This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3260564

Super-resolution with Binary Priors: Theory and
Algorithms

Pulak Sarangi, Ryoma Hattori, Takaki Komiyama and Piya Pal

Abstract—The problem of super-resolution is concerned with
the reconstruction of temporally/spatially localized events (or
spikes) from samples of their convolution with a low-pass filter.
Distinct from prior works which exploit sparsity in appropriate
domains in order to solve the resulting ill-posed problem, this
paper explores the role of binary priors in super-resolution, where
the spike (or source) amplitudes are assumed to be binary-valued.
Our study is inspired by the problem of neural spike deconvolution,
but also applies to other applications such as symbol detection
in hybrid millimeter wave communication systems. This paper
makes several theoretical and algorithmic contributions to enable
binary super-resolution with very few measurements. Our results
show that binary constraints offer much stronger identifiability
guarantees than sparsity, allowing us to operate in “extreme
compression'' regimes, where the number of measurements can
be significantly smaller than the sparsity level of the spikes. To
ensure exact recovery in this '"extreme compression' regime, it
becomes necessary to design algorithms that exactly enforce binary
constraints without relaxation. In order to overcome the ensuing
computational challenges, we consider a first order auto-regressive
filter (which appears in neural spike deconvolution), and exploit
its special structure. This results in a novel formulation of the
super-resolution binary spike recovery in terms of binary search in
one dimension. We perform numerical experiments that validate
our theory and also show the benefits of binary constraints in
neural spike deconvolution from real calcium imaging datasets.

Index Terms—Binary compressed sensing, super-resolution,
spike deconvolution, sparsity, binary search, beta-expansions

I. INTRODUCTION

The problem of recovering localized events (spikes) from
their convolution with a blurring kernel, arises in a wide range
of scientific and engineering applications such as fluorescence
microscopy [1], neural spike deconvolution [2]-[4], hybrid
millimeter wave (mmWave) communication [5], to name a few.
Consider K temporal spikelg, which can be represented as:

I’hi(t) = Z Ck5(t — nkTLi)

Here, the high-rate spikes :fr_e 1supported on a fine temporal grid
with spacing 7,,, ny € Z is an integer corresponding to the
time index of the k™ spike and c;, denotes its amplitude. The
convolution of spikes with a filter h(t) is typically uniformly
(down)sampled at a (low) rate 7,, = DT, (D > 1), yielding
measurements:

chh (nT,, —ngT,) (1)

The goal of super-resolution is to recover the spike locations ny
and amplitudes ci, k = 1,2, - - - , K from a limited number (M)
of low-rate samples {y[n}}ﬁi@l. The problem is typically ill-
posed due to systematic attenuation of high-frequency contents
of the spikes by the low-pass filter A(t). In order to make the
problem well-posed, it becomes necessary to exploit priors such

y[n} = ani(t) x h(t ‘t nT, =

as sparsity [6]-[9] and/or non-negativity [10], [11]. In recent
times, there has been a substantial progress towards developing
efficient algorithms for provably solving the super-resolution
problem [7]-[19].

In this paper, we investigate the problem of binary super-
resolution, where the amplitudes of the spikes are known
apriori to be ¢y = A, but their number (K) and locations
(ny) are unknown. Motivated by the problem of neural spike
deconvolution in two-photon calcium imaging [2], [20], we
will focus on a blurring kernel that can be represented as a
stable first order auto-regressive (AR(1)) filter. Each neural
spike results in a sharp rise in Ca?* concentration followed by
a slow exponential decay (modeled as the impulse response of
an AR(1) filter), which results in an overlap of the responses
from nearby spiking events, leading to poor temporal resolution
(2], [21].

A. Related Works

Early works on super-resolution date back to
algebraic/subspace-based techniques such as Prony’s
method, MUSIC [12], [22], ESPRIT [8], [23] and matrix
pencil [9], [24]. Following the seminal work in [6], substantial
progress has been made in understanding the role of sparsity
as a prior for super-resolution [7], [25], [26]. In recent times,
convex optimization-based techniques have been developed
that employ Total Variational (TV) norm and atomic norm
regularizers, in order to promote sparsity [7], [18], [19], [25],
[26] and/or non-negativity [10], [11], [27]. These techniques
primarily employ sampling in the Fourier/frequency domain by
assuming the kernel h(t) to be (approximately) bandlimited.
However, selecting the appropriate cut-off frequency is crucial
for super-resolution and needs careful consideration [25],
[28]. Unlike subspace-based methods, theoretical guarantees
for these convex algorithms rely on a minimum separation
between the spikes, which is also shown to be necessary even
in absence of noise [29]. The finite rate of innovation (FRI)
framework [30]-[34] also considers the recovery of spikes
from measurements acquired using an exponentially decaying
kernel, which includes the AR(1) filter considered in this
paper. In the absence of noise, FRI enables the exact recovery
of K spikes with arbitrary amplitudes from M = Q(K)!
measurements, without any separation condition [32]. It is
to be noted that all of the above methods require M > K
measurements for resolving K spikes. In contrast, we will
show that it is possible to recover K spikes from M < K
measurements by exploiting the binary nature of the spiking

I'This notation essentially means that there exists a positive constant ¢ such
that M > cK.
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signal. The above algorithms are designed to handle arbitrary
real-valued amplitudes and as such, they are oblivious to
binary priors. Therefore, they cannot successfully recover
spikes in the regime M < K, which is henceforth referred to
as the extreme compression regime.

The problem of recovering binary signals from underde-
termined linear measurements (with more unknowns than
equations/measurements) has been recently studied under the
parlance of Binary Compressed Sensing (BCS) [35]-[42].
In BCS, the undersampling operation employs random (and
typically dense) sampling matrices, whereas we consider a
deterministic and structured measurement matrix derived from
a filter, followed by uniform downsampling. Moreover, existing
theoretical guarantees for BCS crucially rely on sparsity
assumptions that will be shown to be inadequate for our
problem (discussed in Section II-C). Most importantly, in order
to achieve computational tractability, BCS relaxes the binary
constraints and solves continuous-valued optimization problems.
Consequently, their theoretical guarantees do not apply in the
extreme compression regime M < K.

As mentioned earlier, our study is motivated by the problem
of neural spike deconvolution arising in calcium imaging [3],
[4], [20], [32], [43]-[45]. A majority of the existing spike
deconvolution techniques [4], [43], [44] infer the spiking
activity at the same (low) rate at which the fluorescence signal
is sampled, and a single estimate such as spike counts or
rates are obtained over a temporal bin equal to the resolution
of the imaging rate. Although sequential Monte-Carlo based
techniques have been proposed that generate spikes at a rate
higher than the calcium frame rate [3], no theoretical guarantees
are available that prove that these methods can indeed uniquely
identify the high-rate spiking activity. Algorithms that rely
on sparsity and non-negativity [43], [44] alone are ineffective
for inferring the neural spiking activity that occurs at a much
higher rate than the calcium sampling rate. On the other hand,
at the high-rate, the spiking activity is often assumed to be
binary since the probability of two or more spikes occurring
within two time instants on the fine temporal grid is negligible
[2], [46]. Therefore, we propose to exploit the inherent binary
nature of the neural spikes and provide the first theoretical
guarantees that it is indeed possible to resolve the high-rate
binary neural spikes from calcium fluorescence signal acquired
at a much lower rate.

B. Our Contributions

We make both theoretical and algorithmic contributions to
the problem of binary super-resolution in the setting when
the spikes lie on a fine grid. We theoretically establish that
at very low sampling rates, sparsity and non-negativity are
inadequate for the exact reconstruction of binary spikes (Lemma
2). However, by exploiting the binary nature of the spiking
activity, much stronger identifiability results can be obtained
compared to classical sparsity-based results (Theorem 1). In the
absence of noise, we show that it is possible to uniquely recover
K binary spikes from only M = Q(1) low-rate measurements.
The analysis also provides interesting insights into the interplay
between binary priors and the “infinite memory" of the AR(1)
filter.

Although it is possible to uniquely identify binary spikes in
the extreme compression regime (M < K), the combinatorial
nature of binary constraints introduce computational hurdles in
exactly enforcing them. Our second contribution is to leverage
the special structure of the AR(1) measurements to overcome
this computational challenge in the extreme compression
regime M < K (Section III-A). Our formulation reveals
an interesting and novel connection between binary super-
resolution, and finding the generalized radix representation of
real numbers, known as 3-expansion [47]-[49] (Section III). In
order to circumvent the problem of exhaustive search, we pre-
construct and store (in memory) a binary tree that is completely
determined by the model parameters (filter and undersampling
factor). When the low-rate measurements are acquired, we can
efficiently perform a binary search to traverse the tree and find
the desired binary solution. This ability to trade-off memory
for computational efficiency is made possible by the unique
structure of the measurement model governed by the AR(1)
filter. The algorithm guarantees exact super-resolution even
when the measurements are corrupted by a small bounded
(adversarial) noise, the strength of which depends on the
AR filter parameter and the undersampling factor. When the
measurements are corrupted by additive Gaussian noise, we
characterize the probability of erroneous decoding (Theorem
3) in the extreme compression regime M < K and indicate
the trade-off among the filter parameter, SNR and the extent
of compression. Finally, we also demonstrate how binary
priors can improve the performance of a popularly used spike
deconvolution algorithm (OASIS [43]) on real calcium imaging
datasets.

