek (e[n] is defined earlier in (23)), where

Ek = {e[n] < − θ̃k − θ̃k−1

2
, or e[n] >

θ̃k+1 − θ̃k
2

} (26)

Finally, we characterize the error events for k = 0, lD. The

error events for c[n] = θ0 = 0 or c[n] = θlD are given by:

E0 = {e[n] ≥ θ̃1/2}, ElD = {e[n] ≤ −(θ̃lD − θ̃lD−1)/2} (27)

Define the ªminimum distance" between points in Θsort
α :

∆θmin(α,D) = min
1≤k≤lD

|θ̃k − θ̃k−1|.
This minimum distance depends on A,α and D. From (26),

(27) it can be verified that if 2|w[n]| < ∆θmin(α,D)/2 (which

would imply |e[n]| < ∆θmin(α,D)/2) for all n, then x̂hi
(n) =

xhi
(n). As summarized in Theorem 2, Algorithm 2 can exactly

recover the ground truth spikes from measurements corrupted

by bounded adversarial noise, the extent of the robustness is

determined by the parameters A,α,D.

Algorithm 2 Noisy Spike Recovery

1: Input: Measurement ce[n], Sorted list Θsort
α and the

corresponding (ordered) spike patterns Ssort
all

2: Output: Decoded spike block x̂hi
(n)

3: Set l← 0, u← 2D − 1
4: while u− l > 1
5: Set m← l + ⌊(u− l)/2⌋
6: if θ̃m > ce[n] then

7: u← m
8: else

9: l← m
10: end if

11: end while

12: Find the nearest neighbor i⋆ = argmini∈{l,u}(ce[n]− θ̃i)2
13: Return x̂hi

(n) ← ṽi⋆

Theorem 2. Assume α ∈ GD. Given the ordered set Θsort
α , the

output of Algorithm 2 with input ce[n] exactly coincides with

the solution of the optimization problem (24) in at most O(D)
steps. Furthermore, if for all n, |w[n]| < ∆θmin(α,D)/4, then

the output of Algorithm 2 satisfies x̂hi
(n) = xhi

(n).

From Theorem 2, it is evident that ∆θmin(α,D) plays an

important role in characterizing the upper bound on noise.

We attempt to gain insight into how ∆θmin(α,D) varies as a

function of α when D is held fixed.

Lemma 7. Given D, ∆θmin(α,D) = AαD−1 for α ∈ (0, 0.5].

Proof. The proof for A = 1 is in Appendix C and it can be

scaled to obtain the desired bound.

When α ∈ (0, 0.5], ∆θmin(α,D) is monotonically increasing

with α. However, for α > 0.5 the trend fluctuates with α
differently for different D, and becomes quite challenging to

predict. This is also confirmed by the empirical plot in Fig. 1.

A refined analysis of ∆θmin(α,D) to gain insight into desirable

filter parameters α is an interesting direction for future work.

C. Trade-off between memory and computational complexity

A crucial aspect of Algorithms 1 and 2 is that they

achieve efficient run-time complexity by leveraging the off-

line construction of the sorted list Θsort
α and Ssort

all . These lists,

each with 2D elements, need to be stored in memory and

made available during run-time. Since there is no free lunch,

the resulting computational efficiency of O(D) at run-time

is attained at the expense of the additional memory that is

required to store the sorted lists Θsort
α ,Ssort

all .

D. Parallelizable Implementation

Algorithm 2 (also Algo. 1) only takes ce[n](c[n]) as input

and returns x̂hi
(n), and is completely de-coupled from any

other x̂hi
(n′), n′ ̸= n. Recall that in reality, we are provided

with measurements zlo[n](ylo[n]), and ce[n](respectively c[n])
needs to be computed. Due to this de-coupling, we can compute

ce[n]
′s in parallel using two consecutive low-rate samples

zlo[n], zlo[n−1] and perform a nearest neighbor search without

waiting for any previously decoded spikes. Therefore, the total

decoding complexity can be further improved depending on

the available parallel computing resources.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3260564

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 28,2023 at 17:11:23 UTC from IEEE Xplore.  Restrictions apply. 



8

IV. ERROR ANALYSIS FOR GAUSSIAN NOISE

Algorithm 2 solves (24) without requiring any knowledge

of the noise statistics. However, in order to analyze its per-

formance, we will make the following (standard) assumptions

on the statistics of the high-rate spiking signal xhi and the

measurement noise w[n] as follows:

• (A1) The entries of the binary vector xhi ∈ {0, A}L are

i.i.d random variables distributed as xhi[n] ∼ ABern(p).
• (A2) The additive noise w[n], 0 ≤ n ≤ M − 1 is

independent of xhi[n], and distributed as w[n] ∼ N (0, σ2)

A. Probability of Erroneous Decoding

Under assumption (A2), the ML estimate of xhi is given by

the solution to the following problem:

x̂ML = arg min
v∈{0,A}L

∥zlo − SDGαv∥2 (PNN)

The proposed Algorithm 2 does not attempt to solve

(PNN), which is computationally intractable. Instead, it solves

a set of M − 1 one dimensional nearest neighbor search

problems, by finding the nearest neighbor of ce[n] for each

n = 1, 2, · · · ,M − 1. This scalar nearest neighbor search is

implemented in a computationally efficient manner by using

parallel binary search on a pre-sorted list. Notice that by the

operation (22), the variance of the equivalent noise term e[n]
gets amplified by a factor of at most (1+α2D) < 2. This can be

thought of as a price paid to achieve computational efficiency

and parallelizability. The following theorem characterizes the

dependence of certain key quantities of interest, such as the

signal-to-noise ratio (SNR), undersampling factor D, and filter’s

frequency response (controlled by α) on the performance of

Algorithm 2.

Theorem 3. Suppose α ∈ GD and assumptions (A1-A2) hold.

Given δ > 0, if the following condition is satisfied:

∆θ2min(α,D)/σ2 ≥ 4 ln (2M/δ) (28)

then Algorithm 2 can exactly recover the binary signal xhi

with probability at least 1− δ.

Proof. The proof follows standard arguments for computing

the probability of error for symbol detection in Gaussian noise,

followed by certain simplifications and is included in Appendix

D for completeness.

