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ABSTRACT

We study single-snapshot nested array interpolation with pos-
itive sources. The problem of sparse array interpolation is
traditionally cast as a low-rank Toeplitz/Hankel matrix com-
pletion problem from partial observations. In recent work,
we provided the first necessary and sufficient guarantees for
nested array interpolation with real measurements in the rank
minimization framework. In this work, we strengthen the suf-
ficiency results by proving that in case of positive sources it is
possible to interpolate the nested array by performing a simple
convex feasibility search instead of solving a rank minimiza-
tion problem. Simulations demonstrate that this framework is
also effective for noisy measurements, and that noisy nested
array interpolation outperforms ULA extrapolation.'

Index Terms— Sparse Array Interpolation, Nested arrays,
Positivity, Matrix Completion.

1. INTRODUCTION

Sparse arrays, such as nested and coprime arrays [1,2], have
recently gained significant recognition due to their superior
parameter identifiability and resolution capabilities compared
to the conventional Uniform Linear Array (ULA) with the
same number of sensors [3—11]. A key advantage of properly
designed sparse arrays with P sensors is that their physical
aperture and the number of virtual sensors in their so-called
difference coarray is comparable to that of a ULA with ©(P?)
sensors. The virtual measurements of the difference coarray
are typically synthesized by computing the cross-correlations
of the physical sensor measurements. However, this may re-
quire uncorrelated sources and a large number of temporal
snapshots [1,7,12—15], which can be problematic in applica-
tions with multipath and fast-moving sources, such as automo-
tive radar or autonomous sensing [16, 17].

An alternative approach involves estimating the missing
virtual measurements of a ULA with the same aperture as
the sparse array [14, 17-19]. The completed measurements
can then be utilized to enhance spatial resolution in presence
of noise and even outperform direct direction-of-arrival es-
timation methods, with very few (even a single) snapshot(s)

I'This work was supported in part by grants ONR N00014-19-1-2256, NSF
2124929, DE-SC0022165, and the Ulla Tuominen foundation.

[20]. Interpolation of the missing measurements is typically
cast as a low-rank Toeplitz/Hankel matrix completion prob-
lem [17,19,21]. Such matrix completion based techniques
nevertheless suffer from two critical drawbacks. Firstly, the
theoretical recovery guarantees require a certain minimum
separation between sources to succeed, even in the absence
of noise [18,22,23]. Secondly, most of these guarantees are
probabilistic in the sense that they are only valid for randomly
generated sparse arrays and may not hold for deterministic
geometries such as the nested array [18]. Our recent work [20]
addressed these shortcomings, and provided guarantees (nec-
essary and sufficient conditions) for single-snapshot rank mini-
mization to successfully interpolate the missing measurements
of a nested array for arbitrary source separations.

In a variety of applications, such as super-resolution mi-
croscopy, the source signals are often assumed to be positive.
As a result, positivity as a prior has gained a lot of attention for
solving inverse problems such as compressed sensing [24-27],
super-resolution [7,28-33], and phase retrieval [34-36]. Incor-
porating positivity has actually been shown to lead to stronger
theoretical guarantees and improved performance. For in-
stance, in the context of super-resolution, the separation re-
quirements for techniques such as TV norm/atomic norm can
be relaxed [29, 30]. Recently, [31] also utilized positivity to
reduce the computational complexity of the semi-definite pro-
gram associated with atomic norm minimization.

Contributions: Motivated by the success of positivity as a
prior, we investigate its role in sparse array interpolation. Our
main contribution is to prove that rank minimization is re-
dundant in the absence of noise. This is made possible by
positivity constraints as well as the nested array geometry,
which together act as an implicit regularizer for finding the
low-rank solution without the need for any explicit regulariza-
tion. In fact, it is possible to provably interpolate the virtual
array of the nested array by performing a simple feasibility
search under mild conditions on the number of sources. The
result holds for arbitrary source configurations and separations.
We also extend this framework, which is free from any regu-
larization parameters and agnostic of the model order, to the
case of noisy measurements.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 20,2023 at 16:06:40 UTC from IEEE Xplore. Restrictions apply.



