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Abstract

Rising temperatures are associated with reduced body size in many marine species, but the
biological cause and generality of the phenomenon are debated. We derive a predictive model
for body size responses to temperature and oxygen (0O2) changes based on thermal and
geometric constraints on organismal Oz supply and demand across the size spectrum. The model
reproduces three key aspects of the observed patterns of inter-generational size reductions
measured in laboratory warming experiments of diverse aquatic ectotherms (i.e., the
‘Temperature Size Rule’; TSR). First, the inter-specific mean and variability of the TSR are
predicted from species’ temperature sensitivities of hypoxia tolerance, whose non-linearity with
temperature also explains the second TSR pattern - its amplification as temperatures rise. Third,
as body size increases across the tree of life, the impact of growth on O, demand declines while
its benefit to Oz supply rises, decreasing the size-dependence of hypoxia tolerance and requiring
larger animals to contract by a larger fraction to compensate for a thermally-driven rise in
metabolism. Together our results support Oz limitation as the mechanism underlying the TSR,
and provide a physiological basis for projecting ectotherm body size responses to climate
change from microbes to macrofauna. For small species unable to rapidly migrate or evolve
greater hypoxia tolerance, ocean warming and Oz loss in this century are projected to induce
>20% reductions in body mass. Size reductions at higher trophic levels could be even stronger
and more variable, compounding the direct impact of human harvesting on size-structured

ocean food webs.

Significance Statement

Warming of the ocean is predicted to cause a reduction in the body sizes of marine animal
species, but the biological basis for this prediction remains debated. We present a generalized
mechanistic model of oxygen supply and demand that successfully reproduces the magnitude, 57

variation, and temperature and body size dependence of body size responses to temperature 58
change in laboratory experiments, supporting oxygen limitation as their underlying cause. When
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applied to accelerating future climate change scenarios, our results imply that the ‘Temperature

Size Rule’ will cause widely varying responses across the body size spectrum from microbes to 61
macrofauna, impacting the function of size-structured marine food webs.
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Main Text

Introduction

Body size is an important trait for a variety of ecological and biogeochemical processes
from predator-prey dynamics to carbon cycling. Across a wide range of taxa, body size varies
with environmental temperature. From microbes to animals, species tend to grow larger in
colder habitats both when comparing closely related species (1) and different populations
within a species (2). Body size also decreases when temperatures rise on timescales from
seasonal cycles (3) to paleoclimate transitions (4)(5). In natural settings, the role of
temperature may be confounded by co-occurring environmental changes. Thus, a key to
understanding body size changes across thermal clines in nature lies in laboratory rearing
experiments that measure the effect of elevated temperature on the maximum body size of
successive generations. Over 80% of ectotherm species grow to a smaller body size when reared
under warmer conditions, a pattern termed the ‘Temperature Size Rule’ (TSR) (6—8). The
magnitude of the change in maximum body size averages ~4%/°C, but varies strongly among
species of different sizes, and in some cases, across the experimental temperature range for a
single species (Fig. 1A-B; Fig. S1), providing valuable information about possible underlying

mechanisms.

Among aquatic ectotherms, the TSR has been ascribed to limitation by dissolved O (9,
10). According to this hypothesis, a thermally driven increase in O2 demand outpaces any rise in
O2supply, a balance that can be restored by confining growth to a smaller size, resulting in a
larger ratio of respiratory surface area to body volume (9). Consistent with this hypothesis,
compilations of experimental data show that aquatic taxa are more prone to Oz limitation in
warmer water (11)(12)(13) and have a stronger body size response to temperature than
terrestrial taxa (7). However, the impact of body size on Oz limitation itself is ambiguous (14).
For fish, it has been argued that metabolic rates rise more quickly with body size than does gill
surface area, but the relationship of both metrics to body size varies widely between species,
and gill area is only an indirect measure of Oz supply that does not take into account ventilation

and perfusion. Intra-specific studies have revealed both increases and decreases in hypoxia
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tolerance as organisms grow, while comparisons of hypoxia tolerance across species of different
body size show weak and/or insignificant trends (14, 15). Direct experimental support for the
TSR is largely confined to small species (mass < 1 g), leaving its relevance for macrofauna such as

fish highly uncertain and debated (16—18).