II. FUNDAMENTAL SAMPLE COMPLEXITY OF BINARY
SUPER-RESOLUTION

Let ypi[n] be the output of a stable first-order Autoregressive
AR(1) filter with parameter o, 0 < « < 1, driven by an
unknown binary-valued input signal zp;[n] € {0, A}, A > 0:

@

In this paper, we consider a super-resolution setting where
we do not directly observe yn[n], and instead acquire M
measurements {yj0[7]}2 ;' at a lower-rate by uniformly

subsampling yp;[n] by a factor of D:
n=0,1,---,M—1,

Yni[n] = ayn[n — 1] + zni[n]

3

The signal y,[n] corresponds to a filtered and downsampled
version of the signal xy;[n] where the filter is an infinite impulse
response (IIR) filter with a single pole at a. Let yj, € RM
be a vector obtained by stacking the low-rate measurements
{110[n] el

n=0 -*
Yo = [ylo [O]v ylo[]-]a T

Since (2) represents a causal filtering operation, the low rate
signal yj, only depends on the present and past high-rate
binary signal. Denote L := (M — 1)D + 1. The M low-rate
measurements in yj, are a function of L samples of the high
rate binary input signal {zy[n] 5;5. These L samples are
given by the following vector xy; € {0, A}%:

,xhi[L — 1HT

Yio[n] = yni[Dn],

,le[M - 1]]T

Xhi = [Ihi [0], xhi[l], L.
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Assuming the system to be initially at rest, i.e., ypi[n] = 0,n <
0, we can represent the M samples from (3) in a compact
matrix-vector form as:

Yio := Spyhi = SpGaXni (4)
where G, € REX1 is a Toeplitz matrix given by:
1 0 0
o 1 0
Ga = . (5)
a/ﬁ-l b2 1

and Sp € RM*L ig defined as:
1, j=@GE—-1D+1

[Solij = 0, else

The matrix Sp represents the D—fold downsampling operation.
Our goal is to infer the unknown high-rate binary input signal
xpi[n] from the low-rate measurements yo[n]. This is essentially
a “super-resolution” problem because the AR(1) filter first
attenuates the high-frequency components of xpi[n], and
the uniform downsampling operation systematically discards
measurements. As a result, it may seem that the spiking activity
{xp[(n — 1)D + k]}P_, occurring “in-between" two low-rate
measurements yj,[n — 1] and yj,[n] is apparently lost. One can
potentially interpolate arbitrarily, making the problem hopeless.
In the next section, we will show that surprisingly, xy; still
remains identifiable from yj, in the absence of noise, due to
the binary nature of xy; and “infinite memory" of the AR(1)
filter.

A. Identifiability Conditions for Binary super-resolution

Consider the following partition of xp; into M disjoint blocks,
where the first block is a scalar and the remaining M —1 blocks

are of length D, xp; = [2(?), xp DT, ..., xu M~V T| T Here,
2?0 = 245[0] and xp; (™ € {0, A}P is given by:
[Xhi(n)]k = xhi[(n — 1)D + k}, 1<n< M—-1 (6)

The sub-vectors Xhi("), and xp; "~V (n > 1) represent consec-
utive and disjoint blocks (of length D) of the high-rate binary
spike signal. In order to study the identifiability of xy; from y,,
we first introduce an alternative (but equivalent) representation
for (4), by constructing a sequence c[n] as follows ¢[0] = y0[0],

(N

Given the high rate AR(1) model defined in (2), it is possible
to recursively represent ypi[Dn] in terms of yp;[Dn — 1], which
in turn, can be represented in terms of yp[Dn — 2], and so
on. By this recursive relation, we can represent yy;[Dn — 1] in
terms of ypi[Dn — D] and {zy;[Dn —4]}2-" and re-write y,[n]
as

cn] = yo[n] — aPypn —1], 1<n< M -1

Yio[1] = yni[Dn] = ayni[Dn — 1] + 24;[Dn]
= aPyy[Dn — D] + P tay[D(n — 1) + 1] + - -
+ Ty [D?’L — 1] + Tpi [Dn],
yo[n] — APy[n — 1] = P ray[Dn — 1) + 1] + - -

+ axy[Dn — 1] 4 ap;[Dn] )

The last equality holds due to the fact that y;o[n—1] = yp[Dn—
D]. Combining (7) and (8), the sequence c[n] can be re-written
as ¢[0] = 110[0] = 2 (?), and for 1 <n < M — 1

D
cln] = ZaD_ixhi[(n —1)D + 1] = hZxy, ™
i=1

where h, = [aP71 aP72 ... a,1]T € RP. This implies
that c[n] depends only on the block xp;(™). Denote ¢ :=
[c[0],c[1],...,c[M — 1]]T € RM. For any D, (9) can be

compactly represented as:
C = HD(Oz)Xhi

€))

(10)

where Hp(a) € RM*L ig given by:

1 o' of 0"
0 h/ of o'
Hp (o) = 0 o' h/! o'
0 o" of h'

The following Lemma establishes the equivalence between (4)
and (10).

Lemma 1. Given y,, construct c following (7). Then, there

is a unique binary xy; € {0, AYL satisfying (4) if and only if

Xpi IS a unique binary vector satisfying (10).

Proof. First suppose that there is a unique binary xp,; € {0, A}*

satisfying (4) but (10) has a non-unique binary solution, i.e.,

there exists xp;’ € {0, A}, xp;" # Xy, such that
CcC = HD(OL)Xhi = HD(Oé)Xhi,

(11

Define yp;" := G, Xy’ whose entries are given by:
n
y'[n] = o " Faylk], 0<n<L-1 (12
k=0

Notice that (7) can be re-written as
Y10[0] = ¢[0] = @i [0], y1o[1] = c[1] + &Py1o[0] = ¢[1] + aPc]0]
Y0[2] = ¢[2] + aPyio[1] = ¢[2] + aPe[1] + a?Pc[0]

Following this recursive relation, and using (9) and (11), we
can further re-write y,[n] as:

Yio[n] = Z an=I¢[j] — oDy (O) 4 Z a(n =P Ty, 1)
i=0 i=1
n D
_ aan/hi(O) + Z Z anD—(z—l)D—jx/hi[(i _ 1)D + ]}
i=1 j=1
(@) — (®)
2@ Rl [k] 2 gDl (13)
k=0
The equality (a) follows by a re-indexing of the summation

into a single sum, and (b) follows from (12). By arranging
(13) in a matrix form we obtain the following relation:

Yio = SpGaxpi

However from (4), we have y;, = SpG,xyp;. This contradicts
the supposition that (4) has a unique binary solution.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 28,2023 at 17:11:23 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3260564

Next, suppose that (10) has a unique binary solution but the
binary solution to (4) is non-unique, i.e., there exists xy;’ €
{0, AYE, xp’ # xyp; such that

Yio = SpGaxni’ = SpGaXni

By following (7) and (10), we also have ¢ = Hp(a)xy' =
Hp(a)xp; which contradicts the assumption that solution of
(10) is unique. O]

Lemma 1 assures that a binary xp; is uniquely identifiable
from measurements y), if and only if there is a unique binary
solution xy; € {0, A} to (10). From (9), it can be seen that
¢[n] and c[n — 1] have contributions from only disjoint blocks
of high rate spikes xhi(”), and x;; (1. Hence effectively,
we only have a single scalar measurement c[n] to decode an
entire block x,;(™ of length D, regardless of how sparse it
is. The task of decoding xhi(") from a single measurement
seems like a hopelessly “ill-posed" problem, caused by the
uniform downsampling operation. But this is precisely where
the binary nature of xy; can be used as a powerful prior to
make the problem well-posed. Theorem 1 specifies conditions
under which it is possible to do so.

Theorem 1. (Identifiability) For any o € (0,1), with the
possible exception of a belonging to a set of Lebesgue measure
zero, there is a unique xy; € {0, A} that satisfies (10) for
every D > 1.

Proof. In Appendix A. O

Using Lemma 1 and Theorem 1, we can conclude that xp;
is uniquely identifiable from y), for almost all « € (0,1). It
can be verified that for « = 1 the mapping is non-injective.
Theorem 1 establishes that it is fundamentally possible to
decode each block xhi(") of length D, from effectively a single
measurement c[n]. Since xhi(”) can take 2P possible values, in
principle, one can always perform an exhaustive search over
these 2P possible binary sequences and by Theorem 1, only
one of them will satisfy c[n] = h/xy("). Since exhaustive
search is computationally prohibitive, this leads to the natural
question regarding alternative solutions. In Section III, we will
develop an alternative algorithm that leverages the trade-off
between memory and computation to achieve a significantly
lower run-time decoding complexity.

B. Comparison with Finite Rate of Innovation Approach

In a related line of work [30]-[32], [34], the FRI framework
has been developed to reconstruct spikes from the measurement
model considered here. However, in the general FRI framework,
there is no assumption on the amplitude of the spikes, and there
are a total of 2D real valued unknowns corresponding to the
locations and amplitudes of D spikes. In [32], it was shown that
by leveraging the property of exponentially reproducing kernels,
it is possible to recover arbitrary amplitudes and spike locations
using Prony-type algorithms, provided at least 2D+1(> D) low-
rate measurements are available. However, since we exploit
the binary nature of spiking activity, we can operate at a
much smaller sample complexity than FRI. In fact, Theorem
1 shows that when we exploit the fact that the spikes occur
on a high-resolution grid with binary amplitudes, M = Q(1)

measurements suffice to identify D spikes regardless of how
large D is. A direct application of the FRI approach cannot
succeed in this regime, since the number of spikes is larger than
the number of measurements. That being said, with enough
measurements, FRI techniques are powerful, and they can also
identify off-grid spikes. In future, it would be interesting to
combine the two approaches by incorporating binary priors to
FRI based techniques and remove the grid assumptions.

C. Curse of Uniform Downsampling: Inadequacy of sparsity
and non-negativity

By virtue of being a binary signal, xp; is naturally sparse and
non-negative. Therefore, one may ask if sparsity and/or non-
negativity are sufficient to uniquely identify xy; from c, without
the need for imposing any binary constraints. In particular, we
would like to understand if the solution to the following problem
that seeks the sparsest non-negative vector in R” satisfying
(10) indeed coincides with the true xp; € {0, A}

min  [[x[o subject to ¢ =Hp(a)x, x>0  (P0)
€R

Lemma 2. For every xp; € {0, A}E (except xp = Aey),
and ¢ € RM satisfying (10), the following are true

(i) There exists a solution xX* # xy; to (P0) satisfying

1%l < [%nillo (14)

(ii) The inequality in (14) is strict as long as there exists an
integer ng > 1 such that the block X}(ﬁno) of xn; (defined
in (6)) satisfies ||xl(1?°)H0 > 2.

