
S����P��������: Mitigating Temporal Algorithmic
Complexity A�acks using Adversarial Scheduling

Nirav Atre, Hugo Sadok, Erica Chiang, WeinaWang, Justine Sherry
Carnegie Mellon University

Abstract
Denial-of-Service (DoS) attacks are the bane of public-facing

network deployments. Algorithmic complexity attacks (ACAs) are
a class of DoS attacks where an attacker uses a small amount of
adversarial tra�c to induce a large amount of work in the target
system, pushing the system into overload and causing it to droppack-
ets from innocent users. ACAs are particularly dangerous because,
unlike volumetric DoS attacks, ACAs don’t require a signi�cant
network bandwidth investment from the attacker. Today, network
functions (NFs) on the Internet must be designed and engineered
on a case-by-case basis to mitigate the debilitating impact of ACAs.
Further, the resulting designs tend to be overly conservative in their
attack mitigation strategy, limiting the innocent tra�c that the NF
can serve under common-case operation.

In this work, we propose amore general framework to make NFs
resilient to ACAs. Our framework, S����P��������, uses the NF’s
scheduler to mitigate the impact of ACAs using a very traditional
scheduling algorithm:Weighted Shortest Job First (WSJF). To eval-
uate S����P��������, we propose a new metric of vulnerability
called the Displacement Factor (DF), which quanti�es the ‘harm per
unit e�ort’ that an adversary can in�ict on the system.We provide
novel, adversarial analysis of WSJF and show that any system us-
ing this policy has a worst-case DF of only a small constant, where
traditional schedulers place no upper bound on the DF. Illustrating
that S����P�������� is not only theoretically, but practically ro-
bust, we integrate S����P�������� into an open source intrusion
detection system (IDS). Under simulated attack, the S����P������
���-augmented IDS su�ers 90-99% lower innocent tra�c loss than
the original system.
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1 Introduction
Network functions are vulnerable targets for algorithmic complex-

ity attacks (ACAs) [12]. With an ACA, an attacker crafts a carefully-
designed input that requires a small amount of network and compute
resources for the attacker to produce, and yet consumes a large amount
of compute resources at the target system. Given a su�cient request
rate, an attacker can drive the victim into overload, causing it to
drop requests from the innocent, intended users of the service. ACAs
are especially dangerous when compared to traditional ‘volumetric’
Denial-of-Service (DoS) attacks. In a volumetric attack, an attacker
must invest the necessary resources to, e.g., produce 100M pack-
ets/sec in order to overload an intrusion detection system (IDS)
which is provisioned to serve 100M packets/sec; conversely, with an
ACA, an attacker with only modest resources can overload a much
more powerful service (say, producing only 1Mpps to overwhelm
the same 100Mpps-provisioned IDS).

In this paper, we evaluate ACAs via a novel measure of vulner-
ability called theDisplacement Factor (DF). The key idea behind the
DF is tomeasure the ratio of innocent tra�c displaced by an attacker
(‘harm’) to the attacker’s own bandwidth investment (‘e�ort’). A
DF of 0 implies that no innocent tra�c is ever displaced, and a DF
of 100 implies that for every 1 bps of attack tra�c, 100 bps of inno-
cent tra�c are displaced. A 2012 published attack on IDS regular
expression engines achieved a DF of 8 [1], and a 2019 published
attack on Open vSwitch exploiting the Tuple-Space-Search (TSS)
algorithm [13] achieved DFs as high as 12,000!

As we will discuss in §2, ACAs are particularly challenging to
mitigate inNFs. In order to be resilient againstACAs, state-of-the-art
solutions (a) must be designed on a case-by-case basis, and (b) limit
the tra�c that theNF can serveundernormal operation. For example,
it is common practice for regular-expression based DPI engines to
limit how many states in the regular expression DFA a particular
packet or �ow may traverse [48]. This prevents an attacker from
wasting compute cycles, thereby reducing theDF. However, this also
prevents the network operator from deploying particularly complex
rules, limiting the NF’s ability to serve legitimate tra�c which tra-
verses a large number of DFA states, even under normal operation
(i.e., when theNF is operating belowmaximum capacity and is easily
able to service such tra�c).

In this paper we ask: is there a general approach for mitigating
algorithmic complexity attacks onNFswhich doesnot limit the types
of rules and tra�c that can be serviced under normal operation?

Weare inspiredbygeneral solutions toACAs in the traditional sys-
tems literature as we aim towards a general – rather than NF-by-NF
– solution. In cluster-compute frameworks [27, 34, 51] and operating
systems [8, 32], ACAs are less of a concern because performance
isolation techniques prevent the resource usage of one user from
impacting that of another. In these systems, the scheduler divides
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compute time evenly between users, and even if a user submits an ex-
pensive job for servicing, other users still receive their ‘fair share’ of
service time. Unfortunately, as we discuss in §4.2, in the networking
setting, a Fair Queueing (FQ) [17] schedulerwith this same approach
can be easily exploited by an attacker who generates tra�c which
appears as if it is coming frommultiple users, fooling the scheduler
into allocating more service time to the attacker.

We �nd that a ‘familiar friend’ from the scheduling literature is,
surprisingly, an e�ective mitigation strategy against ACAs. Weight-
ed Shortest Job First (WSJF) [11] naturally discards costly packets
when the system is overloaded, yet under normal operation, it will
eventually serve all packets, even those with lengthy service times.

WhileWSJF is an old algorithm, our analysis of WSJF in the con-
text of ACAs is novel. In §4.4, we prove that WSJF enforces a DF with
an upper bound of 1, regardless of the DF of the underlying algorithms,
the load on the server, and the parameters of the innocent packet and
job size distributions. In other words, WSJF ensures that, in order to
displace 1 bps of innocent tra�c, the adversary must inject at least
1 bps of their own bandwidth into the attack, signi�cantly mitigat-
ing the impact of ACAs. In comparison, traditional First Come First
Served (FCFS) and Fair Queueing (FQ) schedulers do not place any
upper bound on the DF.

We bring our theoretical results into practice by building S�����
P��������, an implementation ofWSJF for NFs that we integrate
into an open-source intrusion detection system (IDS). Doing so re-
quired addressing several pragmatic challenges. First,WSJF assumes
that per-packet processing times are known a priori, which may not
be practical in the context of real data-structures and algorithms.
Second, the theory behind S����P�������� assumes packets can
be arbitrarily reordered, but we know that TCP performs poorly in
the face of reordering. Finally, S����P�������� requires a prior-
ity queue to schedule inWSJF order – exposing yet another attack
surface. We describe our implementation of the S����P��������
scheduler in the context of the Pigasus IDS [58] and discuss how it
addresses all of these challenges in §5.

Then, in §6, we evaluate S����P�������� both in simulation and
our empirical testbed.1 Although S����P�������� upper-bounds
the DF to 1, in practice, we see a worst-case DF of at most 0.4 – that
is, to displace 1 bps of innocent tra�c, the attacker must invest at
least 2.5 bps of their own bandwidth into the attack – where previ-
ously the DF had been over 100. Hence, compared to the baseline
IDS implementation, the S����P��������-augmented IDS yields
90-99% lower loss of innocent tra�c under a worst-case attack.

The prospect of using adversarial scheduling to mitigate ACAs
opens up several interesting theoretical and practical questions, and
weare only able to answer someof them. Perhaps themost important
open questions pertain to how to predict job sizes a priori; S����P���
������ultimately reliesonheuristics for this task,butwebelieve that
a thorough analysis of e�cient, adversary-proof heuristics remains
ripe for exploration. Thus, in §7, we describe current limitations and
various open questions (regarding heuristics, fairness, etc.). Finally,
we describe related work in §8, and conclude in §9.

2 Background andMotivation
Algorithmic complexity attacks target a system’s underlying al-

gorithms and/or data-structures, using specially-crafted inputs to
1Artifacts are available at https://github.com/cmu-snap/SurgeProtector

trigger the system’s worst-case behavior [1, 4, 12, 47]. While the
attacker’s input pattern(s) and the resulting behavior may vary from
design to design, the ultimate goal of these attacks is the same: to
overload the systemwith large amounts of wasteful work, inhibiting
its ability to serve innocent user tra�c.2 The key di�erence between
anACAanda traditional volumetricDoS attack is that in anACA, the
attacker can induce the system to performa large amount ofwasteful
work by introducing a small input that costs little to produce. In a
volumetric DoS attack, the attacker must craft a large amount of
input to overload the system, which requires the investment of phys-
ical resources to produce this tra�c. Colloquially, an ACA provides
‘more bang for one’s buck.’
Example: Consider the following, simpli�ed example drawn from
Pigasus [58]. Pigasus is a hybrid FPGA+CPU, 100Gbps IDS, and it
implements partial TCP reassembly in order to detect attacks that
span across multiple packets in a TCP bytestream. As shown in the
Figure 1, Pigasus stores packets from out-of-order �ows in a linked
list. When a packet corresponding to an out-of-order �ow arrives,
the reassembly engine traverses its linked list to �nd the appropriate
insertion location (using the packet sequence number), performs
insertion, and, if possible, releases any in-order segments.

A [2926, 4387)[5, 1466)

B [88, 90) [91, 93) [94, 96)[85, 87)

Figure 1: TCP reassembly using a linked list [58]. Each node in the
list represents a range of packet sequence numbers.

Letusassumefor thesakeofexposition thatmostconnections look
like �owA in Figure 1, with exactly two packets in the linked list and
only one ‘gap’ in the sequence number space.When a re-transmitted
or re-ordered packet arrives to �ll in a gap in the sequence number
space (e.g., a packet with sequence number 1466 in �ow A), it takes
two iterations of pointer-chasing to reach the right index in the
linked list.

Tomount an ACA, an attacker might transmit a sequence of pack-
ets leading to a scenariomore like �owB: should a packet arrivewith
index 93, it would take four iterations of pointer chasing – or twice as
many cycles as in the typical case – to�ll in the sequence number gap.

We refer to the amount of work the system performs to process a
packet as the packet’s job size, with the average ‘innocent’ packet’s
job size �� and attack job sizes averaging �� . Now let us assume the
system is operating at capacity: there are some⇠ packets per second
arriving at the system, with an average of �� job size per packet. If
some of those packets are instead sized �� > �� , the system will be
unable to keep up with the o�ered load and be forced to drop some
packets. If an attacker injects one packet of sized �� = 10, and all
other packets are �� = 2, then the system will be forced to drop 5
innocent packets in order to process the additional attack packet.
In our simulations with Pigasus (§6), we found that in practice, an
attacker could force Pigasus’ reassembly engine to drop roughly 300
innocent bits for every bit of input attack tra�c.