In Fig. 1, we plot ∆θmin(α,D) as a function of D for

different values of α. As expected, ∆θmin(α,D) decays as the

D increases. Understandably, for a fixed α, as D increases,

it becomes harder to recover the spikes exactly, and higher

SNR is needed to compensate for the lower sampling rate.

This can be interpreted as the price paid for super-resolution

in presence of noise. This phenomenon is also reminiscent of

the noise amplification effect in super-resolution, where the

ability to super-resolve point sources becomes more severely

hindered by noise as the target resolution grid becomes finer

[6]. In Fig. 1, we plot ∆θmin(α,D) as a function of α and as

predicted by Lemma 7, it monotonically increases upto 0.5,

but for α > 0.5, the behavior becomes much more erratic

and a precise characterization becomes challenging. It is to
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Fig. 1: Variation of ∆θmin(α,D) as a function of undersampling factor
D and α. The cluster-distance ∆c

min(α,D) vs. α is also overlaid. Each
dotted line denotes the start of the interval FD.

be noted that in Theorem 3, we aim to exactly recover xhi.

The SNR requirement can be relaxed if our goal is to recover

only spike counts instead of the true spikes as discussed in the

next subsection. One can define other notions of approximate

recovery, the analysis of which will be a topic of future research.

B. Relaxed Spike reconstruction: Count Estimation

As shown in Theorem 2, exact recovery of spikes is possible

under somewhat restrictive condition on the noise in terms

of ∆θmin(α,D), which becomes quite small as D increases.

This naturally calls for other relaxed notions of recovery

which can handle larger noise levels. In neuroscience, it is

believed that information is encoded as either the spike timing

(temporal code) or the firing rates (rate coding) of individual

neurons in the brain. Therefore, the spike counts over an

interval can be informative to understand neural functions, even

when it is impossible to temporally localize the neural spikes.

For example, neurons in the visual cortex encode stimulus

orientations as their firing rates [52]. We will therefore focus

on spike count as an approximate recovery metric, which

concerns estimating the number of spikes occurring between

two consecutive low-rate measurements instead of resolving

the individual spiking activity at a higher resolution.

Let γ[n] denote the total number of spikes occurring between

two consecutive low-rate samples zlo[n] and zlo[n− 1]. Since

xhi and its estimate x̂hi are both binary valued (amplitude A),

the true spike count (γ[n]) and estimated count (γ̂[n]) are given

by: γ[n] = ∥xhi
(n)∥0, γ̂[n] = ∥x̂(n)

hi ∥0, n = 1, · · · ,M − 1,
γ[0] = xhi[0]/A and γ̂[0] = x̂hi[0]/A since the first block is of

size 1 as described in (6). Define a set CD
k as:

CD
k := {v ∈ {0, A}D, ∥v∥0 = k}, 0 ≤ k ≤ D

It is a collection of all binary vectors (of length D) with spike

count k. The ground truth spike block belongs to CD
γ[n]. Any

element from CD
γ[n] will give the true spike count. Hence, exact

recovery of count can be possible even when spikes cannot be

recovered.

For a fixed D, we define a set of α denoted by FD:

FD := {α ∈ (0, 1)|αD − αD−k0−1 − αk0 + 1 < 0} (29)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3260564

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 28,2023 at 17:11:23 UTC from IEEE Xplore.  Restrictions apply. 



9

C
0

C
1

C
2

C
3

000 100 010 001 110 101 011 111

Fig. 2: Visualization of the sets CD
k for D = 3. In this scenario, the

spiking patterns corresponding to the same count are clustered together
and hence, are favorable for robust count estimation.

where k0 = ⌊D/2⌋. We will obtain a sufficient condition for

robust spike count estimation when α ∈ FD. It can be shown

that for any D, FD will always be non-empty. Define

θkmin := min
u∈CD

k

h⊤
αu θkmax := max

u∈CD
k

h⊤
αu (30)

Observe that if

θk+1
min > θkmax, k = 0, 1, · · · ,D− 1 (31)

then all spike patterns ui ∈ CD
k (with the same spike count k)

are clustered together when mapped on to the real line by the

transformation h⊤
αu as shown in Figure 2. When (31) holds,

we can define a ªcluster-restricted minimum distance" as:

∆c
min(α,D) := min

0≤k≤D−1
θk+1
min − θkmax (32)

Given a noisy observation ce[n] = h⊤
αxhi

(n)+e[n], the solution

to the nearest neighbor problem (24) may return an incorrect

neighbor θj ̸= h⊤
αxhi

(n). However, when (31) holds and if

the noisy observation satisfies the following conditions:

(θ
γ[n]
min + θγ[n]−1

max )/2 < ce[n] < (θ
γ[n]+1
min + θγ[n]max)/2 (33)

then the nearest-neighbor decision rule in Algorithm 2 will still

ensure that θj ∈ CD
γ[n]. This has also been visualized in Fig. 2

where each colored band represents the ªsafe-zone" for each

count and the black dotted-line denotes the boundary. This will

result in correct identification of the spike count but will incur

error in terms of spiking pattern. We formally summarize this

in the following Theorem that provides robustness guarantee

for exact count recovery from measurements corrupted by

adversarial noise (similar to Theorem 2 for spike recovery).

Theorem 4. Assume α ∈ FD. Given the ordered set Θsort
α , let

γ̂[n] be the estimated spike count obtained from Algorithm 2
with input ce[n]. If for all n, |w[n]| < ∆c

min(α,D)/4, then the

count can be exactly recovered, i.e., γ̂[n] = γ[n].

Proof. Proof is in Appendix E.

It is clear that when (31) holds, ∆c
min(α,D) is no smaller

than ∆θmin(α,D), since the former is computed over neigh-

boring elements of the cluster whereas ∆θmin(D, α) computes

the minimum distance over all consecutive elements (both

inter-cluster as well as intra-cluster) in Θsort
α . This essentially

suggests that estimation of counts (for this range of α and

D) can be more robust compared to inferring the individual

spiking patterns. We also illustrate this numerically in Figure

1 (top), where we plot both ∆c
min and ∆θmin as a function of

α and the start of the interval FD (computed numerically) is

denoted using dotted lines. For both values of D, we can see

that ∆c
min > ∆θmin and the gap grows as α increases.