To evaluate the potential role of oxygen in generating temperature-size responses, a
quantitative theory of how oxygen supply and demand change with temperature and body size
is needed. Such a quantitative model should account for the apparent generality of the TSR
across diverse taxonomic groups and aquatic environments, and be able to predict the
magnitude of the effect (hereafter, ‘Temperature Size Effect’, TSE), its frequency distribution
among species, its differences across the oceanic temperature range, and within and across size
classes. Here we present such a model, based on the Metabolic Index (®), a measure of the

ratio of Oz supply to demand for marine ectotherms (12, 19-22).

A Mechanistic Model

The potential rate of oxygen supply from the environment and the resting rate of

oxygen demand of an organism both depend on temperature (T) and body mass (B), and the

$ o .
ratio of these rates can be approximated by ® = 4, - pO. -’ #i( - exp +8j—($' o (—(' [ref.
1"y % 1" #

(12)]. Here pO: is the ambient O2 pressure (atm) and A, (atm™) is a species-specific hypoxia
tolerance, defined as the inverse of the lowest pO: that can sustain resting metabolic demand at
a reference temperature (Trs; in K) and body mass (Bres; in g). The parameters, € (unitless) and
E, (eV), define the sensitivity of hypoxia tolerance to body size and temperature, respectively,
traits that also differ among species. Commonly observed allometric scaling of O, demand
(D~B?) and supply (S~B") imply that their ratio (i.e. @) varies with body size to the power

€ = o — d. This exponent is negative when the supply/demand ratio decreases with size (‘smaller
is better’, 0 > ), and positive when it increases with size (‘larger is better’, c > 8). The
temperature sensitivity of @, represented by E, (and the Boltzmann constant, ks), is also the
difference between that of demand and supply. The value of E; is positive when metabolic

demand increases with temperature faster than Oz supply (‘colder is better’), but can be
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negative when mechanisms of Oz supply, such as circulation and ventilation, accelerate with
temperature faster than metabolism, which is less rare in cold water (23). For animals in which
the Metabolic Index declines with both temperature (E, > 0) and body size (¢ < 0), a warming-
induced reduction in the aerobic capacity of the environment could be compensated by a

reduction in body size.

The Metabolic Index traits defining hypoxia tolerance (Ao) and its temperature and
allometric sensitivities (Eo and €) have been estimated across a diverse array of marine species,
using laboratory experiments in which Oz declines to a critical pressure (Pcit) at which supply just
balances resting demand, and ® reaches its resting lower limit of 1. However, metabolism at
rest is insufficient for individual or population survival; to supply energy for growth and
ecological activity, the threshold for long-term habitability must rise to values ranging from 1.5-
6, termed Dcit, corresponding to species-specific ratios of metabolic rates under sustained

activity relative to the resting state (21).

For an organism in an environment where @ is already at the lower limit for active, long-
term survival (0=®cit), a reduction in ® due to warming (if Eo > 0) could be compensated by

reduced body size (if €<0). For a rise in temperature, AT, the fractional change in the

+%¢
&y (&

environment’s capacity to meet an organism’s O, demand (A®D/®) is equal to AT (Fig. 1C;

horizontal red arrow). The same fractional change in ®@ can be induced by a change in body size
of magnitude sj (Fig. 1C; vertical red arrow). Maintaining constant @ equates these
guantities, yielding a simple expression for the fractional change in body size per degree of

_ %

warming, the ‘Temperature Size Effect’: TSE = ey ($(& (Fig. 1C). Accordingly, size
) %

reductions should get stronger as either £, becomes more strongly positive or as € becomes less
strongly negative. As the allometry of Oz supply and demand converge, an increasingly large

change in body size is needed to compensate for a given reduction in ®.

In general, ambient pO: is greater than the minimum required for sustained survival, i.e.
O > Dit, allowing rates of activity to approach maximum physiologically achievable levels.
Active metabolic rates in fish peak at ~3-12 times those at rest (24), but only when @ is likewise

3-12, a value we denote by ®max. A fraction (f) of the warming-induced reduction in @ may be
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accommodated by curtailing the highest rates of activity, partially alleviating the need for body
size reduction (Fig. 1D). In such cases, the TSE is simply scaled by 1-f. Moreover, in natural

environments, temperature changes are usually accompanied by changes in pO2 that would

ameliorate (if pOz increases with T, i.e. % > 0) or exacerbate (if pO2 decreases under

warming, % < 0) the thermal decline in ®. These two modifications yield a simple predictive

equation for the TSE (for a detailed mathematical derivation, see S/ Text):

A (43) % " AO0lg

In principle, this model allows the TSE measured in laboratory rearing experiments
across multiple generations to be predicted from short-term respirometry data. In practice,
experimentally derived TSE and respirometry are rarely available for the same species. However,
the model can be tested statistically by comparing frequency distributions and trends in
observed TSE values to those predicted from distributions of Metabolic Index parameters. We
compiled datasets from published literature to estimate the key parameters (E, €, and f) and
compared the model-predicted TSE to experimental values (see Methods). We also evaluated
the relationship between allometric exponents (€ = ¢ — ) using values derived from both
ontogenetic (within-species) and phylogenetic (between-species) variation in Oz supply and
demand. All reported relationships are statistically significant based on tests and statistics

described in the referenced Supplemental Figures and Table S2.

