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ABSTRACT
Ice-penetrating radar surveys have been conducted across the
Greenland Ice Sheet since the 1960s, producing radargrams
that measure ice thickness and detect the ice sheet’s radios-
tratigraphy. However, these radargrams are relatively under-
explored and not yet fully annotated, mapped, or interpreted
glaciologically. We aim to move towards automatic radar-
gram annotation using deep learning-based methods. To pro-
vide a training set for these methods, we develop a two-step
semi-supervised annotation (TSSA) approach that uses an ex-
isting unsupervised layer annotation (ARESELP) method and
a deep learning-based segmentation approach (U-Net) to de-
tect surface, and bottom reflectors (representing the bedrock)
layers in radargrams. Here we focus on two evaluations of
our approach: 1. Surface and bottom annotations; and 2. Data
augmentation and transfer learning techniques for improving
the performance of deep learning methods. Our study is a
foundation for improving the efficacy of AI-based methods
for auto-annotation of radargrams, where the training set is
generated seamlessly through unsupervised learning.

Index Terms— ice sheet, ice penetrating radar, super-
vised learning, unsupervised learning, deep neural network

1. INTRODUCTION

Ice sheets are important indicators of past and present cli-
mate change. The Greenland Ice Sheet (GrIS) has been a par-
ticular investigation priority, with regular surveys using ice-
penetrating radar since the 1960s [1] producing radargrams
that measure ice thickness and capture its radiostratigraphy.
These radargrams are used to extrapolate age-depth relation-
ships away from deep ice cores, calculate paleo-accumulation
rates and variability, and make inferences concerning histori-
cal and contemporary ice dynamics [2, 3]. However, the full
potential of these radargrams has yet to be realized because
they are not yet fully annotated.

Currently, there are some artificial intelligence (AI)-based
approaches for annotation with promising results for synthetic

data or expert-curated semi-supervised images [4, 5], requir-
ing extensive time from experts for annotation and interpre-
tation [6, 7]. There are relatively few studies exploring the
use of AI techniques to detect ice surface and ice bottom in-
terface in radargrams [8]. One study employed wavelet trans-
forms to reduce speckle noise in radargrams and then con-
ducted training on a deep convolutional neural network using
a dataset comprising 920 images, aiming to detect the surface
and bottom interfaces [9]. Dong et al. [6] adopted a synthetic
approach to generate radargrams, which were subsequently
used for training an AI model.

Here we propose a two-step semi-supervised annota-
tion (TSSA) approach using unsupervised learning and deep
learning-based segmentation methods to move towards au-
tomatic annotation of radargrams. Our approach leverages
an existing unsupervised layer annotation (ARESELP [10])
to provide a training set for the deep learning-based seg-
mentation approach (e.g., U-Net [11]). Our study aims to
demonstrate the efficacy of AI-based methods for the auto-
annotation of radargrams. We focus on two aspects of its
evaluation: 1. Surface and bottom annotations; and 2. Data
augmentation and transfer learning techniques for improving
the performance of deep learning methods.

Fig. 1. Overview of the proposed two-step semi-supervised
technique for the auto-annotation of radargrams.



Fig. 2. Performance values of different segmentation models
across fold with respect to various augmentation techniques

2. METHODS

The overall proposed two-step semi-supervised annotation
technique is shown in Figure 1. The true label for glacio-
logical features (e.g., ice surface and bottom) is generated
by ARESELP [10]. ARESELP is an automatic englacial
annotation technique that relies on the continuous wavelet
transform (CWT)-based peak detection and Hough trans-
form to trace the annotation. In addition, ARESELP avoids
the manual selection of seed points by evaluating the peak
prominence with wavelet coefficients. We employ U-Net,
a widely used deep learning approach for semantic image
segmentation [11], which is a method for labeling each pixel
in an image with its corresponding class. The U-Net archi-
tecture has two main parts: an encoder and a decoder. The
encoder network processes the input image using a series
of convolutional and maximum pooling layers for feature
extraction. These features are then passed to the decoder
network, which uses up-sampling and convolutional layers
to reconstruct the segmentation mask at the original reso-
lution of the input image. We combine the original U-Net
with two different pre-trained models: VGG19 [12] (U-Net
+ VGG19) and Inception (Inception + VGG19) [13]. Both
architectures are built by replacing the encoder part with pre-
trained models while keeping the decoder part. We use the
pre-trained VGG19 model as a feature extractor, capturing
high-level features from the input image, while the decoder
path of the U-Net is responsible for upsampling these features
to generate the final segmentation map. The U-Net+Inception
architecture is built by combining inception blocks with the
convolutional layers of the original U-Net architecture. Par-
allel layers were used only in the feature extraction stage to
reduce the number of parameters and computation time due
to a large network size [13].

Table 1. Mean performance of various segmentation models
under 5CV . Bold indicates the best performance value.
Model Size

of
Data

Augmentation Binary
IoU

Dice
coeffi-
cient

F1

U-Net
425 No

0.812 0.772 0.777
U-Net + VGG19 0.801 0.752 0.761
U-Net + Inception 0.785 0.740 0.740
U-Net

850
Horizontal
flip

0.765 0.700 0.704
U-Net + VGG19 0.796 0.756 0.756
U-Net + Inception 0.810 0.767 0.767
U-Net

1275
Horizontal
flip +
Noise

0.765 0.696 0.701
U-Net + VGG19 0.802 0.761 0.762
U-Net + Inception 0.817 0.780 0.780

3. DATA AND EXPERIMENTAL SETTINGS

The Center for Remote Sensing of Ice Sheets (CReSIS) [1]
acquires, processes (including SAR focusing), and provides
the radargrams. We examined 425 radargrams, each with a
dimension of 1408 × 1024 pixels and one ”color” channel
(grayscale radar amplitude). Additionally, a ”ground truth”
set of ice radar imagery is generated using an unsupervised
model (ARESELP [10]), resulting in images with the same
dimensions as the original radargrams. Given the limited size
of the available dataset, two augmentation techniques are em-
ployed to increase the number of images and assess the po-
tential improvement in model performance. Due to the nature
of the data, a horizontal flip technique and a combination of
horizontal flip with added noise are also applied, resulting in
a total of 850 and 1275 images, respectively.