Proof. The proof is in Appendix B. O

Lemma 2 shows there exist other non-binary solution(s) to
(10) (different from xp;) that have the same or smaller sparsity
as the binary signal xp; € {O,A}L . Furthermore, there exist
problem instances where the sparsest solution to (PO) is strictly
sparser than xp;. Hence, sparsity and/or non-negativity are
inadequate to identify the ground truth xp; uniquely.

Implicit Bias of Relaxation: The optimization problem (P0O)
is non-convex and the binary constraints are not enforced. In
binary compressed sensing [35], [36], it is common to relax the
binary constraints using box-constraint and [y norm is relaxed
to [; norm in the following manner:

min |Ix||s subject to ¢ = Hp(a)x, 0 <x < A1 (P1-B)
xER

In the following Lemma, we show that there is an implicit bias
introduced to the solution of (P1-B).

Lemma 3. For every xy; € {0, A}F, and ¢ € RM satisfying
(10). There exists a solution x* to (P1-B) satisfying

(15)
Moreover, for all n > 1, the blocks x")* €RP of x* satisfy:
supp(x"*) ={D,D —1,--- \D—jn}, if c[n] #0 (16)

for some 0 < j, < D —1 and x™* = 0 if cln] = 0,
irrespective of the support of Xp;.

Proof. The proof is in Appendix B. O

[[x*][1 < |l
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Lemma 3 shows that even in the noiseless setting, introducing
the box-constraint as a means of relaxing the binary constraint
introduces a bias in the support of the recovered spikes.
The optimal solution always results in spikes with support
clustered towards the end of each block of length D, irrespective
of the ground truth spiking pattern xy; that generated the
measurements. This bias is a consequence of the nature of
relaxation, as well as the specific structure of the measurement
matrix Hp(«) arising in the problem.

D. Role of Memory in Super-resolution: IIR vs. FIR filters

The ability to identify the high-rate binary signal xy €
{0, A}* from D—fold undersampled measurements yj, (for
arbitrarily large D) in the absence of noise, is in parts also due to
the “infinite memory" or infinite impulse response of the AR(1)
filter. Indeed, for an Finite Impulse Response (FIR) filter, there
is a limit to downsampling without losing identifiability. This
was recently studied in our earlier work [40] where we showed
that the undersampling limit is determined by the length of
the FIR filter. To see this, consider the convolution of a binary
valued signal xp; with a FIR filter u = [u[0], u[1], - ,u[r —
1] € R" of length 7: z¢[n] = ZZ:(} ulr — 1 — d]zp[n + 4.
These samples are represented in the vector form as z; :=
uxxy € R (by suitable zero padding). Suppose, as before, we
only observe a D—fold downsampling of the output zp[n] =
zy[Dn]. Two consecutive samples zp[p], zp[p + 1] of the low-
rate observation arci given by:

zplp] = Zu[r — 1 — ¢z [Dp + 1],

If D > r, notice that none of the measurements is a function of
the samples zpi[Dp+ 7], zni[Dp+r+1],- -+, 2n[D(p+1) —1].
Hence, it is possible to assign them arbitrary binary values and
yet be consistent with the low-rate measurements zp[n]. This
makes it impossible to exactly recover xy; (even if it is known
to be binary valued) if the decimation is larger than the filter
length (D > 7). The following lemma summarizes this result.

Lemma 4. For every FIR filter u € R", if the undersampling
factor exceeds the filter length, i.e. D > r, there exist Xg,X1 €
{0, A}, xo # x1 such that Sp(uxxXq) = Sp(u*x1).

This shows that the identifiability result presented in Theorem
1 is not merely a consequence of binary priors but the infinite
memory of the autoregressive process is also critical in allowing
arbitrary undersampling D > 1 in absence of noise. For such
IIR filters, the memory of all past (binary) spiking activity
is encoded (with suitable weighting) into every measurement
captured after the spike, which would not be the case for a
finite impulse response filter.

III. EFFICIENT BINARY SUPER-RESOLUTION USING
BINARY SEARCH WITH STRUCTURED MEASUREMENTS

By Theorem 1, we already know that it is possible to uniquely
identify xy; from c (or equivalently, each block xhi(") from
a single measurement c[n]) by exhaustive search. We now
demonstrate how this exhaustive search can be avoided by

formulating the decoding problem in terms of “binary search"
over an appropriate set, and thereby attaining computational
efficiency. We begin by introducing some notations and
definitions. Given a non-negative integer k,0 < k < 2P — 1,
let (b1(k),b2(k), - ,bp(k)) be the unique D-bit binary repre-
sentation of k: k = S"_, 2P=4by(k), ba(k) € {0,1} ¥ 1 <
d < D. Here by(k) is the most significant bit and bp(k) is
the least significant bit. Using this notation, we define the
following set:

Sall = {V(),V17V2,"' 7V2D—1}7 (17)
where each v € {0, A}P is a binary vector given by
[Vk]dZAbd(]{}). 1 S dSD (18)

In other words, the binary vector %vk is the D-bit binary
representation of its index k. Using this convention, vy = 0
(i.e., a binary sequence of all 0’s) and voo_; = Al (ie., a
binary sequence of all A’s). Recall the partition of xy; defined
in (6), where each block xp; (™) (n > 1) is a binary vector of
length D and 2y;(?) € {0, A} is a scalar. It is easy to see that
(17) comprises of all possible values that each block xy; (™) can
assume. According to (9) each scalar measurement c[n| can be
written as: ¢[0] = 2(®),  ¢[n] =h, Txy™, 1<n <M —1.
For every o, we define the following set:

@a = {90,91, s ,92071}, where tgk = hgvk (19)

Observe that every measurement c[n] = 32> a®~zy[(n —
1)D + 1] takes values from this set ©,, depending on the value
taken by the underlying block of spiking pattern from Sy Our
goal is to recover the spikes {xyi[(n — 1)D + 4]}, from c[n].
In the following, we show that this problem is equivalent to
finding the representation of a real number over an arbitrary
radix, which is known as “B-expansion" [49]. Given a real
(potentially non-integer) number 3 > 1, the representation of
another real number p > 0 of the form:
oo
p=Y_ a,B", where 0 <a, < [3] (20)
n=1
is referred to as a B-expansion of p. The coefficients 0 < a,, <
| 8] are integers. This is a generalization of the representation
of numbers beyond integer-radix to a system where the radix
can be chosen as an arbitrary real number. This notion of
representation over arbitrary radix was first introduced by Renyi
in [49], and since then has been extensively studied [47], [48],
[50]. There is a direct connection between [3-expansion and
the binary super-resolution problem considered here. In the
problem at hand, any element el‘b € ©, can be written as:

0, = hlvk = ZaDii[Vk]i

When 1/2 < a < 1, by lettinzgl,b’ = 1/a, we see that the
coefficients in (20) must satisfy 0 < a,, < |1/a] < 2, ie.,
they are restricted to be binary valued a,, € {0, 1}. Therefore,
decoding the spikes vy, from the observation 0y, is equivalent
to finding a D—bit representation for the number 0y /A over
the non-integer radix 3 = 1/a. Questions regarding the
existence of $-expansion, and finding the coefficients of a finite
[—expansion (whenever it exists) has been an active topic of
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research [47], [48], [50], [S1]. When 3 > 2 (equivalently,
0 < a < 1/2), it is possible to find the coefficients using
a greedy algorithm which proceeds in a fashion similar to
finding the D-bit binary representation of an integer [47], [S1].
However, the regime 5 € (1,2) (equivalently 1/2 < a < 1),
is significantly more complicated and is of continued research
interest [47], [48], [50]. To the best of our knowledge, there
are no known computationally efficient ways to find the finite
B-expansion when 1/2 < « < 1 (if it exists) [N. Sidorov,
personal communication, May 24, 2022]. In practice, we
encounter filter values o (= 1/f3) that are much closer to
1, and hence, we need an alternative approach to find this
finite B-radix representation for ;. In the next section, we
show that by performing a suitable preprocessing, finite 3-radix
representation can be formulated as a binary search problem
which is guaranteed to succeed for all values of 3 that permit
unique finite 5—expansions.

A. Formulation as a Binary Search Problem

Before describing the algorithm, we first introduce the notion
of a collision-free set.

Definition 1 (Collision Free set). Given an undersampling
factor D, define a class of “collision free" AR(1) filters as:

Gp={a€(0,1) st hlv;#hlv; Vi#jv;,v;€Su}

The set Gp denotes permissible values of the AR(1) filter
parameter o such that each of the 2P binary sequences in
S, maps to a unique element in the set ©,. In other words,
every 05 € ©, has a unique D—bit expansion for all a € Gp.
This naturally raises the question “How large is the set Gp?".
Theorem 1 already provided the answer to this question, where
the identifiability result implies that for every D, almost all
a € (0,1) belong to this set Gp (with the possible exception
of a measure zero set). Hence, Theorem 1 ensures that there
are infinite choices for collision-free filter parameters.

Lemma 5. For every « € Gp, the mapping ®,(.) : Sai — O,
&, (v) = hlv forms a bijection between Sy and ©,,.

Proof. Since a € Gp, from the definition of the set Gp, it is
clear that for any v;,v; € Su, v; # v; we have h, "v,; #
haij. Therefore, the mapping is injective. Furthermore, from
(19) we also have |0, < |Sa| = 2P. Since ®,,(-) is injective,
we must also have |©,| = 2P and hence the mapping ®,(.)
forms a bijection between Sy and O,,. O]

When a € Gp, Lemma 5 states that the finite beta expansion
for every 6, € O, is unique. Lemma 5 provides a way to avoid
exhaustive search over Sy, and yet identify xn (™ from ¢[n] in
a computationally efficient way. From Lemma 5, we know that
each of the 2P spiking patterns in S,; maps to a unique element
in ©,, and each element in ©, has a corresponding spiking
pattern. Hence instead of searching S,;, we can equivalently
search the set ©, in order to determine the unknown spiking
pattern. Since O, permits “ordering", searching ©, has a
distinct computational advantage over searching S,;. This
ordering enables us to employ binary search over (an ordered)
O, and find the desired element in a computationally efficient
manner. To do this, we first sort the set ©,, (in ascending order)

and arrange the corresponding elements of Sy in the same
order. Given ©,, as an input, the function SORT(-) returns
a sorted list O™, and an index set Z = {ig, i1, - ,io0_1}
containing the indices of the sorted elements in the list ©,,.