V. NUMERICAL EXPERIMENTS

We conduct numerical experiments to evaluate the per-

formance of the proposed super-resolution spike decoding

algorithm on both synthetic and real calcium imaging datasets.
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Fig. 3: (Top) Quantitative comparison of Algorithm 2 against box-
constrained l1 minimization method with noiseless measurements
(with tolerance t0 = 0). (Bottom) (Role of Filter Memory): Average
F-score vs. D for FIR and IIR (AR(1)) filters. Each dotted line indicates
the corresponding theoretical transition point (D = r).

A. Synthetic Data Generation and Evaluation Metrics

We create a synthetic dataset by generating high-rate binary

spike sequence xhi ∈ {0, 1}L (A = 1 and L = 1000) that

satisfies assumption (A1). The spiking probability p controls

the average sparsity level given by s := E[∥xhi∥0] = Lp. We

aim to reconstruct xhi from M ≈ L/D low-rate measurements

zlo[n] defined in (21). Notice that we operate in a regime where

the expected sparsity is greater than the total number of low-

rate measurements, i.e., s > M . We employ the widely-used

F-score metric to evaluate the accuracy of spike detection [4],

[10]. The F-score is computed by first matching the estimated

and ground truth spikes. An estimated spike is considered a

ªmatch" to a ground truth spike if it is within a distance of t0
of the ground truth (many-to-one matching is not allowed) [4],

[10]. Let K and K ′ be the total number of ground truth and

estimated spikes, respectively. The number of spikes declared as

true positives is denoted by Tp. After the matching procedure,

we compute the recall (R =
Tp

K
) which is defined as the

ratio of true positives (Tp) and the total number of ground

truth spikes (K). Precision (P =
Tp

K′
) measures the fraction

of the total detected spikes which were correct. Finally, the

F-score is given by the harmonic mean of recall and precision

F-score = 2PR/(P +R).

B. Noiseless Recovery: Role of Binary priors and memory

We first consider the noiseless setting (w[n] = 0 in (21)).

We compare the performance of Algorithm 2 against box-

constrained l1 minimization method [35], [36], where we solve:

min
x∈RL

∥x∥1 s.t. ∥ylo − SDGαx∥2 ≤ ϵ,0 ≤ x ≤ A1 (P1)

For synthetic data, ϵ is chosen using the norm of the noise term

∥w∥2. This oracle choice ensures most favorable parameter

tuning for the (P1), although a more realistic choice would

be to set ϵ =
√
Mσ according to the noise power (σ). In the

noiseless setting, we choose ϵ = 0. The problem (P1) is a

standard convex relaxation of (P0) which promotes sparsity

as well as tries to impose the binary constraint via the box-

relaxation (introduced in Section II-C). In Fig. 3 (Top), we plot
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Fig. 4: Qualitative comparison of Algorithm 2 and box-constrained l1 minimization on simulated data. For each simulation noisy measurements
are generated with α = 0.9 such that the noise realization (Top) obeys the bound |w[n]| ≤ ∆θmin (from Theorem 2) and (Bottom) violates
the bound. For larger noise (Bottom), the spike recovery is imperfect but the spike count can still be exactly recovered using Algorithm 2.

the F-score (t0 = 0) as a function of D. As can be observed,

Algorithm 2 consistently achieves an F-score of 1, whereas the

F-score of l1 minimization shows a decay as D increases. This

confirms Lemma 3 that for D > 1, using box-constraints with l1
norm minimization is not enough to enable exact recovery from

low rate measurements. In absence of noise, the performance

of Algorithm 2 is not affected by the filter parameter α as

shown in Fig. 3 (Top).

Next, we compare the reconstruction from the decimated

output of (i) an AR(1) filter and (ii) an FIR filter of length

r driven by the same input xhi ∈ {0, 1}1000. We choose the

FIR filter h = [1, α, · · · , αr−1]⊤ (truncation of the IIR filter)

with α = 0.5. Algorithm 2 is applied to the low-rate AR(1)

measurements, whereas the algorithm proposed in [40] is used

for the FIR case. The algorithm applied for the FIR case can

provably operate with the optimal number of measurements

when α = 0.5 and hence, we chose this specific value for

the filter parameter. In Figure 3 (Bottom), we again compare

the average F-score as a function of D, averaged over 10000
Monte Carlo runs, for p = 0.5. As predicted by Lemma 4,

despite utilizing binary priors, the error for the FIR filter shows

a phase transition when D > r. This demonstrates the critical

role played by the infinite memory of the AR(1) filter in

achieving exact recovery with arbitrary D.

C. Performance of noisy spike decoding

We generate noisy measurements of the form (21), where

w[n] and xhi[n] satisfy assumptions (A1-A2). We illustrate

some representative examples of recovered spikes on synthetic

data. In Fig. (4), we display the recovered super-resolution

estimates on synthetically generated measurements for two

undersampling factors D = 5 (left), 10 (right). For each D, the

top plots show the spikes recovered using Algorithm 2 and l1
minimization with box-constraint where the noise realization

obeys the bound in Theorem 2, while the bottom plots show

the same for noise realization violating the bound. The output

of l1 minimization with box-constraint is inaccurate, and the

spikes are clustered towards the end of each block of length

D. This bias is consistent with the prediction made by our

theoretical results in Lemma 3. When the noise is small enough

(top), Algorithm 2 exactly decodes the spikes, including the

ones occurring between two consecutive low-rate samples as

predicted by Theorem 2. In presence of larger noise (violating

the bound), the spikes estimated using l1 minimization continue

to be biased to be clustered towards the end of the block.

Although the spikes recovered using Algorithm 2 are not exact,

most of the detected spikes are within a tolerance window of

ground truth spikes. In fact, the spike count estimation is perfect

as predicted by Theorem 4. We next quantitatively evaluate
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Fig. 5: Spike detection performance with noisy measurements. (Top)
F-score vs. D for different filter parameters α (σ = 0.01). Here,
L = 1000 and expected sparsity s = 350 where we operate in the
regime s > M . The F-score is computed with a tolerance of t0 = 2.

the performance in presence of noise, where the metrics are

computed with t0 = 2. In Fig. 5 (Top), we plot the F-score

as a function of D for different values of α. For a fixed α,

the F-score of both methods decays with increasing D, but

Algorithm 2 consistently attains a higher F-score compared to

l1 minimization. We observe that α = 0.5 leads to a higher F-

score potentially due to having a larger ∆θmin(α,D) compared
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to α = 0.9. Next, in Fig. 7, we study the behavior of spike

detection as a function of the spiking probability p, while

keeping D fixed at D = 5. When σ is fixed, the performance

trend is not significantly affected by the spiking probability.