To train our segmentation models, we use an appropriate
loss function, specifically the dice coefficient loss, optimize
it using the Adam optimizer, and resize images to 512× 512.
The dataset is divided into training, validation, and test sets to
monitor the model’s performance and prevent overfitting. For
model training, we employed a 5-fold cross-validation (5CV )
approach and implemented early stopping techniques to en-
sure the model’s generalizability and avoid the model overfit-
ting. Each model is trained for 200 epochs with a batch size
of 8. To evaluate model performance, we use several metrics,
including binary intersection over union (binary IoU), dice
coefficient, and F1 score. IoU is the ratio of the area overlap
between the predicted segmentation and the true label to the
area of union between the predicted segmentation and the true
label. For binary-class segmentation, the mean image IoU is
determined by averaging the IoU of each class. Dice coeffi-
cient and F1 are equal to 2×, the area of overlap between the
predicted segmentation and the true label, divided by the total
number of pixels in both the predicted segmentation and the
true label images.



Table 2. Example predicted image for 3 segmentation models with horizontal flip and combined horizontal flip + noise.

Model Horizontal flip Horizontal flip + noise
Radargram True label Predicted image Radargram True label Predicted image

U-Net

U-Net +
VGG19

U-Net + In-
ception

4. RESULTS

We implemented three different segmentation models and
data augmentation approaches, resulting in nine combina-
tions of segmentation-data augmentation approaches. Table 2
compares the mean performance for each segmentation model
over 5CV . The results indicate that training the model with
U-Net+Inception along with data augmentation (horizontal
flip and noise added) yields superior results, achieving a per-
formance measure of 0.817 (IoU) as compared to others, such
as U-Net + VGG19 at 0.802 and base U-Net at 0.765. The
U-Net + Inception architecture has the highest performance
scores across all performance metrics. After implementing
data augmentation, the effectiveness of the data is enhanced.
In particular, the horizontal flip + noise technique increases
prediction accuracy, outperforming horizontal flip and no
data augmentation. By incorporating the Inception block in
U-Net, the model can capture local and global context in-
formation, allowing it to better segment the ice surface and
bottom at different scales. Figure 2 denotes the performance
variability of all segmentation techniques relative to each fold
in 5CV . We find that U-Net + Inception has greater vari-
ability (blue in Figure 2) compared to the other two models
(U-Net and U-Net + VGG19).

5. DISCUSSIONS

Incorporating augmented data through horizontal flipping
during the training process of the U-Net + Inception model
demonstrated significantly improved outcomes when com-
pared to training the model exclusively with the original
dataset. We found that U-Net + Inception has increased per-

formance variability across the metrics. Increasing the sample
size through data augmentation can reduce this variability and
provide a more representative sample for every fold [14, 15].
This is also reflected in our findings, where the variance of
all performance metrics for U-Net + Inception with data aug-
mentation is significantly lower (red and green in Figure 2)
than that of U-Net + Inception without data augmentation.

To better understand and interpret the output of each seg-
mentation model, we show an example of predicted images
in Table 2 to qualitatively assess the performance of segmen-
tation models across different data augmentation techniques.
Here we compare the predicted images with ground truth an-
notations from the unsupervised model. It is evident that U-
Net + Inception model with horizontal flip + noise data aug-
mentation technique more accurately reproduces the ice sur-
face and bottom annotations, and demonstrates good object
completeness. On the other hand, the U-Net model with hor-
izontal flip data augmentation technique does not accurately
capture the entire object.

Our study provides a foundational approach for the auto-
annotation of radargrams, with potential applications for
radargrams that have not yet been manually annotated. By
automating the annotation process, we can significantly ac-
celerate the development of a complete database of radios-
tratigraphy for the Greenland ice sheet, which can then be
used to evaluate spatial variation in the multi-millennial-scale
sensitivity of this ice sheet to major climate changes, includ-
ing the last deglaciation.



6. CONCLUSIONS

We present a two-step semi-supervised annotation technique
for the automatic radargram annotation. Our technique starts
with unsupervised layer annotation (ARESELP), which in-
forms a deep learning-based segmentation approach (U-Net)
to detect features. We focused on detecting the surface
and bottom initially. Several pre-trained models and data-
augmentation techniques were compared to better understand
and interpret the model output. We find that the U-Net + In-
ception model with horizontal flip + noise data augmentation
technique was the most effective model. It exhibited excel-
lent object completeness and accuracy. We expect to expand
this approach to also annotate englacial layers, to examine
much larger Greenland datasets, and to incorporate other
transfer learning techniques. We also note that the U-Net
with noise and augmentation declines in performance. In our
future work, we want to explore the various mechanisms of
introducing the noise in the base model to evaluate the U-Net
performance. In general, we observed performance improve-
ments in the augmentation vs. no data augmentation models;
however, empirically this effect may also be enhanced due to
the increased size of the data. Thus, in our future work we
also want to evaluate our models with very large datasets to
study the impact of change in data size. In addition, we want
to explore more state-of-the-art deep learning models, such as
Transformer-based computer vision models, to obtain better
segmentation results.
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