SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry
Carnegie Mellon University

Abstract

Denial-of-Service (DoS) attacks are the bane of public-facing
network deployments. Algorithmic complexity attacks (ACAs) are
a class of DoS attacks where an attacker uses a small amount of
adversarial traffic to induce a large amount of work in the target
system, pushing the system into overload and causing it to drop pack-
ets from innocent users. ACAs are particularly dangerous because,
unlike volumetric DoS attacks, ACAs don’t require a significant
network bandwidth investment from the attacker. Today, network
functions (NFs) on the Internet must be designed and engineered
on a case-by-case basis to mitigate the debilitating impact of ACAs.
Further, the resulting designs tend to be overly conservative in their
attack mitigation strategy, limiting the innocent traffic that the NF
can serve under common-case operation.

In this work, we propose a more general framework to make NFs
resilient to ACAs. Our framework, SURGEPROTECTOR, uses the NF’s
scheduler to mitigate the impact of ACAs using a very traditional
scheduling algorithm: Weighted Shortest Job First (WSJF). To eval-
uate SURGEPROTECTOR, we propose a new metric of vulnerability
called the Displacement Factor (DF), which quantifies the ‘harm per
unit effort’ that an adversary can inflict on the system. We provide
novel, adversarial analysis of WSJF and show that any system us-
ing this policy has a worst-case DF of only a small constant, where
traditional schedulers place no upper bound on the DF. Illustrating
that SURGEPROTECTOR is not only theoretically, but practically ro-
bust, we integrate SURGEPROTECTOR into an open source intrusion
detection system (IDS). Under simulated attack, the SURGEPROTEC-
Tor-augmented IDS suffers 90-99% lower innocent traffic loss than
the original system.

CCS Concepts

» Networks — Denial-of-service attacks; Packet scheduling.

Keywords

Network Security, Algorithmic Complexity Attacks, Adversarial
Scheduling, SurgeProtector, Pigasus, WSJF

ACM Reference Format:

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry. 2022.
SURGEPROTECTOR: Mitigating Temporal Algorithmic Complexity Attacks
using Adversarial Scheduling. In ACM SIGCOMM 2022 Conference (SIGCOMM
'22), August 22-26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3544216.3544250

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544250

1 Introduction

Network functions are vulnerable targets for algorithmic complex-
ity attacks (ACAs) [12]. With an ACA, an attacker crafts a carefully-
designed input that requires a small amount of network and compute
resources for the attacker to produce, and yet consumes a large amount
of compute resources at the target system. Given a sufficient request
rate, an attacker can drive the victim into overload, causing it to
drop requests from the innocent, intended users of the service. ACAs
are especially dangerous when compared to traditional ‘volumetric’
Denial-of-Service (DoS) attacks. In a volumetric attack, an attacker
must invest the necessary resources to, e.g., produce 100M pack-
ets/sec in order to overload an intrusion detection system (IDS)
which is provisioned to serve 100M packets/sec; conversely, with an
ACA, an attacker with only modest resources can overload a much
more powerful service (say, producing only 1Mpps to overwhelm
the same 100Mpps-provisioned IDS).

In this paper, we evaluate ACAs via a novel measure of vulner-
ability called the Displacement Factor (DF). The key idea behind the
DF is to measure the ratio of innocent traffic displaced by an attacker
(‘harm’) to the attacker’s own bandwidth investment (‘effort’). A
DF of 0 implies that no innocent traffic is ever displaced, and a DF
of 100 implies that for every 1 bps of attack traffic, 100 bps of inno-
cent traffic are displaced. A 2012 published attack on IDS regular
expression engines achieved a DF of 8 [1], and a 2019 published
attack on Open vSwitch exploiting the Tuple-Space-Search (TSS)
algorithm [13] achieved DFs as high as 12,000!

As we will discuss in §2, ACAs are particularly challenging to
mitigate in NFs. In order to be resilient against ACAs, state-of-the-art
solutions (a) must be designed on a case-by-case basis, and (b) limit
the traffic that the NF can serve under normal operation. For example,
it is common practice for regular-expression based DPI engines to
limit how many states in the regular expression DFA a particular
packet or flow may traverse [48]. This prevents an attacker from
wasting compute cycles, thereby reducing the DF. However, this also
prevents the network operator from deploying particularly complex
rules, limiting the NF’s ability to serve legitimate traffic which tra-
verses a large number of DFA states, even under normal operation
(i.e., when the NF is operating below maximum capacity and is easily
able to service such traffic).

In this paper we ask: is there a general approach for mitigating
algorithmic complexity attacks on NFs which does notlimit the types
of rules and traffic that can be serviced under normal operation?

We are inspired by general solutions to ACAs in the traditional sys-
tems literature as we aim towards a general — rather than NF-by-NF
- solution. In cluster-compute frameworks [27, 34, 51] and operating
systems [8, 32], ACAs are less of a concern because performance
isolation techniques prevent the resource usage of one user from
impacting that of another. In these systems, the scheduler divides

https://doi.org/10.1145/3544216.3544250
https://doi.org/10.1145/3544216.3544250

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

compute time evenly between users, and even if a user submits an ex-
pensive job for servicing, other users still receive their ‘fair share’ of
service time. Unfortunately, as we discuss in §4.2, in the networking
setting, a Fair Queueing (FQ) [17] scheduler with this same approach
can be easily exploited by an attacker who generates traffic which
appears as if it is coming from multiple users, fooling the scheduler
into allocating more service time to the attacker.

We find that a ‘familiar friend’ from the scheduling literature is,
surprisingly, an effective mitigation strategy against ACAs. Weight-
ed Shortest Job First (WSJF) [11] naturally discards costly packets
when the system is overloaded, yet under normal operation, it will
eventually serve all packets, even those with lengthy service times.

While WSJF is an old algorithm, our analysis of WSJF in the con-
text of ACAs is novel. In §4.4, we prove that WSJF enforces a DF with
an upper bound of 1, regardless of the DF of the underlying algorithms,
the load on the server, and the parameters of the innocent packet and
job size distributions. In other words, WSJF ensures that, in order to
displace 1 bps of innocent traffic, the adversary must inject at least
1 bps of their own bandwidth into the attack, significantly mitigat-
ing the impact of ACAs. In comparison, traditional First Come First
Served (FCFS) and Fair Queueing (FQ) schedulers do not place any
upper bound on the DF.

We bring our theoretical results into practice by building SURGE-
PROTECTOR, an implementation of WSJF for NFs that we integrate
into an open-source intrusion detection system (IDS). Doing so re-
quired addressing several pragmatic challenges. First, WSJF assumes
that per-packet processing times are known a priori, which may not
be practical in the context of real data-structures and algorithms.
Second, the theory behind SURGEPROTECTOR assumes packets can
be arbitrarily reordered, but we know that TCP performs poorly in
the face of reordering. Finally, SURGEPROTECTOR requires a prior-
ity queue to schedule in WSJF order - exposing yet another attack
surface. We describe our implementation of the SURGEPROTECTOR
scheduler in the context of the Pigasus IDS [58] and discuss how it
addresses all of these challenges in §5.

Then, in §6, we evaluate SURGEPROTECTOR both in simulation and
our empirical testbed.! Although SURGEPROTECTOR upper-bounds
the DF to 1, in practice, we see a worst-case DF of at most 0.4 - that
is, to displace 1 bps of innocent traffic, the attacker must invest at
least 2.5 bps of their own bandwidth into the attack — where previ-
ously the DF had been over 100. Hence, compared to the baseline
IDS implementation, the SURGEPROTECTOR-augmented IDS yields
90-99% lower loss of innocent traffic under a worst-case attack.

The prospect of using adversarial scheduling to mitigate ACAs
opens up several interesting theoretical and practical questions, and
we are only able to answer some of them. Perhaps the most important
open questions pertain to how to predict job sizes a priori; SURGEPRO-
TECTOR ultimately relies on heuristics for this task, but we believe that
a thorough analysis of efficient, adversary-proof heuristics remains
ripe for exploration. Thus, in §7, we describe current limitations and
various open questions (regarding heuristics, fairness, etc.). Finally,
we describe related work in §8, and conclude in §9.

2 Background and Motivation

Algorithmic complexity attacks target a system’s underlying al-
gorithms and/or data-structures, using specially-crafted inputs to

! Artifacts are available at https://github.com/cmu-snap/SurgeProtector

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

trigger the system’s worst-case behavior [1, 4, 12, 47]. While the
attacker’s input pattern(s) and the resulting behavior may vary from
design to design, the ultimate goal of these attacks is the same: to
overload the system with large amounts of wasteful work, inhibiting
its ability to serve innocent user traffic.? The key difference between
an ACA and a traditional volumetric DoS attack is that in an ACA, the
attacker can induce the system to perform a large amount of wasteful
work by introducing a small input that costs little to produce. In a
volumetric DoS attack, the attacker must craft a large amount of
input to overload the system, which requires the investment of phys-
ical resources to produce this traffic. Colloquially, an ACA provides
‘more bang for one’s buck’

Example: Consider the following, simplified example drawn from
Pigasus [58]. Pigasus is a hybrid FPGA+CPU, 100Gbps IDS, and it
implements partial TCP reassembly in order to detect attacks that
span across multiple packets in a TCP bytestream. As shown in the
Figure 1, Pigasus stores packets from out-of-order flows in a linked
list. When a packet corresponding to an out-of-order flow arrives,
the reassembly engine traverses its linked list to find the appropriate
insertion location (using the packet sequence number), performs
insertion, and, if possible, releases any in-order segments.