2. PROBLEM FORMULATION

Consider K far-field narrowband sources (with wavelength
A) impinging from directions 6y,65,--- 0 on a one-
dimensional nested array with P = 2M sensors located
at nA/2, n € Syeq, Where Sy is an integer set given by

Shest = {m — l}M U {m(M+1) - l}M

m=1 m=1"

Furthermore, consider a “virtual" uniform linear array (ULA)
U := {0,1,--- ,N — 1}, N=M(M + 1). The set U also
coincides with the non-negative half of the difference set of
Shest [1]. Throughout the paper, we use the notation Ag(w) =
[as(w1),- - ,as(wk)] € CP*K to denote the array manifold
matrix for any linear array with P sensors, whose locations
(normalized w.r.t. \/2) are given by the integer set S. The
steering vector corresponding to the normalized frequency
wy :=msin(fy,) is given by [ag(wk)]m :=e %™« where d,, €
S. The measurement of the nested array is given by:

Ynest = ASnes, (QJ)X +n (1)

where x € RX denotes a real-valued (deterministic) source
signal, and n is an additive noise term. In the absence of noise,
we can rewrite (1) as

Ytun -= AU(W)X7 ()

where Ay(w) represents the array manifold of the aforemen-
tioned virtual ULA with elements at U, and Spege € RP*N is
a row-selection matrix given by:

Yrnest = SnestY full

1, ifdi—Fl :j’dl S Snest

[Snest]i,j = {0

The vector yyg; can be viewed as a “virtual measurement"”
received at the virtual array U, with identical source configura-
tions (same w and x).

otherwise.

2.1. Review of Rank-Constrained Single Snapshot Inter-
polation with Nested Arrays

The objective of single-snapshot virtual array interpolation is
to recover Yy, by estimating the unobserved measurements
corresponding to the (missing) sensor locations at S :=
U\ Spest from a single temporal snapshot yye. Let Ty : CV —
CN*N be an operator that returns a N x N Hermitian Toeplitz

matrix with u as its first column. Consider the following set:
Tywa = AT =T (u) [u € CV, Spesett = Yuew}. (3)

In the noiseless setting (n = 0), 7y, denotes the set of all
possible Toeplitz Hermitian matrices in CV*~ whose first
column is consistent with the measurement y . at the indices
given by Speq. It is easy to verify that Ty (yan) € Ty
Notice that the desired virtual measurement yy,; satisfies:

T (yi) = Ap(w)diag(x)Ay(w). 4)

The above rank-revealing decomposition shows that matrix
Twn (yeun) is of rank-K, whenever K < P. This has enabled
the use of “low-rank" as a guiding factor for sparse array inter-
polation, by utilizing ideas from matrix completion [17,19,21].
However, the theoretical guarantees for (noiseless) matrix com-
pletion (that relies on certain notions of incoherence and ran-
dom sampling strategies) do not directly apply to deterministic
sparse arrays [17—19]. We recently bridged this theoretical gap
by developing the first guarantees for exact single-snapshot
sparse array interpolation with nested arrays [20]. In particular,
we considered the following rank-minimization problem:

rank|T]

min

nin subjectto T € Ty,
TECN % ’

(P1)
In [20], we showed that in absence of noise, the solution to
(P1) can exactly interpolate the virtual array of the nested array
irrespective of the source configuration, provided K < M, as
summarized in the following theorem:

Theorem 1. Consider the measurement model (1) withn = 0.
For every w and x € RX, (P1) has a unique solution u*
satisfying u* =y = Ay(w)x, ifand only if K < M.