©%" T < SORT(O,)

Let us denote the elements of the sorted lists as %" =
{00, ,0op_1}, and S5 = {Vo,--- ,Vop_1} where:

§0<§1 <"'<§2D_1 andgj-:@j, V]‘:Vij V.

It is important to note that this sorting step does not depend
on the measurements c, and can therefore be part of a pre-
processing pipeline that can be performed offline. However,
it does require memory to store the sorted lists. In the

Algorithm 1 Noiseless Spike Recovery

1: Input: Measurement c[n], Sorted list ©" and the corre-

sponding (ordered) spike patterns Si"
2: Output: Decoded spike block Xp; (™)
3: i* + BINSEARCH(©%", c[n])

4: Return Xp; (™ « V;»

noiseless setting, we know that every scalar measurement
c[n] = hlxy™ belongs to the set OX". Therefore, if we
identify its index, say i*, then we can successfully recover
x1i(™ by returning the corresponding binary vector v;» from
Sii". Therefore, we can formulate the decoding problem as
searching for the input c[n] in the sorted list @™, This can be
efficiently done by using “Binary Search". The noiseless spike
decoding procedure is summarized as Algorithm 1. Since the
complexity of performing a binary search over an ordered list
of N elements is O(log N), the complexity of Algorithm 1
is logarithmic in the cardinality of ©°", which results in a
complexity of O(log(2P)) = O(D). We summarize this result
in the following Lemma.

Lemma 6. Assume o € Gp. Given the ordered set O™ | and
an input c[n] = h] xy™, Algorithm 1 terminates in O(D)
steps and its output X" satisfies Xni™ = xp (™).

B. Noisy Measurements and 1 D Nearest Neighbor Search

We demonstrate how binary search can still be useful in
presence of noise by formulating noisy spike detection as a
one dimensional nearest neighbor search problem. Suppose
{210[n]}M5" denote noisy D-fold decimated filter output

Z1o[n] = Yo[n] +wn], 0<n<M-—-1 (1)

Here w{n| represents the additive noise term that corrupts the
(noiseless) low-rate measurements yj,[n]. Similar to (7), we
compute c.[n] from z),[n] as follows:

ce[n] = z10[n] — aPzio[n — 1] (22)

D
= P ayi[(n — 1)D + i] + e[n]= c[n] + e[n] (23)
i=1

where c[n] = h!xy (™ € ©°" and e[n] = wln] — aPw[n —

1]. We can interpret c.[n] as a noisy/perturbed version of an

element c[n] € O, with e[n] representing the noise. This
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perturbed signal may no longer belong to ©%" (i.e. c.[n| &
©%™) and hence, we cannot find an exact match in the set
O™, Instead, we aim to find the closest element in ©5" (the
nearest neighbor of c¢.[n]) by solving the following problem:

%™ = arg min |ce[n] —h.v| (24)
veszﬁn

Solving (24) is equivalent to finding the spike sequence
v € S that maps to the nearest neighbor of c.[n] in the
set O, By leveraging the sorted list ©", it is no longer
necessary to parse the list sequentially (which would incur
O(2P) complexity), instead we can perform a modified binary
search as summarized in Algorithm 2, that keeps track of
additional indices compared to the vanilla binary search. Finally,
we return the unique spiking pattern from S that gets
mapped to the nearest neighbor of the noisy measurement
ce[n]. It is well-known that the nearest neighbor for any query
could be found in O(log(2P)) = O(D) steps, instead of the
linear complexity of O(2P). This guarantees a computationally
efficient decoding of spikes by solving (24).

Next, we characterize the error events that lead to erroneous
detection of a block of spikes. Recall that the set %" is sorted,
and its elements satisfy the ordering:

0=fy<b < <O,=l+a+ -+aP"

where Ip := 2P0 —1. We also have gk = h/ V., where v, € St
is a binary spiking sequence of length D.

For each v, and each n, we will determine the error event
0™ £ x5 ("), when xp,; (™ = V. First, consider the scenario
when x,;(™ = v}, for some 0 < k < Ip (excluding Vo, Vip)-
The corresponding noiseless measurement is c[n] = 0, =
h] v, which satisfies ;1 < c[n] = ), < 0x11. Since O is
sorted, it can be easily verified that the nearest neighbor of
ce[n] will be Oy, if and only if c.[n| satisfies the following
condition:

(Or—1 + 01)/2 < celn] < (Brgr + 01) /2

Since §k = h/ V4, the solution to (24) is attained at v}, € S5
and the decoding is successful. Therefore Algorithm 2 produces
an erroneous estimate of ‘t’k if and only if c. [n] violates (25).
The event c.[n] & [w, w} is equivalent to e[n] €
&k (e[n] is defined earlier in (23)), where _ B
& = {eln] < Ok — O Or+1 — 9k;}
2 2
Finally, we characterize the error events for k£ = 0,lp. The
error events for ¢[n] = 6y = 0 or c[n] = 6;, are given by:

& = {en] = 01/2}, &, = {eln] < = (O, — Op—1)/2} 27)

(25)

, or e[n] > (26)

Define the “minimum distance" between points in ©%™:
Abpin(a,D) = min |0 — _1].
mm( 5 ) 1Sk§lu| k k 1|

This minimum distance depends on A, « and D. From (26),
(27) it can be verified that if 2|w[n]| < Abpin(a, D)/2 (which
would imply |e[n]| < AOmin(a, D)/2) for all n, then X (™) =
xpi (™. As summarized in Theorem 2, Algorithm 2 can exactly
recover the ground truth spikes from measurements corrupted
by bounded adversarial noise, the extent of the robustness is
determined by the parameters A, o, D.

Algorithm 2 Noisy Spike Recovery

1: Input: Measurement c.[n], Sorted list O™ and the

corresponding (ordered) spike patterns S

2: Output: Decoded spike block i (™

3 Set ]+ 0,u+2° -1

4: while u—1>1

5: Set m <1+ |(u—1)/2]

6: if 6,, > c.[n] then

7: U m

8: else

9: < m

10: end if

11: end while _
12: Find the nearest neighbor * = arg min;e g; .3 (ce[n] —6;)?
13: Return Xp; (™) < V;»

Theorem 2. Assume « € Gp. Given the ordered set ©°", the
output of Algorithm 2 with input c.[n] exactly coincides with
the solution of the optimization problem (24) in at most O(D)
steps. Furthermore, if for all n, |w[n]| < Abyin(c, D)/4, then
the output of Algorithm 2 satisfies ihi(") = xhi(”).

From Theorem 2, it is evident that Af,;,(«, D) plays an
important role in characterizing the upper bound on noise.
We attempt to gain insight into how A6y, (a, D) varies as a
function of o when D is held fixed.

Lemma 7. Given D, Abfyin(a, D) = AaP~t for a € (0,0.5].

Proof. The proof for A =1 is in Appendix C and it can be
scaled to obtain the desired bound. O

When a € (0,0.5], Abpin(a, D) is monotonically increasing
with «. However, for a > 0.5 the trend fluctuates with «
differently for different D, and becomes quite challenging to
predict. This is also confirmed by the empirical plot in Fig. 1.
A refined analysis of Af i, (a, D) to gain insight into desirable
filter parameters « is an interesting direction for future work.

C. Trade-off between memory and computational complexity

A crucial aspect of Algorithms 1 and 2 is that they
achieve efficient run-time complexity by leveraging the off-
line construction of the sorted list ©3" and S3i". These lists,
each with 2P elements, need to be stored in memory and
made available during run-time. Since there is no free lunch,
the resulting computational efficiency of O(D) at run-time
is attained at the expense of the additional memory that is

required to store the sorted lists ©%", S5

D. Parallelizable Implementation

Algorithm 2 (also Algo. 1) only takes c.[n](c[n]) as input
and returns Xy, and is completely de-coupled from any
other X (™), n/ # n. Recall that in reality, we are provided
with measurements zj,[n](y10[1]), and c.[n](respectively c[n])
needs to be computed. Due to this de-coupling, we can compute
¢e[n]’s in parallel using two consecutive low-rate samples
Z10[1], Z1o[n — 1] and perform a nearest neighbor search without
waiting for any previously decoded spikes. Therefore, the total
decoding complexity can be further improved depending on
the available parallel computing resources.
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IV. ERROR ANALYSIS FOR GAUSSIAN NOISE

Algorithm 2 solves (24) without requiring any knowledge
of the noise statistics. However, in order to analyze its per-
formance, we will make the following (standard) assumptions
on the statistics of the high-rate spiking signal xy; and the
measurement noise w{n] as follows:

e (A1) The entries of the binary vector xp; € {0, A}~ are
i.i.d random variables distributed as xy[n] ~ ABern(p).
e (A2) The additive noise w[n],0 < n < M — 1 is
independent of xy;[n], and distributed as w[n] ~ N(0, 02)

A. Probability of Erroneous Decoding

Under assumption (A2), the ML estimate of xy; is given by
the solution to the following problem:

XML = arg  min ||z, — SpGavl]l2  (PaN)
ve{0,A}L

The proposed Algorithm 2 does not attempt to solve
(Pxn), which is computationally intractable. Instead, it solves
a set of M — 1 one dimensional nearest neighbor search
problems, by finding the nearest neighbor of c.[n| for each
n=1,2,--- , M — 1. This scalar nearest neighbor search is
implemented in a computationally efficient manner by using
parallel binary search on a pre-sorted list. Notice that by the
operation (22), the variance of the equivalent noise term e[n]
gets amplified by a factor of at most (1+a?P) < 2. This can be
thought of as a price paid to achieve computational efficiency
and parallelizability. The following theorem characterizes the
dependence of certain key quantities of interest, such as the
signal-to-noise ratio (SNR), undersampling factor D, and filter’s
frequency response (controlled by a) on the performance of
Algorithm 2.