At first, this may seem surprising as the expected sparsity

is growing while the number of measurements is unchanged.

However, since our algorithm exploits the binary nature of

the spikes (and not just sparsity), it can handle larger sparsity

levels. The spikes reconstructed using l1 minimization achieve

a much lower F-score than Algorithm 2 since the former fails

to succeed when the sparsity is large. As expected, smaller σ
leads to higher F-scores.

In Fig. 8, we study the probability of erroneous spike

detection as a function of D and validate the upper bound

derived in Theorem 3. Recall that the decoding is considered

successful if ªevery" spike is detected correctly. Therefore, it

becomes more challenging to ªexactly super-resolve" all the

spikes in presence of noise as the desired resolution becomes

finer. We calculate the empirical probability of error and overlay

the corresponding theoretical bound. As shown in Fig. 8, the

empirical probability of error is indeed upper bounded by the

bound computed by our analysis. The empirical probability of

error increases as a function of undersampling factor D.
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Fig. 6: Spike detection performance with noisy measurements for
different filter parameters α. (Top) F-score vs. noise level (σ) (Bottom)
Count estimation error vs. noise level. Here, L = 1000 and expected
sparsity is fixed at s = 350 where we operate in the regime s > M .
The F-score is computed with a tolerance of t0 = 2.

Finally, we evaluate the noise tolerance of the proposed

methodology by comparing the average F-score as a function

of the noise level σ, while keeping the spiking rate and

undersampling factor fixed at p = 0.35 and D = 5, respectively.

As seen in Fig. 6 (Top), the performance of both algorithms

degrades with increasing noise level and this is also consistent

with the intuition that it becomes harder to super-resolve spikes

with more noise. However, for both filter parameters considered

in this experiment Algorithm 2 has a higher F-score compared

to box-constrained l1 minimization. For large noise levels

(comparable to spike amplitude A = 1), the performance gap

decreases for α = 0.9 but Algorithm 2 achieves a much higher

F-score for α = 0.5 at all noise levels.

As discussed in Section IV-B, we next study a relaxed

notion of spike recovery which focuses on the spike counts

occurring between two consecutive low-rate samples. Let Γ =
[γ[0], · · · , γ[M − 1]]⊤ be the vector of counts and Γ̂ be its

estimate. In Fig. 6 (Bottom) we plot the average l1 distance

∥Γ− Γ̂∥1 as a function of the noise level. We observe that for

α = 0.9 (it can be verified from Fig. 1 (Top) that 0.9 ∈ F5), it

is possible to exactly recover the spike counts at higher noise

even though the F-score (for timing recovery) has dropped

below 1. However, this is not the case for α = 0.5, since

0.5 ̸∈ F5. This is consistent with the conclusion of Theorem 4
which states that when α ∈ FD, the noise tolerance for exact

count recovery can be much larger than exact spike recovery

since ∆c
min(α,D) > ∆θmin(α,D).
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Fig. 7: Spike detection performance with noisy measurements. F-score
vs. spiking probability (p) for different noise levels σ (fix α = 0.9,
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D. Spike Deconvolution from Real Calcium Imaging Datasets

We now discuss how the mathematical framework developed

in this paper can be used for super-resolution spike deconvo-

lution in calcium imaging. Two-photon calcium imaging is a

widely used imaging technique for large scale recording of

neural activity with high spatial but poor temporal resolution. In

calcium imaging, the signal xhi corresponds to the underlying

neural spikes which is modeled to be binary valued on a finer

temporal scale [2], [46]. Each neural spike results in a sharp

rise in Ca2+ concentration followed by a slow exponential

decay, leading to superposition of the responses from nearby

spiking events [2]±[4]. This calcium transient can be modeled

by the first order autoregressive model introduced in Section

II. The decay time constant depends on the calcium indicator

and essentially determines the filter parameter α. The signal

yhi[n] is an unobserved signal corresponding to sampling the

calcium fluorescence at a high sampling rate (at the same rate

as the underlying spikes). The observed calcium signal ylo[n]
corresponds to downsampling yhi[n] at an interval determined

by the frame rate of the microscope. The frame rate of a

typical scanning microscopy system (that captures the changes

in the calcium fluorescence) is determined by the amount of

time required to spatially scan the desired field of view, which

makes it significantly slower compared to the temporal scale

of the neural spiking activity. We model this discrepancy by
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the downsampling operation (by a factor D). Therefore, the

mathematical framework developed in this paper can be directly

applied to reconstruct the underlying spiking activity at a

temporal scale finer than the sampling rate of the calcium signal.

Using real calcium imaging data, we demonstrate a way to fuse

our algorithm with a popular spike deconvolution algorithm

called OASIS [43]. OASIS solves an l1 minimization problem

similar to (P1) with only the non-negativity constraint, in order

to exploit the sparse nature of the spiking activity. Unlike our

approach where we wish to obtain spikes representation on a

finer temporal scale, OASIS returns the spike estimates on the

low-resolution grid. This is typically used to infer the spiking

rate over a temporal bin equal to the sampling interval. We

demonstrate that our proposed framework can be integrated with

OASIS and improve its performance. As we saw in the synthetic

experiments, the noise level is an important consideration. By

augmenting Algorithm 2 with OASIS, referred as ªB-OASIS",

the denoising power of l1 minimization can be leveraged.Let

x̂l1 ∈ R
M be the estimate obtained on a low-resolution grid

by solving the l1 minimization problem such as the one

implemented in OASIS. We can obtain an estimate of the

denoised calcium signal as ŷlo[n] = αDŷlo[n] + x̂l1[n], n ≥ 1
and ŷlo[0] = x̂l1[0]. We can now utilize the denoised calcium

signal ŷlo[n] generated by OASIS to obtain the estimate ce[n]
indirectly. Due to the non-linear processing done by OASIS, it

is difficult to obtain the resulting noise statistics. An important

advantage of Algorithm 2 is that it does not rely on the

knowledge of the noise statistics. Hence, we can directly apply

Algorithm 2 on ĉe[n] = ŷlo[n]−αDŷlo[n−1] (instead of ce[n])
to obtain a binary ªfused super-resolution spike estimate".
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Fig. 9: Spike detection performance of OASIS and B-OASIS on
GCaMP6f dataset sampled at (Left) 60 Hz and (Right) 30 Hz. We
compare the average F-score of data points where the F-score of
OASIS is < 0.5. Standard deviation is depicted using the error bars.