Trait-based predictions

The temperature sensitivity of the Metabolic Index varies widely across species, from E,
=-0.2to+1.1eV (19, 21). A preponderance of positive values indicates that the O

supply/demand ratio of most species decreases with temperature (‘colder is better’) yielding a

Y
&op (%

factorial loss of aerobic capacity ( ) from warming (Fig. 2A), whose magnitude and variability
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(inter-quartile range: 2.6%-7.9%/°C) is comparable to factorial size reductions observed in
laboratory data (Fig. S1). The decline of hypoxia tolerance from warming also tends to become
more acute as temperatures rise so that E, increases with temperature (21)(Fig. S2A). In some
species, hypoxia tolerance has an optimum temperature (23, 25), below which hypoxia
tolerance also decreases in cold water (‘warmer is better’, E,<0). However, for large
temperature increases applicable to rearing experiments, most species will face a substantial

loss of aerobic scope as measured by the median 4.8%/°C decline in ®.

If the initial @ in an environment is above @it then the total loss of aerobic capacity can
be partly accommodated by simply decreasing peak activity levels, thus buffering populations
from the need to reduce body size. To evaluate this activity buffer factor (f), we compared the
values of @it that define the lower limits of habitability, to the highest values (®max) found in
each species geographic range (i.e. f = 1 - ®cit /Omax; see Methods). Across all 37 species with
both distributional and trait data, we find that these minimum thresholds for habitability are on
average ~% as large as the highest values encountered in the species geographic range, with
variation not related to body size (Fig. 2B, Fig. S2B). The value of ®i: has also been shown to
correspond to an energy provisioning nearly half that required for a species to achieve its
maximum metabolic rate (21). These findings both imply that for most species aerobic scope
can be reduced to ~50% of that needed for peak performance before the threshold for survival,

Dcrit, is reached.

As organisms grow, their hypoxia tolerance can change but the ontogenetic relationship
between hypoxia tolerance and body size (€) is less well established than its variation with
temperature (Eo). Among the 14 species for which Pcit was measured across at least a 2-fold
range of body size (Table S1), larger individuals exhibited slightly lower tolerance to hypoxia,
indicating that O. demand increased with size slightly faster than did O supply. Indeed, the
mean ontogenetic exponent across species (Fig. 2C) is significantly below zero (¢ =-0.12; Table
S2), and is also significantly correlated with body size (Fig. S2C; Table S2), increasing from the
most negative exponents among the smallest species, to values near zero among larger-bodied

animals (Fig. 2C, Fig. S2C).
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The frequencies of these key physiological traits (Eo, f, and €) can be used to predict the
magnitude and variability of the TSE observed across species, body sizes, and temperatures.
Monte Carlo simulations across species traits yield a frequency distribution of TSE (Fig. 3A, lines)
that is statistically indistinguishable from experimental values (Fig. 3A, bars; Table S2). The range
of TSE magnitudes due to variability in all traits (Fig. 3A, solid line) derives primarily from the
inter-specific differences in E, (Fig. 3A, dashed line). While the variability in TSE magnitude
among species can largely be accounted for by inter-specific variations in the temperature
sensitivity of hypoxia tolerance (Eo), smaller variations in TSE across temperature and body size

provide further tests of the trait-based model.

Laboratory data reveal a significantly stronger TSE on the warm side of the median
experimental temperature than on the cold side (mean ATSE 2.5%/°C; Table S2). This difference
is consistent with changes in the hypoxia temperature sensitivity, which is also greater in
warmer than in colder water (mean AE, = 0.2 eV; Fig. S2A; Table S2) (21). Moreover, the distinct
temperature sensitivities on the warm versus cool side of median experimental temperatures
predict significantly different distributions of the TSE that are each indistinguishable from the
corresponding TSE observations under both warm and cool conditions (Fig. 2C, Table S2). Thus,
the tendency of rising temperature to induce an accelerated decline in hypoxia tolerance also

leads to ever stronger reductions in body size across generations.