2In this paper, we focus on temporalACAs, in which an attacker crafts system inputs
which are computationally expensive to process, consuming compute cycles that could
be used for innocent inputs. There are some attacks where adversarial inputs e.g., aim to
poison datastructure contents [23], but are not themselves computationally expensive
to process. These attacks are sometimes also referred to ACAs, but they are not the
focus of this work.

https://github.com/cmu-snap/SurgeProtector
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Unfortunately, the literature is full of examples of NFs vul-
nerable to ACAs: For example, in 2020, researchers showed that
they could slow the popular open-source software switch, Open
vSwitch, to support only 1% of its typical throughput by o�ering
a small 1 Mbps attack stream designed to exploit algorithmic com-
plexity [14]. The attack exploited a well-known vulnerability in the
Tuple-Space Search (TSS) [49] algorithm for packet classi�cation
known as ‘Tuple Space Explosion’ (TSE) [13, 15].

In 2018, [50] identi�ed a vulnerability in the Linux kernel’s TCP
reassembly logic.Although theLinux implementationuses amore so-
phisticated data-structure to manage out-of-order �ows (Red-Black
Trees), the bug allowed malicious peers to consume an excessive
number of CPU cycles using specially-crafted inputs. The bug was
addressed by a patch that streamlined processing enough to render
the attack ‘not critical’ [19]; while this may be su�cient for the cur-
rent line-rate supported by kernel networking, the vulnerability will
inevitably resurface alongside the next generation of line-rates.

An entire sub-literature of research [1, 4, 12, 47] addresses at-
tacks on deep-packet inspection (DPI) engines (e.g., Pigasus [58],
Snort [38], Suricata [16])viaRegular expressionDenialofService (Re-
DoS). A ReDoS attack crafts packets with payloads that are carefully
designed to traversemultiple states in regular expression automata –
the more states the packet triggers in the automata, the larger the ��
for that packet. Previous work has shown that an attacker responsi-
ble for only 10%of the tra�c entering a regular expression engine can
slow down legitimate tra�c by up to 500% [1]. The literature is rife
with other examples: ACAs that exploit decompression algorithms,
sorting, hash tables, etc. [26, 29, 35, 36].

We note that some attacks are referred to as ACAs which are not
temporal, but rather spatial in nature. For instance, an attackermight
exploit a key-value store that uses separate chaining to resolve hash
collisions [23] by injecting a large number of their own key-value
pairs into the store. This increases the load factor of the underly-
ing hash table, driving up the job size for all tra�c – not just the
attacker’s – arriving afterwards. In this work, we focus exclusively
on temporal ACAs (i.e., assume a threat model where the attacker
can control the job sizes of their own packets, but cannot in�uence
the job size distribution for innocent tra�c).
Resource isolation is insu�cient to prevent ACAs in a net-
worked setting: Many systems aim to shield users from the actions
of other (potentially malicious) users by allocating each one a �xed
slice of the shared resource (i.e., resource isolation). Unfortunately,
the networking equivalent to resource isolation – fair queueing [17]
– is trivially circumvented and hence middleboxes and NFs are es-
pecially vulnerable. A fair queueing device schedules packets for
processing in such a way as to divide service time equally between
classes of tra�c – service time might be divided evenly by network
connection, by class of tra�c (e.g., HTTP vs VOIP tra�c), or by
sender. At �rst glance, it might appear that this would prevent an
attacker from consuming more than their ‘fair share’ of processor
time. But, unfortunately, on the Internet, attackers have numerous
ways to easily spoof the source IP address of their tra�c – leading to
the appearance that the attack tra�c originates frommultiple users.
Existing, application-speci�c solutions lead to undesirable
tradeo�s: Most mitigation techniques for ACAs in NFs instead
turn to shrinking the gap between �� , the innocent job size, and �� ,

theworst-case attack job size.While this approach is state-of-the-art,
it leads to undesirable trade-o�s between common-case usability in
exchange for ACA resilience.

Returning to the �ow reassembly case, one might enforce that no
linked list ever extends further than a chain of four packets, and if
additional out-of-order packets arrive, the �ow is simply reset. This
approach mitigates the ACA: where a malicious packet might have
led to the loss of= innocent packets in the base design, we can bound
�� to bring it closer to �� and limit themalicious packet to only cause
a loss of<<= packets.

Unfortunately, imposing a maximum length on the reassembler
limits usability in the common case: we reduce �� , but we also limit
the NF’s ability to handle innocent highly out-of-order �ows, even
in scenarios where the NF has excess capacity and can feasibly service
them. Thus, the NF designer is left with two equally unappealing al-
ternatives. They caneither set a higher limit on �� , allowing theNF to
service awider rangeof�owsbut leaving itmore vulnerable toACAs,
or they can set a lower limit on �� , thereby sacri�cing the ability to
serve certain innocent �ows for the sake of higher ACA resilience.

As we will discuss in §8, NFs today come with a variety of such
patches in an e�ort to restrict �� , and sacri�ce some property or
the other (e.g., common-case performance or memory e�ciency) in
exchange for ACA resilience. Additionally, the application-speci�c
nature of these patches means that there is no general solution for
mitigating ACAs – every patch must be constructed from scratch
for each new ACA. This motivates our search for an attack miti-
gation strategy that is both general and obviates the need to make
undesirable tradeo�s in order to achieve resiliency against ACAs.

3 ProblemDe�nition
In order to facilitate a �rst-principles analysis of algorithmic com-

plexityattacks,westart by formulatinga theoreticalmodel to capture
the dynamics of packets and jobs in §3.1. Next, we characterize the
adversary’s capabilities and our threat model in §3.2. In §3.3, we for-
mally de�ne theDisplacement Factor (DF). In §4we use these founda-
tions to demonstrate how scheduling can be used to mitigate ACAs.

3.1 SystemModel
Packets and jobs: At the heart of our abstraction is an NF that
serves packets appearing on an ingress link of capacity' Gbps. Each
packet requires a certain amount of time to be processed (e.g., due
to computation, I/O, memory lookups, etc.), and thus can be char-
acterized by two independent variables: a packet size (in bits) and a
job size (in seconds). For convenience, we also tag each packet with
a class: class � packets correspond to innocent tra�c and class �
packets correspond to adversarial tra�c; however, note that this tag
is only relevant for the purpose of our analysis, and is not visible to
the underlying system.

We assume that packets belonging to innocent tra�c follow cer-
tain packet and job size distributions, with % and � denoting continu-
ous random variables sampled from these distributions, respectively.
Let 5% (?) and 5� ( 9) denote their probability density functions (pdf),3
and E[%] and E[� ] denote the corresponding expectations. Table 1
contains a summary of the notations used in the model.

3In general, the packet size and job size may be correlated, and we use 5% ,� (?, 9) to
denote the joint pdf.
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Notation Description
' Link capacity (in Gbps)
% Packet size of class � tra�c (random variable)
� Job size of class � tra�c (random variable)

5% (?) Probability density function of packet size %
5� ( 9) Probability density function of job size �

%min, %max Minimum, maximum packet sizes
�max Maximum job size
A� Input tra�c rate (in Gbps) for class � tra�c
Amax Maximum serviceable tra�c rate
>� Output tra�c rate (in Gbps) for class � tra�c

U (A� ) Displacement Factor (DF)

Table 1: Summary of notations used in themodel.

Goodput: Let A� denote the input tra�c rate (inGbps) for class � traf-
�c on the ingress link. For simplicity, we assume that packet arrivals
have a constant inter-arrival time; i.e., the inter-arrival time is E[% ]A�
seconds for innocent tra�c. We de�ne the system goodput, denoted
as>� , as the output tra�c rate corresponding to class � tra�c; i.e., the
useful throughput that the system can sustain. Note that the system
is designed to serve innocent tra�c, and the maximum serviceable
tra�c rate without dropping packets is given by A<0G = E[% ]E[� ] (in
Gbps). Thus, in the absence of any adversarial tra�c, the goodput
>� =A� when A� Amax. The systemmodel is depicted in Figure 2.

rAGbps

Ingress Link

Output

(line-rate: R Gbps)

Network
Function oI Gbps

rI Gbps
rmax Gbps

Figure 2: Systemmodel.

3.2 Threat Model
In order to model algorithmic complexity attacks, we allow a

rate-limited adversary to inject a stream of adversarial (class�) traf-
�c into the ingress link. Let A� denote the input tra�c rate for class
� tra�c. To enforce line-rate semantics, we impose the constraint
A� +A� '. Our threat model assumes an attacker that is overpow-
ered relative to what we believe a practical attacker is capable of. In
particular, we assume that the adversary is aware of all aspects of
the underlying system (‘transparent’ model), as well as the innocent
packet and job size distributions, and always uses the optimal attack
strategy. In particular, the adversary crafts packets with the best
choice of packet size and job size tomaximize the harm to the system,
where the harm is measured by reduction in goodput as de�ned in
§3.3.Theadversary isnot capableof: (a) inspecting individualpackets
as they appear on the ingress link, (b) a�ecting the job sizes of class I
packets (e.g., by tainting shared state), or (c) amplifying their attack
bandwidth using other means (e.g., re�ection-based ampli�cation).

3.3 Quantifying Vulnerability
We �rst measure the harm induced by the adversary using the

volume of innocent tra�c ‘displaced’ under a given attack tra�c
input rate A� . Speci�cally, we write the goodput >� as >� (A� ,A�) here
to explicitly express its dependence on A� and A� . Then the volume of

innocent tra�c displaced is>� (A� ,0)�>� (A� ,A�), i.e., how far the good-
put deviates from the goodput in the absence of an adversary (A� =0).

We then quantify the vulnerability of the system using the Dis-
placement Factor (DF), U , de�ned as the adversary’s payo� relative
to the amount of resources they invest:

⇡� =
Innocent tra�c displaced (Gbps)
Attack bandwidth used (Gbps)

ADFof 5means anattacker can force theNF todrop5bits of innocent
tra�c for every 1 bit of attack tra�c provided. More formally, we
can write the DF as follows:

U (A� )=sup
A�

>� (A� ,0)�>� (A� ,A�)
A�

. (1)

Here we take the supremum over the attack tra�c rate A� to capture
the adversary’s most e�cient attack.