@>| [5, 1466) |—>|[2926, 4387)|
[85.87) > [88,90) > [91,93) | [94,9)

Figure 1: TCP reassembly using a linked list [58]. Each node in the
list represents a range of packet sequence numbers.

Letus assume for the sake of exposition that most connectionslook
like flow A in Figure 1, with exactly two packets in the linked list and
only one ‘gap’ in the sequence number space. When a re-transmitted
or re-ordered packet arrives to fill in a gap in the sequence number
space (e.g., a packet with sequence number 1466 in flow A), it takes
two iterations of pointer-chasing to reach the right index in the
linked list.

To mount an ACA, an attacker might transmit a sequence of pack-
ets leading to a scenario more like flow B: should a packet arrive with
index 93, it would take four iterations of pointer chasing — or twice as
many cycles as in the typical case — to fill in the sequence number gap.

We refer to the amount of work the system performs to process a
packet as the packet’s job size, with the average ‘innocent’ packet’s
job size J; and attack job sizes averaging J4. Now let us assume the
system is operating at capacity: there are some C packets per second
arriving at the system, with an average of J job size per packet. If
some of those packets are instead sized J4 > Jj, the system will be
unable to keep up with the offered load and be forced to drop some
packets. If an attacker injects one packet of sized J4 = 10, and all
other packets are J; = 2, then the system will be forced to drop 5
innocent packets in order to process the additional attack packet.
In our simulations with Pigasus (§6), we found that in practice, an
attacker could force Pigasus’ reassembly engine to drop roughly 300
innocent bits for every bit of input attack traffic.

%In this paper, we focus on temporal ACAs, in which an attacker crafts system inputs
which are computationally expensive to process, consuming compute cycles that could
be used for innocent inputs. There are some attacks where adversarial inputs e.g., aim to
poison datastructure contents [23], but are not themselves computationally expensive
to process. These attacks are sometimes also referred to ACAs, but they are not the
focus of this work.

https://github.com/cmu-snap/SurgeProtector

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

Unfortunately, the literature is full of examples of NFs vul-
nerable to ACAs: For example, in 2020, researchers showed that
they could slow the popular open-source software switch, Open
vSwitch, to support only 1% of its typical throughput by offering
a small 1 Mbps attack stream designed to exploit algorithmic com-
plexity [14]. The attack exploited a well-known vulnerability in the
Tuple-Space Search (TSS) [49] algorithm for packet classification
known as ‘Tuple Space Explosion’ (TSE) [13, 15].

In 2018, [50] identified a vulnerability in the Linux kernel’s TCP
reassembly logic. Although the Linux implementation uses a more so-
phisticated data-structure to manage out-of-order flows (Red-Black
Trees), the bug allowed malicious peers to consume an excessive
number of CPU cycles using specially-crafted inputs. The bug was
addressed by a patch that streamlined processing enough to render
the attack ‘not critical’ [19]; while this may be sufficient for the cur-
rent line-rate supported by kernel networking, the vulnerability will
inevitably resurface alongside the next generation of line-rates.

An entire sub-literature of research [1, 4, 12, 47] addresses at-
tacks on deep-packet inspection (DPI) engines (e.g., Pigasus [58],
Snort [38], Suricata [16]) via Regular expression Denial of Service (Re-
DoS). A ReDoS attack crafts packets with payloads that are carefully
designed to traverse multiple states in regular expression automata -
the more states the packet triggers in the automata, the larger the J4
for that packet. Previous work has shown that an attacker responsi-
ble for only 10% of the traffic entering a regular expression engine can
slow down legitimate traffic by up to 500% [1]. The literature is rife
with other examples: ACAs that exploit decompression algorithms,
sorting, hash tables, etc. [26, 29, 35, 36].

We note that some attacks are referred to as ACAs which are not
temporal, but rather spatial in nature. For instance, an attacker might
exploit a key-value store that uses separate chaining to resolve hash
collisions [23] by injecting a large number of their own key-value
pairs into the store. This increases the load factor of the underly-
ing hash table, driving up the job size for all traffic - not just the
attacker’s — arriving afterwards. In this work, we focus exclusively
on temporal ACAs (i.e., assume a threat model where the attacker
can control the job sizes of their own packets, but cannot influence
the job size distribution for innocent traffic).

Resource isolation is insufficient to prevent ACAs in a net-
worked setting: Many systems aim to shield users from the actions
of other (potentially malicious) users by allocating each one a fixed
slice of the shared resource (i.e., resource isolation). Unfortunately,
the networking equivalent to resource isolation - fair queueing [17]
— is trivially circumvented and hence middleboxes and NFs are es-
pecially vulnerable. A fair queueing device schedules packets for
processing in such a way as to divide service time equally between
classes of traffic — service time might be divided evenly by network
connection, by class of traffic (e.g., HTTP vs VOIP traffic), or by
sender. At first glance, it might appear that this would prevent an
attacker from consuming more than their ‘fair share’ of processor
time. But, unfortunately, on the Internet, attackers have numerous
ways to easily spoofthe source IP address of their traffic — leading to
the appearance that the attack traffic originates from multiple users.
Existing, application-specific solutions lead to undesirable
tradeoffs: Most mitigation techniques for ACAs in NFs instead
turn to shrinking the gap between Jj, the innocent job size, and Ja,

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

the worst-case attack job size. While this approach is state-of-the-art,
it leads to undesirable trade-offs between common-case usability in
exchange for ACA resilience.

Returning to the flow reassembly case, one might enforce that no
linked list ever extends further than a chain of four packets, and if
additional out-of-order packets arrive, the flow is simply reset. This
approach mitigates the ACA: where a malicious packet might have
led to the loss of n innocent packets in the base design, we can bound
J4 to bring it closer to J; and limit the malicious packet to only cause
aloss of m < n packets.

Unfortunately, imposing a maximum length on the reassembler
limits usability in the common case: we reduce Jy4, but we also limit
the NF’s ability to handle innocent highly out-of-order flows, even
in scenarios where the NF has excess capacity and can feasibly service
them. Thus, the NF designer is left with two equally unappealing al-
ternatives. They can either set a higher limit on J4, allowing the NF to
service a wider range of flows but leaving it more vulnerable to ACAs,
or they can set a lower limit on J4, thereby sacrificing the ability to
serve certain innocent flows for the sake of higher ACA resilience.

As we will discuss in §8, NFs today come with a variety of such
patches in an effort to restrict J4, and sacrifice some property or
the other (e.g., common-case performance or memory efficiency) in
exchange for ACA resilience. Additionally, the application-specific
nature of these patches means that there is no general solution for
mitigating ACAs - every patch must be constructed from scratch
for each new ACA. This motivates our search for an attack miti-
gation strategy that is both general and obviates the need to make
undesirable tradeoffs in order to achieve resiliency against ACAs.

3 Problem Definition

In order to facilitate a first-principles analysis of algorithmic com-
plexity attacks, we start by formulating a theoretical model to capture
the dynamics of packets and jobs in §3.1. Next, we characterize the
adversary’s capabilities and our threat model in §3.2. In §3.3, we for-
mally define the Displacement Factor (DF). In §4 we use these founda-
tions to demonstrate how scheduling can be used to mitigate ACAs.

3.1 System Model

Packets and jobs: At the heart of our abstraction is an NF that
serves packets appearing on an ingress link of capacity R Gbps. Each
packet requires a certain amount of time to be processed (e.g., due
to computation, I/O, memory lookups, etc.), and thus can be char-
acterized by two independent variables: a packet size (in bits) and a
job size (in seconds). For convenience, we also tag each packet with
a class: class I packets correspond to innocent traffic and class A
packets correspond to adversarial traffic; however, note that this tag
is only relevant for the purpose of our analysis, and is not visible to
the underlying system.

We assume that packets belonging to innocent traffic follow cer-
tain packet and job size distributions, with P and J denoting continu-
ous random variables sampled from these distributions, respectively.
Let fp(p) and f7(j) denote their probability density functions (pdf)3
and E[P] and E[J] denote the corresponding expectations. Table 1
contains a summary of the notations used in the model.

3In general, the packet size and job size may be correlated, and we use fp ; (p,) to
denote the joint pdf.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Notation | Description
R Link capacity (in Gbps)
P Packet size of class I traffic (random variable)
J Job size of class I traffic (random variable)

fe(p) Probability density function of packet size P
big®)) Probability density function of job size J

Pin, Pmax | Minimum, maximum packet sizes
Jmax Maximum job size
rr Input traffic rate (in Gbps) for class I traffic
Fmax Maximum serviceable traffic rate
or Output traffic rate (in Gbps) for class I traffic

a(ry) Displacement Factor (DF)

Table 1: Summary of notations used in the model.

Goodput: Let 7 denote the input traffic rate (in Gbps) for class I traf-
fic on the ingress link. For simplicity, we assume that packet arrivals
have a constant inter-arrival time; i.e., the inter-arrival time is @
seconds for innocent traffic. We define the system goodput, denoted
as o, as the output traffic rate corresponding to class I traffic; i.e., the
useful throughput that the system can sustain. Note that the system
is designed to serve innocent traffic, and the maximum serviceable

traffic rate without dropping packets is given by rmax = % (in

Gbps). Thus, in the absence of any adversarial traffic, the goodput
oy =ry when r; < rmax. The system model is depicted in Figure 2.