Compilations of empirical TSE have also revealed stronger size reductions with warming
among larger aquatic ectotherm species (7). The model reproduces the observed trend toward
increasing TSE magnitude with increasing size (Fig. 4). This trend cannot be explained by a size
dependence of the temperature sensitivity (Eo,) or the aerobic buffer (f), which have no
significant relationship to body size among investigated species (Fig. 2). Nor can it be attributed
to an Oz supply-to-demand that scales isometrically with surface area versus volume, as such
geometric arguments imply a constant €, and thus a constant TSE across the size range.

Instead, the increased TSE among larger species requires that the allometric scaling of hypoxia
tolerance (i.e., €) itself varies with body size, as observed here (Fig. S2). As the Metabolic Index
becomes less size dependent for larger species, and the absolute values of € become smaller, a

larger change in body size is needed to restore the loss of aerobic energy balance.
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In summary, the widely variable TSE across species primarily reflects the diverse
temperature sensitivities of hypoxia tolerance, whose non-linear temperature dependence also
explains the increase in TSE with warming. In contrast, the observed increase in TSE with body
size is driven by a declining size-dependence of hypoxia tolerance, which may be achieved either
by O, demand becoming less size dependent (6 getting smaller) or O supply becoming more
dependent on size (o getting larger). To diagnose the underlying causes of convergent trends in
the body size dependence of Oz supply and demand rates, we developed a model that combines
theoretical and empirical allometric scaling across the full body size spectrum from microbes to

large animals.

Allometry of Hypoxia tolerance

Across multiple phyla, metabolic rates are related to body size with an approximate power
law, 38 (26)(27) (Fig. 5A). However, the exponent itself varies with body size (28), declining from

d~1 for small protists to 8~3/4 for large metazoans (Fig. 5B). These phylogenetic slopes (3phy) are
consistent with the ontogenetic slopes (dont) measured in various fish species (median Sont =

0.81, inter-quartile range 0.74-0.91) although the latter vary widely (29)(24).

The allometric scaling of Oz supply (o) is not directly measurable but can be evaluated
indirectly from theory and respirometry data. At the smallest end of the size spectrum, aerobic
microbes obtain Oz through the body surface area, which scales with B3, while the boundary
layer thickness over which O2 must diffuse also increases with size (BY/3), so that the diffusive
supply should vary as ¢~ 1/3. Among macrofauna, the allometry of Oz supply evaluated from
inter-specific respirometry data (see Methods) yields a value of Gpny=0.66 (C.l. 0.57-0.74, Fig.
S3) consistent with that derived from indirect measures of Oz supply based on gill gecometry

across species (ophy=0.71; ref (30))(Fig. 5A,B).

As body size increases from unicells to macrofauna, the decrease in & and the increase
in o would each contribute to € becoming less negative (since e= ¢ — 8), such that hypoxia
tolerance becomes less size-dependent in larger species. This trend is qualitatively consistent

with the limited available data on the body-size dependence of hypoxia tolerance (Fig. 2C, S2C).

10



265
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289
290
2901

292
293

However, the dearth of direct estimates for both ¢ and € at body sizes relevant to the TSE

observations (~1 «xg < B < ~1 g) precludes a quantitative model-data comparison.

We modeled the transition from the weak body-size dependence of O2 supply expected
for microbes (o ~0.3) to the strong size dependence inferred among large animals (6~0.7), by
combining theoretical scaling with empirical constraints across the entire range of body sizes
(Methods and S| Text). Despite variation across >10 orders of magnitude in body size, fluid flow
at the sites of Oz exchange remains laminar, allowing mass transfer rates to be derived from
diffusive boundary layer scaling (31). The model predicts an increase in ¢ with body size, from &
=1/3 for unicells to the empirically constrained ¢ ~0.7 at the largest sizes (Fig. 5B, blue line).
This transition arises from an increase in the number, dimensions, and fluid velocity at the sites
of 02 exchange, which all increase with body size (for details, see Methods). The dependence of
these parameters on body size is consistent with available compilations of gill morphometrics
(Fig. S4) and yields a o largely independent of temperature (Fig. S5). The free parameters that
best match the directly measured ¢ data independently place the largest shift in ¢ at body
masses of 0.1-10 g. Interestingly, this size range corresponds to the transition from animals that

extract Oz via their skin to those having gills or other respiratory organs.