4 Mitigating ACAs using Scheduling
In this section, we demonstrate how scheduling can be used to

e�ectively mitigate ACAs in a networked setting. As a starting
point, we �rst consider two commonly-used scheduling policies,
First-Come First-Served (FCFS) and Fair Queueing (FQ). In §4.1 and
§4.2, we show that under both FCFS and FQ, the DFs become un-
bounded in some regimes of system parameters. Consequently, sys-
tems that use FCFS or FQ scheduling cannot rely on the scheduler
to protect against ACAs.

To build intuition as to how a job-size based scheduling policy can
limit the harm induced by the adversary, we then present a sched-
uling policy called Shortest Job First (SJF) in §4.3. We show that SJF
has a DF upper bounded by a constant that is independent of �max,
improving upon both FCFS and FQ; however, this constant grows
as the average packet size for innocent tra�c, E[%], increases. We
then present Packet-SizeWeighted Shortest Job First (WSJF) in §4.4,
showing that WSJF further removes the dependence on E[%] and
achieves a maximumDF of 1. Finally, we summarize S����P������
���’s theoretical guarantees in §4.5.

Due to space constraints, we merely provide the intuition behind
each claim here, and defer all proofs to Appendix A.

4.1 First-Come First-Serve (FCFS)
As the name suggests, First-Come First-Serve (FCFS) serves jobs in

the order that they appear on the ingress link. Under FCFS, in order
to maximize harm, the adversary crafts packets with the smallest
possible packet size, %min, and the largest possible job size, �max.

1 2 3 54 6NIC

Innocent Packet Attack Packet

Service

Order

CPU

time 0 1 2 3 4 5

1

6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3 52

54

4 6

63

Figure 3: FCFS fails to protect against ACAs.

As depicted in Figure 3, using small-sized packets encoding large
jobs enables an attacker to consume a signi�cant fraction of CPU
(i.e., service time) despite using only a small amount of NIC time (i.e.,
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attack bandwidth), throttling goodput. Intuitively, this happens be-
cause FCFS serves jobs in the order of arrival regardless of their sizes.
Therefore, if an adversary can craft packets with arbitrarily large job
sizes, they can also reduce the tra�c rate for innocent packets to an
arbitrarily large degree.We show inClaim1below that the adversary
can achieve unbounded DF under FCFS as �max

%min
becomes large.

C���� 1 (DF �� FCFS). Under FCFS, for any innocent input tra�c
rate A� and any packet size and job size distributions, the Displacement
Factor UFCFS (A� )!+1 as �max

%min
!+1.

The detailed proof can be found in §A.1.

4.2 Fair Queueing
Fair Queueing (FQ) is a scheduling algorithm that is widely em-

ployed in switches and network processors. FQ and its variants (e.g.,
WFQ,DRFQ) ensure that one ormore shared resources (e.g., network
throughput, processor time, etc.) are evenly partitioned among a
number of competing �ows. While this scheme performs well when
these �ows are operated by good faith users seeking fair arbitra-
tion over a shared, limited resource, it does not translate well to the
adversarial setting.

NIC

Flow
Queues

CPU

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

20

3 4 Innocent Flow
Attack
Flows

5 61

...

a

a

b

b

c

c

d

d
1 5 6

2
3

4

1 2 3 4 5

Figure 4: FQ fails to protect against ACAs. In steady-state, the
attacker receives 75% of the total service time despite using a small
attack bandwidth.

The fundamental problem is that FQ only guarantees equitability
across�ows, thereby allowing amalicious user to occupy adispropor-
tionately high fraction of the shared resource(s) by spawning more
�ows. Further, using FQ at source IP granularity is also insu�cient
because of the possibility of source address spoo�ng. As depicted
in Figure 4, using small-sized packets across a large number of �ows
enables an attacker to consume a signi�cant fraction of service time
using only a small amount of attack bandwidth. As we show in the
proof for Claim 2, the DF under FQ ultimately scales with �max

%min
, and,

as in the case of FCFS, can become unbounded.

C���� 2 (DF �� FQ). Under FQ, for any innocent input tra�c rate
A� and any packet size and job size distributions, the Displacement
Factor UFQ (A� )!+1 as �max

%min
!+1.

The detailed proof can be found in §A.2.

4.3 Shortest Job First (SJF)
FCFS’s obliviousness to job sizes and FQ’s focus on per-�ow fair-

ness leaves themboth susceptible toACAs. In order to preventACAs,
we need a scheduling policy that considers job sizes without being
vulnerable to �ow in�ation. Shortest Job First (SJF) is a popular policy
for scheduling jobs in a non-preemptive system. As the name sug-
gests, at any instant, SJF prioritizes the queued job with the smallest
(initial) job size.

We show in Theorem 1 below that the DF under SJF is upper
bounded by a small constant independent of both �max and 5� ( 9).
The intuition behind why SJF works well is simple: if the adversary
produces packets whose jobs are too expensive to process, they will
simplybede-prioritized andnever endupbeing served. Instead, if the
adversary produces packetswhose jobs are too cheap, theywill fail to
push the system into overload. As depicted in Figure 5, the attacker’s
optimal strategy is topick a job size corresponding to a ‘sweet spot’ in
the innocent job size distribution,4 and use minimum-sized packets
to in�ate their packet rate (and, consequently, the totalwork injected
into the system). This allows them to displace some innocent tra�c,
achievingaworst-caseconstantDF.Asweshowin theproof forTheo-
rem1, theDFunder SJF scales as the ratio between the averagepacket
size for innocent tra�c, E[%], and the minimum packet size, %<8= .

1 2 3 4NIC

Innocent Packet Attack Packet

Service

Order

CPU

time t t+2 t+4

...
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6
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Figure 5: In order to exploit SJF, the attacker uses minimum-sized
packetswitha job size (i.e.,CPUtime)between thatofpackets 1and 3.
The attack packets (i.e., 2, 5, 6) are scheduled before more expensive
ones (3, 4), pushing the system into overload and displacing packet 4.

T������ 1 (DF �� SJF). Under SJF, for any innocent input tra�c
rate A� and any packet size and job size distribution, the Displacement
Factor is upper bounded as:

USJF (A� ) 
E[%]
%min

·d,

where d = min
⇣
A�
A<0G

, 1
⌘
2 [0, 1] is the load on the system due to

innocent tra�c.

Unlike FCFS and FQ, SJF does impose an upper bound on the DF,
limiting the extent that an attacker can cause harm to the system.We
show in the detailed proof (§A.3) that SJF has an upper bound that
depends on E[% ]%<8=

, which is approximately a factor of 8 given typical
innocent packet size distributions. We show that we can further
improve this bound withweighted SJF in the next section.

4.4 Weighted Shortest Job First (WSJF)
A fundamental limitation of the policies described so far is that

they altogether ignore the packet size information encoded in an
incoming packet. This enables an adversary to greatly in�ate their
job arrival rate using minimum-sized packets, leading to either an
unbounded DF (in the case of FCFS and FQ), or one that scales in-
versely with %<8= (in the case of SJF). Then, a natural question is:
can we do better by leveraging this readily-available information?

Here, we propose to use Packet-Size Weighted Shortest Job First
(WSJF), a variant of SJF that prioritizes the packet with the smallest
job-to-packet-size ratio. We show in Theorem 2 below that the DF
underWSJF is at most 1, which implies that for every 1 bps of inno-
cent tra�c that the adversarywishes to displace, theymust consume
4For a formal characterization of the optimal attack strategy under SJF, please see
Lemma 1 in Appendix A.
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at least 1 bps of their own bandwidth. The intuition is thatWSJF
minimizes the system’s work-per-bit, thereby preventing an adversary
from consuming a high fraction of processing cycles unless they invest
a proportionally high bandwidth into the attack.

To concretize this notion, consider the scenario depicted in the
�gure below. For the sake of simplicity, assume that all innocent
packets have a job size of 1 unit time. Also assume that the system
is operating at capacity, and that in steady-state, the WSJF queue
contains 3 packetswith packet sizes%1=5,%2=3, and%3=1. Observe
thatWSJF would serve these packets in decreasing order of packet
size (i.e.,%1 before%2, and%2 before%3), corresponding to scenario(0.

Innocent
Packet(S0) WSJF queue with

only innocent packets.

(S1) WSJF queue with
one innocent packet
being displaced.

(S2) WSJF queue with
two innocent packets
being displaced.

Attack
Packet

P1 P2 P3

P1 P2 P4

P1 P5 P2
P4

P3

P3

Consider an attacker that seeks to displace a single packet (i.e.,
with packet size %3) from this queue with one of their own. In order
to do this, the attackermust inject an attack packet of size %4 � %3
with a job size of 1 (scenario (1); a smaller job size would introduce
slack in the system load (allowing it to periodically serve innocent
packets of size %3 as well), while a smaller packet size would result
in the attack packet never being served. Thus, the attacker is forced
to inject as many bits as they wish to displace.

Suppose, instead, that the attacker wishes to displace two packets
(with sizes %2 and %3). The attacker now has two options: they can
either inject two packets with sizes %5 � %2 and %4 � %3 and unit
job size each (scenario (2), or a single packet of size %6 � (%2+%3)
and a job size of 2. Once again, the attacker’s bandwidth investment
matches or exceeds the displaced goodput. As we demonstrate in
the proof for Theorem 2, this result generalizes to any load, as well
as any job and packet size distributions of innocent tra�c.

T������ 2 (DF ��WSJF). Under WSJF, for any innocent input
tra�c rate A� and any packet size and job size distribution, the Dis-
placement Factor is upper bounded as:

UWSJF (A� )  d  1,

where d = min
⇣
A�
A<0G

, 1
⌘
2 [0, 1] is the load on the system due to

innocent tra�c.

The detailed proof can be found in §A.4.

4.5 S����P��������
S����P�������� interposesaWSJFscheduler in frontofvariable-

time modules within an NF (e.g., the reassembler discussed in §2).
WSJF meets both our initial goals of generality and not limiting the
innocent tra�c that can be served. First and foremost, it provides a
provable upper bound on theDF that is independent of the underlying
algorithms.WSJF is a drop-in solution that can be applied to any algo-
rithm, and hence, it is general.5 Second, where many ACA solutions,
5This assumes, for the moment, a priori knowledge of the packet processing time,
which must be calculated based on the underlying algorithm. We return to address
this point in more detail in §5.2.

e.g., drop packets from �ows that are determined to be too expensive
to process, WSJF guarantees that all connections will be served so
long as there is system capacity to do so (i.e., it is starvation-free
when the system is at or below capacity). Hence,WSJF does not place
any limitations on innocent tra�c under normal operation. In over-
load, the most computationally expensive packets are dropped,6 but
overall thisminimizes the rate of innocent tra�c that is denied service.

