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ABSTRACT

We study single-snapshot nested array interpolation with pos-

itive sources. The problem of sparse array interpolation is

traditionally cast as a low-rank Toeplitz/Hankel matrix com-

pletion problem from partial observations. In recent work,

we provided the first necessary and sufficient guarantees for

nested array interpolation with real measurements in the rank

minimization framework. In this work, we strengthen the suf-

ficiency results by proving that in case of positive sources it is

possible to interpolate the nested array by performing a simple

convex feasibility search instead of solving a rank minimiza-

tion problem. Simulations demonstrate that this framework is

also effective for noisy measurements, and that noisy nested

array interpolation outperforms ULA extrapolation.1

Index TermsÐ Sparse Array Interpolation, Nested arrays,

Positivity, Matrix Completion.

1. INTRODUCTION

Sparse arrays, such as nested and coprime arrays [1, 2], have

recently gained significant recognition due to their superior

parameter identifiability and resolution capabilities compared

to the conventional Uniform Linear Array (ULA) with the

same number of sensors [3±11]. A key advantage of properly

designed sparse arrays with P sensors is that their physical

aperture and the number of virtual sensors in their so-called

difference coarray is comparable to that of a ULA with Θ(P 2)
sensors. The virtual measurements of the difference coarray

are typically synthesized by computing the cross-correlations

of the physical sensor measurements. However, this may re-

quire uncorrelated sources and a large number of temporal

snapshots [1, 7, 12±15], which can be problematic in applica-

tions with multipath and fast-moving sources, such as automo-

tive radar or autonomous sensing [16, 17].

An alternative approach involves estimating the missing

virtual measurements of a ULA with the same aperture as

the sparse array [14, 17±19]. The completed measurements

can then be utilized to enhance spatial resolution in presence

of noise and even outperform direct direction-of-arrival es-

timation methods, with very few (even a single) snapshot(s)

1This work was supported in part by grants ONR N00014-19-1-2256, NSF

2124929, DE-SC0022165, and the Ulla Tuominen foundation.

[20]. Interpolation of the missing measurements is typically

cast as a low-rank Toeplitz/Hankel matrix completion prob-

lem [17, 19, 21]. Such matrix completion based techniques

nevertheless suffer from two critical drawbacks. Firstly, the

theoretical recovery guarantees require a certain minimum

separation between sources to succeed, even in the absence

of noise [18, 22, 23]. Secondly, most of these guarantees are

probabilistic in the sense that they are only valid for randomly

generated sparse arrays and may not hold for deterministic

geometries such as the nested array [18]. Our recent work [20]

addressed these shortcomings, and provided guarantees (nec-

essary and sufficient conditions) for single-snapshot rank mini-

mization to successfully interpolate the missing measurements

of a nested array for arbitrary source separations.

In a variety of applications, such as super-resolution mi-

croscopy, the source signals are often assumed to be positive.

As a result, positivity as a prior has gained a lot of attention for

solving inverse problems such as compressed sensing [24±27],

super-resolution [7,28±33], and phase retrieval [34±36]. Incor-

porating positivity has actually been shown to lead to stronger

theoretical guarantees and improved performance. For in-

stance, in the context of super-resolution, the separation re-

quirements for techniques such as TV norm/atomic norm can

be relaxed [29, 30]. Recently, [31] also utilized positivity to

reduce the computational complexity of the semi-definite pro-

gram associated with atomic norm minimization.

Contributions: Motivated by the success of positivity as a

prior, we investigate its role in sparse array interpolation. Our

main contribution is to prove that rank minimization is re-

dundant in the absence of noise. This is made possible by

positivity constraints as well as the nested array geometry,

which together act as an implicit regularizer for finding the

low-rank solution without the need for any explicit regulariza-

tion. In fact, it is possible to provably interpolate the virtual

array of the nested array by performing a simple feasibility

search under mild conditions on the number of sources. The

result holds for arbitrary source configurations and separations.