Combining the allometric exponents of Oz supply and demand yields a prediction for
how hypoxia tolerance varies with body size (g), across organisms spanning >10 orders of
magnitude in body mass. Among unicellular microbes, modeled ¢ takes on large, negative
values, due to both a relatively high 5 and small . With increasing body mass, modeled ¢
becomes less negative, approaching 0, driven by both the declining size-dependence of O:
demand (i.e. 8) and by the increasing size-dependence of Oz supply (i.e. o) of larger animals. The
predicted € values are consistent with independent empirical estimates from two microbial taxa
(ciliates and dinoflagellates; Fig. 5C, triangles), and a planktonic copepod in the size range of the
TSR experiments (Calanus finmarchicus; Fig. 3C, grey circle), the sole species for which TSE, Eo,
and f are all available (see Methods). Among larger species, modeled variations in € reproduce

the trends observed in the direct ontogenetic estimates from laboratory respirometry (Fig. 5C).

The ontogenetic change in hypoxia tolerance averaged across the available species (gont=-

0.12) matches that derived from phylogenetic variation, as estimated from body-size

11
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dependence of temperature-normalized hypoxia tolerance (Ao) across species (gphy™-0.13 +/-
0.18 s.e.; Fig. S3C). This finding suggests that allometric scaling derived from interspecific
relationships approximates mean ontogenetic effects averaged across species. In the only
available study of hypoxia tolerance spanning multiple orders of magnitude in body size within a
single species (Red Drum; (32)), measured Pcit reveals a decline in hypoxia tolerance with size
(e<0) that is significantly stronger for smaller animals (¢=-0.32 +/- 0.1 s.e. for B<10g) than for
larger ones (e=-0.04 +/- 0.02 s.e. for B>10g) (Fig. 5C; thin black dashed line). Similarly, the
phylogenetic variation in temperature-normalized hypoxia tolerance (A,) indicates a slightly
weaker allometric dependence when restricted to only the larger size classes (gpny™~-0.08 for B >
1 g; Fig. S3C). The available data thus support consistent phylogenetic and ontogenetic trends in
€ across the size spectrum, mirroring the findings for metabolic rates (8ont™0phy). Despite these
broad trends, allometric scaling exponents can be highly variable within a given size class,
including cases with ontogenetic increases in hypoxia tolerances (¢>0) among larger animals

(Fig. 2C;14).

Implications for Climate and Food Webs

Using this empirically validated model, we estimated the impact of climate changes in
ocean temperature and O projected for the end of the century by Earth System Models if
greenhouse gas emissions continue to accelerate (Fig. 6). For a typical temperature sensitivity
(Eo=0.4eV) and allometric exponent of € = -0.3 expected for small-bodied species at the base of
the food web (B~1g), warming and deoxygenation of the upper ocean would yield reductions in
body mass of 10-30%, with larger magnitudes in northern oceans where warming and Oz loss

are stronger (Fig. 6A).

Body size reductions may ameliorate the loss of aerobic habitat and thus the risk of
extirpation (33). However, if warming proceeds unchecked and the efficacy of adaptive or
migratory strategies is limited, total size changes may eventually exceed some species’
anatomically or ecologically viable size limits, resulting in extinction (Fig. 6B-C). The magnitude
of climate change required to precipitate such outcomes varies strongly across the range of

measurable species traits. Large fractional size reductions are more likely for species whose

12
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hypoxia tolerances are only weakly size dependent, a condition that characterizes most

macrofauna (Fig. 6B), or for those species more sensitive to temperature (Fig. 6C).

Although the mechanism underlying these reductions is aerobic metabolism, the
dominant driver of size reductions within this century is the rise of temperature and not the
decline of pO2 (Fig. S6). On the multi-generational time-scales of anthropogenic climate trends,
adaptive evolution of traits could ameliorate these predictions. The complete model derivation
(Methods) includes the potential evolution of hypoxia-related traits (S/ Text), but the

experimental data needed to estimate those responses is currently lacking.

Conclusions

The consistency between our mechanistic model and independent laboratory
observations of the magnitude, variability and trends in TSE provides strong support for the
hypothesis that the temperature and size dependence of hypoxia tolerance is the primary driver
of this wide-spread phenomenon. The size dependence of hypoxia tolerance could act through
direct Oz limitation of growth (a proximate cause) or via the evolution of thermal reaction norms
that avoid such limitation (i.e. an ultimate cause) (10). The robust and consistent trends in
allometric scaling of Oz supply, O2 demand and the resulting hypoxia tolerance, revealed across
the full spectrum of body sizes, have broad implications for body size responses to temperature,

which extend beyond the scope of direct experimental TSE data.