Theorem 3. Suppose o € Gp and assumptions (A1-A2) hold.
Given § > 0, if the following condition is satisfied:

AG%. (a,D)/0? > 41n (2M/6) (28)
then Algorithm 2 can exactly recover the binary signal Xy,
with probability at least 1 — 6.

Proof. The proof follows standard arguments for computing
the probability of error for symbol detection in Gaussian noise,
followed by certain simplifications and is included in Appendix
D for completeness. O

In Fig. 1, we plot Afyin(,D) as a function of D for
different values of «. As expected, Af,in (v, D) decays as the
D increases. Understandably, for a fixed «, as D increases,
it becomes harder to recover the spikes exactly, and higher
SNR is needed to compensate for the lower sampling rate.
This can be interpreted as the price paid for super-resolution
in presence of noise. This phenomenon is also reminiscent of
the noise amplification effect in super-resolution, where the
ability to super-resolve point sources becomes more severely
hindered by noise as the target resolution grid becomes finer
[6]. In Fig. 1, we plot Afpmin(a, D) as a function of « and as
predicted by Lemma 7, it monotonically increases upto 0.5,
but for a > 0.5, the behavior becomes much more erratic
and a precise characterization becomes challenging. It is to
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Fig. 1: Variation of AOmin(cx, D) as a function of undersampling factor
D and «. The cluster-distance A, (o, D) vs. « is also overlaid. Each
dotted line denotes the start of the interval Fp.

be noted that in Theorem 3, we aim to exactly recover Xp;.
The SNR requirement can be relaxed if our goal is to recover
only spike counts instead of the true spikes as discussed in the
next subsection. One can define other notions of approximate
recovery, the analysis of which will be a topic of future research.

B. Relaxed Spike reconstruction: Count Estimation

As shown in Theorem 2, exact recovery of spikes is possible
under somewhat restrictive condition on the noise in terms
of Afpin(a, D), which becomes quite small as D increases.
This naturally calls for other relaxed notions of recovery
which can handle larger noise levels. In neuroscience, it is
believed that information is encoded as either the spike timing
(temporal code) or the firing rates (rate coding) of individual
neurons in the brain. Therefore, the spike counts over an
interval can be informative to understand neural functions, even
when it is impossible to temporally localize the neural spikes.
For example, neurons in the visual cortex encode stimulus
orientations as their firing rates [52]. We will therefore focus
on spike count as an approximate recovery metric, which
concerns estimating the number of spikes occurring between
two consecutive low-rate measurements instead of resolving
the individual spiking activity at a higher resolution.

Let v[n] denote the total number of spikes occurring between
two consecutive low-rate samples zj,[n] and zj,[n — 1]. Since
Xp; and its estimate Xy; are both binary valued (amplitude A),
the true spike count (y[n]) and estimated count (y[n]) are given
by: y[n] = 2™ llo,  Fn] = [ o, n=1,--- M —1,
~[0] = ;[0]/A and 7[0] = Zy;[0]/A since the first block is of
size 1 as described in (6). Define a set C}? as:

CP:={ve{0,A |v]o=k}), 0<E<D

It is a collection of all binary vectors (of length D) with spike
count k. The ground truth spike block belongs to C,[Y)[n]. Any
element from Cg[n] will give the true spike count. Hence, exact
recovery of count can be possible even when spikes cannot be
recovered.

For a fixed D, we define a set of a denoted by Fp:

Fp:i={a € (0,1)]a® —aP7F=1 _ ko 41 <0} (29)
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Fig. 2: Visualization of the sets Cp for D = 3. In this scenario, the
spiking patterns corresponding to the same count are clustered together
and hence, are favorable for robust count estimation.

where ko = |D/2]|. We will obtain a sufficient condition for
robust spike count estimation when « € Fp. It can be shown
that for any D, Fp will always be non-empty. Define

6k . = minhlu #* :=maxhlu (30)
uecy uecy
Observe that if
oFtl > 9k k=0,1,---,D—1 31)

then all spike patterns u; € Cp (with the same spike count k)
are clustered together when mapped on to the real line by the
transformation hlu as shown in Figure 2. When (31) holds,
we can define a “cluster-restricted minimum distance" as:

AL (a,D) =

min

L

min min max

0<k<D-1

Given a noisy observation ¢, [n] = h] xp,;(™) 4¢[n], the solution

to the nearest neighbor problem (24) may return an incorrect

neighbor 0; # h.x;,;(™). However, when (31) holds and if

the noisy observation satisfies the following conditions:
O o=y /2 < eo[n] < (02 4 031y /2

max min max

(32)

(33)

then the nearest-neighbor decision rule in Algorithm 2 will still
ensure that 0; € CE[H]. This has also been visualized in Fig. 2
where each colored band represents the “safe-zone" for each
count and the black dotted-line denotes the boundary. This will
result in correct identification of the spike count but will incur
error in terms of spiking pattern. We formally summarize this
in the following Theorem that provides robustness guarantee
for exact count recovery from measurements corrupted by
adversarial noise (similar to Theorem 2 for spike recovery).

Theorem 4. Assume o € Fp. Given the ordered set ©", let
~[n] be the estimated spike count obtained from Algorithm 2
with input c.[n]. If for all n, |w[n]| < AS,;, (a,D)/4, then the

count can be exactly recovered, i.e., Y[n] = y[n].

Proof. Proof is in Appendix E. O

It is clear that when (31) holds, A, (a, D) is no smaller
than A6, (a, D), since the former is computed over neigh-
boring elements of the cluster whereas A6y, (D, ) computes
the minimum distance over all consecutive elements (both
inter-cluster as well as intra-cluster) in ©". This essentially
suggests that estimation of counts (for this range of « and
D) can be more robust compared to inferring the individual
spiking patterns. We also illustrate this numerically in Figure
1 (top), where we plot both A¢. and Af,;, as a function of
o and the start of the interval Fp (computed numerically) is
denoted using dotted lines. For both values of D, we can see
that AS, > Abfnin and the gap grows as « increases.
V. NUMERICAL EXPERIMENTS

We conduct numerical experiments to evaluate the per-

formance of the proposed super-resolution spike decoding

algorithm on both synthetic and real calcium imaging datasets.
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Fig. 3: (Top) Quantitative comparison of Algorithm 2 against box-
constrained /3 minimization method with noiseless measurements
(with tolerance {9 = 0). (Bottom) (Role of Filter Memory): Average
F-score vs. D for FIR and IIR (AR(1)) filters. Each dotted line indicates
the corresponding theoretical transition point (D = r).

A. Synthetic Data Generation and Evaluation Metrics

We create a synthetic dataset by generating high-rate binary
spike sequence xy; € {0,1}F (A = 1 and L = 1000) that
satisfies assumption (A1). The spiking probability p controls
the average sparsity level given by s := E[||xni|lo] = Lp. We
aim to reconstruct xp; from M ~ L/D low-rate measurements
z10[n] defined in (21). Notice that we operate in a regime where
the expected sparsity is greater than the total number of low-
rate measurements, i.e., s > M. We employ the widely-used
F-score metric to evaluate the accuracy of spike detection [4],
[10]. The F-score is computed by first matching the estimated
and ground truth spikes. An estimated spike is considered a
“match" to a ground truth spike if it is within a distance of g
of the ground truth (many-to-one matching is not allowed) [4],
[10]. Let K and K’ be the total number of ground truth and
estimated spikes, respectively. The number of spikes declared as
true positives is denoted by T},. After the matching procedure,
we compute the recall (R = %) which is defined as the
ratio of true positives (7},) and the total number of ground
truth spikes (K). Precision (P = %) measures the fraction
of the total detected spikes which were correct. Finally, the
F-score is given by the harmonic mean of recall and precision
F-score = 2PR/(P + R).

B. Noiseless Recovery: Role of Binary priors and memory

We first consider the noiseless setting (w[n] = 0 in (21)).
We compare the performance of Algorithm 2 against box-
constrained [; minimization method [35], [36], where we solve:

min [|x]|1 s.t. |[yio — SpGaxll2 <6,0 <x <A1 (P1)
xERL

For synthetic data, € is chosen using the norm of the noise term
|[w]|2- This oracle choice ensures most favorable parameter
tuning for the (P1), although a more realistic choice would
be to set € = v/ Mo according to the noise power (). In the
noiseless setting, we choose ¢ = 0. The problem (P1) is a
standard convex relaxation of (PO) which promotes sparsity
as well as tries to impose the binary constraint via the box-
relaxation (introduced in Section II-C). In Fig. 3 (Top), we plot
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Fig. 4: Qualitative comparison of Algorithm 2 and box-constrained /; minimization on simulated data. For each simulation noisy measurements
are generated with v = 0.9 such that the noise realization (Top) obeys the bound |w[n]| < Abfmin (from Theorem 2) and (Bottom) violates
the bound. For larger noise (Bottom), the spike recovery is imperfect but the spike count can still be exactly recovered using Algorithm 2.

the F-score (to = 0) as a function of D. As can be observed,
Algorithm 2 consistently achieves an F-score of 1, whereas the
F-score of [; minimization shows a decay as D increases. This
confirms Lemma 3 that for D > 1, using box-constraints with [;
norm minimization is not enough to enable exact recovery from
low rate measurements. In absence of noise, the performance
of Algorithm 2 is not affected by the filter parameter « as
shown in Fig. 3 (Top).

Next, we compare the reconstruction from the decimated
output of (i) an AR(1) filter and (ii) an FIR filter of length
7 driven by the same input xp; € {0, 1}'°%°. We choose the
FIR filter h = [1,c,--- ,a" '] (truncation of the IIR filter)
with a = 0.5. Algorithm 2 is applied to the low-rate AR(1)
measurements, whereas the algorithm proposed in [40] is used
for the FIR case. The algorithm applied for the FIR case can
provably operate with the optimal number of measurements
when o = 0.5 and hence, we chose this specific value for
the filter parameter. In Figure 3 (Bottom), we again compare
the average F-score as a function of D, averaged over 10000
Monte Carlo runs, for p = 0.5. As predicted by Lemma 4,
despite utilizing binary priors, the error for the FIR filter shows
a phase transition when D > r. This demonstrates the critical
role played by the infinite memory of the AR(1) filter in
achieving exact recovery with arbitrary D.