E. Results

We evaluate the algorithms on the publicly available GENIE

dataset [53], [54] which consists of simultaneous calcium imag-

ing and in vivo cell-attached recording from the mouse visual

cortex using genetically encoded GCaMP6f calcium indicator

GCaMP6f [53], [54]. The calcium images were acquired at a

frame rate of 60 Hz and the ground truth electrophysiology

signal was digitized at 10 KHz and synchronized with the

calcium frames. In addition to using the original data, we also

synthetically downsample it to emulate the effect of a lower

frame rate of 30 Hz, and evaluate how the performance changes

by this downsampling operation.

In Fig. 10, we extract an interval of ∼ 2 sec (from the neuron

1 of the GCaMP6f indicator dataset) and qualitatively compare
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Fig. 10: Example of spike reconstruction on GENIE dataset (GCaMP6f
indicator) using OASIS and B-OASIS (binary augmented) with
calcium signal sampled at 30Hz.

the detected spikes with the ground truth. We downsample

the data by a factor of 2 to emulate frame rate of 30 Hz,

the low-rate grid becomes coarser. As a result of which, we

observe an offset between ground truth spikes and estimate

produced by OASIS. However, with the help of binary priors

(B-OASIS), we can output spikes that are not restricted to be

on the coarser scale, and this mitigates the offset observed in

the raw estimates obtained by OASIS.

We quantify the improvement in the performance by com-

paring the F-scores of OASIS and B-OASIS at both sampling

rates (60 and 30 Hz). Since the output of OASIS is non-

binary, the estimated spikes are binarized by thresholding.

To ensure a fair comparison, we select the threshold by a

80− 20 cross-validation scheme that maximizes the average

F-score on a held-out validation set (averaged over 3-random

selections of the validation set). The tolerance for the F-score

was set at 100 ms. The dataset consisted of 34 traces of

length ∼ 234 s. The OASIS algorithm has an automated

routine to estimate the parameter α, which we utilize for

our experiments. The amplitude A is estimated using the

procedure described in Appendix F. We use D = 12 to obtain

the spike representation for B-OASIS. In order to quantify

the performance boost achieved by augmentation, we isolate

the traces where the F−score of OASIS drops below 0.5
and compare the average F-score and recall for these data

points. As shown in Fig. 9, at both sampling rates, we see a

significant improvement in the average F-score of B-OASIS

over OASIS, attributed to an increase in recall while keeping the

precision unchanged. Additionally, despite downsampling, the

spike detection performance is not significantly degraded with

binary priors, although the detection criteria were unchanged.

VI. CONCLUSION

We theoretically established the benefits of binary priors in

super-resolution, and showed that it is possible to achieve

significant reduction in sample complexity over sparsity-

based techniques. Using an AR(1) model, we developed

and analyzed an efficient algorithm that can operate in the

extreme compression regime ( M ≪ K) by exploiting the

special structure of measurements and trading memory for

computational efficiency at run-time. We also demonstrated that

binary priors can be used to boost the performance of existing

neural spike deconvolution algorithms. In the future, we will

develop algorithmic frameworks for incorporating binary priors

into different neural spike deconvolution pipelines and evaluate

the performance gain on diverse datasets. The extension of

this binary framework for higher-order AR filters is another

exciting future direction.
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APPENDIX

APPENDIX A: PROOF OF THEOREM 1
Proof. We show that for any α in 0 < α < 1, except possibly

for a set consisting of only a finite number of points, (10)

always has a unique binary solution. Consider all possible

D−dimensional ternary vectors with their entries chosen from

{−1, 0, 1}, and denote them as v(i) = [v
(i)
1 , v

(i)
2 , · · · , v(i)D ]T ∈

{−1, 0, 1}D, 0 ≤ i ≤ 3D − 1. We use the convention that

v(0) = 0. For every i > 0, we define a set Zv(i) determined

by v(i) as Zv(i) :=
{
x ∈ (0, 1)

∣∣∑D

k=1 v
(i)
k xD−k = 0

}
. Notice

that pi(x) :=
∑D

k=1 v
(i)
k xD−k denotes a polynomial (in x) of

degree at most D−1, whose coefficients are given by the ternary

vector v(i). The set Zv(i) denotes the set of zeros of pi(x) that

are contained in (0, 1). Since the degree of pi(x) is at most

D−1, Zv(i) is a finite set with cardinality at most D−1.

Now suppose that the binary solution of (10) is non-unique,

i.e., there exist u,w ∈ {0, A}L, u ̸= w, such that

HD(α)u = HD(α)w⇒ HD(α)u−HD(α)w = 0 (34)

By partitioning u,w into blocks u(n),w(n) in the same way

as in (6), we can re-write (34) as u(0) = w(0) and
D∑

i=1

1

A
([u(j)]i − [w(j)]i)α

D−i = 0, 1 ≤ j ≤M − 1 (35)

Since u ̸= w, they differ at least at one block, i.e., there exists

some j0, 1 ≤ j0 ≤ M − 1 such that u(j0) ̸= w(j0). Define

b := 1
A
(u(j0) −w(j0)). Then, b is a non-zero ternary vector,

i.e., b ∈ {−1, 0, 1}D. Now from (35), we have
D∑

i=1

[b]iα
D−i = 0, (36)

which implies that α ∈ Zb. Since b can be any one of the 3D−1
ternary vectors {v(i)}3D−1

i=1 , (36) holds if and only if α ∈ S :=⋃3D−1
i=1 Zv(i) , i.e., α is a root of at least one of the polynomials

pi(x) defined by the vectors v(i) as their coefficients. For each

v(i), since the cardinality of Zv(i) is at most D−1, S is a finite

set (of cardinality at most (D− 1)(3D − 1)), and therefore its

Lebesgue measure is 0. This implies that (10) has a non-unique

binary solution only if α belongs to the measure zero set S,

thereby proving the theorem.