In recent times, the role of non-negativity in inverse prob-
lems such as super-resolution [7,28-32] and phase retrieval
[34-36] has been investigated, since non-negative constraints
can themselves act as implicit regularizers, and it may not
be necessary to enforce any other priors (such as sparsity).
Motivated by these findings, we ask the following question:
(Q): “When x is non-negative (or positive), is it possible to
avoid rank minimization and yet perform exact interpolation
from measurements obtained using a nested array?"

Addressing this question will enable us to specialize The-
orem | to the case of positive sources, and offer additional
insights into sparse array interpolation with nested arrays.

3. POWER OF POSITIVITY: OPTIMIZATION-LESS
SINGLE SNAPSHOT INTERPOLATION

If x is not positive, it is not possible to remove the rank con-
straint and yet hope to exactly recover yg, from ypes. Even in
the absence of noise, the task of exact interpolation is ill-posed,
as there are infinitely many choices to “fill-in" the missing ele-
ments in S§.. For instance, a trivial interpolating solution is

obtained using zero-padded signal ¥ ,ero € CN defined as:

- . ifi—
[V jero)i = [Ynest] ifi — 1 € Spest
cero 0, otherwise.

Matrix 7 (yzero) belongs to the set Ty, ., butits rank can exceed
K. Therefore, it is not possible to interpolate the virtual array
by arbitrarily picking elements from the set 7y, , and we must
specifically look for a low-rank solution.

We will now show that when x is positive, rank constraints
indeed become redundant. Consider the noiseless measure-
ment model (1) with a positive source signal x € Rf .By 4),

nest >
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the interpolated Toeplitz matrix T (yfu) is positive semidef-
inite (PSD), i.e., Ty (yrun) = 0. This additional information
can be incorporated into our search for the desired interpolated
Toeplitz matrix. To this end, define a new set:

Ty =Ty [ SV (5)

where Sf denote the set of (Hermitian) PSD matrices in
CNXN_ The set 7;,*1 represents a collection of all PSD
Toeplitz matrices T (u) such that u is an interpolating solu-
tion. Without this additional positive semidefinite constraint,
the interpolating solution is not unique (as argued above)
and the set 7y, contains many ambiguous solutions. Re-
markably however, the set ’7;,*( is a singleton, which makes
rank-minimization in (P1) redundant when x is positive.

Theorem 2. Consider the noiseless measurement model (1)
withx > 0andn = 0. If K < M, then the set 7.;15[ _
{T~n (yeun)} is singleton.

Proof. For positive sources, the interpolated Toeplitz matrix
Tn (Vi) € 7;";‘ Suppose there exists another matrix T'(#
Tn (yn)) € wa As T is a PSD Toeplitz matrix, it has the

following decomposition due to Caratheodory’s Theorem, [37]

T = Ay(w)AAT (W),
where Ap(w’) € CV*K' is a Vandermonde matrix and A is
a diagonal matrix with positive entries. Let T, , denote the

top-left (M + 1) x (M + 1) block of T':
T;y[+1 = [Tars1 Onrprxen—nr—1 )T [Tarsr Oargrxn—ar—1)T

Let Ag, (w') € CM+DXK denote the inner ULA manifold
matrix. We can write T/, ; as:

Ty = As, (w)AAL (W), (6)

Since Ag, (w') is a Vandermonde matrix with distinct elements
inw’, rank(T}w_H) = min(K’, M + 1). From the feasibility
constraint T/ € 7;‘;[, we have TV = T (u) where Spequ =
Ynest- Hence, by (4):

T = A, (w)diag(x)AZ (w), (D)

where ys, = Ag, (w)x. Since K < M, rank(Tar41(ys,)) =
rank(Ag, (w)) = min(K,M + 1) = K. This implies
rank(T),,,) = min(K , M + 1) = K, and hence, K = K.