C. Performance of noisy spike decoding

We generate noisy measurements of the form (21), where
wln] and zy;[n| satisfy assumptions (A1-A2). We illustrate
some representative examples of recovered spikes on synthetic
data. In Fig. (4), we display the recovered super-resolution
estimates on synthetically generated measurements for two
undersampling factors D = 5 (left), 10 (right). For each D, the
top plots show the spikes recovered using Algorithm 2 and [y
minimization with box-constraint where the noise realization

obeys the bound in Theorem 2, while the bottom plots show
the same for noise realization violating the bound. The output
of [; minimization with box-constraint is inaccurate, and the
spikes are clustered towards the end of each block of length
D. This bias is consistent with the prediction made by our
theoretical results in Lemma 3. When the noise is small enough
(top), Algorithm 2 exactly decodes the spikes, including the
ones occurring between two consecutive low-rate samples as
predicted by Theorem 2. In presence of larger noise (violating
the bound), the spikes estimated using /; minimization continue
to be biased to be clustered towards the end of the block.
Although the spikes recovered using Algorithm 2 are not exact,
most of the detected spikes are within a tolerance window of
ground truth spikes. In fact, the spike count estimation is perfect

as predicted by Theorem 4. We next quantitatively evaluate
p=0.35, s=350>M

1.2 T T
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Undersampling Factor (D)
Fig. 5: Spike detection performance with noisy measurements. (Top)
F-score vs. D for different filter parameters o (¢ = 0.01). Here,
L = 1000 and expected sparsity s = 350 where we operate in the
regime s > M. The F-score is computed with a tolerance of to = 2.

the performance in presence of noise, where the metrics are
computed with ¢ty = 2. In Fig. 5 (Top), we plot the F-score
as a function of D for different values of «. For a fixed «,
the F-score of both methods decays with increasing D, but
Algorithm 2 consistently attains a higher F-score compared to
l; minimization. We observe that o« = 0.5 leads to a higher F-
score potentially due to having a larger A8, (o, D) compared
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to o = 0.9. Next, in Fig. 7, we study the behavior of spike
detection as a function of the spiking probability p, while
keeping D fixed at D = 5. When o is fixed, the performance

trend is not significantly affected by the spiking probability.

At first, this may seem surprising as the expected sparsity

is growing while the number of measurements is unchanged.

However, since our algorithm exploits the binary nature of
the spikes (and not just sparsity), it can handle larger sparsity
levels. The spikes reconstructed using /; minimization achieve
a much lower F-score than Algorithm 2 since the former fails
to succeed when the sparsity is large. As expected, smaller o
leads to higher F-scores.

In Fig. 8, we study the probability of erroneous spike
detection as a function of D and validate the upper bound
derived in Theorem 3. Recall that the decoding is considered
successful if “every" spike is detected correctly. Therefore, it
becomes more challenging to “exactly super-resolve" all the
spikes in presence of noise as the desired resolution becomes
finer. We calculate the empirical probability of error and overlay
the corresponding theoretical bound. As shown in Fig. 8, the
empirical probability of error is indeed upper bounded by the
bound computed by our analysis. The empirical probability of
error increases as a function of undersampling factor D.

D=5, M=200, s/M>1
16 ‘ ‘ —O— Algo 2 (a=0.5) Algo 2 (a=0.9)
—O—1, Box (a=0.5) —¥— I, Box (a=0.9)

10° 10 10 102 107 10°
Noise Level
D=5, M=200, s/M>1

Count Estimation Error

10710C 3 3 - -

10 104 103 102 107! 10°

. . . Noise Level .

Fig. 6: Spike detection performance with noisy measurements for
different filter parameters «. (Top) F-score vs. noise level (o) (Bottom)

Count estimation error vs. noise level. Here, L = 1000 and expected

sparsity is fixed at s = 350 where we operate in the regime s > M.

The F-score is computed with a tolerance of ¢op = 2.

Finally, we evaluate the noise tolerance of the proposed
methodology by comparing the average F-score as a function
of the noise level o, while keeping the spiking rate and

undersampling factor fixed at p = 0.35 and D = 5, respectively.

As seen in Fig. 6 (Top), the performance of both algorithms
degrades with increasing noise level and this is also consistent
with the intuition that it becomes harder to super-resolve spikes
with more noise. However, for both filter parameters considered
in this experiment Algorithm 2 has a higher F-score compared
to box-constrained /; minimization. For large noise levels
(comparable to spike amplitude A = 1), the performance gap
decreases for aw = 0.9 but Algorithm 2 achieves a much higher
F-score for a = 0.5 at all noise levels.

As discussed in Section IV-B, we next study a relaxed
notion of spike recovery which focuses on the spike counts

occurring between two consecutive low-rate samples. Let I' =
[Y[0],--- ,¥[M — 1]]T be the vector of counts and T be its
estimage. In Fig. 6 (Bottom) we plot the average [; distance
I —T||; as a function of the noise level. We observe that for
a = 0.9 (it can be verified from Fig. 1 (Top) that 0.9 € F3), it
is possible to exactly recover the spike counts at higher noise
even though the F-score (for timing recovery) has dropped
below 1. However, this is not the case for a« = 0.5, since
0.5 ¢ F5. This is consistent with the conclusion of Theorem 4
which states that when o € Fp, the noise tolerance for exact
count recovery can be much larger than exact spike recovery
since AC. (a,D) > Abpyin(a, D).

min
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Fig. 7: Spike detection performance with noisy measurements. F-score
vs. spiking probability (p) for different noise levels o (fix o = 0.9,
D =5, L = 1000) in the extreme compression regime s > M.
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Fig. 8: Probability of erroneous detection of high-rate spikes xu €
{0,1}* as a function of the undersampling factor D. Theoretical
upper bounds are overlaid using dotted lines. Here, L = 100.

D. Spike Deconvolution from Real Calcium Imaging Datasets

We now discuss how the mathematical framework developed
in this paper can be used for super-resolution spike deconvo-
Iution in calcium imaging. Two-photon calcium imaging is a
widely used imaging technique for large scale recording of
neural activity with high spatial but poor temporal resolution. In
calcium imaging, the signal xy; corresponds to the underlying
neural spikes which is modeled to be binary valued on a finer
temporal scale [2], [46]. Each neural spike results in a sharp
rise in Ca?T concentration followed by a slow exponential
decay, leading to superposition of the responses from nearby
spiking events [2]—[4]. This calcium transient can be modeled
by the first order autoregressive model introduced in Section
II. The decay time constant depends on the calcium indicator
and essentially determines the filter parameter «. The signal
Yni[n] is an unobserved signal corresponding to sampling the
calcium fluorescence at a high sampling rate (at the same rate
as the underlying spikes). The observed calcium signal yi,[n]
corresponds to downsampling yy;[n] at an interval determined
by the frame rate of the microscope. The frame rate of a
typical scanning microscopy system (that captures the changes
in the calcium fluorescence) is determined by the amount of
time required to spatially scan the desired field of view, which
makes it significantly slower compared to the temporal scale
of the neural spiking activity. We model this discrepancy by
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the downsampling operation (by a factor D). Therefore, the
mathematical framework developed in this paper can be directly
applied to reconstruct the underlying spiking activity at a
temporal scale finer than the sampling rate of the calcium signal.
Using real calcium imaging data, we demonstrate a way to fuse
our algorithm with a popular spike deconvolution algorithm
called OASIS [43]. OASIS solves an [; minimization problem
similar to (P1) with only the non-negativity constraint, in order
to exploit the sparse nature of the spiking activity. Unlike our
approach where we wish to obtain spikes representation on a
finer temporal scale, OASIS returns the spike estimates on the
low-resolution grid. This is typically used to infer the spiking
rate over a temporal bin equal to the sampling interval. We
demonstrate that our proposed framework can be integrated with
OASIS and improve its performance. As we saw in the synthetic
experiments, the noise level is an important consideration. By
augmenting Algorithm 2 with OASIS, referred as “B-OASIS",
the denoising power of /; minimization can be leveraged.Let
X1 € RM be the estimate obtained on a low-resolution grid
by solving the /; minimization problem such as the one
implemented in OASIS. We can obtain an estimate of the
denoised calcium signal as 7io[n] = aPyio[n] + Zn[n],n > 1
and 9j0[0] = Z11[0]. We can now utilize the denoised calcium
signal gjo[n] generated by OASIS to obtain the estimate c,[n]
indirectly. Due to the non-linear processing done by OASIS, it
is difficult to obtain the resulting noise statistics. An important
advantage of Algorithm 2 is that it does not rely on the
knowledge of the noise statistics. Hence, we can directly apply
Algorithm 2 on ¢.[n] = Jio[n] — aPyi,[n — 1] (instead of c.[n])
to obtain a binary “fused super-resolution spike estimate".

I Recall
08 [ F-score 08

[ Recall
[ F-score

B-OAsIS OASIS OASIS
Fig. 9: Spike detection performance of OASIS and B-OASIS on
GCaMPof dataset sampled at (Left) 60 Hz and (Right) 30 Hz. We
compare the average F-score of data points where the F-score of
OASIS is < 0.5. Standard deviation is depicted using the error bars.

B-OAsIS

E. Results

We evaluate the algorithms on the publicly available GENIE
dataset [53], [54] which consists of simultaneous calcium imag-
ing and in vivo cell-attached recording from the mouse visual
cortex using genetically encoded GCaMP6f calcium indicator
GCaMPof [53], [54]. The calcium images were acquired at a
frame rate of 60 Hz and the ground truth electrophysiology
signal was digitized at 10 KHz and synchronized with the
calcium frames. In addition to using the original data, we also
synthetically downsample it to emulate the effect of a lower
frame rate of 30 Hz, and evaluate how the performance changes
by this downsampling operation.