With WSJF as our chosen approach, we now turn to the chal-
lenges of integratingWSJF into a practical network function in the
following section.

5 Implementation & Practical Issues
In order to validate our theoretical �ndings in the context of a

real system, we incorporate S����P�������� into the open-source
Pigasus IDS [58]. A simpli�ed block diagram of Pigasus is depicted
in Figure 6. In §2, we brie�y introduced the linked-list based design
of Pigasus’s FPGA-based TCP Reassembly engine (labelled 1�), and
demonstrated how it can be exploited by an adversary. It turns out
that a second component of the IDS – the CPU-side Full Matcher (la-
belled 2�) – is also vulnerable to a di�erent type of complexity attack.
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Figure 6: The simpli�ed Pigasus IDS pipeline.

We begin in §5.1 with a brief overview of the two vulnerable
components in Pigasus that we sought to protect. Over the course
of implementing S����P��������, we encountered the following
three important practical challenges. First, how do we predict job
sizes? Second, since �ow reordering is often undesirable, how do we
guarantee in-order delivery for packets of the same �ow? Finally,
how do we ensure that the scheduler itself does not present a target
for ACAs?We frame the implementation details of the S����P���
������ scheduler in the context of these three questions (§5.2 - §5.4).

5.1 Overview of Vulnerable Components
FPGA-based TCP Reassembly: Recall that the goal of TCP re-
assembly is to reconstruct an in-order TCP bytestream from a se-
quence of out-of-order packets. The Pigasus reassembler, which is
FPGA-based, prioritizes memory e�ciency, and employs a linked
list-based design to manage out-of-order �ow state. While this
achieves excellent memory utilization, the worst-case linear com-
plexity of linked-list operations makes it susceptible to ACAs.

An example of this is depicted in Figure 7. When a new packet ar-
rives (with PSN range [35, 50) in the example below), the reassembler

6At this point, one might wonder: if WSJF drops the most expensive jobs in overload,
why doesn’t the adversary simply use less expensive jobs, thereby cajoling the scheduler
into exclusively serving their tra�c (e.g., if innocent packets have a job size of 10 units,
the adversary uses packets with a job size of 1 unit)? From an adversarial perspective,
this turns out be an ine�cient strategy; the adversary must now send 10X the number
of packets to displace innocent tra�c, corresponding to 10X as much attack bandwidth.
In particular, this devolves the DoS attack into a volumetric one, which defeats the
purpose of using an ACA in the �rst place.
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[10, 20)

[35, 50)

Expected
PSN = 5

3 traversals

[20, 30) [50, 90)

Figure 7: Linked-list state for an out-of-order�ow.

linearly scans the list and inserts the node at the appropriate position.
In order to exploit this, an attacker crafts highly out-of-order �ows,
linearly increasing the number of traversals required for each subse-
quent attack packet. Finally, they useminimum-sized packets (with a
1-byte TCP payload) to in�ate their packet arrival rate, maximizing
the work injected into the system.
CPU-based Full Matching: As a signature-based IDS, Pigasus
identi�es malicious �ows by comparing packet payloads against a
database of known attack signatures (‘rules’). To achieve high per-
formance, it does so in two stages: it �rst uses a number of fast �lters
in hardware (i.e., the Multi-String Pattern Matcher) to quickly �lter
out innocent tra�c; it then relays the remaining (small) fraction of
possibly-malicious tra�c to the CPU to perform more expensive
regex analysis (‘Full Matching’ [58]). While Pigasus’ �rst stage op-
erates in constant time (and hence is not vulnerable to ACAs), the
CPU-side Full Matching stage involves variable-time computation
that is also input-dependent, making it vulnerable to ACAs.

Fast Matcher Full Matcher
(Regex)

FPGA

Rule IDs:
{1, 4, 152}

CPU

P

Figure 8: Pigasus Full Matching pipeline.

Pigasus’s Full Matching pipeline is depicted in Figure 8. During
the �rst stage, in addition to �ltering out innocent packets, Pigasus
also generates a list of candidate rules that the packetmay ultimately
match on. It then sends this list, along with the packet payload, to
the CPU for processing. The CPU sequentially processes each rule
in the list, stopping at the �rst rule that results in a match. The pro-
cessing result (i.e., indicatingwhether to drop or forward the packet)
is subsequently relayed back to the FPGA.

An attacker can exploit this by crafting attack packets that either:
(a) result in a large number of matches in the Fast Matching stage (re-
quiring the Full Matcher to evaluate many rules), (b) trigger a regex
searchwith super-linear runtime in the FullMatcher (i.e., ReDoS-style
attacks [9, 16, 56]), or both.

5.2 Predicting Job Sizes
S����P�������� schedules packets based on job sizes, but, in

practice, the time required to process a packet is not known a priori.
A common approach to solve this problem – and one we employ
in this work – is to use heuristics for job size estimation [31, 33]. In
particular, we use the following heuristics to estimate job sizes for
our target applications:
TCPReassembly: a packet’s job size is estimated as the length of the
out-of-order linked-list for the corresponding �ow. Despite its simplic-
ity, this heuristic has two salient properties:�rst, since the number of
traversals can never exceed the length of the linked-list, the estimate
always upper-bounds a given packet’s true job size; second, since
the heuristic is computed on a per-�ow basis, the adversary cannot
a�ect the quality of estimates for innocent �ows.

Full Matching: if  denotes the list of candidate rules identi�ed
by the fast matching stage, then the job size is estimated as � =
⌃:2 (I: ·?), where I: denotes themaximum job-size-to-packet-size
ratio observed for rule : thus far, and ? denotes the packet payload
size. By using historical run-time data as feedback, the heuristic
function ‘learns’ which rules are prone to complexity attacks and
selectively deprioritizes them.

We implement and evaluate S����P�������� using both these
heuristics in §6.1. It isworthwhile to note that neither of these heuris-
tics is ‘ideal’ in a theoretical sense. For example, in the case of TCP
Reassembly, there may exist innocent TCP �ows on the Internet
for which the heuristic consistently overestimates job sizes by a
signi�cant margin, allowing the attacker to unfairly displace them.
Similarly, in the case of Full Matching, an attackermay be able to
manipulate the outcome of the heuristic for every rule, potentially
causing large prediction errors for subsequent innocent packets.

In practice, this does not appear to be the case. For instance, in the
case of TCP Reassembly, the heuristic yields accurate job size esti-
mates for thevastmajority ofTCP�ows, limiting the additional harm
that an adversary can induce. Similarly, in the case of Full Matching,
most rules don’t have large variance in their job-size-to-packet-size
ratios.We explore this further in §6.2, wherewe empirically evaluate
the e�ect of using heuristics on S����P��������’s DF upper-bound.
Empirically, we �nd that for both applications, the adversary’s DF in-
creases bynomore than5%of theupper-bound evenwhen the adversary
has perfect knowledge of the actual and heuristic-estimated job size
distributions. We leave the exploration of adversary-proof job size
heuristics for arbitrary NFs to future work (§7).

5.3 Keeping (TCP) Flows In-Order
Keeping packets within the same TCP �ow in order is necessary

to avoid degrading application performance [5, 18, 30, 45, 58]. While
FCFS and FQ (alongwith its variants) guarantee that same-�owpack-
ets are served in-order, SJF andWSJF do not. In this section, we ex-
plore how to augment S����P�������� to provide in-order service.

As a natural starting point, consider the following extension to
WSJF, which we will refer to asWSJF Head-of-Queue (WSJF-HoQ).
This policymaintains independent queues for each �ow,with incom-
ing packets being appended to the end of the corresponding �ow
queue. At any moment, the policy prioritizes the �owwhose leading
(Head-of-Queue) packet has the smallest job-to-packet size ratio;
clearly, this maintains the desired in-order property. Then, we can
ask: is this WSJF/FCFS hybrid a good policy?

Unfortunately, WSJF-HoQ turns out to be a poor strategy in the
adversarial setting. The problem is as follows: while an innocent
�ow’s packets may typically have a small job-to-packet size ratio
(making this �ow a good candidate for service), eventually, a HoQ
packet with a large job-to-packet size ratio will sti�e the likelihood
of the entire �ow ever being served. Here, the adversary’s optimal
strategy is simply to send small packets encoding large jobs andwait
for this situation to arise.

The fundamental problem withWSJF-HoQ is that it evaluates en-
tire �ows on the basis of one packet, whichmay not be a good estimator
of a �ow’s candidacy for service. Based on this observation, we de-
velopanothervariantofWSJF (hereafter referred toasWSJF-Inorder),
which predicates its scheduling decision on all queued packets in
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the �ow queue. As before, the policy maintains independent queues
for each �ow, with incoming packets appended to the tail of the
corresponding queue. In scheduling , the policy computes a rank for
each �ow, 5 , and prioritizes the �owwith the lowest rank:

'0=: (5 )= ⌃8 �8 (5 )
⌃8%8 (5 )

,

where �8 (5 ) and %8 (5 ) denote the job size and packet size of the 8’th
packet currently in 5 ’s �ow queue, respectively. Thus, a �ow’s rank
represents its outstanding work per bit. In the limit, this converges to
E[� (5 ) ]
E[% (5 ) ] , the long-running average of the �ow’s inverse-throughput;
by minimizing this quantity, WSJF-Inorder maximizes the overall
throughput.Consequently, if an adversarywants thepolicy to consis-
tently schedule (their) large jobs, theymust o�set the resulting work
with a proportionally large number of packet bits, e�ectively reduc-
ing the displacement factor they can achieve.We useWSJF-Inorder
to protect the TCP Reassembly component in Pigasus.

5.4 Designing Adversary-Proof Schedulers
The �nal practical issue that we need to address is how to make

sure that the scheduler itself will not expose a novel attack surface.
While simple policies like FCFS can be implemented with minimal
overhead, in order to implement WSJF we must be able to deter-
mine which packet has the minimum job-to-packet size ratio on a
packet-by-packet basis. If this is done ine�ciently, the scheduler
itself may become a bottleneck. Another potential problem is that
we can only hold a �nite number of outstanding packets at any given
time. Once the packet bu�er becomes full, the system must drop
packets in a way that cannot be exploited by an attacker.