@

Fimax GbPS

Output

Ingress Link
(line-rate: R Gbps)

Figure 2: System model.

3.2 Threat Model

In order to model algorithmic complexity attacks, we allow a
rate-limited adversary to inject a stream of adversarial (class A) traf-
fic into the ingress link. Let r4 denote the input traffic rate for class
A traffic. To enforce line-rate semantics, we impose the constraint
rr+ra <R. Our threat model assumes an attacker that is overpow-
ered relative to what we believe a practical attacker is capable of. In
particular, we assume that the adversary is aware of all aspects of
the underlying system (‘transparent’ model), as well as the innocent
packet and job size distributions, and always uses the optimal attack
strategy. In particular, the adversary crafts packets with the best
choice of packet size and job size to maximize the harm to the system,
where the harm is measured by reduction in goodput as defined in
§3.3. The adversary is not capable of: (a) inspecting individual packets
as they appear on the ingress link, (b) affecting the job sizes of class I
packets (e.g., by tainting shared state), or (c) amplifying their attack
bandwidth using other means (e.g., reflection-based amplification).

3.3 Quantifying Vulnerability

We first measure the harm induced by the adversary using the
volume of innocent traffic ‘displaced’ under a given attack traffic
input rate r4. Specifically, we write the goodput oy as o7 (ry,r4) here
to explicitly express its dependence on ry and r4. Then the volume of

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

innocent traffic displaced is 07 (r7,0) —oy (r1,r4),1.e., how far the good-
put deviates from the goodput in the absence of an adversary (r4 =0).

We then quantify the vulnerability of the system using the Dis-
placement Factor (DF), a, defined as the adversary’s payoff relative
to the amount of resources they invest:

_ Innocent traffic displaced (Gbps)
"~ Attack bandwidth used (Gbps)

ADF of 5 means an attacker can force the NF to drop 5 bits of innocent
traffic for every 1 bit of attack traffic provided. More formally, we
can write the DF as follows:

__or(rp,0)—or(rp.ra)
a(rp) =sup————"2=,
rA rA

(1)

Here we take the supremum over the attack traffic rate r4 to capture
the adversary’s most efficient attack.

4 Mitigating ACAs using Scheduling

In this section, we demonstrate how scheduling can be used to
effectively mitigate ACAs in a networked setting. As a starting
point, we first consider two commonly-used scheduling policies,
First-Come First-Served (FCFS) and Fair Queueing (FQ). In §4.1 and
§4.2, we show that under both FCFS and FQ, the DFs become un-
bounded in some regimes of system parameters. Consequently, sys-
tems that use FCFS or FQ scheduling cannot rely on the scheduler
to protect against ACAs.

To build intuition as to how a job-size based scheduling policy can
limit the harm induced by the adversary, we then present a sched-
uling policy called Shortest Job First (SJF) in §4.3. We show that SJF
has a DF upper bounded by a constant that is independent of Jpax,
improving upon both FCFS and FQ; however, this constant grows
as the average packet size for innocent traffic, E[P], increases. We
then present Packet-Size Weighted Shortest Job First (WSJF) in §4.4,
showing that WSJF further removes the dependence on E[P] and
achieves a maximum DF of 1. Finally, we summarize SURGEPROTEC-
TOR’s theoretical guarantees in §4.5.

Due to space constraints, we merely provide the intuition behind
each claim here, and defer all proofs to Appendix A.

4.1 First-Come First-Serve (FCFS)

As the name suggests, First-Come First-Serve (FCFS) serves jobs in
the order that they appear on the ingress link. Under FCFS, in order
to maximize harm, the adversary crafts packets with the smallest
possible packet size, Ppin, and the largest possible job size, Jmax-

B Innocent Packet [H Attack Packet
NIC |26 2 3 4 5 6

Service
Order

CPU

time 0 1 2 3 4 5 6 7 8 9101112131415161718'
Figure 3: FCFS fails to protect against ACAs.

As depicted in Figure 3, using small-sized packets encoding large
jobs enables an attacker to consume a significant fraction of CPU
(i.e., service time) despite using only a small amount of NIC time (i.e.,

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

attack bandwidth), throttling goodput. Intuitively, this happens be-
cause FCFS serves jobs in the order of arrival regardless of their sizes.
Therefore, if an adversary can craft packets with arbitrarily large job
sizes, they can also reduce the traffic rate for innocent packets to an
arbitrarily large degree. We show in Claim 1 below that the adversary

Jmax b
ecomes large.
Pmin g

Cramv 1 (DF oF FCFS). Under FCFS, for any innocent input traffic

ratery and any packet size and job size distributions, the Displacement
Jmax

can achieve unbounded DF under FCFS as

Factor apcps(ry) — +00 as 32 — +o0.

The detailed proof can be found in §A.1.

4.2 Fair Queueing

Fair Queueing (FQ) is a scheduling algorithm that is widely em-
ployed in switches and network processors. FQ and its variants (e.g.,
WEFQ, DRFQ) ensure that one or more shared resources (e.g., network
throughput, processor time, etc.) are evenly partitioned among a
number of competing flows. While this scheme performs well when
these flows are operated by good faith users seeking fair arbitra-
tion over a shared, limited resource, it does not translate well to the
adversarial setting

o N T £ v
W) v

[d [Flows

cu N5] + [ER

>

time 0 1 2 3 4 5 6 7 8 91011121314151617181920'

Flow
Queues

Figure 4: FQ fails to protect against ACAs. In steady-state, the
attacker receives 75% of the total service time despite using a small
attack bandwidth.

The fundamental problem is that FQ only guarantees equitability
across flows, thereby allowing a malicious user to occupy a dispropor-
tionately high fraction of the shared resource(s) by spawning more
flows. Further, using FQ at source IP granularity is also insufficient
because of the possibility of source address spoofing. As depicted
in Figure 4, using small-sized packets across a large number of flows
enables an attacker to consume a significant fraction of service time
using only a small amount of attack bandwidth. As we show in the
proof for Claim 2, the DF under FQ ultimately scales with {,m"_"
as in the case of FCFS, can become unbounded. "

,and,

CraM 2 (DF oF FQ). Under FQ, for any innocent input traffic rate

rr and any packet size and job size distributions, the Displacement
]max

Factor apg(ry) — +00 as 5% — +00.

The detailed proof can be found in §A.2.

4.3 Shortest Job First (SJF)

FCFS’s obliviousness to job sizes and FQ’s focus on per-flow fair-
ness leaves them both susceptible to ACAs. In order to prevent ACAs,
we need a scheduling policy that considers job sizes without being
vulnerable to flow inflation. Shortest Job First (SJF) is a popular policy
for scheduling jobs in a non-preemptive system. As the name sug-
gests, at any instant, SJF prioritizes the queued job with the smallest
(initial) job size.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

We show in Theorem 1 below that the DF under SJF is upper
bounded by a small constant independent of both Jiax and f7(j).
The intuition behind why SJF works well is simple: if the adversary
produces packets whose jobs are too expensive to process, they will
simply be de-prioritized and never end up being served. Instead, if the
adversary produces packets whose jobs are too cheap, they will fail to
push the system into overload. As depicted in Figure 5, the attacker’s
optimal strategy is to pick a job size corresponding to a ‘sweet spot’ in
the innocent job size distribution,* and use minimum-sized packets
to inflate their packet rate (and, consequently, the total work injected
into the system). This allows them to displace some innocent traffic,
achieving a worst-case constant DF. As we show in the proof for Theo-
rem 1, the DF under SJF scales as the ratio between the average packet
size for innocent traffic, E[P], and the minimum packet size, Ppip.

B Innocent Packet [Bl Attack Packet

NIC 1

Service
Order

time t t+2 t+4 t+6 t+8 t+10 t+12 t+14 t+16 t+18
Figure 5: In order to exploit SJF, the attacker uses minimum-sized
packets with ajob size (i.e., CPU time) between that of packets 1 and 3.
The attack packets (i.e., 2, 5, 6) are scheduled before more expensive
ones (3, 4), pushing the system into overload and displacing packet 4.

THEOREM 1 (DF oF SJF). Under SFF, for any innocent input traffic
rate ry and any packet size and job size distribution, the Displacement
Factor is upper bounded as:

E
asyr(ry) < P[] P,

min

where p = min(rmr:lx, l) € [0, 1] is the load on the system due to

innocent traffic.

Unlike FCFS and FQ, SJF does impose an upper bound on the DF,
limiting the extent that an attacker can cause harm to the system. We
show in the detailed proof (§A.3) that SJF has an upper bound that
depends on 73— E[P] , which is approximately a factor of 8 given typical
innocent packet size distributions. We show that we can further

improve this bound with weighted SJF in the next section.

4.4 Weighted Shortest Job First (WSJF)

A fundamental limitation of the policies described so far is that
they altogether ignore the packet size information encoded in an
incoming packet. This enables an adversary to greatly inflate their
job arrival rate using minimum-sized packets, leading to either an
unbounded DF (in the case of FCFS and FQ), or one that scales in-
versely with Py, (in the case of SJF). Then, a natural question is:
can we do better by leveraging this readily-available information?