Next, we show that w = w’. Suppose there exists
i such that w, ¢ {wi,...,wx}. From (6) and (7), we
have ag, (w)) € R(T/MH) = R(As,(w)). This implies
that A = [Ag, (w),as, (w])] € CMFTIXE+L must be rank-
deficient. However, since A is a Vandermonde matrix with
all wy, ..., wk,w, being distinct, it will be full column-rank.
Therefore, we must have w, € {wi,...,wk} for every i
which implies w = w’, since K’ = K. Therefore, when
K <M, T, ={Tn(yun)} O

= Tar1(ys,)

Theorem 2 shows that thanks to the positivity constraint,
it is possible to uniquely identify the subspace corresponding
to the full virtual ULA by merely solving a feasibility search
problem without any explicit rank minimization:

find T € CV*N subjectto T € T, . (FEAS+)

The feasibility search (FEAS+) is a convex problem and un-
like the non-convex rank-minimization, it can be solved in a
computationally efficient manner.

Positivity as Implicit Regularization: In a recent work [31],
it is shown that under a similar positive source assumptions
it is possible to relax the “minimum separation” requirement
for the atomic norm minimization regularization scheme. In
contrast, our Theorem 2 indicates that owing to the structured
nested array geometry no explicit atomic norm minimization is
needed. The positive semi-definite constraint alone suffices as
an implicit regularizer and is capable of automatically finding
the low-rank solution in the noiseless setting, regardless of the
minimum separation between sources.

3.1. Extension to Noisy Measurement Model

In the previous section, Theorem 2 showed that a simple fea-
sibility search guarantees perfect interpolation of the nested
array measurement in the absence of noise. In the presence of
noise, this feasibility search can be modified by expanding the
feasible set ’7;;8[ based on the noise level, €, to

Ty [ SY ®)

yne~l €

where Ty, == {T = Ty (u), s.t. ||Snestu — Yrestllz < €}
The set 7,7 _ comprises all Toeplitz PSD matrices whose

first columns are within a ball of radius € over the indices
determined by the nested array geometry. Specifically, when
€ = 0 the set reduces to 7;,* .- Given an upper bound on the
noise level ||nl||2 <€, the virtual array can be interpolated by

simply picking a point from the convex set 7;;5‘) :

find T € CV*¥ subject to T € T (N-FEAS+)

Ynests€°

Another approach (which is also regularization-free) would be
to solve the following least squares problem:

Viull ts = argmin | Snesty — Ynestll3 st Ta(y) = 0. (9)
C

The interpolatiog €scheme in (9) offers the distinct advantage
of being agnostic to the noise level e and model order K.

Fig. 1 visualizes the geometry of the feasible set 7_+ and
Tt for an array with two elements S = {0,1} and a smgle
source with amplitude x; = 2 and angle 6; = 0. We plot the
set of points u = [ug, u1, up]? for which T3(u) = 0 (in red)
and ||[uo, u1]T — Yuest/|l2 < € (in blue) for two specific noise
levels (e = 0 and 1/v/2). Set 7;,*16 remains bounded due
to the geometry of the PSD cone, and reduces to a singleton
when € = 0. This suggests that the interpolation error can be
controlled by performing a feasibility search without requiring
any rank/sparsity minimization scheme, as will be shown in
the numerical simulations of the next section.
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Fig. 1: Feasible set ’7;13(,6 is the intersection of the PSD Toeplitz cone
(red) and all vectors u € R® satifying ||Snestl — Ynest||2 < € (blue)
with noise level e = 0 (left) and e = 1/ V2 (right). The intersection,
which is shaded in yellow, becomes a single point for ¢ = 0.
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Fig. 2: Beamforming using synthesized virtual array of nested array
(top) and ULA (middle), and ULA with same number of physical sen-
sors as the virtual array (bottom). The K = 2 sources are separated
by A = 0.2 (left) and A = 0.05 (right). The noise level is ¢ = 0.1.

4. NUMERICAL RESULTS

We consider two equipower sources with angles w =
{-£2,%} and amplitudes x = [1,1]7. The number of
physical sensors of the nested array and ULA is P = 10.
The noise is assumed bounded and zero-mean. In particular,
the real and imaginary parts of the entries of noise vector
n € C’ are independently and uniformly distributed, such
that |n;| << Vi and ||n||z <sv/P. We set ¢=0.1 and consider
the minimum ¢, estimator of y € CV defined in (9).