There is extensive literature on designing e�cient priority queues
forpacket scheduling inbothhardwareandsoftware [2, 39, 41, 46, 53].
However, these schedulers typically handle bu�er space exhaustion
by simply dropping any incoming packet when the bu�er is full [46].
While this approach simpli�es their design—since they only need
to support either EXTRACT-MIN or EXTRACT-MAX operations, and not
both—it does not work well in the adversarial setting. For instance,
suppose that we use PIFO [46] to implementWSJF and drop all in-
coming packets once we run out of bu�er space. In this scheme, an
attacker can quickly �ll up the queue (with minimally-sized packets
encoding maximally-sized jobs), eventually leaving the scheduler
with no alternative but to pick the attacker’s packets. To avoid this
issue, the scheduler must use EXTRACT-MIN to decide which packet to
process next, and EXTRACT-MAX to decide which packet to drop once it
runs out of bu�er space.

We augment the highly-e�cient Hierarchical FFS (Find First Set)
Queue [39, 53] toprovidebothEXTRACT-MINandEXTRACT-MAX func-
tionality by using a BSF (Bit Scan Forward) instruction to �nd the
minimum element in each bitmap, and a BSR (Bit Scan Reverse)
instruction7 to �nd the maximum element. Figure 9 depicts the
data-structure. An hFFS queue using 32-bit bitmaps and a height of
⌘ can represent 32⌘ unique priorities, and guarantees a worst-case
run-time of$ (⌘) (i.e., constant) for all queue operations (INSERT,
EXTRACT-MIN, and EXTRACT-MAX).

7On modern CPUs, both BSR/BSF translate to single `ops with a �xed latency of 3-5
cycles [25].
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Figure9: AHierarchicalFFSQueue implementedusing2-bitbitmaps
andheight of⌘=3. A ‘1’ in anybitmap indicates anon-emptypriority
bucket in the subtree rooted at that node. In order to �nd the min
(or max) priority bucket, we recursively follow the leftmost (or
rightmost) set bit.

In order to enable S����P�������� to work in a general context,
we implement the Hierarchical FFS Queue in both hardware and
software. In Pigasus, the hardware and software implementations
are used to realize WSJF queueing for TCP Reassembly and Full
Matching, respectively. The hardware version is implemented in
Verilog, operates at 250MHz, and is fully-pipelined, capable of per-
forming one queue operation every FPGA cycle (4 ns). The software
version is implemented in C++, and is further evaluated in §6.3.

6 Evaluation
In this section, we evaluate the e�ectiveness of using S����P���

������ to defend against ACAs on the TCP Reassembler and Full
Matching stage of the Pigasus IDS. We also evaluate the robustness
of the Hierarchical FFS Queue (used to implement WSJF) against
attacks targeting the scheduler itself.

6.1 S����P�������� + Pigasus
Howe�ective isS����P��������atmitigatingACAsonthe
TCPReassembler? To answer this question, we emulate an adver-
sary targeting Pigasus’ TCP Reassembler using highly out-of-order
attack �ows, and measure the achieved performance in twomodes
of operation: using Pigasus’ default scheduling policy (FCFS), and
using S����P��������. For the purpose of this experiment, we use
a synthetic trace containing innocent �ows sampled from the 2014
CAIDA San Jose dataset [52], and 50 arti�cially-crafted attack �ows.

The attack �ows are crafted as follows: we send 1B TCP pack-
ets with alternating sequence numbers starting with the ISN (i.e.,
ISN, ISN+2, ISN+4, and so on). With a sequence of # such packets,
we can emulate an average adversarial job size corresponding to
1
#

Õ#�1
8=0 8 =

(#�1)
2 traversals.Weuse the optimal adversarial strategy

for each mode of operation. In particular, for FCFS, we let # grow
to Pigasus’ maximum TCP window size of 16KB (by design, Pigasus
will drop the �ow at this point), then start over. ForWSJF, we solve
Eq. (9) to determine the optimal adversarial job size, then choose #
so as to achieve, on average, the corresponding number of traversals.

Empirically, we �nd that the maximum serviceable tra�c rate
of the system (i.e., A<0G ) is 12Gbps, and we �x the input rate for
innocent tra�c to 10Gbps (corresponding to ~83% load). Figure 10
depicts the steady-state goodput in each mode of operation as we
sweep the adversary’s attack rate.
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Figure 10: Goodput of Pigasus’ TCP Reassembler under FCFS and
S����P��������.

We observe that the goodput under FCFS drops signi�cantly as
the attack rate increases (e.g., with an attack rate of 0.1Gbps, the ad-
versary is able to displace ~5.9Gbps of innocent tra�c). Conversely,
with S����P��������, the goodput remains steady despite the in-
creasing attack rate; in the worst case, at most 0.11Gbps of innocent
tra�c is displaced.

In lieu of precise knowledge about the system design or the in-
nocent tra�c distribution, a practical adversary may also choose to
‘probe’ the space of attack parameters to determine the most e�ec-
tive adversarial strategy. In order to evaluate performance in this
scenario, we emulate an adversary who incrementally changes the
degree of out-of-orderness of attack �ows while keeping the attack
rate �xed at 0.3Gbps. Figure 11 depicts the steady-state TCP Re-
assembly goodputwith FCFS and S����P�������� aswe sweep the
out-of-orderness of attack �ows (measured in terms of themaximum
number of concurrent out-of-order packets within each attack �ow).
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Figure 11: Goodput of Pigasus’ TCP Reassembler for di�erent
degrees of out-of-orderness of attack�ows.

As expected, the goodput under FCFS gradually decreases as the
attack �ows become increasingly out-of-order (corresponding to
larger job sizes per packet), while the goodput under S����P������
��� remains relatively unchanged.
Howe�ective isS����P��������atmitigatingACAsonthe
Full Matching stage? As before, we answer this question by em-
ulating an adversary targeting Pigasus’ Full Matching stage, and
measure the goodput under FCFS and S����P��������. We use
a synthetic trace containing innocent �ows sampled from all the
traces used in [58]. In order to generate attack tra�c, we pick the
packet payload with the largest job size among all packets in the
dataset, and craft an attack �ow using this payload for every packet.
Figure 12 depicts the steady-state goodput in eachmode of operation
as we sweep the adversary’s attack rate. Once again, we observe
that S����P�������� signi�cantly reduces the impact of the attack
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Figure 12: Goodput of Pigasus’ Full Matcher under FCFS and
S����P��������.

on innocent tra�c compared to FCFS. In particular, we observe a
maximum reduction in goodput of 0.4Gbps for S����P��������
(compared to 5.7Gbps for FCFS).

6.2 S����P�������� in Simulation
While the empirical evaluation in §6.1 demonstrates the e�cacy

of S����P�������� in the context of a real system, it focuses a small
number of attack input rates with just two scheduling policies. In
order to analyze a wider range of scheduling policies, applications,
and a truly optimal adversary (i.e., one who is not constrained by
the space of ‘practical’ attack strategies8), we turn to an adversarial
scheduling simulator that we developed in-house. The event-driven
simulator, implemented in C++, is capable of modeling G/G/1/k
queueing systems, supports both trace-driven and synthetic work-
loads, and exposes a convenient interface for plugging in a wide
range of simulated application backends. An overview of the sim-
ulator pipeline is depicted in Figure 13.
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Figure 13: Simulator pipeline.

In order to quickly explore the space of di�erent policies and
heuristics for a variety of NFs, the simulator framework allows users
to develop and ‘run’ their own simulated applications on the Server.
It also provides tra�c-generation modules for innocent and attack
tra�c, and includes tools for computing the optimal adversarial
strategy under SJF and WSJF given innocent job and packet size
distributions. The tools numerically solve (8) and (9) to determine
the values of �� and %� for the given con�guration. We use now use
the simulator to address several research questions of interest.

8In particular, a practical adversary may not be powerful enough to craft packets with
a speci�c job size. For instance, in the case of TCP reassembly, an adversary cannot,
in practice, force  linked-list traversals on every attack packet; instead, they must
settle for a uniform distribution over {0, ..., 2 +1} (see §6.1), resulting in an average
job size corresponding to traversals. Simulation allows us to model a more powerful
adversary who can precisely control their packets’ job sizes.
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What is the worst-case DF an optimal adversary can achieve
assuming the true job size is known a priori?Unlike the empir-
ical setting, the simulator allows us to determine the true job size
ahead of time. In the following simulated experiments, we use this
information for the purpose of scheduling. In the context of TCP
Reassembly, Figure 14 depicts the goodput and Displacement Factor
achieved by di�erent scheduling policies for various combinations
of the input rate (A� ) and attack rate (A�).9 Each column corresponds
to a certain, �xed A� (going from 1Gbps on the left, to 5Gbps, and
10Gbps). On the X-axis, we sweep the input attack rate from 10Mbps
to 10Gbps. The bottom row depicts the steady-state goodput (in
Gbps) as a function of the attack rate, while the top row depicts the
corresponding DF.
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Figure 14: Goodput andDisplacement Factor (DF) for TCPReassem-
bly. Left to right: Increasing innocent input rate, A� , from 1Gbps to
10Gbps.

Looking at the bottom row, we observe a sharp drop-o� in good-
put for both FCFS and FQ even with a small attack bandwidth. For
instance, with just 30Mbps of attack tra�c, an adversary is able to
displace roughly half the system goodput, regardless of the innocent
input rate. Correspondingly, we see a maximum displacement factor
of 313 and 278 for FCFS and FQ, respectively. SJF is initially com-
petitive, but we observe a performance cli�when the attack rate is
su�ciently large; with 0.7Gbps of attack tra�c, an adversary is able
to consistently displace over 50% of the goodput, corresponding to a
maximumdisplacement factor of 11 (recall that the theoretical bound
isU( � �  E[% ]

%<8=
·d⇡16). Finally, we see thatWSJF consistently outper-

forms the other policies, yielding a low degradation in goodput even
withahighfractionofattack tra�c.Weobserveaworst-casedisplace-
ment factor of 0.4 for this application, implying that the adversary
must use over 2.5 bps of their own bandwidth in order to displace 1 bps
of innocent tra�c, a considerable improvement over FCFS and FQ.