Here, we propose to use Packet-Size Weighted Shortest Job First
(WSJF), a variant of SJF that prioritizes the packet with the smallest
Jjob-to-packet-size ratio. We show in Theorem 2 below that the DF
under WSJF is at most 1, which implies that for every 1 bps of inno-
cent traffic that the adversary wishes to displace, they must consume

“For a formal characterization of the optimal attack strategy under SJF, please see
Lemma 1 in Appendix A.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

at least 1 bps of their own bandwidth. The intuition is that WSJF
minimizes the system’s work-per-bit, thereby preventing an adversary
from consuming a high fraction of processing cycles unless they invest
a proportionally high bandwidth into the attack.

To concretize this notion, consider the scenario depicted in the
figure below. For the sake of simplicity, assume that all innocent
packets have a job size of 1 unit time. Also assume that the system
is operating at capacity, and that in steady-state, the WSJF queue
contains 3 packets with packet sizes P; =5, Po =3, and P3 =1. Observe
that WSJF would serve these packets in decreasing order of packet
size (i.e., P1 before P, and Py before P3), corresponding to scenario Sp.

—— Innocent

(Sy) WSJF queue with
only innocent packets. Packet

Attack
(S;) WSJF queue with Packet
one innocent packet
being displaced.
(S,) WSJF queue with
two innocent packets
being displaced.

Consider an attacker that seeks to displace a single packet (i.e.,
with packet size P3) from this queue with one of their own. In order
to do this, the attacker must inject an attack packet of size P4 > P3
with a job size of 1 (scenario S7); a smaller job size would introduce
slack in the system load (allowing it to periodically serve innocent
packets of size P3 as well), while a smaller packet size would result
in the attack packet never being served. Thus, the attacker is forced
to inject as many bits as they wish to displace.

Suppose, instead, that the attacker wishes to displace two packets
(with sizes P, and P3). The attacker now has two options: they can
either inject two packets with sizes P5 > P, and P4 > P3 and unit
job size each (scenario Sy), or a single packet of size Ps > (P2+P3)
and a job size of 2. Once again, the attacker’s bandwidth investment
matches or exceeds the displaced goodput. As we demonstrate in
the proof for Theorem 2, this result generalizes to any load, as well
as any job and packet size distributions of innocent traffic.

THEOREM 2 (DF oF WSJF). Under WSJF, for any innocent input
traffic rate ry and any packet size and job size distribution, the Dis-
placement Factor is upper bounded as:

awsgr(r) <p<1,

, 1) € [0, 1] is the load on the system due to

where p = min(I
a.

Tmax
innocent traffic.

The detailed proof can be found in §A 4.

4.5 SURGEPROTECTOR

SurGEPROTECTOR interposes a WSJF scheduler in front of variable-
time modules within an NF (e.g., the reassembler discussed in §2).
WSJF meets both our initial goals of generality and not limiting the
innocent traffic that can be served. First and foremost, it provides a
provable upper bound on the DF that is independent of the underlying
algorithms. WSJF is a drop-in solution that can be applied to any algo-
rithm, and hence, it is general.5 Second, where many ACA solutions,

5This assumes, for the moment, a priori knowledge of the packet processing time,
which must be calculated based on the underlying algorithm. We return to address
this point in more detail in §5.2.

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

e.g., drop packets from flows that are determined to be too expensive
to process, WSJF guarantees that all connections will be served so
long as there is system capacity to do so (i.e., it is starvation-free
when the system is at or below capacity). Hence, WSJF does not place
any limitations on innocent traffic under normal operation. In over-
load, the most computationally expensive packets are dropped,® but
overall this minimizes the rate of innocent traffic that is denied service.

With WSJF as our chosen approach, we now turn to the chal-
lenges of integrating WSJF into a practical network function in the
following section.

5 Implementation & Practical Issues

In order to validate our theoretical findings in the context of a
real system, we incorporate SURGEPROTECTOR into the open-source
Pigasus IDS [58]. A simplified block diagram of Pigasus is depicted
in Figure 6. In §2, we briefly introduced the linked-list based design
of Pigasus’s FPGA-based TCP Reassembly engine (labelled (1)), and
demonstrated how it can be exploited by an adversary. It turns out
that a second component of the IDS - the CPU-side Full Matcher (la-
belled (2)) - is also vulnerable to a different type of complexity attack.

(1)

TCP
Reassembly

.) Full Matcher #1
Multi-String

(Fast) Pattern

Matcher Full Matcher #2

Packet Buffer

DMA Engine

Ethernet IP

Full Matcher #N

FPGA
Figure 6: The simplified Pigasus IDS pipeline.

CPU

We begin in §5.1 with a brief overview of the two vulnerable
components in Pigasus that we sought to protect. Over the course
of implementing SURGEPROTECTOR, we encountered the following
three important practical challenges. First, how do we predict job
sizes? Second, since flow reordering is often undesirable, how do we
guarantee in-order delivery for packets of the same flow? Finally,
how do we ensure that the scheduler itself does not present a target
for ACAs? We frame the implementation details of the SURGEPRO-
TECTOR scheduler in the context of these three questions (§5.2 - §5.4).

5.1 Overview of Vulnerable Components

FPGA-based TCP Reassembly: Recall that the goal of TCP re-
assembly is to reconstruct an in-order TCP bytestream from a se-
quence of out-of-order packets. The Pigasus reassembler, which is
FPGA-based, prioritizes memory efficiency, and employs a linked
list-based design to manage out-of-order flow state. While this
achieves excellent memory utilization, the worst-case linear com-
plexity of linked-list operations makes it susceptible to ACAs.

An example of this is depicted in Figure 7. When a new packet ar-
rives (with PSN range [35, 50) in the example below), the reassembler

® At this point, one might wonder: if WSJF drops the most expensive jobs in overload,
why doesn’t the adversary simply use less expensive jobs, thereby cajoling the scheduler
into exclusively serving their traffic (e.g., if innocent packets have a job size of 10 units,
the adversary uses packets with a job size of 1 unit)? From an adversarial perspective,
this turns out be an inefficient strategy; the adversary must now send 10X the number
of packets to displace innocent traffic, corresponding to 10X as much attack bandwidth.
In particular, this devolves the DoS attack into a volumetric one, which defeats the
purpose of using an ACA in the first place.

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

Expected
PSN=35

Figure 7: Linked-list state for an out-of-order flow.

linearly scans the list and inserts the node at the appropriate position.
In order to exploit this, an attacker crafts highly out-of-order flows,
linearly increasing the number of traversals required for each subse-
quent attack packet. Finally, they use minimum-sized packets (with a
1-byte TCP payload) to inflate their packet arrival rate, maximizing
the work injected into the system.

CPU-based Full Matching: As a signature-based IDS, Pigasus
identifies malicious flows by comparing packet payloads against a
database of known attack signatures (‘rules’). To achieve high per-
formance, it does so in two stages: it first uses a number of fast filters
in hardware (i.e., the Multi-String Pattern Matcher) to quickly filter
out innocent traffic; it then relays the remaining (small) fraction of
possibly-malicious traffic to the CPU to perform more expensive
regex analysis (‘Full Matching’ [58]). While Pigasus’ first stage op-
erates in constant time (and hence is not vulnerable to ACAs), the
CPU-side Full Matching stage involves variable-time computation
that is also input-dependent, making it vulnerable to ACAs.

0 Full Matcher

Rule IDs: (Regex)
FPGA {1,4,152} CPU
Figure 8: Pigasus Full Matching pipeline.

Fast Matcher

Pigasus’s Full Matching pipeline is depicted in Figure 8. During
the first stage, in addition to filtering out innocent packets, Pigasus
also generates alist of candidate rules that the packet may ultimately
match on. It then sends this list, along with the packet payload, to
the CPU for processing. The CPU sequentially processes each rule
in the list, stopping at the first rule that results in a match. The pro-
cessing result (i.e., indicating whether to drop or forward the packet)
is subsequently relayed back to the FPGA.

An attacker can exploit this by crafting attack packets that either:
(a) result in a large number of matches in the Fast Matching stage (re-
quiring the Full Matcher to evaluate many rules), (b) trigger a regex
search with super-linear runtime in the Full Matcher (i.e., ReDoS-style
attacks [9, 16, 56]), or both.

5.2 Predicting Job Sizes

SURGEPROTECTOR schedules packets based on job sizes, but, in
practice, the time required to process a packet is not known a priori.
A common approach to solve this problem — and one we employ
in this work — is to use heuristics for job size estimation [31, 33]. In
particular, we use the following heuristics to estimate job sizes for
our target applications:

TCP Reassembly: apacket’s job size is estimated as the length of the
out-of-order linked-list for the corresponding flow. Despite its simplic-
ity, this heuristic has two salient properties: first, since the number of
traversals can never exceed the length of the linked-list, the estimate
always upper-bounds a given packet’s true job size; second, since
the heuristic is computed on a per-flow basis, the adversary cannot
affect the quality of estimates for innocent flows.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Full Matching: if K denotes the list of candidate rules identified
by the fast matching stage, then the job size is estimated as | =
Skek (zx-p), where zj. denotes the maximum job-size-to-packet-size
ratio observed for rule k thus far, and p denotes the packet payload
size. By using historical run-time data as feedback, the heuristic
function ‘learns’ which rules are prone to complexity attacks and
selectively deprioritizes them.

We implement and evaluate SURGEPROTECTOR using both these
heuristics in §6.1. It is worthwhile to note that neither of these heuris-
tics is ‘ideal’ in a theoretical sense. For example, in the case of TCP
Reassembly, there may exist innocent TCP flows on the Internet
for which the heuristic consistently overestimates job sizes by a
significant margin, allowing the attacker to unfairly displace them.
Similarly, in the case of Full Matching, an attacker may be able to
manipulate the outcome of the heuristic for every rule, potentially
causing large prediction errors for subsequent innocent packets.