Our model helps reconcile divergent views on whether a warming ocean will cause a
shrinking of fish and other macrofauna for which the TSE has not been directly observed. The
core assumption of the predicted shrinkage, that O demand increases with body size faster
than does O supply (17)(16), has been questioned on the physiological grounds that £~0
(18)(14), implying that growth is not Oz limited. Our analysis supports both contentions, by
demonstrating that while Oz limitation is prevalent among smaller species (<0), it gradually
gives way to close allometric coupling of supply and demand (¢~0) among larger bodied animals.
However, the model predicts, and available data support, that as € rises toward zero the size
response to temperature becomes stronger, not weaker. Thus, species whose Oz supply and

demand are closely but not exactly balanced may still exhibit an aerobically driven reduction of

13
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body size in response warming or Oz loss, unless superseded by other physiological or

anatomical constraints.

The physiological responses of animal body size to ocean warming and deoxygenation
will also be modulated by ecological processes. The ability of some populations to avoid reduced
@ by tracking preferred thermal and aerobic conditions through migration may make body size
reductions a less important response to climate change (20) (34), and may be more feasible for
larger animals. However, even species with strong migratory capacity will likely feed on prey
species of smaller size, impacting body size indirectly through the food web. Changes in the
body mass of individual organisms summed across species also have the potential to directly
alter the biomass of the entire food web, especially at higher trophic levels. Interestingly, global
biomass losses of a comparable magnitude (~5%/°C) and with a similar trophic amplification
have been projected by ecosystem models due to reduced primary productivity (35), but a

contribution of the TSE to such projections remains to be quantified.

Our model predictions are also consistent with fossil evidence indicating preferential
extinction of larger species, and of size reduction within survivors, across past extinction events
associated with global warming and ocean deoxygenation (5, 36—39). The wide variability in
temperature sensitivity of hypoxia tolerance will modulate this pattern (Fig. 6C), allowing some
large species to persist and smaller species to perish, potentially underpinning the variation in
extinction seen within fossil size classes. Whether or not extinction thresholds are crossed this
century, the exponential nature of size responses and their disproportionate impact on larger
animals implies an early and substantial contraction and reorganization of size-structured
marine food-webs and the carbon cycling they affect. This indirect climate impact would
exacerbate ongoing anthropogenic selection against large marine fauna due to hunting and
overfishing (40)(41) that has already left detectable fingerprints on marine ecosystems over the

past century.
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Materials and Methods

Predictive model

To derive the relationship between body size, environmental change, and species traits, we
begin with the Metabolic Index (®) defined as the ratio between rates of potential Oz supply (S)

driven by its ambient pressure (pO2) and the resting oxygen demand by the organism (D) both of

$
which depend on temperature (T) and body mass (B): ® = % =A, -pO-- ’##—( .
) 1"#
exp 1 '_(-. As detailed in earlier work ((12)(19)(21)), Ao represents a species’ hypoxia

&y (0 (1w
tolerance (atm™), which varies with body mass (B) according to a power law, and exponentially
with inverse temperature (Arrhenius function) with allometric and thermal sensitivities, € and

Eo, respectively.

Taking the logarithmic derivative of @ with respect to temperature, and rearranging terms, we
derive a predictive equation (see Sl Text for details) for the intergenerational response of body

size to temperature:

TSE = 5<() _ (+3) g % =>(01g), '_9:;<?$ + C:.%g;:

:( & J&%(& 2 ( - ¢ _(

where the Temperature Size Effect (TSE) is defined as the fractional change in body mass per
degree of temperature, a common experimental metric. Absent evolutionary changes, which
are quantified by the last term on the RHS, the parameters needed to predict the TSE can be
obtained from respirometry (21), with the exception of the buffer factor (f), which is estimated

from biogeographic data (see below).

Species traits

We used laboratory observations of body mass across a range of experimental temperatures
compiled by ref. (7). To maximize data, we included both freshwater and marine species, which
show similar temperature-size responses. The TSE can be measured as the slope of the
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relationship between the natural log of body mass versus temperature. However, some species
exhibit a non-linear relationship (Figure S1), implying that the TSE itself varies in strength across
the temperature range. To account for this non-linearity, we instead fit In(B) to a quadratic
function of temperature, the lowest order polynomial that allows for estimation of significant
differences in TSE between cooler and warmer waters. We discard species for which this
guadratic curve accounted for less than 25% of the variance in the data (i.e., Pearson correlation
coefficient, r* < 0.25), yielding 33 species. The TSE at each temperature is then computed from
the fractional change in B at each temperature, i.e., the slope of the In(B) versus T curve. The
histogram of TSE estimated at each temperature for all species is shown as the number of
samples (Fig. 3A, bars), while a single TSE for each species was computed from the intra-specific

mean value across all temperatures (Fig. 4, markers).