In Fig. 10, we extract an interval of ~ 2 sec (from the neuron
1 of the GCaMPo6f indicator dataset) and qualitatively compare
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Fig. 10: Example of spike reconstruction on GENIE dataset (GCaMP6f
indicator) using OASIS and B-OASIS (binary augmented) with
calcium signal sampled at 30Hz.

the detected spikes with the ground truth. We downsample
the data by a factor of 2 to emulate frame rate of 30 Hz,
the low-rate grid becomes coarser. As a result of which, we
observe an offset between ground truth spikes and estimate
produced by OASIS. However, with the help of binary priors
(B-OASIS), we can output spikes that are not restricted to be
on the coarser scale, and this mitigates the offset observed in
the raw estimates obtained by OASIS.

We quantify the improvement in the performance by com-
paring the F-scores of OASIS and B-OASIS at both sampling
rates (60 and 30 Hz). Since the output of OASIS is non-
binary, the estimated spikes are binarized by thresholding.
To ensure a fair comparison, we select the threshold by a
80 — 20 cross-validation scheme that maximizes the average
F-score on a held-out validation set (averaged over 3-random
selections of the validation set). The tolerance for the F-score
was set at 100 ms. The dataset consisted of 34 traces of
length ~ 234 s. The OASIS algorithm has an automated
routine to estimate the parameter «, which we utilize for
our experiments. The amplitude A is estimated using the
procedure described in Appendix F. We use D = 12 to obtain
the spike representation for B-OASIS. In order to quantify
the performance boost achieved by augmentation, we isolate
the traces where the F'—score of OASIS drops below 0.5
and compare the average F-score and recall for these data
points. As shown in Fig. 9, at both sampling rates, we see a
significant improvement in the average F-score of B-OASIS
over OASIS, attributed to an increase in recall while keeping the
precision unchanged. Additionally, despite downsampling, the
spike detection performance is not significantly degraded with
binary priors, although the detection criteria were unchanged.

VI. CONCLUSION

We theoretically established the benefits of binary priors in
super-resolution, and showed that it is possible to achieve
significant reduction in sample complexity over sparsity-
based techniques. Using an AR(1) model, we developed
and analyzed an efficient algorithm that can operate in the
extreme compression regime ( M < K) by exploiting the
special structure of measurements and trading memory for
computational efficiency at run-time. We also demonstrated that
binary priors can be used to boost the performance of existing
neural spike deconvolution algorithms. In the future, we will
develop algorithmic frameworks for incorporating binary priors
into different neural spike deconvolution pipelines and evaluate
the performance gain on diverse datasets. The extension of
this binary framework for higher-order AR filters is another
exciting future direction.
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APPENDIX

APPENDIX A: PROOF OF THEOREM 1
Proof. We show that for any o in 0 < v < 1, except possibly

for a set consisting of only a finite number of points, (10)
always has a unique binary solution. Consider all possible
D—dimensional ternary vectors with their entries chosen from
{~1,0,1}, and denote them as v(*) = [vgl), vg), e 7v]()z)]T €
{-=1,0,1}P,0 < i < 3P — 1. We use the convention that
v(® = 0. For every i > 0, we define a set Z,(:) determined
by v as Z,0) = {z € (0,1)] Xp_, vi?aP* = 0}. Notice
that p;(z) := S>p_, v\ 2P~ denotes a polynomial (in ) of
degree at most D—1, whose coefficients are given by the ternary
vector v(*). The set Z,:) denotes the set of zeros of p;(x) that
are contained in (0,1). Since the degree of p;(z) is at most
D-1, Z, is a finite set with cardinality at most D—1.

Now suppose that the binary solution of (10) is non-unique,
i.e., there exist u,w € {0, A}X, u # w, such that

Hp(o)u = Hp(a)w = Hp(o)u —Hp(a)w =0 (34)

By partitioning u, w into blocks u(™, w(™ in the same way
as in (6), we can re-write (34) as @ = () and

> ()~ WP =0, 1<j<M -1 G9)

Siﬁgé u # w, they differ at least at one block, i.e., there exists
some jo,1 < jo < M — 1 such that ut0) # w0o) Define
b := % (ul) — wl0)). Then, b is a non-zero ternary vector,
ie, be{-1,0, l}D.DNow from (35), we have

Z[b]iaD_i = O7

which implies that o/éle. Since b can be any one of the 3°—1
ternary vectors {v(?) fi{l, (36) holds if and only if & € S :=
Uf’i;l Z, @, 1.e., o 18 a root of at least one of the polynomials
pi(z) defined by the vectors v(?) as their coefficients. For each
v gince the cardinality of Z, ) is at most D—1, S is a finite
set (of cardinality at most (D — 1)(3P — 1)), and therefore its
Lebesgue measure is 0. This implies that (10) has a non-unique
binary solution only if « belongs to the measure zero set S,
thereby proving the theorem. O

APPENDIX B: PROOF OF LEMMA 2 AND LEMMA 3
Proof. (i) Let s, denote the sparsity (number of non-zero
elements) of the n™ block xhi(”) of xy;. Then, the total
sparsity is ||xpillo = 221:701 Sn. We will construct a vec-
tor v € R, v # xp; that satisfies ¢ = Hp(a)v and
[Ixpillo = ||v]lo. Following (6), consider the partition of v
v=[n"v -, vM=DTIT Firstly, we assign v(9) =
cl0] = 21i(?). We construct v(™) as follows. For each n > 1,
there are three cases:

Case I: s,, = 0. In this case, x;(™ = 0 and hence c[n] = 0.
Therefore, we assign v(n) = x,.(M) = 0.

Case II: s, = 1. First suppose that [Xhi(")]D = 0. We
construct v(™ as follows:

(36)

cln|, ifk=D
vk = 0[ | else ' 7
Next suppose that [xp,;(™)]p ;:é 0. Since s, = 1, this implies
that [xp ™), = 0,k = 1,--- ,D — 1. In this case, we construct
v(™) as follows:
cln]/a, ifk=D-1
v, = . (38)
0, else

Notice that both (37) and (38) ensure that v(") # x,;(") and
c[n] = hIv(™. Moreover, |[v(™ |y = s,,.

Case III: s, > 2. In this case, we follow the same
construction as (37). As before v(™) satisfies c[n] = hv(™.
Since [|xp ™| > 2 and ||[v(™ ||y = 1, we automatically have
v £ %™ and ||[v(™||¢ < s,. Therefore, combining the
three cases, we can construct the desired vector v that satisfies
v # xpi, ¢ = Hp(@)v, and [|[v]lo < M s, = [[xu™ 0.
Therefore, the solution x* to (P0) satisfies ||x*|lo < ||[v]lo <
%6 ™ lo-

(ii) In this case, we construct v(no) according to Case III.
Since ||[v(") g < sp,, and [V |lg < sp,7m # ng, We have
I¥llo < [Ixsillo- implying [1x*lo < [[Vllo < lIxsllo O

A. Proof of Lemma 3

Proof. We will construct a vector v € R whose support is of
the form (16), that is feasible for (P1-B), and we will prove
that it has the smallest /; norm. Using the block structure given
by (6), we choose v(0) = ¢[0]. For each n > 1, we construct
v(™) based on the following two cases:

Case I: c[n] > A. Let k, be the largest integer such that
the following holds: u[n] ;== A(1+a+ .-+ af71) < ¢[n],
where 1 < k,, <D. Note that k,, = 1 always produces a valid
lower bound. However, we are interested in the largest lower
bound on c¢[n| of the above form. We choose

A, ifD—ky+1<k<D
(c[n] — p[n))/akn, it k=D —k,
0, else

[v(")}k —

It is easy to verify that h!v(") = ¢[n]. From the definition
of ky, it follows that u[n] < c[n] < u[n] + Aa*» and hence,
0 < (c[n] — p[n])/a*» < A, which ensures that v obeys the
box-constraints in (P1-B). Now, let vy € R be any feasible
point of (P1-B) which must be of the form VS»O) = ¢[0], VS,”) =
v 41 where r®) € N'(h]) is a vector in the null-space
of h. It can be verified that the following vectors {w,}2 7
form a basis for A'(h/):

1, k=t
[Wt]k: —Q, k:t+17
0, else

Therefore, 3 {Bﬁ")}?:]l such that r(™) = ZtD:_f /Btn)wt. We
further consider two scenarios: (i) 1 < k,, < D — 2. In this
case [v(M]; =0, and for k =1,2,--- D, [vi™],, satisfies 2

Witk =1
B —aB™ if2<k<D—k,—1

[ngn)]k = v, + ﬁ,(f") - aﬁ,@l, ifk=D—k,
A+ﬂ}i”)_a5](€"_)1’ ifD—k,+1<k<D-1
A—ap™,, it k=D

To ensure v\™ is a feasible point for (P1-B), the following must

hold: 0 < BY, < AJaand 0 < 8™ < A. For2<k <D —

’In the definition of v;"), an assignment will be ignored if the specified
interval for k is empty.
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k., — 1, the constraint [v;n)] x > 0 implies B,(Cn) > aﬂ,@l. Since

8™ > 0, it follows that 8" > 0 for all 2 < k <D —k, — 1.

For D—k,,+1 < k < D—1, the constraint [v;")] r < A implies
ﬁ,(i)l > 5](€n)/a. Since ﬁ](;i)l > 0, it follows that ﬁ,i”) > 0 for

all D—k, <k <D-—1. (ii) k, € {D— 1,D}. In this case,

fork=1,2,---,D, [vgcn)}k satisfies

vl + 8" if k=1
V=3 A48 —apl™, if2<k<D-1
A—ap™, ifk=D

For 2 < k; < D — 1, the box-constraint [v Sp”)] < A implies

B(n) )/a Since B(n)l > 0, it follows that 5](:) > 0 for
all 1 < k < D — 1. Summarizing, we have established that
8™ > 0,Vi.