In practice, this does not appear to be the case. For instance, in the
case of TCP Reassembly, the heuristic yields accurate job size esti-
mates for the vast majority of TCP flows, limiting the additional harm
that an adversary can induce. Similarly, in the case of Full Matching,
most rules don’t have large variance in their job-size-to-packet-size
ratios. We explore this further in §6.2, where we empirically evaluate
the effect of using heuristics on SURGEPROTECTOR’s DF upper-bound.
Empirically, we find that for both applications, the adversary’s DF in-
creases by no more than 5% of the upper-bound even when the adversary
has perfect knowledge of the actual and heuristic-estimated job size
distributions. We leave the exploration of adversary-proof job size
heuristics for arbitrary NFs to future work (§7).

5.3 Keeping (TCP) Flows In-Order

Keeping packets within the same TCP flow in order is necessary
to avoid degrading application performance [5, 18, 30, 45, 58]. While
FCFS and FQ (along with its variants) guarantee that same-flow pack-
ets are served in-order, SJF and WSJF do not. In this section, we ex-
plore how to augment SURGEPROTECTOR to provide in-order service.

As a natural starting point, consider the following extension to
WSJF, which we will refer to as WSJF Head-of-Queue (WSJF-HoQ).
This policy maintains independent queues for each flow, with incom-
ing packets being appended to the end of the corresponding flow
queue. At any moment, the policy prioritizes the flow whose leading
(Head-of-Queue) packet has the smallest job-to-packet size ratio;
clearly, this maintains the desired in-order property. Then, we can
ask: is this WSJF/FCFS hybrid a good policy?

Unfortunately, WSJF-HoQ turns out to be a poor strategy in the
adversarial setting. The problem is as follows: while an innocent
flow’s packets may typically have a small job-to-packet size ratio
(making this flow a good candidate for service), eventually, a HoQ
packet with a large job-to-packet size ratio will stifle the likelihood
of the entire flow ever being served. Here, the adversary’s optimal
strategy is simply to send small packets encoding large jobs and wait
for this situation to arise.

The fundamental problem with WSJF-HoQ is that it evaluates en-
tire flows on the basis of one packet, which may not be a good estimator
of a flow’s candidacy for service. Based on this observation, we de-
velop another variant of WSJF (hereafter referred to as WSFF-Inorder),
which predicates its scheduling decision on all queued packets in

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

the flow queue. As before, the policy maintains independent queues
for each flow, with incoming packets appended to the tail of the
corresponding queue. In scheduling , the policy computes a rank for
each flow, f, and prioritizes the flow with the lowest rank:

2iJi(f)

ZiPi(f)

where J;(f) and P;(f) denote the job size and packet size of the i’th
packet currently in f’s flow queue, respectively. Thus, a flow’s rank
represents its outstanding work per bit. In the limit, this converges to

E[J(N)]
E[P(f)]

by minimizing this quantity, WSJF-Inorder maximizes the overall
throughput. Consequently, if an adversary wants the policy to consis-
tently schedule (their) large jobs, they must offset the resulting work
with a proportionally large number of packet bits, effectively reduc-
ing the displacement factor they can achieve. We use WSJF-Inorder
to protect the TCP Reassembly component in Pigasus.

Rank(f)=

, the long-running average of the flow’s inverse-throughput;

5.4 Designing Adversary-Proof Schedulers

The final practical issue that we need to address is how to make
sure that the scheduler itself will not expose a novel attack surface.
While simple policies like FCFS can be implemented with minimal
overhead, in order to implement WSJF we must be able to deter-
mine which packet has the minimum job-to-packet size ratio on a
packet-by-packet basis. If this is done inefficiently, the scheduler
itself may become a bottleneck. Another potential problem is that
we can only hold a finite number of outstanding packets at any given
time. Once the packet buffer becomes full, the system must drop
packets in a way that cannot be exploited by an attacker.

There is extensive literature on designing efficient priority queues
for packet scheduling in both hardware and software [2, 39, 41,46,53].
However, these schedulers typically handle buffer space exhaustion
by simply dropping any incoming packet when the buffer is full [46].
While this approach simplifies their design—since they only need
to support either EXTRACT-MIN or EXTRACT-MAX operations, and not
both—it does not work well in the adversarial setting. For instance,
suppose that we use PIFO [46] to implement WSJF and drop all in-
coming packets once we run out of buffer space. In this scheme, an
attacker can quickly fill up the queue (with minimally-sized packets
encoding maximally-sized jobs), eventually leaving the scheduler
with no alternative but to pick the attacker’s packets. To avoid this
issue, the scheduler must use EXTRACT-MIN to decide which packet to
process next, and EXTRACT-MAX to decide which packet to drop once it
runs out of buffer space.

We augment the highly-efficient Hierarchical FFS (Find First Set)
Queue [39, 53] to provide both EXTRACT-MIN and EXTRACT-MAX func-
tionality by using a BSF (Bit Scan Forward) instruction to find the
minimum element in each bitmap, and a BSR (Bit Scan Reverse)
instruction’ to find the maximum element. Figure 9 depicts the
data-structure. An hFFS queue using 32-bit bitmaps and a height of
h can represent 32h unique priorities, and guarantees a worst-case
run-time of O(h) (i.e., constant) for all queue operations (INSERT,
EXTRACT-MIN, and EXTRACT-MAX).

70On modern CPUs, both BSR/BSF translate to single props with a fixed latency of 3-5
cycles [25].

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

10 } Bi/t’map

¢ LY
[10] [o1] [oo] Joo]
0 1 2 3 4 5 6 7

4 P PN
Buckel

Figure 9: AHierarchical FFS Queue implemented using 2-bitbitmaps
and height of h=3. A ‘1’ in any bitmap indicates a non-empty priority
bucket in the subtree rooted at that node. In order to find the min
(or max) priority bucket, we recursively follow the leftmost (or
rightmost) set bit.

In order to enable SURGEPROTECTOR to work in a general context,
we implement the Hierarchical FFS Queue in both hardware and
software. In Pigasus, the hardware and software implementations
are used to realize WSJF queueing for TCP Reassembly and Full
Matching, respectively. The hardware version is implemented in
Verilog, operates at 250MHz, and is fully-pipelined, capable of per-
forming one queue operation every FPGA cycle (4 ns). The software
version is implemented in C++, and is further evaluated in §6.3.

6 Evaluation

In this section, we evaluate the effectiveness of using SURGEPRO-
TECTOR to defend against ACAs on the TCP Reassembler and Full
Matching stage of the Pigasus IDS. We also evaluate the robustness
of the Hierarchical FFS Queue (used to implement WS]JF) against
attacks targeting the scheduler itself.

6.1 SURGEPROTECTOR + Pigasus

How effective is SURGEPROTECTOR at mitigating ACAs on the
TCP Reassembler? To answer this question, we emulate an adver-
sary targeting Pigasus’ TCP Reassembler using highly out-of-order
attack flows, and measure the achieved performance in two modes
of operation: using Pigasus’ default scheduling policy (FCFS), and
using SURGEPROTECTOR. For the purpose of this experiment, we use
a synthetic trace containing innocent flows sampled from the 2014
CAIDA San Jose dataset [52], and 50 artificially-crafted attack flows.

The attack flows are crafted as follows: we send 1B TCP pack-
ets with alternating sequence numbers starting with the ISN (i.e.,
ISN, ISN+2, ISN+4, and so on). With a sequence of N such packets,
we can emulate an average adversarial job size corresponding to
% Zfi 61 i= (NZ_ Y traversals. We use the optimal adversarial strategy
for each mode of operation. In particular, for FCFS, we let N grow
to Pigasus’ maximum TCP window size of 16KB (by design, Pigasus
will drop the flow at this point), then start over. For WSJF, we solve
Eq. (9) to determine the optimal adversarial job size, then choose N
so as to achieve, on average, the corresponding number of traversals.

Empirically, we find that the maximum serviceable traffic rate
of the system (i.e., rmax) is 12Gbps, and we fix the input rate for
innocent traffic to 10Gbps (corresponding to ~83% load). Figure 10
depicts the steady-state goodput in each mode of operation as we
sweep the adversary’s attack rate.

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

B FCFS I SurgeProtector

iy
N

10.010.0 9.96 9.93 9.93 9.92

[ary
© O
1 1

Goodput (Gbps)
s O

N
1

0Gbps 0.1Gbps 0.3Gbps 0.5Gbps 0.7Gbps 1Gbps
Attack Rate (Gbps)

Figure 10: Goodput of Pigasus’ TCP Reassembler under FCFS and
SURGEPROTECTOR.

We observe that the goodput under FCFS drops significantly as
the attack rate increases (e.g., with an attack rate of 0.1Gbps, the ad-
versary is able to displace ~5.9Gbps of innocent traffic). Conversely,
with SURGEPROTECTOR, the goodput remains steady despite the in-
creasing attack rate; in the worst case, at most 0.11Gbps of innocent
traffic is displaced.