Similarly, Figure 15 depicts the goodput and DF achieved by the
di�erent scheduling policies in the context of Pigasus’ Full Matching
stage. The format of the �gure is identical to that of Figure 14. Look-
ing at the bottom row, we observe a gradual decrease in goodput
for FCFS and FQ as the input attack rate increases from 1Mbps to
1Gbps. Overall, we observe a maximum displacement factor of 82
and 75 for FCFS and FQ, respectively.While we don’t observe a good-
put ‘cli�’ that we saw for SJF earlier, the adversary is consistently
able to displace roughly 50% of the system goodput using an attack
9Note that, for each con�guration, we use the attack parameters (%� and ��)
corresponding to the optimal adversarial strategy. For FCFS and FQ, this corresponds
to using minimally-sized packets encoding maximally-sized jobs. For SJF and WSJF,
we (numerically) solve (8) and (9) to determine these quantities.
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bandwidth of 100Mbps, with a maximum observed displacement
factor of 3. Finally,WSJF consistently outperforms the other policies,
achieving a maximumDF of 0.1.
How does using a heuristic a�ect the DF achieved by WSJF?
In the above simulated experiments, we assumed a priori knowledge
of a packet’s true job size at the time of scheduling. However, given
that this information is rarely (if ever) available ahead of time in real
systems, wewould like to know the impact of using a heuristic on the
achievable DF. While deriving an analytical answer to this question
is beyond the scope of this work, we address it empirically here. For
both Pigasus components (TCP Reassembly and Full Matching), we
evaluate the di�erence inDFs achieved underWSJFwith andwithout
their respective heuristics. We assume that the adversary has knowl-
edge of both the actual and estimated job size distributions, and uses
job sizes which displace the maximum innocent tra�c under the
heuristic.10 Whilewe note that an attackerwith such detailed knowl-
edge of the system state likely does not exist, we �nd that our heuris-
tics performwell even in the face of such an overpowered attacker.
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Figure 16: Absolute change in DF achieved by WSJF-Inorder due to
the heuristic. Portions highlighted in red indicate regionswhere the
heuristic does worse than the baseline.

In the context of TCP Reassembly, Figure 16 depicts the e�ect
of using the heuristic (described in §5.2) on the achieved DF un-
derWSJF-Inorder. On the x-axis, we sweep the adversary’s attack
bandwidth (A�), and on the y-axis we plot the change in DF when
using the heuristic (compared to using the true job size, computed
o�ine). We see that using the heuristic increases the DF by at most
0.05 compared to the ideal case. Empirically, we �nd that this simple
heuristic is both an excellent estimator of job size for innocent tra�c
and largely robust to any subversion attempts by the adversary. We
observe similar results (<5% change) for the Full Matching stage.

10In practice, this involves a brute-force search over the joint distribution of estimated
and actual job sizes for innocent tra�c.
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6.3 S����P�������� Scheduler
A key component of the S����P�������� scheduler is the Hier-

archical FFS Queue (§5.4) used to implementWSJF. In this section,
we evaluate S����P�������� against attacks targeting the software
heap implementation.

There are two attack vectors we must consider. First, the adver-
sary may �ood the �xed-size queue with large attack jobs, causing
innocent jobs arriving later tobedropped. Second, the adversarymay
attempt to in�ate their packet arrival rate (using minimally-sized
attack packets) beyondwhat the queue can sustain. Combining these
ideas, the adversarial strategy is clear: use minimum-sized packets
encoding large jobs.

Asbasis for this discussion,weconsider threeWSJFqueuedesigns:
a standard, bounded Fibonacci heap that supports EXTRACT-MIN op-
erations (but no EXTRACT-MAX); a double-ended priority queue [40]
(DEPQ, implemented using a pair of Fibonacci heaps) that supports
both EXTRACT-MIN and EXTRACT-MAX operations in worst-case loga-
rithmic time; and�nally, theHierarchical FFSQueue. For thepurpose
of evaluation, the packet size and job size for innocent tra�c are
sampled i.i.d. from Gaussian distributions (with an average packet
size, E[%], of 1250 bytes, and an average job size, E[� ], of 1`s). We
set the maximum job size, �<0G , to 10`s.

Finally, the experiment setup is as follows. For each of the three
heap designs, we pin a process running a software implementation
of the heap to a single core on an Intel Xeon E5-2620 CPU operating
at 2.1 GHz, where it consumes packets from a 100G Ethernet link via
DPDK. The packets (encoding the job size in `s) are dispatched to
a di�erent core, which emulates ‘running’ the job by sleeping for a
period corresponding to the job size. A third core is responsible for
pro�ling the application goodput. Figure 17 depicts how the goodput
varies with the input attack rate for the three heap implementations.
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Figure 17: Goodput for di�erent heap implementations.

First, in the case of the standard Fibonacci heap,weobserve a large
performance cli�when the attack rate reaches a certain threshold.
The reason is that, once the queue becomes full, dropping at the
tail causes a signi�cant fraction of subsequent innocent arrivals to
be dropped. Conversely, while the DEPQ is capable of selectively
dropping large jobs, the worst-case logarithmic cost of EXTRACT-*
operations imposes a signi�cant performance penalty, resulting in a
gradual degradation in goodput. Finally, we observe that the Hierar-
chical FFSQueue’s goodput remains largely unchanged regardless of
the input attack rate. Overall, we �nd that the heap’s EXTRACT-MAX
functionality, in conjunction with the worst-case constant complex-
ity of all operations, makes the Hierarchical FFS Queue robust to
these kinds of attacks.

7 Limitations and Open Questions
This work opens up a broad range of theoretical and practical

questions, and we are only able to answer some of them.
Optimality andMulti-Server Settings: An important theoretical
question relates to the existence of an optimal adversarial scheduling
policy. In this work, we have shown that WSJF, the policy underpin-
ning S����P��������, achieves a DF that is always upper-bounded
by 1. However, devising a policy that is always optimal (i.e., one
which minimizes the DF for any load and choice of tra�c parame-
ters) – or proving its existence thereof – remains an open problem.
Additionally, we have only considered a queueing systemwith one
server; we do not currently know how the ACAmitigation problem
scales with more than one server.
Heuristics: As described in §5.2, any practical implementation
of S����P�������� must rely on application-speci�c heuristic
functions for estimating job sizes. Our experience implementing
S����P�������� in the context of TCP reassembly and IDS/IPS
Full Matching suggests that even simple, easy-to-compute heuris-
tics can be powerful job sizes estimators. However, the design of
heuristics for a broader range of NFs remains an open problem. In
particular, there are two questions of interest. First, is there some
fundamental property ofNFs thatmakes job size estimation feasible?
Second, for NFs in which job size estimation is feasible, how do we
reason about the e�cacy of di�erent heuristic functions? Parallel
work in our group [10] has formalized su�cient criteria for an ‘ideal’
heuristic, and has shown that non-ideal heuristics can still provide
an upper-bound on the DF achievable underWSJF.
Preemption: In this work, we have only explored the space of
non-preemptive scheduling (i.e., a job, once started, must run to com-
pletion). However, given recent advances in the design and imple-
mentation of lightweight preemption handlers [7], it is reasonable to
ask: canwe do even betterwith preemptive scheduling policies? This
is particularly relevant for NFswhere developing accurate heuristics
is challenging. In this case, preemptionmay help tolerate some error
in job size estimates by allowing the scheduler an additional degree
of freedom (e.g., by preempting jobs that far exceed their job size
estimates).
Fairness: As we have seen in §4.2, fair queueing is fundamentally
vulnerable toACAsbecause of the adversary’s ability to spawnmany
�ows. However, fairness is an important consideration for many
NFs. While WSJF alone does not provide any fairness guarantees,
we conjecture that an augmentation of this policy (e.g., using FQ as
a second-stage queueing discipline, or switching between the two
based on some goodput watermark) may be able to provide both
ACA resilience and �ow-level fairness.
Memory Complexity Attacks: Finally, we have not considered
the impact of ACAs onmemory. In many systems, memory is just
as precious (and exhaustible) a resource as processing cycles, and
may be an important consideration in the design and analysis of
adversarial scheduling policies for NFs.

8 RelatedWork
ACAs and mitigation: Crosby et al. were the �rst to character-
ize ACAs as Denial-of-Service (DoS) vectors in [12], and empiri-
cally evaluated their impact in the context of an IDS. Others have
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since explored ACAs on a variety of applications, including hash
tables [3, 4], automata-based multi-string pattern-matching [43],
regular expression matching [16, 42, 56], PDF decompression [26],
and TCP reassembly [18, 50]. [36] provides both an excellent survey
of prior work and a novel approach for automatically crafting ACAs
in a domain-independent manner (using fuzzing).

Many works have proposed application-speci�cmitigation strate-
gies. For example, [44] implements TCP reassembly by maintaining
statically-allocated,�xed-sized bu�ers for each�ow; this renders the
design impervious to ACAs at the cost of signi�cantly higher mem-
ory overhead (every �ow is allocated 64KB of memory regardless of
its peak usage). Similarly, many regular expression engines restrict
the number of states a single packet may invoke to avoid ReDoS
attacks [48] (limiting the length of regular expressions in the com-
mon case). Other systems place a cap on the number of cycles spent
decompressing a �le or webpage for deep packet inspection [24]
(limiting the size of �les or web pages that can be served). Still other
systems rely on universal hashing to prevent attacks on hash ta-
bles [12] (imposing computational and memory overheads). In a
slightly di�erent direction, [1] leverages a multi-core architecture
to mitigate ACAs on DPI engines.
Scheduling: Scheduling and queueing theory has garnered signif-
icant research attention in recent years. While the vast majority of
queueing literature focuses on optimizing various response time
metrics in stochastic settings, some recent works in OS and packet
scheduling are notable due to the focus on fairness and performance
isolation. In particular, Fair Queueing (FQ) [17] aims to equitably
partition the available link bandwidth between multiple contending
�ows. Dominant Resource Fair Queueing (DRFQ) [21] generalizes
this idea tomultiple resources [22], and [54] provides a low-overhead
approximation to DRFQ. However, as described in §4.2, FQ and its
variants are ine�ective in the adversarial setting [57].

Recent works have also explored the use of queueing theory to
analyze volumetric DoS attacks (e.g., SYN-�oods). [55] proposes a
two-dimensional embedded Markov chain to model DoS attacks,
and derives various performance metrics (e.g., connection loss prob-
ability) by analyzing its stationary distribution. Along these lines,
[6] evaluates how dynamic TCP timeouts can be used as amitigation
strategy against SYN-�oods. [37] proposes a composite model to
jointly analyze memory and bandwidth resource exhaustion during
an attack. More recently, [20] derived the feasibility criteria for a
successful volume-based DDoS attack on a multi-hop network fol-
lowing the Join-the-Shortest-Queue (JSQ) policy. We reiterate that
the distinguishing factor here is the type of DoS attack considered
in this work: complexity-based instead of volumetric.