We also extend this framework, which is free from any regu-

larization parameters and agnostic of the model order, to the

case of noisy measurements.
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2. PROBLEM FORMULATION

Consider K far-field narrowband sources (with wavelength

λ) impinging from directions θ1, θ2, · · · , θK on a one-

dimensional nested array with P = 2M sensors located

at nλ/2, n ∈ Snest, where Snest is an integer set given by

Snest =
{
m− 1

}M

m=1

⋃{
m(M + 1)− 1

}M

m=1
.

Furthermore, consider a ªvirtual" uniform linear array (ULA)

U := {0, 1, · · · , N − 1}, N=M(M + 1). The set U also

coincides with the non-negative half of the difference set of

Snest [1]. Throughout the paper, we use the notation AS(ω) =
[aS(ω1), · · · ,aS(ωK)] ∈ C

P×K to denote the array manifold

matrix for any linear array with P sensors, whose locations

(normalized w.r.t. λ/2) are given by the integer set S. The

steering vector corresponding to the normalized frequency

ωk :=π sin(θk) is given by [aS(ωk)]m :=ejdmωk , where dm∈
S. The measurement of the nested array is given by:

ynest = ASnest
(ω)x+ n (1)

where x ∈ R
K denotes a real-valued (deterministic) source

signal, and n is an additive noise term. In the absence of noise,

we can rewrite (1) as

ynest = Snestyfull, yfull := AU(ω)x, (2)

where AU(ω) represents the array manifold of the aforemen-

tioned virtual ULA with elements at U, and Snest ∈ R
P×N is

a row-selection matrix given by:

[Snest]i,j =

{
1, if di + 1 = j, di ∈ Snest

0, otherwise.

The vector yfull can be viewed as a ªvirtual measurement"

received at the virtual array U, with identical source configura-

tions (same ω and x).

2.1. Review of Rank-Constrained Single Snapshot Inter-

polation with Nested Arrays

The objective of single-snapshot virtual array interpolation is

to recover yfull by estimating the unobserved measurements

corresponding to the (missing) sensor locations at Scnest :=
U\Snest from a single temporal snapshot ynest. Let TN : CN →
C

N×N be an operator that returns a N×N Hermitian Toeplitz

matrix with u as its first column. Consider the following set:

Tynest
:= {T = TN (u)

∣∣u ∈ C
N ,Snestu = ynest}. (3)

In the noiseless setting (n = 0), Tynest
denotes the set of all

possible Toeplitz Hermitian matrices in C
N×N whose first

column is consistent with the measurement ynest at the indices

given by Snest. It is easy to verify that TN (yfull) ∈ Tynest
.

Notice that the desired virtual measurement yfull satisfies:

TN (yfull) = AU(ω)diag(x)AU(ω)H . (4)

The above rank-revealing decomposition shows that matrix

TN (yfull) is of rank-K, whenever K < P . This has enabled

the use of ªlow-rank" as a guiding factor for sparse array inter-

polation, by utilizing ideas from matrix completion [17,19,21].

However, the theoretical guarantees for (noiseless) matrix com-

pletion (that relies on certain notions of incoherence and ran-

dom sampling strategies) do not directly apply to deterministic

sparse arrays [17±19]. We recently bridged this theoretical gap

by developing the first guarantees for exact single-snapshot

sparse array interpolation with nested arrays [20]. In particular,

we considered the following rank-minimization problem:

min
T∈CN×N

rank[T] subject to T ∈ Tynest
. (P1)

In [20], we showed that in absence of noise, the solution to

(P1) can exactly interpolate the virtual array of the nested array

irrespective of the source configuration, provided K ≤ M , as

summarized in the following theorem:

Theorem 1. Consider the measurement model (1) with n = 0.

For every ω and x ∈ R
K , (P1) has a unique solution u⋆

satisfying u⋆ = yfull = AU(ω)x, if and only if K ≤ M .

In recent times, the role of non-negativity in inverse prob-

lems such as super-resolution [7, 28±32] and phase retrieval

[34±36] has been investigated, since non-negative constraints

can themselves act as implicit regularizers, and it may not

be necessary to enforce any other priors (such as sparsity).

Motivated by these findings, we ask the following question:

(Q): ªWhen x is non-negative (or positive), is it possible to

avoid rank minimization and yet perform exact interpolation

from measurements obtained using a nested array?"