In lieu of precise knowledge about the system design or the in-
nocent traffic distribution, a practical adversary may also choose to
‘probe’ the space of attack parameters to determine the most effec-
tive adversarial strategy. In order to evaluate performance in this
scenario, we emulate an adversary who incrementally changes the
degree of out-of-orderness of attack flows while keeping the attack
rate fixed at 0.3Gbps. Figure 11 depicts the steady-state TCP Re-
assembly goodput with FCFS and SURGEPROTECTOR as we sweep the
out-of-orderness of attack flows (measured in terms of the maximum
number of concurrent out-of-order packets within each attack flow).

=@= FCFS =sfe= SurgeProtector
12

9.98 9.97

=
o
1

81
6_
4

Goodput (Gbps)

1.64 1.60

24

0 100 200 300 400 500
Attack Window (#Packets)

Figure 11: Goodput of Pigasus’ TCP Reassembler for different
degrees of out-of-orderness of attack flows.

As expected, the goodput under FCFS gradually decreases as the
attack flows become increasingly out-of-order (corresponding to
larger job sizes per packet), while the goodput under SURGEPROTEC-
TOR remains relatively unchanged.

How effective is SURGEPROTECTOR at mitigating ACAs on the
Full Matching stage? As before, we answer this question by em-
ulating an adversary targeting Pigasus’ Full Matching stage, and
measure the goodput under FCFS and SURGEPROTECTOR. We use
a synthetic trace containing innocent flows sampled from all the
traces used in [58]. In order to generate attack traffic, we pick the
packet payload with the largest job size among all packets in the
dataset, and craft an attack flow using this payload for every packet.
Figure 12 depicts the steady-state goodput in each mode of operation
as we sweep the adversary’s attack rate. Once again, we observe
that SURGEPROTECTOR significantly reduces the impact of the attack

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

s FCFS W SurgeProtector

7.017.02 6.87 6.78 6.77 6.70

Goodput (Gbps)

0Gbps 0.5Gbps 1.0Gbps 1.5Gbps 2.0Gbps 2.5Gbps
Attack Rate (Gbps)

Figure 12: Goodput of Pigasus’ Full Matcher under FCFS and
SURGEPROTECTOR.

on innocent traffic compared to FCFS. In particular, we observe a
maximum reduction in goodput of 0.4Gbps for SURGEPROTECTOR
(compared to 5.7Gbps for FCES).

6.2 SURGEPROTECTOR in Simulation

While the empirical evaluation in §6.1 demonstrates the efficacy
of SURGEPROTECTOR in the context of a real system, it focuses a small
number of attack input rates with just two scheduling policies. In
order to analyze a wider range of scheduling policies, applications,
and a truly optimal adversary (i.e., one who is not constrained by
the space of ‘practical’ attack strategies®), we turn to an adversarial
scheduling simulator that we developed in-house. The event-driven
simulator, implemented in C++, is capable of modeling G/G/1/k
queueing systems, supports both trace-driven and synthetic work-
loads, and exposes a convenient interface for plugging in a wide
range of simulated application backends. An overview of the sim-
ulator pipeline is depicted in Figure 13.

Packet Trace Simulator

(PCAP) Innocent
Traffic

Synthetic Dist. Generator

Parameters
Scheduler I Server
. Attack
Agversarlal Traffic
Uateey Generator TCP Reassembly

Figure 13: Simulator pipeline.

In order to quickly explore the space of different policies and
heuristics for a variety of NFs, the simulator framework allows users
to develop and ‘run’ their own simulated applications on the Server.
It also provides traffic-generation modules for innocent and attack
traffic, and includes tools for computing the optimal adversarial
strategy under SJF and WSJF given innocent job and packet size
distributions. The tools numerically solve (8) and (9) to determine
the values of J4 and P4 for the given configuration. We use now use
the simulator to address several research questions of interest.

81n particular, a practical adversary may not be powerful enough to craft packets with
a specific job size. For instance, in the case of TCP reassembly, an adversary cannot,
in practice, force K linked-list traversals on every attack packet; instead, they must
settle for a uniform distribution over {0, ..., 2K+1} (see §6.1), resulting in an average
job size corresponding to K traversals. Simulation allows us to model a more powerful
adversary who can precisely control their packets’ job sizes.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

What is the worst-case DF an optimal adversary can achieve
assuming the true job size is known a priori? Unlike the empir-
ical setting, the simulator allows us to determine the true job size
ahead of time. In the following simulated experiments, we use this
information for the purpose of scheduling. In the context of TCP
Reassembly, Figure 14 depicts the goodput and Displacement Factor
achieved by different scheduling policies for various combinations
of the input rate (r7) and attack rate (r4).° Each column corresponds
to a certain, fixed ry (going from 1Gbps on the left, to 5Gbps, and
10Gbps). On the X-axis, we sweep the input attack rate from 10Mbps
to 10Gbps. The bottom row depicts the steady-state goodput (in
Gbps) as a function of the attack rate, while the top row depicts the
corresponding DF.

=¥ = FCFS FQ == SJF-Inorder === WSJF-Inorder
0} N r =1Gbps N — r = 5Gbps &Y*' | r=10Gbps
g .8 . R S S e
o si [o S $-
s~ M > =t
oo .5 s -
s ¢ - =t ~ ~
T T T T r T T T T T T
-H»—r‘
41 7.

Goodput (Gbps)

Attack Bandwidth (log-scale)

Figure 14: Goodput and Displacement Factor (DF) for TCP Reassem-
bly. Left to right: Increasing innocent input rate, r7, from 1Gbps to
10Gbps.

Looking at the bottom row, we observe a sharp drop-off in good-
put for both FCFS and FQ even with a small attack bandwidth. For
instance, with just 30Mbps of attack traffic, an adversary is able to
displace roughly half the system goodput, regardless of the innocent
input rate. Correspondingly, we see a maximum displacement factor
of 313 and 278 for FCFS and FQ, respectively. SJF is initially com-
petitive, but we observe a performance cliff when the attack rate is
sufficiently large; with 0.7Gbps of attack traffic, an adversary is able
to consistently displace over 50% of the goodput, corresponding to a

maximum displacement factor of 11 (recall that the theoretical bound

isasyr < E% -p~16). Finally, we see that WSJF consistently outper-

forms the other policies, yielding a low degradation in goodput even
withahigh fraction of attack traffic. We observe a worst-case displace-
ment factor of 0.4 for this application, implying that the adversary
must use over 2.5 bps of their own bandwidth in order to displace 1 bps
of innocent traffic, a considerable improvement over FCFS and FQ.
Similarly, Figure 15 depicts the goodput and DF achieved by the
different scheduling policies in the context of Pigasus’ Full Matching
stage. The format of the figure is identical to that of Figure 14. Look-
ing at the bottom row, we observe a gradual decrease in goodput
for FCFS and FQ as the input attack rate increases from 1Mbps to
1Gbps. Overall, we observe a maximum displacement factor of 82
and 75 for FCFS and FQ, respectively. While we don’t observe a good-
put ‘cliff” that we saw for SJF earlier, the adversary is consistently
able to displace roughly 50% of the system goodput using an attack
9Note that, for each configuration, we use the attack parameters (P4 and J4)
corresponding to the optimal adversarial strategy. For FCFS and FQ, this corresponds

to using minimally-sized packets encoding maximally-sized jobs. For SJF and WSJF,
we (numerically) solve (8) and (9) to determine these quantities.

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

=¥ = FCFS FQ == SJF == WSJF
- r, =0.1Gbps r, =0.5Gbps P Mr‘=0,9Gbps
g e 1 p= =1
g, a
LS /
a” et —
g 010 I
Q
e
‘é 0.05 4 \
g S
@ 0.00 A 0.0 0.0 e

-0 oy T T T T T
4 MoPS 10 MoPS 100 MoPS 4 MbP® 10 MoPS 100 MopS

Attack Bandwidth (log-scale)

T T T
4 MoP® 10 MopS 100 MoPS

Figure 15: Goodput and Displacement Factor (DF) for Pigasus Full
Matching. Left to right: Increasing innocent input rate (r7) from
0.1Gbps to 0.9Gbps.

bandwidth of 100Mbps, with a maximum observed displacement
factor of 3. Finally, WSJF consistently outperforms the other policies,
achieving a maximum DF of 0.1.

How does using a heuristic affect the DF achieved by WSJF?
In the above simulated experiments, we assumed a priori knowledge
of a packet’s true job size at the time of scheduling. However, given
that this information is rarely (if ever) available ahead of time in real
systems, we would like to know the impact of using a heuristic on the
achievable DF. While deriving an analytical answer to this question
is beyond the scope of this work, we address it empirically here. For
both Pigasus components (TCP Reassembly and Full Matching), we
evaluate the difference in DFs achieved under WSJF with and without
their respective heuristics. We assume that the adversary has knowl-
edge of both the actual and estimated job size distributions, and uses
job sizes which displace the maximum innocent traffic under the
heuristic.'® While we note that an attacker with such detailed knowl-
edge of the system state likely does not exist, we find that our heuris-
tics perform well even in the face of such an overpowered attacker.

Load, p: 0.08 Load, p: 0.42 Load, p: 0.83

|| N

—0.05- 1 b

°

1)

a
{
L
L

Abs. change in DF
due to heuristic
o
°
i

40 MOPT 0 MDPS GOS0 GOP® 1 MOPZ(q MOPS, GOPS o GOP 1o MOPT g MOPS, GoPS, o GPP*
Attack Bandwidth (log-scale)
Figure 16: Absolute change in DF achieved by WSJF-Inorder due to
the heuristic. Portions highlighted in red indicate regions where the
heuristic does worse than the baseline.