To predict the magnitude and variance of TSE, we used data recently compiled on the
temperature and size dependence of the Oz supply and demand of marine species (21).
Because the critical threshold for Oz limitation at rest is given by the ratio of Oz supply and
demand (i.e., @), rather than by either rate individually, the most useful parameters are those
that measure a threshold value of this ratio (i.e., the critical oxygen threshold, Pcit) versus either
body size (€) or versus temperature (Eo). We obtained estimates of E, from 72 species, while our
literature search for data to estimate ¢ yielded values for 14 species. To facilitate comparison
the TSE measurements on smaller body sizes, we used the species estimates of ¢ to calibrate a

theoretical model that spans the full range of body mass (see below).

To evaluate the aerobic activity buffer, which can be approximated as f ~ 1 — Z';O(see S|
* +'

Text), we determined the upper and lower limits of @ from each species habitat for which both
Metabolic Index traits and a well-sampled geographic range are available. The geographic range
is based on occurrences reported in the OBIS database (www.obis.org) and its matching to
hydrographic conditions in the World Ocean Atlas is described in (21). Temperatures in TSE
experiments span similar gradients to those found across each species’ natural range (Fig. 1a
insets, Fig. S1), indicating that the buffer factor derived from biogeographic data should also be

applicable in a laboratory setting. For any given species, TSE experiments may be initiated
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above or below the temperature at which ®max is achieved. However, we see no reason to
expect a systematic bias across all species, and therefore take the mean value of the slope of
Dqrit vs Dmax a representative value of f applicable to all species. Indeed, the value of f based on
ratios of @it/ DPmax yields similar results to the ratio of sustained to maximum metabolic rates
(SusMR/MMR) analyzed by ref. (21), indicating that the maximum @ in a species’ habitat is that
which supports its MMR, an outcome that may reflect evolutionary selection for Oz supply

capacity (15).
O: Supply allometry

Across body sizes from unicells to large fish, we can compute the Oz supply rate (S) using a

model of diffusive boundary layer scaling (see SI Text):

S =[4n k*p0O-] Sh- 13- ng

Body size influences this supply rate explicitly through the number (ne) and size of exchange
elements (re) and implicitly through the effect of the Sherwood number (Sh, see Sl Text), which
depends on re as well as on the fluid velocity at the exchange element (Ue). We assume that
each of these factors (re, Ue, ne) scales with biomass according to power law relationships: ng =
nmB<-; Ug= u!BC-; r g= r BP-. The allometric exponent of Oz supply follows from the
exponents in the power laws relating body size to the linear size (rz), number (n:), and fluid flow
(uz1) at exchange element sites. The values of these parameters giving the best fit to

€ observations were found to be (r:;=0.25, n; =0.06, and u:=0.73), which compare favorably to
empirical estimates of r1=0.27 based on lamellar area (Fig. S3d,e), and number of secondary
lamellae among multiple species of sharks (n:=0.04; (42)). The velocity exponent, u:~3/4, implies
that flow speed at the gill and whole organism metabolic rate increase at similar rates with body
size, a finding that appears sensible but awaits empirical testing by new measurements and/or

new compilations of existing data (see SI Text).

Climate projections
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We used Earth System Model projections of future climate states to compute changes in
temperature and pO: at the end of the 21 century. The model runs were performed for the
fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and
results archived for the corresponding Climate Model Intercomparison Project (CMIP5). All
model fields were interpolated to 1° latitude/longitude grid with 33 depth levels for analysis.
Climate anomaly fields for temperature and Oz were constructed by subtracting monthly
climatologies in 2071-2100 from monthly values in 1971-2000 for each model under the
greenhouse gas emission scenario RCP8.5. To compute fractional change in pO: (per Eqn 1), the
p0O2 anomaly fields were divided in each grid cell by the climatological values in the 2018 World