Finally, we are aware of two works that consider the ACAmitiga-
tionproblemfromaqueueing theoreticperspective, andare therefore
most closely related to thiswork. First, [28]modelsDoS attacks using
anM/M/1/k queueing model with the goal of detecting both �ood-
and complexity-based attacks. However, they only perform analysis
for FCFS, and they only consider exponentially-distributed service
times (which may not be an accurate assumption in the adversar-
ial setting). Second, [4] analyzes the impact of using two di�erent
hashing schemes on the e�cacy of ACAs on hash tables. They also
develop a metric called the ‘Vulnerability Factor’ to quantify the im-
pact of ACAs. However, they limit their analysis to FCFS. Moreover,

since their analysis is based on a job’s average waiting time, they
are fundamentally constrained to scenarios where the system is not
overloaded.

To thebestofourknowledge, this is the�rstwork toanalyze sched-
uling policies beyond the simple FCFS and to propose a policy-based
mitigation strategy for ACAs.

9 Conclusion
Network functions on the Internet are prone to algorithmic com-

plexity attacks (ACAs), a potent class of Denial-of-Service (DoS)
attacks. We designed S����P��������, a framework to mitigate
temporalACAsonNFsusingnovel insights fromadversarial schedul-
ing theory.S����P��������provides provable upper boundson the
maximum ‘harm per unit e�ort’ an adversary can induce, regardless
of the underlying NF application, the system load, and parameters
of the innocent tra�c distribution. Our proofs and evaluation show
thatWSJF, the scheduling algorithm behind S����P��������, pro-
vides resilience to ACAs without limiting the underlying algorithms
in the NF.
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Model/Jungtinis DoS Atakų Modelis. Mokslas–Lietuvos ateitis/Science–Future of
Lithuania, 4(1):20–26, 2012.

[38] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX Conference on System Administration, LISA ’99,
page 229–238, USA, 1999. USENIX Association.

[39] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,
Khaled Harras, and Amin Vahdat. Ei�el: E�cient and �exible software packet
scheduling. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 17–32, Boston, MA, February 2019. USENIX
Association.

[40] Sartaj Sahni. Double-ended priority queues. InHandbook of Data Structures and
Applications, 2004.

[41] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. Programmable calendar
queues for high-speed packet scheduling. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 685–699, Santa
Clara, CA, February 2020. USENIX Association.

[42] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, XiaoxingMa, and Jian Lu. ReScue:
Crafting Regular Expression DoS Attacks. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, page
225–235, New York, NY, USA, 2018. Association for Computing Machinery.

[43] Govind Sreekar Shenoy, Jordi Tubella, and Antonio González. Improving the
Resilience of an IDS against Performance Throttling Attacks. In Angelos D.
Keromytis and Roberto Di Pietro, editors, Security and Privacy in Communication
Networks, pages 167–184, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[44] David Sidler, Gustavo Alonso, Michaela Blott, Kimon Karras, Kees Vissers, and
RaymondCarley. Scalable 10gbps tcp/ip stack architecture for recon�gurable hard-
ware. In 2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 36–43. IEEE, 2015.

[45] Shan Sinha, Srikanth Kandula, and Dina Katabi. Harnessing TCP’s Burstiness
with Flowlet Switching. In Proc. 3rd ACMWorkshop on Hot Topics in Networks
(Hotnets-III). Citeseer, 2004.

[46] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling at line rate. In Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 44–57, New York,
NY, USA, 2016. Association for Computing Machinery.

[47] Randy Smith, Cristian Estan, and Somesh Jha. Backtracking Algorithmic
Complexity Attacks against a NIDS. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 89–98, 2006.

[48] Snort Project. SNORT Users Manual. https://www.snort.org/documents/snort-
users-manual, 2020.

[49] V. Srinivasan, S. Suri, and G. Varghese. Packet Classi�cation Using Tuple Space
Search. In Proceedings of the Conference onApplications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’99, page 135–146, New
York, NY, USA, 1999. Association for Computing Machinery.

[50] Juha-Matti Tilli. CVE-2018-5390: Linux Kernel TCP Reassembly Algorithm
Lets Remote Users Consume Excessive CPU Resources on the Target System.
https://ubuntu.com/security/cve-2018-5390, 2018.

[51] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, OwenO’Malley, Sanjay Radia, Benjamin
Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing,
SOCC ’13, New York, NY, USA, 2013. Association for Computing Machinery.

[52] ColbyWalsworth, Emile Aben, K Cla�y, and D Andersen. The caida anonymized
2019 internet traces, 2019.

[53] Hao Wang and Bill Lin. Per-�ow queue management with succinct priority
indexing structures for high speed packet scheduling. IEEE Transactions on
Parallel and Distributed Systems, 24(7):1380–1389, 2013.

[54] Wei Wang, Ben Liang, and Baochun Li. Low Complexity Multi-Resource Fair
Queueing with Bounded Delay. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, pages 1914–1922, 2014.

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://support.google.com/a/answer/172541
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
%20https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
%20https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.snort.org/documents/snort-users-manual
https://www.snort.org/documents/snort-users-manual
https://ubuntu.com/security/cve-2018-5390


SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Nirav Atre, Hugo Sadok, Erica Chiang, WeinaWang, Justine Sherry

[55] YangWang, Chuang Lin, Quan-Lin Li, and Yuguang Fang. A Queueing Analysis
for the Denial of Service (DoS) Attacks in Computer Networks. Comput. Netw.,
51(12):3564–3573, August 2007.

[56] Valentin Wüstholz, Oswaldo Olivo, Marijn J. Heule, and Isil Dillig. Static
Detection of DoS Vulnerabilities in Programs That Use Regular Expressions. In
Proceedings, Part II, of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems - Volume 10206, page 3–20, Berlin,
Heidelberg, 2017. Springer-Verlag.

[57] XiaoweiYang,DavidWetherall, andThomasAnderson. ADoS-limitingnetworkar-
chitecture. ACMSIGCOMMComputer Communication Review, 35(4):241–252, 2005.

[58] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine
Sherry. Achieving 100Gbps Intrusion Prevention on a Single Server. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 1083–1100. USENIX Association, November 2020.

A Proofs for DF Analysis
A.1 Proof of Claim 1 (DF of FCFS)

P����. Consider any innocent input tra�c rate A� and any packet
size and job size distributions with expectations E[%] and E[� ]. Ob-
serve that, over any time period of length) seconds, the number
of class � packets appearing on the ingress link is #� = A�)

E[% ] . Simi-
larly, the number of class� packets appearing on the link over the
same period is #� = A�)

%min
. FCFS guarantees that these (#� +#�)

jobs will be scheduled before any jobs that arrive afterwards. Also,
the total time required to serve these jobs is (#� ·E[� ] +#� · �max)
seconds, yielding in expectation #� ·E[%] bits worth of innocent
tra�c on the egress link. Thus, in the long-run, the goodput >� can
be upper-bounded as follows:

>� (A� ,A�)  lim
)!1

#� ·E[%]
#� ·E[� ]+#� · �max

=
A�

A� · E[� ]E[% ] +A� ·
�max
%min

.

We can then lower-bound the DF UFCFS (A� ) as follows:

UFCFS (A� )=sup
A�

min{A� ,Amax}�>� (A� ,A�)
A�

(2)

� sup
A�

1
A�

©≠
´
min{A� ,Amax}�

A�

A� · E[� ]E[% ] +A� ·
�max
%min

™Æ
¨

(3)

� �max
%min

min{A� ,Amax}
2A�

⇣
2

min{A� ,Amax } �
1

Amax

⌘ , (4)

where recall that Amax=
E[% ]
E[� ] , (2) is true since the goodput ismin{A� ,

Amax} under FCFS in the absence of adversarial tra�c, (3) applies
the upper bound on >� (A� ,A�), and (4) is obtained by setting A� as
follows: A� = A�%min

�max

⇣
2

min{A� ,Amax } �
1

Amax

⌘
. Therefore,UFCFS (A� )!+1

as �max
%min

!+1. ⇤

A.2 Proof of Claim 2 (DF of FQ)
P����. Assume that the input tra�c rate for innocent tra�c, A� ,

is split equally among : innocent �ows, while each packet of adver-
sarial tra�c corresponds to a distinct attack �ow. As in FCFS, the
adversary maximizes the harm to the system by crafting packets
with the smallest possible packet size %min and the largest possible
job size �max.

Consider the state of the system at time) > �max. Observe that,
in expectation, themaximum number of innocent jobs in each of the
: �ow queues with virtual clock ) is #� = )

E[� ] . Conversely, the
number of adversarial jobs with virtual clock ) is given by #� =

()��max)A�
%min

. FQ ensures that all (#�+: ·#� ) jobs will be scheduled
before any jobs that arrive afterwards. Also, the total time required
to serve these jobs is given by the expression: ()��max)A�

%min
· �max+: ·) .

Then, the goodput >� can be upper-bounded as follows:

>� (A� ,A�)  lim
)!1

: · )
E[� ] ·E[%]

()��max)A�
%min

· �max+: ·)

=
: ·Amax

A� · �max
%min

+:
,

where recall that Amax = E[% ]E[� ] . We can then lower-bound the DF
UFQ (A� ) as follows:

UFQ (A� )=sup
A�

min{A� ,Amax}�>� (A� ,A�)
A�

(5)

� sup
A�

©≠
´
min{A� ,Amax}�

: ·Amax

A� · �max
%min

+:
™Æ
¨

(6)

� �max
%min

min{A� ,Amax}
2:Amax

⇣
2

min{A� ,Amax } �
1

Amax

⌘ , (7)

where (5) is true since thegoodput ismin{A� ,Amax} underFQ in theab-
sence of adversarial tra�c, (6) applies the upper bound on >� (A� ,A�),
and (7) is obtained by setting A� = :Amax%min

�max

⇣
2

min{A� ,Amax } �
1

Amax

⌘
.

Therefore, UFQ (A� )!+1 as �max
%min

!+1. ⇤

A.3 Proof of Theorem 1 (DF of SJF)
Optimal attack strategy: We �rst characterize the optimal attack
strategy of the adversary under SJF for a given innocent input tra�c
rate A� and a given adversarial input tra�c rate A� . It is easy to see
that the adversary should craft packets with the smallest possible
packet size %min since the job scheduling under SJF does not depend
on packet sizes.