In the context of TCP Reassembly, Figure 16 depicts the effect
of using the heuristic (described in §5.2) on the achieved DF un-
der WSJF-Inorder. On the x-axis, we sweep the adversary’s attack
bandwidth (r4), and on the y-axis we plot the change in DF when
using the heuristic (compared to using the true job size, computed
offline). We see that using the heuristic increases the DF by at most
0.05 compared to the ideal case. Empirically, we find that this simple
heuristic is both an excellent estimator of job size for innocent traffic
and largely robust to any subversion attempts by the adversary. We
observe similar results (<5% change) for the Full Matching stage.

0 practice, this involves a brute-force search over the joint distribution of estimated
and actual job sizes for innocent traffic.

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

6.3 SURGEPROTECTOR Scheduler

A key component of the SURGEPROTECTOR scheduler is the Hier-
archical FFS Queue (§5.4) used to implement WSJF. In this section,
we evaluate SURGEPROTECTOR against attacks targeting the software
heap implementation.

There are two attack vectors we must consider. First, the adver-
sary may flood the fixed-size queue with large attack jobs, causing
innocent jobs arriving later to be dropped. Second, the adversary may
attempt to inflate their packet arrival rate (using minimally-sized
attack packets) beyond what the queue can sustain. Combining these
ideas, the adversarial strategy is clear: use minimum-sized packets
encoding large jobs.

Asbasis for this discussion, we consider three WSJF queue designs:
a standard, bounded Fibonacci heap that supports EXTRACT-MIN op-
erations (but no EXTRACT-MAX); a double-ended priority queue [40]
(DEPQ, implemented using a pair of Fibonacci heaps) that supports
both EXTRACT-MIN and EXTRACT-MAX operations in worst-case loga-
rithmic time; and finally, the Hierarchical FFS Queue. For the purpose
of evaluation, the packet size and job size for innocent traffic are
sampled i.i.d. from Gaussian distributions (with an average packet
size, E[P], of 1250 bytes, and an average job size, E[J], of 1us). We
set the maximum job size, Jiax, to 10us.

Finally, the experiment setup is as follows. For each of the three
heap designs, we pin a process running a software implementation
of the heap to a single core on an Intel Xeon E5-2620 CPU operating
at 2.1 GHz, where it consumes packets from a 100G Ethernet link via
DPDK. The packets (encoding the job size in ys) are dispatched to
a different core, which emulates ‘running’ the job by sleeping for a
period corresponding to the job size. A third core is responsible for
profiling the application goodput. Figure 17 depicts how the goodput
varies with the input attack rate for the three heap implementations.

s FCFS s DEPQ (drop-max)
B Fibonacci Heap (drop-tail) ~ EEE Hierarchical FFS Queue
12
10 9.949.949.959.95 9.959.95 9.94
£
& 8
5 6
<%
B 4
o
© 2
0

0Gbps 0.1Gbps 1Gbps 3Gbps
Attack Bandwidth (Gbps)

Figure 17: Goodput for different heap implementations.

First, in the case of the standard Fibonacci heap, we observe alarge
performance cliff when the attack rate reaches a certain threshold.
The reason is that, once the queue becomes full, dropping at the
tail causes a significant fraction of subsequent innocent arrivals to
be dropped. Conversely, while the DEPQ is capable of selectively
dropping large jobs, the worst-case logarithmic cost of EXTRACT-#*
operations imposes a significant performance penalty, resulting in a
gradual degradation in goodput. Finally, we observe that the Hierar-
chical FFS Queue’s goodput remains largely unchanged regardless of
the input attack rate. Overall, we find that the heap’s EXTRACT-MAX
functionality, in conjunction with the worst-case constant complex-
ity of all operations, makes the Hierarchical FFS Queue robust to
these kinds of attacks.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

7 Limitations and Open Questions

This work opens up a broad range of theoretical and practical
questions, and we are only able to answer some of them.

Optimality and Multi-Server Settings: Animportant theoretical
question relates to the existence of an optimal adversarial scheduling
policy. In this work, we have shown that WSJF, the policy underpin-
ning SURGEPROTECTOR, achieves a DF that is always upper-bounded
by 1. However, devising a policy that is always optimal (i.e., one
which minimizes the DF for any load and choice of traffic parame-
ters) — or proving its existence thereof — remains an open problem.
Additionally, we have only considered a queueing system with one
server; we do not currently know how the ACA mitigation problem
scales with more than one server.

Heuristics: As described in §5.2, any practical implementation
of SURGEPROTECTOR must rely on application-specific heuristic
functions for estimating job sizes. Our experience implementing
SURGEPROTECTOR in the context of TCP reassembly and IDS/IPS
Full Matching suggests that even simple, easy-to-compute heuris-
tics can be powerful job sizes estimators. However, the design of
heuristics for a broader range of NFs remains an open problem. In
particular, there are two questions of interest. First, is there some
fundamental property of NFs that makes job size estimation feasible?
Second, for NFs in which job size estimation is feasible, how do we
reason about the efficacy of different heuristic functions? Parallel
work in our group [10] has formalized sufficient criteria for an ‘ideal’
heuristic, and has shown that non-ideal heuristics can still provide
an upper-bound on the DF achievable under WSJF.

Preemption: In this work, we have only explored the space of
non-preemptive scheduling (i.e., a job, once started, must run to com-
pletion). However, given recent advances in the design and imple-
mentation of lightweight preemption handlers [7], it is reasonable to
ask: can we do even better with preemptive scheduling policies? This
is particularly relevant for NFs where developing accurate heuristics
is challenging. In this case, preemption may help tolerate some error
in job size estimates by allowing the scheduler an additional degree
of freedom (e.g., by preempting jobs that far exceed their job size
estimates).

Fairness: As we have seen in §4.2, fair queueing is fundamentally
vulnerable to ACAs because of the adversary’s ability to spawn many
flows. However, fairness is an important consideration for many
NFs. While WSJF alone does not provide any fairness guarantees,
we conjecture that an augmentation of this policy (e.g., using FQ as
a second-stage queueing discipline, or switching between the two
based on some goodput watermark) may be able to provide both
ACA resilience and flow-level fairness.

Memory Complexity Attacks: Finally, we have not considered
the impact of ACAs on memory. In many systems, memory is just
as precious (and exhaustible) a resource as processing cycles, and
may be an important consideration in the design and analysis of
adversarial scheduling policies for NFs.

8 Related Work

ACAs and mitigation: Crosby et al. were the first to character-
ize ACAs as Denial-of-Service (DoS) vectors in [12], and empiri-
cally evaluated their impact in the context of an IDS. Others have

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

since explored ACAs on a variety of applications, including hash
tables [3, 4], automata-based multi-string pattern-matching [43],
regular expression matching [16, 42, 56], PDF decompression [26],
and TCP reassembly [18, 50]. [36] provides both an excellent survey
of prior work and a novel approach for automatically crafting ACAs
in a domain-independent manner (using fuzzing).

Many works have proposed application-specific mitigation strate-
gies. For example, [44] implements TCP reassembly by maintaining
statically-allocated, fixed-sized buffers for each flow; this renders the
design impervious to ACAs at the cost of significantly higher mem-
ory overhead (every flow is allocated 64KB of memory regardless of
its peak usage). Similarly, many regular expression engines restrict
the number of states a single packet may invoke to avoid ReDoS
attacks [48] (limiting the length of regular expressions in the com-
mon case). Other systems place a cap on the number of cycles spent
decompressing a file or webpage for deep packet inspection [24]
(limiting the size of files or web pages that can be served). Still other
systems rely on universal hashing to prevent attacks on hash ta-
bles [12] (imposing computational and memory overheads). In a
slightly different direction, [1] leverages a multi-core architecture
to mitigate ACAs on DPI engines.

Scheduling: Scheduling and queueing theory has garnered signif-
icant research attention in recent years. While the vast majority of
queueing literature focuses on optimizing various response time
metrics in stochastic settings, some recent works in OS and packet
scheduling are notable due to the focus on fairness and performance
isolation. In particular, Fair Queueing (FQ) [17] aims to equitably
partition the available link bandwidth between multiple contending
flows. Dominant Resource Fair Queueing (DRFQ) [21] generalizes
this idea to multiple resources [22], and [54] provides alow-overhead
approximation to DRFQ. However, as described in §4.2, FQ and its
variants are ineffective in the adversarial setting [57].

Recent works have also explored the use of queueing theory to
analyze volumetric DoS attacks (e.g., SYN-floods). [55] proposes a
two-dimensional embedded Markov chain to model DoS attacks,
and derives various performance metrics (e.g., connection loss prob-
ability) by analyzing its stationary distribution. Along these lines,
[6] evaluates how dynamic TCP timeouts can be used as a mitigation
strategy against SYN-floods. [37] proposes a composite model to
jointly analyze memory and bandwidth resource exhaustion during
an attack. More recently, [20] derived the feasibility criteria for a
successful volume-based DDoS attack on a multi-hop network fol-
lowing the Join-the-Shortest-Queue (JSQ) policy. We reiterate that
the distinguishing factor here is the type of DoS attack considered
in this work: complexity-based instead of volumetric.