Case II: ¢[n] < A. In this case, v(") is constructed following
(37), and hence v}n) has the following structure:

Bkn)’if k=1
—af™ + 8, if2<k<D-1
c[n] — o™, if k=D

To ensure v} ~ is a feasible point, it must hold that 3;
O,ﬁ,gn) > aﬁ,(;i)l > (0 for2 < k£ < D — 1. Hence, in both

(n)

Cases I and II, we established that 5,@ > 0. For each case,

(n)

since A is a non-negative vector Vn, it can be verified that
M-1 M—-1 D
0
Ivells = Z ”V(n) o' )Jr Z Z (n)

n=1 k=1

M-1 D M—-1D—1

SCUEDID DRI DD BRI/
n=1 k=1 n=1 k=1

[Vl

We used the fact that Zk 1 Zt 1 t(n) [Welre = ?;11(1 -
)Btn). If vy # v, we must have B,(c ") £ 0 for some k and
n > 0. This implies that ||vs||y > ||v|:. It is easy to see

that the support of the constructed vector is of the form (16).

Moreover, based on the above argument, v is the only vector

that has the minimum /; norm among all possible feasible

points of (P1-B). O]
APPENDIX C: PROOF OF LEMMA 7

Proof. For any 0 < o < 0.5, we begin by showing that for an

integer p > 1 the following inequality holds:

p
1_ P
E aP=F = PPl (a ) < PPt 39)

= 1/a—1

since 1/a—1>1and 1 —aP < 1 in the regime 0 < o < 0.5.

Let S; = {0,aP~1 aP=2 aP~t + aP~2}. Notice that the

elements of Sp are sorted in ascending order for any « and D.

Now, we recursively define the sets S; as follows:
S = {Si_1,

Our hypothesis is that for every 2 < i <D —1 a € (0,0.5]
and D, the set S; as defined in (40), is automatically sorted in

Sii1+aP 17 2<i<D-1 (40)

ascending order. We prove this via induction. For ¢ = 2, the
sets S; and S; + aP 2 are individually sorted. Moreover from
(39), we can show that: max,cs, a = a1 +aP~2 < aP~3 =
minges, +op—3 b. This shows that Sy is ordered, establishing the
the base case of our induction. Now, assume S; is ordered for
some 2 < ¢ < D—2. We need to show that S; 1 is also ordered.
As a result of the induction hypothesis, both S; and S;4+-aP 27
are ordered Using the ordering of S;, we have: max,es, a =
Z;ill aP D=(i+1)~1_ From (39), we
can conclude that max,cs, @ < minyes,,0-2- b and hence,
Si41 is also ordered. This completes the induction proof. Also,
note that for o € (0,0.5], we have O™ = Sp_;.

Let Anin(S;) be the min. distance between the elements of the
set S;. It is easy to see that Apin(S;) = Amin(Si + aP7277),
Since §; is sorted for a € (0,0.5], Anin(S;) is given by:

Amln (S ) mln(Amin(Si—l)y

—J minb65i+ab—z—i b=«

min

T — max y
TES; _1+aP—1-1 )

yeS; 1

= min{Anin(Si-1), aPimt - Z aD*j}. 41
j=1
Now, we use induction to establish the following conjecture:

Apin(S;) = aP (42)

For the base case i = 1, Apin(S;) = min(aP~1aP~2 —
aP~1) = oP~1 where the last equality holds since a €
(0,0.5] = aP~1(1/a — 1) > oP~L. Suppose (42) holds for
some 1 <4 < D — 2. From the definition of A, (S;+1) and
the induction hypothesis that Amin(S; ) = aP~1 it follows that
Bin(8.11) = minfaP~L, aP~(H) 13 6D} Again,
from the definition of Amin(Si) in (41), and the induction
hypothesis we also have a1 — Z;Zl aP > Anin(Si) =
aP~1. Using this and the fact that o < 0.5, we can show:

oP—i—2 _ _ 23:1 o

“l1<i<D-1

QP—i—1 D—j > oD=i=2 _ 9nD—i=1 4 oD-1

>aP~l 4 aP i (1/a —2) > P!
Therefore Ayin(Sit1)=min{aP~1, oP~i-2 ZZ“ aP=i} =
aP~!. Thus, we can conclude that Amm(a,D) =
Anin(Sp-1)=aP~L. O

APPENDIX D: PROOF OF THEOREM 3
Proof. The probability of incorrectly identifying xp,; (™) from a
single measurement c.[n] is given by

b Pei= P& # xu™)
= Zp(fhi(n) # x5 ™ [x ™ = V) P(x ™V = V)

Given akﬁ%ary vector z € {0, 1}P, define the function ¢(z) :=
Z],z:l 2, which denotes the count of ones in z. Since the
noisy observations are given by c.[n| = c[n] + ¢[n], where
e[n] = w[n] — aPw[n — 1], it follows from assumption (A2)
that e[n] ~ N(0,0%) where 02 = (1 + a?P)o?. From (27),
we obtain P(Xp;(™ # xp ™ |xp (™) = ¥o) = Ple[n] € &) =
Q(Ofol/(201)). Simgarly,y’(fihi(”) # Xhi(n) ‘Xhi(n) = GZD) =
Pleln] € &) = Q((Bry — Oip-1)/(201)) = QLaP/(201)).
The last equality follows from the fact that 6;, —6;, 1 = aP~!
Finally, when conditioned on x;(™ = vy for 0 < k < Ip,
from (26), we obtain P(X(™) # x,; ™ |x4;(™) = V) = P(e[n] €
&) = Q(G’“ 9’“ e Q(G’““_gk) Due to Assumption (A1)
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on xp, we have P(xp;(™ Vi) = p¥R) (1 — p)P=v (),

Therefore, p. is given by

pe = Q(aP™/(201))(1 - p)° + Q(aP7" /(201))p°+
(0=

Z Q( 20’1

k=1

§k+1 — gk
20’1

) +Q( ) | p¥ (1 = p)Pmre)

(43)

The spike train xp; is incorrectly decoded if at least one of the

blocks are decoded incorrectly, hence, the total probability of

error is given by:
M=1

M-—1
PO =™ #xu™) < 30 PERM # %) = Mpe
(af'=0 2 1S (°
< 2MQ(Abuin (a1, D)/(201)) Y97 (1~ p)°~ <J)
§=0

(b)

< 2M exp(—Ab7,;, (a, D)/ (407)) “4

where the first inequality follows from union bound and second
equality is a consequence of (43). The inequality (a) follows
from the monotonically decreasing property of Q(.) function
and the sum can be re-written by grouping all terms with the
same count, i.e., ¥(vg) = j. The inequality (b) follows from
the inequality Q(x) < exp(—z?/2) for z > 0. If the SNR
condition (28) holds then from (44) the total probability of
error is bounded by J. O

APPENDIX E: PROOF OF THEOREM 4

Proof. We first begin by showing that o € Fp implies that (31)
holds and hence the mapping of spikes with the same counts are
clustered. Notice that for k =0, 6%, = 0%. =0. For k > 1,
it is easy to verify that 6% . and 6% . are attained by the spiking
patterns 00...1111 (with k consecutive spikes at the indices
D —k+1to D) and 111...000 (with consecutive spikes at the
indices 1 to k), which allows us to simplify (31) as a1 > 0
for k = 0 and Zf:llaD’i > Z?;éaj, k=1,---,D—1
The values of « that satisfy each of these relations can be
described by the following sets:

Go = {a € (0,1)]a®! > 0},Gr = {a € (0,1)|rr(a) < 0},

where 7, () =aP —aP "l —aF 1 for 1I<k<D-1.1t

is easy to see that Fp = Gy,. Observe that the relations are
symmetric, i.e., G = Gp_k—1. Furthermore, for 1 < k < D/2,
we show that G, C Gi_; as follows. Trivially, G; C Gy.
For 2 < k < D/2, observe that 7(a) — rp—1(a) =
AP k1 -1/a)—ak(1-1/a) = (1/a—1)(a* —aP~F) > 0.
Therefore, a € G = a € Gr_1, k =1,2--- | kg. Moreover,
since G = Gp_k—_1, it follows that Fp = Gy, = m‘,?;ggk.
Hence, o € Jp = a € G; for all 0 < ¢ < D — 1, which
implies that (31) holds. If the noise perturbation satisfies
lwln]] < A¢; (a,D)/4, it implies |e[n]| < A, («,D)/2.

min min

For any block Xhi(n) € CI]CD’ eﬁin S hlxhl(n) S ell—cnax' If
le[n]| < AS,,(a,D)/2, we have
 Abu(aD ghtl gk
b0+ eln] < O + St OP) gy B O
Ac . D gk . — pk-1
hgxhi(”) +e[n] > erkﬁin — % > gﬁlin _ mlﬂfﬂm

This shows that whenever « € Fp, the condition |e[n]| <
AS (o, D)/2 is sufficient for (33) to hold V «[n] and hence
the spike count can be exactly recovered. [

APPENDIX F: AMPLITUDE ESTIMATION

We suggest a procedure to estimate the binary amplitude A, if
it is unknown. We first evaluate the signal c[n] from different
time instants n = 1,2,--- , M — 1. For some 1 < ng <
M — 1, we estimate a set A = {A} of candidate amplitudes:
Ay = c[no)/hI v, where v € Sy Only a certain amplitudes
can generate c[ng] from a valid binary spiking pattern vy, € Sy
Our goal is to prune A by sequentially eliminating certain
candidate amplitudes from the set based on a consistency
test across the remaining measurements c[n]. At the ¢ stage
(t=2,3,---), for every remaining candidate amplitude Ay €
A, we perform the following consistency test with ¢[n], to
identify if a candidate amplitude can potentially generate the
corresponding measurement c[n]. Suppose there exists a spiking
pattern v; € Sy such that

c[n] = Aghlv, (45)
then A, remains a valid candidate. If we cannot find a
corresponding v; € Sy for an amplitude Ay, we remove
it, A = A\ Ag. In presence of noise, (45) can be modified
to allow a tolerance v as we may not find an exact match.
The tolerance v is chosen to be 0.5 in the experiments on
the GENIE dataset. This procedure prunes out possible values
for the amplitude by leveraging the shared amplitude across
multiple measurements c[n].
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