Ocean Atlas.
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Figure Legends

Figure 1. Effect of temperature on body size. (A-B) Body size (log) versus temperature from
rearing experiments for 2 species in data compilation used for model analysis (see also Fig. S1).
The log(B) versus temperature data is fit with a quadratic curve (dashed) whose local slope is the
fractional change in body size per degree (i.e. TSE, %/°C). The two species of zooplankton (43,
44) illustrate the tendency for the TSE to be stronger in warmer water (panel B), and among
larger species (panel B vs A). Bars indicate the number of times reported species locations map
to each temperature bin in a global climatology (see Methods). (B-C) Schematic model based on
the Metabolic Index (isolines) of a hypothetical species with E;>0 and €<0 (see Eqn. 1). If
tolerance for low O, declines at higher T, then warming reduces the Metabolic Index (horizontal
arrows), which will reduce fitness and survival. If tolerance for low Oz declines with size, then
fitness can be restored by shrinking (vertical arrows). The magnitude of TSE for organisms
already at their aerobic survival limit (C) will be greater than for those (D) that can
accommodate a fraction, f, of the reduction in @ by curtailing activity either prior to reducing
body size (orange arrows) or simultaneous with it (purple arrow), with the same average size
change per °C.
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Figure 2. Empirically derived components of predictive model for TSE. (A) Fractional change in
Metabolic Index per degree of temperature change among 72 species for which E, has been
measured. (B) Activity buffer (f), estimated from the minimum and maximum values of @ (i.e.
Dcit and Dmax, respectively) within each species’ current geographic range as f = 1 - @crit /DPmax
(see Methods). (C) Hypoxia tolerance versus body size for 14 species, measured as the
allometric exponent (g) for the body size dependence of Pi:. All histograms colored according

to median experimental body mass (logio, grams) of each species.

Figure 3. Observed versus predicted Temperature Size Effect and its variations across the
temperature range. The relative change in body size per degree of temperature change (TSE,
%/°C) measured in laboratory rearing experiments varies widely among species and across
temperature (bars; left axis). The observed distribution is statistically indistinguishable (Table S2)
from that predicted by Metabolic Index model (lines; right axis) based on the diversity of
physiological traits (solid curve; see Fig. 2), but driven primarily by the temperature sensitivity of
hypoxia tolerance E,, (dashed curve). Within distinct temperature ranges, the magnitudes of
TSE (quartile markers on horizontal line segments) are significantly higher in water warmer than
the median experimental temperature (red bars and lines) than in waters below that
temperature (blue bars and lines), in both observations (solid line segments) and in model
predictions (dashed line segments). The Metabolic Index model reproduces the direction and
magnitude of this difference (Table S2) because the temperature sensitivity of hypoxia tolerance
is significantly greater at warmer temperatures (Table S2).

Figure 4. Observed and predicted Temperature Size Effect and its variations across body size
range. At each body size, variance in TSE is computed from the variability in species traits (Eo, f,
and g) via Monte Carlo simulation. Model predicts a non-linear increase in both the mean
magnitude and variation in TSE for larger body sizes because increases € toward zero at larger
sizes and TSE~1/«. Error bars on the observations represent the standard deviation of TSE across

the range of experimental temperatures (e.g. Fig. S1).

Figure 5. Variation of Oz supply and demand, and their allometric scalings, across body sizes
from unicells to macrofauna. (A) Resting metabolic 0. demand (aw; red points) and Oz supply
rate coefficients (as; blue) estimated at a reference body size and temperature from
respirometry (solid; (21)) and from gill morphometric data (open; (30)). (B) The allometric
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exponents characterizing variations in supply and demand versus size are derived from slopes of
the log-log plot (panel A), with ontogenetic estimates within-species (markers). (C) The
difference between allometry of supply and demand versus body size using the individual curves
(panel B) with empirical estimates (see Methods) from animals and unicells (markers). Markers
outlined in black indicate estimates based directly on measured Pcit, those outlined in gray are
indirect estimates (unicells and C. finmarchicus; see Methods), and larger circles connected by
dotted line are separate ¢ estimates from the same species (Red drum) where Pcir was
measured across ~3 orders magnitude in body size (32). Phylogenetic exponents from Perit
trends with body size (i.e. gphy; stars) also increase when estimated across only larger species
(B>1g), relative to estimates from all available species (see Fig. S3).

Figure 6. Change in body size (%) over this century based on mechanistic data-constrained
model, and projected climate trends in temperature and O, from Earth System Models. A)
Fractional change in body size for a 1g water breather with €=-0.3 and temperature sensitivity of
E.=0.4 eV, for ocean climate changes in 2100 CE over the upper 500m. B-C) Changes in body
size as temperatures rise, across a range of traits governing the (B) allometry and (C)
temperature sensitivity of hypoxia tolerance. The body sizes in panel B correspond to
representative species within the dataset (silhouettes) that exhibit distinct allometric exponents

(€) as shown in Fig. 2C and Fig. 5C.
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