Fig. 2 shows the beam pattern of the interpolated nested
array and extrapolated ULA for two different source separa-
tions. For comparison, we also plot the beam pattern of a ULA
with P = 30 sensors (same as the aperture of the nested array).
The interpolated nested array detects the two closely placed
sources (right), whereas the extrapolated ULA only succeeds
when the separation is sufficiently large (left).

Fig. 3 shows the per-sensor interpolation error, defined
as RMSE[n] = (107321 [y — ¥l g,)n[?)/2 where
n = 1,2,..., N is the index of the nth virtual sensor and
ﬂﬁﬂ ¢, 18 the estimate of yy in the ith Monte Carlo trial. The
nested array achieves a lower error for the interpolated virtual
sensors compared to the extrapolated virtual sensors of the
ULA for different noise levels ¢ (left) and source separations
A (right). Interestingly, the interpolation error may decrease
with decreasing source separation despite deteriorating angle
estimation performance—cf. Fig. 2 (middle) and Fig. 3 (right).

For the final experiment, we solve the feasibility search
(N-FEAS+) by designing an estimator ¥, that randomly
picks points from Tt with ¢ = ¢v/P. In particular,

Ynest; €7

the random sampling strategy is implemented by solving

Nested
s=1 ULA |A=02
100 ¢=0.1 10°

<) /g -1 M| A =0.05
w0 2 w0

= Nested sz

~ 10~ ULA 10-! _ IO% —02

S = 0.1 — ' v

0 10 20 0 10 20

Sensor index Sensor index
Fig. 3: Interpolation error as a function of virtual sensor index (mark-

ers denote physical sensors) for different noise levels ¢ (left) and
source separations A (right). The interpolation of the nested array is
stable compared to the extrapolation of the ULA.

Viull,e :=argmin,, HGUH2 subject to T (u) € 7;,‘:“”6, where
G € CV*¥ is a random matrix with i.i.d. complex circularly
symmetric Gaussian entries. Given ypes, estimator Y ¢ is
thus a random vector (whereas §fu11, ¢, 18 deterministic). Fig. 4
shows histograms of the interpolation error of ¥ e for 104
random draws of G, which correspond to random points
in 7;,15“6. We consider the nested array and a single noise
realization where ¢ € {0,0.3,1}. For comparison, we also
plot the histogram of the estimation error without the PSD
constraint (error of a random point in 7y, ). When the PSD
constraint is omitted, the empirical error distribution has a
significantly larger mean and variance than when the PSD
constraint is imposed. As the noise level ¢ decreases, the error
distribution in the PSD case concentrates around zero. This is
consistent with Theorem 1, which states that in the absence
of noise (¢ = 0), the feasible set (5) is a singleton. Note that
without the PSD constraint, the interpolation error remains
large even when there is no noise.

——PSD Toeplitz
Hermitian Toeplitz
1

o~ =03
s=0
1072
10 15 20

0 5

100[s=%_03

¢=1

Relative frequency

lytan — Fruell2
Fig. 4: Interpolation error histograms of randomly chosen points in
the set 7;;5‘,5 (black) and Ty, (red). Enforcing the PSD constraint
results in significantly lower mean error and variance, which decrease

as a function of noise level .
5. CONCLUSION

This paper showed that it is possible to successfully interpolate
the missing measurements of the nested array by a convex
feasibility search with a single temporal snapshot, when the
source signals are positive. In particular, the set of Toeplitz
PSD matrices whose first column is consistent with the mea-
surements at the indices of the nested array sensors is a single-
ton. Our simulations demonstrate that the feasible set remains
bounded in case of noisy measurements, and that noisy nested
array interpolation outperforms ULA extrapolation. In future,
we plan to theoretically analyze positive virtual array interpo-
lation in the presence of noise.

nest »
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