To reason about the optimal choice of adversarial job sizes, we
�rst consider the case where the adversary picks certain job size �� .
Then innocent jobs with size  �� and adversarial jobs have priority
over innocent jobs with size > �� . Therefore, innocent jobs with size
> �� will be ‘displaced’, i.e., never get served, if A� is large enough
to overload the processor with innocent jobs with size  �� and
adversarial jobs. Consequently, the goodput consists of innocent
packets whose job sizes are no larger than �� .

pdf of J

JA

Innocent jobs with 
size > JA will be 

dropped

Goodput

Figure 18: Optimal choice of adversarial job size �� .

We now argue that the adversary only needs to pick one deter-
ministic job size without loss of optimality. To see this, suppose the
adversary crafts packets whose job sizes are either �� or � 0� , where
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�� < � 0� . But if the adversary swaps the packets with job size � 0�
for packets with job size �� , they can only displace more or equal
innocent tra�c. Therefore, we can restrict our attention to attack
strategies with one deterministic job size.

We characterize the adversary’s optimal choice for the job size
in Lemma 1 below. Here for simplicity, we assume that the innocent
packet size % and job size � are independent. We will remove this
assumption when we present WSJF for S����P��������. Recall
that the pdf of the innocent job size � is denoted by 5� (·).

L���� 1 (O������A����� S���������� SJF). Consider the
SJF policy for job scheduling and any innocent input tra�c rate A� and
any adversarial input tra�c rate A� . Then the adversary can mini-
mize the goodput by choosing the job size, �� , to be the solution of the
following equation if the solution satis�es ��  �max:

A�
E[%]

π ��

0
9 · 5� ( 9)39 +

A�
%min

· �� =1, (8)

and �� = �max otherwise.

P����. We have argued that the adversary only needs to pick
one deterministic job size. It remains to show that the A� given in
the lemma minimizes the goodput. In (8), if the solution satis�es
��  �max, the term A�

E[% ]
Ø ��
0 9 · 5� ( 9)3 9 is the workload for the pro-

cessor contributed by innocent packets with job size  �� . Since
these packets get served by the processor, they constitute the good-
put. We consider the following two cases: (i) The adversary picks a
job size larger than �� . In this case,more innocent jobswill get served
since smaller jobs are prioritized, resulting in a larger goodput. (ii)
The adversary picks a job size � 0� < �� . In this case, the total workload
from innocent jobs with size  � 0� and adversarial jobs is given by

A�
E[%]

π � 0�

0
9 · 5� ( 9)3 9+

A�
%min

· � 0� <1.

So some innocent jobs with size > � 0� will also get served. More pre-
cisely, the processor has more capacity left for innocent jobs when
the adversarial job size is � 0� compared to when the adversarial job
size is �� . Thus the goodput is higher under � 0� . Combining the two
cases, it follows that the solution �� to (8) is the optimal choice for
the adversary.

When the solution to (8) satis�es �� > �max, the adversary cannot
displace any innocent tra�c nomatter what the job size is. So simply
setting �� = �max is an optimal choice. ⇤

The remainder of the proof for Theorem 1 is very similar to that
for Theorem 2 in the next section. As such, we elide this part of the
proof for the sake of brevity.

A.4 Proof of Theorem 2 (DF ofWSJF)
Optimal attack strategy: We again �rst characterize the optimal
attack strategy of the adversary under WSJF for a given innocent
input tra�c rateA� and a given adversarial input tra�c rateA� . Under
WSJF, the harm that an adversary can induce is fully determined by
the job-to-packet-size ratio of the adversarial tra�c, denoted as/� ,
as opposed to the individual values of job size and packet size. To
see this, note thatWSJF schedules jobs solely based on their job-to-
packet-size ratios, and that the rate at which the adversary generates
work for the processor is A� ·/� , which also depends on the job size

and packet size only through their ratio. Therefore, we assume that
the adversary uses packet size %min without loss of optimality, and
picks a job-to-packet-size ratio/� that results in job size/� ·%min.

The reasoning for the optimal choice of/� is similar to that for
the optimal choice of �� under SJF. The only di�erence is that under
WSJF,whetheran innocentpacketgetsdisplacedornot isdetermined
by its job-to-packet-size ratio rather than its job size. Following sim-
ilar arguments, we establish Lemma 2 below, whose proof is omitted
for the sake of brevity. Here we use 5%,� (?, 9) to denote the joint pdf
of the innocent packet size and job size. Note that we do not make
independence assumptions between them.

L���� 2 (O������A����� S������� ���WSJF). Consider
the WSJF policy for job scheduling and any innocent input tra�c rate
A� and any adversarial input tra�c rate A� . Then the adversary can
minimize the goodput by choosing the job-to-packet-size ratio, /� ,
to be the solution of the following equation if the solution satis�es
/� ·%min  �max:

A�
E[%]

π %max

%min

π ? ·/�

0
9 · 5%,� (?, 9)39 3? +A� ·/� =1, (9)

and/� =
�max
%min

otherwise.

DF analysis: We now formally prove the upper bound on the DF
ofWSJF below.

P����. We divide the discussion into two cases: A� <Amax (under-
loaded by innocent tra�c) and A� � Amax (overloaded by innocent
tra�c).
Case 1 (A� < Amax): Consider a period of) seconds, with a total of
# innocent packets arriving during this period. Let ( = {(?1, 91),(?2,
92),...,(?# , 9# )} denote this set of arrivals, where ?8 2 [%<8=, %<0G ]
and 98 2 [0, �<0G ] denote the packet size and job size corresponding
to the 8’th packet, respectively.Without loss of generality, we choose
the index of each packet, 8 , such that 98?8 

98+1
?8+1

88 .
We now turn to the service order of these # innocent packets

underWSJF. In particular, note that sinceWSJF serves packets in in-
creasing order of their job-size-to-packet-size-ratio, packet 1 is served
before packet 2, packet 2 before packet 3, and so on. Further, since
we assumed that A� < A<0G , it follows that in steady state (i.e., for
su�ciently large) ), all # jobs will be served. Now, consider an ad-
versary who wishes to displace : 2 {1, ..., # } innocent packets. In
order to do this, they must inject some G � 0 attack packets with
packet size ?� and job size 9� . Note that the attacker’s input tra�c
rate can be written as: A� = lim)!1

G ·?�
) . Now, in order to both be

served and displace : innocent packets, G , ?� , and 9� must satisfy
the following constraints with probability 1:

9�
?�

 9#�:+1
?#�:+1

, (10)

#�:’
8=1

98+G · 9� �) �> () ), (11)

where (11) further implies that

G � 1
9�

 
) �> () )�

#�:’
8=1

98

!
. (12)
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In particular, (12) ensures that the adversarial workload pushes the
system to capacity (otherwise, this slack would be applied towards
serving additional tra�c, implying that the adversary would fail to
displace : innocent packets). Similarly, (10) ensures that all G adver-
sarial packets are served before packets {# �:+1, ..., # } (otherwise,
some of the last : innocent packets would be prioritized over the
adversary’s tra�c).

Let6 denote the number of innocent bits displaced by the adversary
using G ·?� bits of their own tra�c. We have: 6(:) =Õ#

8=#�:+1?8 .
Now, in steady state, the displacement factor under WSJF can be
expressed as follows with probability 1:

UWSJF (A� , A�)=
A� �>� (A� ,A�)

A�

= lim
)!1

6(:)
G ·?�

= lim
)!1

Õ#
8=#�:+1?8
G ·?�

(13)

 lim
)!1

Õ#
8=#�:+1?8

) �Õ#�:
8=1 98

· 9�
?�

(14)

 lim
)!1

Term (R1)z                   }|                   {
#’

8=#�:+1
?8 ·

9#�:+1
?#�:+1

) �Õ#�:
8=1 98

, (15)

where (14) is obtainedby substituting the expression forG wederived
in (12) into (13), and (15) is obtained by substituting the expression
for 9�

?�
we derived in (10) into (14). Now, since 98

?8
 98+1
?8+1

implying

that ?8+1 · 98?8  98+1 88 , we can upper-bound Term (R1) as follows:

#’
8=#�:+1

?8 ·
9#�:+1
?#�:+1


#’

8=#�:+1
98


#’
8=1

98 �
#�:’
8=1

98 .

Substituting this expression back into (15), we have:

UWSJF (A� , A�)  lim
)!1

Õ#
8=1 98�

Õ#�:
8=1 98

) �Õ#�:
8=1 98

.

Observe that the RHS is of the form⌘(G)= C�G
)�G , where C =

Õ#
8=1 98 )

(i.e., the cumulative service time for innocent packets in the ab-
sence of adversarial tra�c, which is constant for a given A� ), and
G =

Õ#�:
8=1 98 2 [0, C]. Since ⌘ is a decreasing function of G on its

domain, it follows that UWSJF (A� , A�) achieves its maximum value
when G =0. Therefore, we can write:

UWSJF (A� )  lim
)!1

⌘(0)= lim
)!1

C

)
 lim
)!1

1
)

#’
8=1

98 . (16)

Now, for a given distribution of innocent packets and job sizes,
the input rate and maximum serviceable rate for innocent tra�c (A�

and A<0G , respectively), can be expressed as follows:

A� = lim
)!1

1
)

#’
8=1
?8 ,w.p.1, (17)

A<0G =
E[%]
E[� ] = lim

)!1

Õ#
8=1?8
#

1Õ#
8=1 98
#

= lim
)!1

Õ
8?8Õ
8 98

,w.p.1. (18)

Then, we can de�ne the load on the system due to innocent tra�c,
d , as follows:

d (A� ) =
A�
A<0G

= lim
)!1

1
)

#’
8=1

98  1,w.p.1. (19)

Observe that (19) is identical to the RHS of (16). Thus, we can rewrite
the maximumDF underWSJF: UWSJF (A� )  d , as required.
Case 2 (A� �Amax): In this case, one can verify that there exists <#
such that the system is underloaded with respect to packets with a
job-size-to-packet-size-ratio of 9 ? (i.e., the distribution of innocent
tra�c served is e�ectively truncated at this point). Following the
same arguments as of those forCase 1 (theworst case beingA� =A<0G ,
corresponding to d =1), we have:

UWSJF (A� )  d .

Combining Case 1 and Case 2 completes the proof of Theorem 2.
⇤
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