APPENDIX B: PROOF OF LEMMA 2 AND LEMMA 3
Proof. (i) Let sn denote the sparsity (number of non-zero

elements) of the nth block xhi
(n) of xhi. Then, the total

sparsity is ∥xhi∥0 =
∑M−1
n=0 sn. We will construct a vec-

tor v ∈ R
L, v ̸= xhi that satisfies c = HD(α)v and

∥xhi∥0 ≥ ∥v∥0. Following (6), consider the partition of v

v = [v(0),v(1)⊤, · · · ,v(M−1)⊤]⊤. Firstly, we assign v(0) =
c[0] = xhi

(0). We construct v(n) as follows. For each n ≥ 1,

there are three cases:

Case I: sn = 0. In this case, xhi
(n) = 0 and hence c[n] = 0.

Therefore, we assign v(n) = xhi
(n) = 0.

Case II: sn = 1. First suppose that [xhi
(n)]D = 0. We

construct v(n) as follows:

[v(n)]k =

{
c[n], if k = D

0, else
. (37)

Next suppose that [xhi
(n)]D ̸= 0. Since sn = 1, this implies

that [xhi
(n)]k = 0, k = 1, · · · ,D−1. In this case, we construct

v(n) as follows:

[v(n)]k =

{
c[n]/α, if k = D− 1

0, else
. (38)

Notice that both (37) and (38) ensure that v(n) ̸= xhi
(n) and

c[n] = hTαv
(n). Moreover, ∥v(n)∥0 = sn.

Case III: sn ≥ 2. In this case, we follow the same

construction as (37). As before v(n) satisfies c[n] = h⊤
αv

(n).

Since ∥xhi
(n)∥0 ≥ 2 and ∥v(n)∥0 = 1, we automatically have

v(n) ̸= xhi
(n), and ∥v(n)∥0 < sn. Therefore, combining the

three cases, we can construct the desired vector v that satisfies

v ̸= xhi, c = HD(α)v, and ∥v∥0 ≤
∑M−1
n=0 sn = ∥xhi

(n)∥0.

Therefore, the solution x⋆ to (P0) satisfies ∥x⋆∥0 ≤ ∥v∥0 ≤
∥xhi

(n)∥0.

(ii) In this case, we construct v(n0) according to Case III.

Since ∥v(n0)∥0 < sn0
, and ∥v(n)∥0 ≤ sn, n ̸= n0, we have

∥v∥0 < ∥xhi∥0, implying ∥x⋆∥0 ≤ ∥v∥0 < ∥xhi∥0.

A. Proof of Lemma 3

Proof. We will construct a vector v ∈ R
L whose support is of

the form (16), that is feasible for (P1-B), and we will prove

that it has the smallest l1 norm. Using the block structure given

by (6), we choose v(0) = c[0]. For each n ≥ 1, we construct

v(n) based on the following two cases:

Case I: c[n] ≥ A. Let kn be the largest integer such that

the following holds: µ[n] := A(1 + α+ · · ·+ αkn−1) ≤ c[n],
where 1 ≤ kn ≤ D. Note that kn = 1 always produces a valid

lower bound. However, we are interested in the largest lower

bound on c[n] of the above form. We choose

[v(n)]k =





A, if D− kn + 1 ≤ k ≤ D

(c[n]− µ[n])/αkn , if k = D− kn
0, else

It is easy to verify that h⊤
αv

(n) = c[n]. From the definition

of kn, it follows that µ[n] ≤ c[n] < µ[n] + Aαkn and hence,

0 ≤ (c[n]− µ[n])/αkn < A, which ensures that v obeys the

box-constraints in (P1-B). Now, let vf ∈ R
L be any feasible

point of (P1-B) which must be of the form v
(0)
f = c[0],v

(n)
f =

v(n) + r(n), where r(n) ∈ N (h⊤
α ) is a vector in the null-space

of h⊤
α . It can be verified that the following vectors {wt}D−1

t=1

form a basis for N (h⊤
α ):

[wt]k =





1, k = t

−α, k = t+ 1

0, else

,

Therefore, ∃ {β(n)
t }D−1

t=1 such that r(n) =
∑D−1
t=1 β

(n)
t wt. We

further consider two scenarios: (i) 1 ≤ kn ≤ D − 2. In this

case [v(n)]1 = 0, and for k = 1, 2, · · ·D, [v
(n)
f ]k satisfies 2

[v
(n)
f ]k =





β
(n)
k , if k = 1

β
(n)
k − αβ(n)

k−1, if 2 ≤ k ≤ D− kn − 1

[v(n)]k + β
(n)
k − αβ(n)

k−1, if k = D− kn
A+ β

(n)
k − αβ(n)

k−1, if D− kn + 1 ≤ k ≤ D− 1

A− αβ(n)
k−1, if k = D

To ensure v
(n)
f is a feasible point for (P1-B), the following must

hold: 0 ≤ β(n)
D−1 ≤ A/α and 0 ≤ β(n)

1 ≤ A. For 2 ≤ k ≤ D−

2In the definition of v
(n)
f

, an assignment will be ignored if the specified

interval for k is empty.
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kn−1, the constraint [v
(n)
f ]k ≥ 0 implies β

(n)
k ≥ αβ(n)

k−1. Since

β
(n)
1 ≥ 0, it follows that β

(n)
k ≥ 0 for all 2 ≤ k ≤ D− kn− 1.

For D−kn+1 ≤ k ≤ D−1, the constraint [v
(n)
f ]k ≤ A implies

β
(n)
k−1 ≥ β

(n)
k /α. Since β

(n)
D−1 ≥ 0, it follows that β

(n)
k ≥ 0 for

all D − kn ≤ k ≤ D − 1. (ii) kn ∈ {D − 1,D}. In this case,

for k = 1, 2, · · · , D, [v
(n)
f ]k satisfies

[v
(n)
f ]k =





[v(n)]1 + β
(n)
1 , if k = 1

A+ β
(n)
k − αβ(n)

k−1, if 2 ≤ k ≤ D− 1

A− αβ(n)
k−1, if k = D

For 2 ≤ k ≤ D − 1, the box-constraint [v
(n)
f ]k ≤ A implies

β
(n)
k−1 ≥ β

(n)
k /α. Since β

(n)
D−1 ≥ 0, it follows that β

(n)
k ≥ 0 for

all 1 ≤ k ≤ D − 1. Summarizing, we have established that

β
(n)
i ≥ 0, ∀i.