Addressing this question will enable us to specialize The-

orem 1 to the case of positive sources, and offer additional

insights into sparse array interpolation with nested arrays.

3. POWER OF POSITIVITY: OPTIMIZATION-LESS

SINGLE SNAPSHOT INTERPOLATION

If x is not positive, it is not possible to remove the rank con-

straint and yet hope to exactly recover yfull from ynest. Even in

the absence of noise, the task of exact interpolation is ill-posed,

as there are infinitely many choices to ªfill-in" the missing ele-

ments in S
c
nest. For instance, a trivial interpolating solution is

obtained using zero-padded signal yzero ∈ C
N defined as:

[yzero]i =

{
[ynest]i, if i− 1 ∈ Snest

0, otherwise.

Matrix T (yzero) belongs to the set Tynest
, but its rank can exceed

K. Therefore, it is not possible to interpolate the virtual array

by arbitrarily picking elements from the set Tynest
, and we must

specifically look for a low-rank solution.

We will now show that when x is positive, rank constraints

indeed become redundant. Consider the noiseless measure-

ment model (1) with a positive source signal x ∈ R
K
+ . By (4),
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the interpolated Toeplitz matrix TN (yfull) is positive semidef-

inite (PSD), i.e., TN (yfull) ⪰ 0. This additional information

can be incorporated into our search for the desired interpolated

Toeplitz matrix. To this end, define a new set:

T +
ynest

:= Tynest

⋂
SN
+ , (5)

where SN
+ denote the set of (Hermitian) PSD matrices in

C
N×N . The set T +

ynest
represents a collection of all PSD

Toeplitz matrices TN (u) such that u is an interpolating solu-

tion. Without this additional positive semidefinite constraint,

the interpolating solution is not unique (as argued above)

and the set Tynest
contains many ambiguous solutions. Re-

markably however, the set T +
ynest

is a singleton, which makes

rank-minimization in (P1) redundant when x is positive.

Theorem 2. Consider the noiseless measurement model (1)

with x > 0 and n = 0. If K ≤ M , then the set T +
ynest

=
{TN (yfull)} is singleton.

Proof. For positive sources, the interpolated Toeplitz matrix

TN (yfull) ∈ T +
ynest

. Suppose there exists another matrix T′( ̸=
TN (yfull)) ∈ T +

ynest
. As T′ is a PSD Toeplitz matrix, it has the

following decomposition due to Caratheodory’s Theorem, [37]

T′ = AU(ω
′)ΛAH

U (ω′),

where AU(ω
′) ∈ C

N×K′

is a Vandermonde matrix and Λ is

a diagonal matrix with positive entries. Let T
′

M+1 denote the

top-left (M + 1)× (M + 1) block of T
′

:

T
′

M+1 = [IM+1 0M+1×N−M−1]T
′

[IM+1 0M+1×N−M−1]
T .

Let AS1(ω
′

) ∈ C
(M+1)×K

′

denote the inner ULA manifold

matrix. We can write T
′

M+1 as:

T
′

M+1 = AS1(ω
′

)ΛAH
S1
(ω

′

). (6)

Since AS1(ω
′) is a Vandermonde matrix with distinct elements

in ω
′, rank(T

′

M+1) = min(K
′

,M + 1). From the feasibility

constraint T′ ∈ T +
ynest

, we have T′ = TN (u) where Snestu =
ynest. Hence, by (4):

T
′

M+1 = TM+1(yS1) = AS1(ω)diag(x)AH
S1
(ω), (7)

where yS1 = AS1(ω)x. Since K ≤ M , rank(TM+1(yS1)) =
rank(AS1(ω)) = min(K,M + 1) = K. This implies

rank(T
′

M+1) = min(K
′

,M + 1) = K, and hence, K
′

= K.

Next, we show that ω = ω
′. Suppose there exists

i such that ω′

i ̸∈ {ω1, . . . , ωK}. From (6) and (7), we

have aS1(ω
′

i) ∈ R(T
′

M+1) = R(AS1(ω)). This implies

that Ā = [AS1(ω),aS1(ω
′

i)] ∈ C
M+1×K+1 must be rank-

deficient. However, since Ā is a Vandermonde matrix with

all ω1, . . . , ωK , ω′

i being distinct, it will be full column-rank.

Therefore, we must have ω′

i ∈ {ω1, . . . , ωK} for every i
which implies ω = ω

′, since K ′ = K. Therefore, when

K ≤ M , T +
ynest

= {TN (yfull)}.

Theorem 2 shows that thanks to the positivity constraint,

it is possible to uniquely identify the subspace corresponding

to the full virtual ULA by merely solving a feasibility search

problem without any explicit rank minimization:

find T ∈ C
N×N subject to T ∈ T +

ynest
. (FEAS+)

The feasibility search (FEAS+) is a convex problem and un-

like the non-convex rank-minimization, it can be solved in a

computationally efficient manner.

Positivity as Implicit Regularization: In a recent work [31],

it is shown that under a similar positive source assumptions

it is possible to relax the ªminimum separation" requirement

for the atomic norm minimization regularization scheme. In

contrast, our Theorem 2 indicates that owing to the structured

nested array geometry no explicit atomic norm minimization is

needed. The positive semi-definite constraint alone suffices as

an implicit regularizer and is capable of automatically finding

the low-rank solution in the noiseless setting, regardless of the

minimum separation between sources.

3.1. Extension to Noisy Measurement Model

In the previous section, Theorem 2 showed that a simple fea-

sibility search guarantees perfect interpolation of the nested

array measurement in the absence of noise. In the presence of

noise, this feasibility search can be modified by expanding the

feasible set T +
ynest

based on the noise level, ϵ, to

T +
ynest,ϵ := Tynest,ϵ

⋂
SN
+ , (8)

where Tynest,ϵ := {T = TN (u), s.t. ∥Snestu − ynest∥2 ≤ ϵ}.

The set T +
ynest,ϵ comprises all Toeplitz PSD matrices whose

first columns are within a ball of radius ϵ over the indices

determined by the nested array geometry. Specifically, when

ϵ= 0 the set reduces to T +
ynest

. Given an upper bound on the

noise level ∥n∥2≤ ϵ, the virtual array can be interpolated by

simply picking a point from the convex set T +
ynest,ϵ:

find T ∈ C
N×N subject to T ∈ T +

ynest,ϵ. (N-FEAS+)

Another approach (which is also regularization-free) would be

to solve the following least squares problem:

ŷfull,ℓ2 :=argmin
y∈CN

∥Snesty−ynest∥22 s.t. TN (y)⪰0. (9)

The interpolation scheme in (9) offers the distinct advantage

of being agnostic to the noise level ϵ and model order K.

Fig. 1 visualizes the geometry of the feasible set T +
ynest

and

T +
ynest,ϵ for an array with two elements S = {0, 1} and a single

source with amplitude x1 = 2 and angle θ1 = 0. We plot the

set of points u = [u0, u1, u2]
T for which T3(u) ⪰ 0 (in red)

and ∥[u0, u1]
T − ynest∥2 ≤ ϵ (in blue) for two specific noise

levels (ϵ = 0 and 1/
√
2). Set T +

ynest,ϵ remains bounded due

to the geometry of the PSD cone, and reduces to a singleton

when ϵ = 0. This suggests that the interpolation error can be

controlled by performing a feasibility search without requiring

any rank/sparsity minimization scheme, as will be shown in

the numerical simulations of the next section.
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Fig. 1: Feasible set T +
ynest,ϵ

is the intersection of the PSD Toeplitz cone

(red) and all vectors u ∈ R
3 satifying ∥Snestu − ynest∥2 ≤ ϵ (blue)

with noise level ϵ = 0 (left) and ϵ = 1/
√
2 (right). The intersection,

which is shaded in yellow, becomes a single point for ϵ = 0.
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Fig. 2: Beamforming using synthesized virtual array of nested array

(top) and ULA (middle), and ULA with same number of physical sen-

sors as the virtual array (bottom). The K = 2 sources are separated

by ∆ = 0.2 (left) and ∆ = 0.05 (right). The noise level is ς = 0.1.