Case II: c[n] < A. In this case, v(n) is constructed following

(37), and hence v
(n)
f has the following structure:

[v
(n)
f ]k =





β
(n)
k , if k = 1

−αβ(n)
k−1 + β

(n)
k , if 2 ≤ k ≤ D− 1

c[n]− αβ(n)
k−1, if k = D

To ensure v
(n)
f is a feasible point, it must hold that β

(n)
1 ≥

0, β
(n)
k ≥ αβ

(n)
k−1 ≥ 0 for 2 ≤ k ≤ D − 1. Hence, in both

Cases I and II, we established that β
(n)
k ≥ 0. For each case,

since v
(n)
f is a non-negative vector ∀n, it can be verified that

∥vf∥1 =

M−1∑

n=0

∥v(n)
f ∥1 = v

(0)
f +

M−1∑

n=1

D∑

k=1

[v
(n)
f ]k

= c[0] +
M−1∑

n=1

D∑

k=1

[v(n)]k

︸ ︷︷ ︸
∥v∥1

+
M−1∑

n=1

D−1∑

k=1

(1− α)β(n)
k

We used the fact that
∑D
k=1

∑D−1
t=1 β

(n)
t [wt]k =

∑D−1
t=1 (1 −

α)β
(n)
t . If vf ̸= v, we must have β

(n)
k ̸= 0 for some k and

n > 0. This implies that ∥vf∥1 > ∥v∥1. It is easy to see

that the support of the constructed vector is of the form (16).

Moreover, based on the above argument, v is the only vector

that has the minimum l1 norm among all possible feasible

points of (P1-B).

APPENDIX C: PROOF OF LEMMA 7

Proof. For any 0 < α ≤ 0.5, we begin by showing that for an

integer p ≥ 1 the following inequality holds:

p∑

k=1

αD−k = αD−p−1

(
1− αp
1/α− 1

)
< αD−p−1 (39)

since 1/α− 1 ≥ 1 and 1−αp < 1 in the regime 0 < α ≤ 0.5.

Let S1 = {0, αD−1, αD−2, αD−1 + αD−2}. Notice that the

elements of S1 are sorted in ascending order for any α and D.

Now, we recursively define the sets Si as follows:

Si := {Si−1,Si−1 + αD−1−i}, 2 ≤ i ≤ D− 1 (40)

Our hypothesis is that for every 2 ≤ i ≤ D − 1 α ∈ (0, 0.5]
and D, the set Si as defined in (40), is automatically sorted in

ascending order. We prove this via induction. For i = 2, the

sets S1 and S1 +αD−3 are individually sorted. Moreover from

(39), we can show that: maxa∈S1 a = αD−1+αD−2 < αD−3 =
minb∈S1+αD−3 b. This shows that S2 is ordered, establishing the

the base case of our induction. Now, assume Si is ordered for

some 2 ≤ i ≤ D−2. We need to show that Si+1 is also ordered.

As a result of the induction hypothesis, both Si and Si+αD−2−i

are ordered. Using the ordering of Si, we have: maxa∈Si
a =∑i+1

j=1 α
D−j ,minb∈Si+αD−2−i b = αD−(i+1)−1. From (39), we

can conclude that maxa∈Si
a < minb∈Si+αD−2−i b and hence,

Si+1 is also ordered. This completes the induction proof. Also,

note that for α ∈ (0, 0.5], we have Θsort
α = SD−1.

Let ∆min(Si) be the min. distance between the elements of the

set Si. It is easy to see that ∆min(Si) = ∆min(Si + αD−2−i).
Since Si is sorted for α ∈ (0, 0.5], ∆min(Si) is given by:

∆min(Si) = min(∆min(Si−1), min
x∈Si−1+αD−1−i

x− max
y∈Si−1

y)

= min{∆min(Si−1), α
D−i−1 −

i∑

j=1

αD−j}. (41)

Now, we use induction to establish the following conjecture:

∆min(Si) = αD−1, 1 ≤ i ≤ D− 1 (42)

For the base case i = 1, ∆min(S1) = min(αD−1, αD−2 −
αD−1) = αD−1, where the last equality holds since α ∈
(0, 0.5] ⇒ αD−1(1/α − 1) ≥ αD−1. Suppose (42) holds for

some 1 ≤ i ≤ D− 2. From the definition of ∆min(Si+1) and

the induction hypothesis that ∆min(Si) = αD−1, it follows that

∆min(Si+1) = min{αD−1, αD−(i+1)−1−∑i+1
j=1 α

D−j}. Again,

from the definition of ∆min(Si) in (41), and the induction

hypothesis we also have αD−i−1−∑i
j=1 α

D−j ≥ ∆min(Si) =
αD−1. Using this and the fact that α ≤ 0.5, we can show:

αD−i−2−αD−i−1 −∑i
j=1 α

D−j ≥ αD−i−2 − 2αD−i−1 + αD−1

≥ αD−1 + αD−i−1(1/α− 2) ≥ αD−1

Therefore ∆min(Si+1)=min{αD−1, αD−i−2−∑i+1
j=1 α

D−j} =
αD−1. Thus, we can conclude that ∆min(α,D) =
∆min(SD−1)=α

D−1.

APPENDIX D: PROOF OF THEOREM 3

Proof. The probability of incorrectly identifying xhi
(n) from a

single measurement ce[n] is given by

pe := P(x̂hi
(n) ̸= xhi

(n))

=

lD∑

k=0

P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽk)P(xhi

(n) = ṽk)

Given a binary vector z ∈ {0, 1}D, define the function ψ(z) :=∑D

k=1 zk, which denotes the count of ones in z. Since the

noisy observations are given by ce[n] = c[n] + e[n], where

e[n] = w[n]− αDw[n− 1], it follows from assumption (A2)

that e[n] ∼ N (0, σ2
1) where σ2

1 = (1 + α2D)σ2. From (27),

we obtain P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽ0) = P(e[n] ∈ E0) =

Q(αD−1/(2σ1)). Similarly, P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽlD) =

P(e[n] ∈ ElD ) = Q((θ̃lD − θ̃lD−1)/(2σ1)) = Q(αD−1/(2σ1)).
The last equality follows from the fact that θ̃lD− θ̃lD−1 = αD−1.