4. NUMERICAL RESULTS

We consider two equipower sources with angles ω =
{−∆

2 ,
∆
2 } and amplitudes x = [1, 1]T . The number of

physical sensors of the nested array and ULA is P = 10.

The noise is assumed bounded and zero-mean. In particular,

the real and imaginary parts of the entries of noise vector

n ∈ C
P are independently and uniformly distributed, such

that |ni|≤ ς ∀i and ∥n∥2≤ ς
√
P . We set ς=0.1 and consider

the minimum ℓ2 estimator of yfull∈C
N defined in (9).

Fig. 2 shows the beam pattern of the interpolated nested

array and extrapolated ULA for two different source separa-

tions. For comparison, we also plot the beam pattern of a ULA

with P = 30 sensors (same as the aperture of the nested array).

The interpolated nested array detects the two closely placed

sources (right), whereas the extrapolated ULA only succeeds

when the separation is sufficiently large (left).

Fig. 3 shows the per-sensor interpolation error, defined

as RMSE[n] = (10−3
∑103

i=1 |[yfull − ŷ
(i)
full,ℓ2

]n|2)1/2, where

n = 1, 2, . . . , N is the index of the nth virtual sensor and

ŷ
(i)
full,ℓ2

is the estimate of yfull in the ith Monte Carlo trial. The

nested array achieves a lower error for the interpolated virtual

sensors compared to the extrapolated virtual sensors of the

ULA for different noise levels ς (left) and source separations

∆ (right). Interestingly, the interpolation error may decrease

with decreasing source separation despite deteriorating angle

estimation performanceÐcf. Fig. 2 (middle) and Fig. 3 (right).

For the final experiment, we solve the feasibility search

(N-FEAS+) by designing an estimator ŷfull,ϵ that randomly

picks points from T +
ynest,ϵ, with ϵ = ς

√
P . In particular,

the random sampling strategy is implemented by solving

Fig. 3: Interpolation error as a function of virtual sensor index (mark-

ers denote physical sensors) for different noise levels ς (left) and

source separations ∆ (right). The interpolation of the nested array is

stable compared to the extrapolation of the ULA.

ŷfull,ϵ :=argminu
∥∥Gu∥2 subject to TN (u) ∈ T +

ynest,ϵ, where

G ∈ C
N×N is a random matrix with i.i.d. complex circularly

symmetric Gaussian entries. Given ynest, estimator ŷfull,ϵ is

thus a random vector (whereas ŷfull,ℓ2 is deterministic). Fig. 4

shows histograms of the interpolation error of ŷfull,ϵ for 104

random draws of G, which correspond to random points

in T +
ynest,ϵ. We consider the nested array and a single noise

realization where ς ∈ {0, 0.3, 1}. For comparison, we also

plot the histogram of the estimation error without the PSD

constraint (error of a random point in Tynest,ϵ). When the PSD

constraint is omitted, the empirical error distribution has a

significantly larger mean and variance than when the PSD

constraint is imposed. As the noise level ς decreases, the error

distribution in the PSD case concentrates around zero. This is

consistent with Theorem 1, which states that in the absence

of noise (ς = 0), the feasible set (5) is a singleton. Note that

without the PSD constraint, the interpolation error remains

large even when there is no noise.

Fig. 4: Interpolation error histograms of randomly chosen points in

the set T +
ynest,ϵ

(black) and Tynest,ϵ (red). Enforcing the PSD constraint

results in significantly lower mean error and variance, which decrease

as a function of noise level ς .

5. CONCLUSION

This paper showed that it is possible to successfully interpolate

the missing measurements of the nested array by a convex

feasibility search with a single temporal snapshot, when the

source signals are positive. In particular, the set of Toeplitz

PSD matrices whose first column is consistent with the mea-

surements at the indices of the nested array sensors is a single-

ton. Our simulations demonstrate that the feasible set remains

bounded in case of noisy measurements, and that noisy nested

array interpolation outperforms ULA extrapolation. In future,

we plan to theoretically analyze positive virtual array interpo-

lation in the presence of noise.
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