Finally, when conditioned on xhi
(n) = ṽk for 0 < k < lD,

from (26), we obtain P(x̂(n) ̸= xhi
(n)|xhi

(n) = ṽk) = P(e[n] ∈
Ek) = Q( θ̃k−θ̃k−1

2σ1
) + Q( θ̃k+1−θ̃k

2σ1
). Due to Assumption (A1)
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on xhi, we have P(xhi
(n) = ṽk) = pψ(ṽk)(1 − p)D−ψ(ṽk).

Therefore, pe is given by

pe = Q(αD−1/(2σ1))(1− p)D +Q(αD−1/(2σ1))p
D+

lD−1∑

k=1

(
Q(
θ̃k − θ̃k−1

2σ1
) +Q(

θ̃k+1 − θ̃k
2σ1

)

)
pψ(vk)(1− p)D−ψ(vk)

(43)

The spike train xhi is incorrectly decoded if at least one of the

blocks are decoded incorrectly, hence, the total probability of

error is given by:

P(
M−1⋃

n=0

x̂(n) ̸= xhi
(n)) ≤

M−1∑

n=0

P(x̂(n) ̸= xhi
(n)) =Mpe

(a)

≤ 2MQ(∆θmin(α,D)/(2σ1))

D∑

j=0

pj(1− p)D−j

(
D

j

)

(b)

≤ 2M exp(−∆θ2min(α,D)/(4σ2
1)) (44)

where the first inequality follows from union bound and second

equality is a consequence of (43). The inequality (a) follows

from the monotonically decreasing property of Q(.) function

and the sum can be re-written by grouping all terms with the

same count, i.e., ψ(vk) = j. The inequality (b) follows from

the inequality Q(x) ≤ exp(−x2/2) for x > 0. If the SNR

condition (28) holds then from (44) the total probability of

error is bounded by δ.

APPENDIX E: PROOF OF THEOREM 4

Proof. We first begin by showing that α ∈ FD implies that (31)

holds and hence the mapping of spikes with the same counts are

clustered. Notice that for k = 0, θkmax = θkmin = 0. For k ≥ 1,

it is easy to verify that θkmax and θkmin are attained by the spiking

patterns 00...1111 (with k consecutive spikes at the indices

D− k+ 1 to D) and 111...000 (with consecutive spikes at the

indices 1 to k), which allows us to simplify (31) as αD−1 > 0
for k = 0 and

∑k+1
i=1 α

D−i >
∑k−1
j=0 α

j , k = 1, · · · ,D − 1.

The values of α that satisfy each of these relations can be

described by the following sets:

G0 = {α ∈ (0, 1)|αD−1 > 0},Gk = {α ∈ (0, 1)|rk(α) < 0},

where rk(α) = αD − αD−k−1 − αk + 1 for 1 ≤ k ≤ D− 1. It

is easy to see that FD = Gk0 . Observe that the relations are

symmetric, i.e., Gk = GD−k−1. Furthermore, for 1 ≤ k ≤ D/2,

we show that Gk ⊆ Gk−1 as follows. Trivially, G1 ⊂ G0.

For 2 ≤ k ≤ D/2, observe that rk(α) − rk−1(α) =
αD−k(1− 1/α)−αk(1− 1/α) = (1/α− 1)(αk−αD−k) ≥ 0.
Therefore, α ∈ Gk ⇒ α ∈ Gk−1, k = 1, 2 · · · , k0. Moreover,

since Gk = GD−k−1, it follows that FD = Gk0 = ∩D−1
k=0Gk.

Hence, α ∈ FD ⇒ α ∈ Gi for all 0 ≤ i ≤ D − 1, which

implies that (31) holds. If the noise perturbation satisfies

|w[n]| < ∆c
min(α,D)/4, it implies |e[n]| < ∆c

min(α,D)/2.

For any block xhi
(n) ∈ CD

k , θkmin ≤ h⊤
αxhi

(n) ≤ θkmax. If

|e[n]| < ∆c
min(α,D)/2, we have

h⊤
αxhi

(n) + e[n] < θkmax +
∆c

min(α,D)

2
< θkmax +

θk+1
min − θkmax

2

h⊤
αxhi

(n) + e[n] > θkmin −
∆c

min(α,D)

2
> θkmin −

θkmin − θk−1
max

2

This shows that whenever α ∈ FD, the condition |e[n]| <
∆c

min(α,D)/2 is sufficient for (33) to hold ∀ γ[n] and hence

the spike count can be exactly recovered.

APPENDIX F: AMPLITUDE ESTIMATION

We suggest a procedure to estimate the binary amplitude A, if

it is unknown. We first evaluate the signal c[n] from different

time instants n = 1, 2, · · · ,M − 1. For some 1 ≤ n0 ≤
M − 1, we estimate a set A = {Ak} of candidate amplitudes:

Ak := c[n0]/h
T
αvk where vk ∈ Sall. Only a certain amplitudes

can generate c[n0] from a valid binary spiking pattern vk ∈ Sall.

Our goal is to prune A by sequentially eliminating certain

candidate amplitudes from the set based on a consistency

test across the remaining measurements c[n]. At the tth stage

(t = 2, 3, · · · ), for every remaining candidate amplitude Ak ∈
A, we perform the following consistency test with c[n], to

identify if a candidate amplitude can potentially generate the

corresponding measurement c[n]. Suppose there exists a spiking

pattern vl ∈ Sall such that

c[n] = Akh
T
αvl (45)

then Ak remains a valid candidate. If we cannot find a

corresponding vl ∈ Sall for an amplitude Ak, we remove

it, A = A \ Ak. In presence of noise, (45) can be modified

to allow a tolerance γ as we may not find an exact match.

The tolerance γ is chosen to be 0.5 in the experiments on

the GENIE dataset. This procedure prunes out possible values

for the amplitude by leveraging the shared amplitude across

multiple measurements c[n].
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