Finally, we are aware of two works that consider the ACA mitiga-
tion problem from a queueing theoretic perspective, and are therefore
most closely related to this work. First, [28] models DoS attacks using
an M/M/1/k queueing model with the goal of detecting both flood-
and complexity-based attacks. However, they only perform analysis
for FCFS, and they only consider exponentially-distributed service
times (which may not be an accurate assumption in the adversar-
ial setting). Second, [4] analyzes the impact of using two different
hashing schemes on the efficacy of ACAs on hash tables. They also
develop a metric called the ‘Vulnerability Factor’ to quantify the im-
pact of ACAs. However, they limit their analysis to FCFS. Moreover,

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

since their analysis is based on a job’s average waiting time, they
are fundamentally constrained to scenarios where the system is not
overloaded.

To the best of our knowledge, this is the first work to analyze sched-
uling policies beyond the simple FCFS and to propose a policy-based
mitigation strategy for ACAs.

9 Conclusion

Network functions on the Internet are prone to algorithmic com-
plexity attacks (ACAs), a potent class of Denial-of-Service (DoS)
attacks. We designed SURGEPROTECTOR, a framework to mitigate
temporal ACAs on NFs using novel insights from adversarial schedul-
ing theory. SURGEPROTECTOR provides provable upper bounds on the
maximum ‘harm per unit effort’ an adversary can induce, regardless
of the underlying NF application, the system load, and parameters
of the innocent traffic distribution. Our proofs and evaluation show
that WSJF, the scheduling algorithm behind SURGEPROTECTOR, pro-
vides resilience to ACAs without limiting the underlying algorithms
in the NF.

10 Acknowledgements

We thank our shepherd, Alan Liu, and the anonymous reviewers
for their insightful comments. We also thank Jalani Williams and
Isaac Grosof for helpful discussions regarding the underlying theory,
Zhipeng Zhao and Siddharth Sahay for their help navigating the
Pigasus source code, and Vyas Sekar for his feedback on an early
draft of this paper. We are also grateful to the Parallel Data Lab
(PDL) at CMU for providing compute resources to us. This work was
funded by Intel and VMware through the Intel/VMware Crossroads
3D-FPGA Academic Research Center, a VMWare Systems Research
Award, a Cylab Presidential Fellowship, and a Google Research Gift.

This work does not raise any ethical concerns.

References

[1] Yehuda Afek, Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron
Koral. MCA2: Multi-Core Architecture for Mitigating Complexity Attacks. In
Proceedings of the Eighth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’12, page 235-246, New York, NY, USA, 2012.
Association for Computing Machinery.

[2] Albert Gran Alcoz, Alexander Dietmiiller, and Laurent Vanbever. SP-PIFO:
Approximating Push-in First-out Behaviors Using Strict-Priority Queues. In
Proceedings of the 17th Usenix Conference on Networked Systems Design and
Implementation, NSDI 20, page 59-76, USA, 2020. USENIX Association.

[3] Noa Bar-Yosef and Avishai Wool. Remote Algorithmic Complexity Attacks
against Randomized Hash Tables. In Joaquim Filipe and Mohammad S. Obaidat,
editors, E-business and Telecommunications, pages 162-174, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[4] UdiBen-Porat, Anat Bremler-Barr, and Hanoch Levy. Vulnerability of Network
Mechanisms to Sophisticated DDoS Attacks. IEEE Transactions on Computers,
62(5):1031-1043, 2013.

[5] Ethan Blanton and Mark Allman. On Making TCP More Robust to Packet
Reordering. SIGCOMM Comput. Commun. Rev., 32(1):20-30, January 2002.

[6] Daniel Boteanu and José M. Fernandez. A Comprehensive Study of Queue Man-
agement as a DoS Counter-Measure. Int. J. Inf. Secur., 12(5):347-382, October 2013.

[7] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky. Lightweight

preemptible functions. In 2020 USENIX Annual Technical Conference (USENIX

ATC 20), pages 465-477, 2020.

Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy Zwaenepoel, Redha

Gouicem, Julia Lawall, Gilles Muller, and Julien Sopena. The battle of the sched-

ulers: Freebsd ULE vs. linux CFS. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 85-96, Boston, MA, July 2018. USENIX Association.

[9] Ben Caller. Regexploit: Dos-able regular expressions, Mar 2021.

[8

SURGEPROTECTOR: Mitigating Temporal Algorithmic

Complexity Attacks using Adversarial Scheduling SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

[10] EricaChiang,Nirav Atre,and Hugo Sadok. Robust Heuristics: Attacks and Defenses [34

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-

for Job Size Estimation in WSJF Systems. In ACM SIGCOMM 2022 Conference (SIG-
COMM °22 Demos and Posters). Association for Computing Machinery, August 2022.
Alan Cobham. Priority Assignment in Waiting Line Problems. Journal of the
Operations Research Society of America, 2(1):70-76, 1954.

Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic Complexity
Attacks. In 12th USENIX Security Symposium (USENIX Security 03), Washington,
D.C., August 2003. USENIX Association.

Levente Csikor, Dinil Mon Divakaran, Min Suk Kang, Attila K6érosi, Balazs
Sonkoly, David Haja, Dimitrios P. Pezaros, Stefan Schmid, and Gabor Rétvari.
Tuple Space Explosion: A Denial-of-Service Attack against a Software Packet
Classifier. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, CONEXT °19, page 292-304, New York,
NY, USA, 2019. Association for Computing Machinery.

Levente Csikor, Vipul Ujawane, and Dinil Mon Divakaran. On the Feasibility and
Enhancement of the Tuple Space Explosion Attack against Open vSwitch, 2020.
Levente Csikor, Vipul Ujawane, and Dinil Mon Divakaran. On the Feasibility and
Enhancement of the Tuple Space Explosion Attack against Open vSwitch, 2020.
James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. The
Impact of Regular Expression Denial of Service (ReDoS) in Practice: An Empirical
Study at the Ecosystem Scale. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, page 246-256, New York, NY, USA, 2018.
Association for Computing Machinery.

Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1-12, August
1989.

Sarang Dharmapurikar and Vern Paxson. Robust TCP Stream Reassembly in the
Presence of Adversaries. In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM *05, page 5, USA, 2005. USENIX Association.

Eric Dumazet. Merge Branch ’tcp-robust-ooo’. https://git.
kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=
1a4f14bab1868b443f0dd3c55b689a478{82e72e, 2018.

Xinzhe Fu and Eytan Modiano. Fundamental Limits of Volume-Based Network
DosS Attacks. Proc. ACM Meas. Anal. Comput. Syst., 3(3), December 2019.

Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-Resource Fair
Queueing for Packet Processing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SSGCOMM 12, page 1-12, New York, NY, USA, 2012.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI "11, page 323-336, USA, 2011. USENIX Association.
Gaston H Gonnet. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM (JACM), 28(2):289-304, 1981.

Google. Google Drive. https://support.google.com/a/answer/172541, 2021.
Torbjoérn Granlund. Instruction latencies and throughput for amd and intel x86
processors. Technical report, KTH, 2012.

Nathan Hauke and David Renardy. Denial of Service with a Fistful of Packets: Ex-
ploiting Algorithmic Complexity Vulnerabilities. https://www.blackhat.com/us-
19/briefings/schedule/#denial- of- service- with-a-fistful- of- packets-exploiting-
algorithmic-complexity-vulnerabilities- 16445, 2019.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11), Boston, MA, March
2011. USENIX Association.

Suraiya Khan and Issa Traore. Queue-based Analysis of DoS Attacks. In
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop,
pages 266-273, 2005.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
page 254-265, New York, NY, USA, 2018. Association for Computing Machinery.
Ka-Cheong Leung, Victor O. K. Li, and Daigin Yang. An Overview of Packet
Reordering in Transmission Control Protocol (TCP): Problems, Solutions, and
Challenges. IEEE Trans. Parallel Distrib. Syst., 18(4):522-535, April 2007.

Yin Li, Chuang Lin, Fengyuan Ren, and Yifeng Geng. H-PFSP: Efficient Hybrid
Parallel PFSP Protected Scheduling for MapReduce System. In 2013 12th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pages 1099-1106, 2013.

Linux Kernel. CFS Scheduler. https://www.kernel.org/doc/html/latest/scheduler/
sched-design- CFS.html, 2021.

Yang Liu, Yukun Zeng, and Xuefeng Piao. High-Responsive Scheduling with
MapReduce Performance Prediction on Hadoop YARN. In 2016 IEEE 22nd
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 238-247, 2016.

[38

[39

[40

[41

[42

[43

(44

=
&

[46

[47

(48

[50

[51]

[52

(54

man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 289-304, Santa Clara, CA,
February 2020. USENIX Association.

Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina
Argyraki. Automated Synthesis of Adversarial Workloads for Network Functions.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SSIGCOMM ’18, page 372-385, New York, NY, USA, 2018.
Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slowfuzz:
Automated domain-independent detection of algorithmic complexity vulner-
abilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 17, page 2155-2168, New York, NY, USA, 2017.
Simona Ramanauskaité and Antanas Cenys. Composite DoS Attack
Model/Jungtinis DoS Ataky Modelis. Mokslas—Lietuvos ateitis/Science~Future of
Lithuania, 4(1):20-26, 2012.

Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX Conference on System Administration, LISA *99,
page 229-238, USA, 1999. USENIX Association.

Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,
Khaled Harras, and Amin Vahdat. Eiffel: Efficient and flexible software packet
scheduling. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 17-32, Boston, MA, February 2019. USENIX
Association.

Sartaj Sahni. Double-ended priority queues. In Handbook of Data Structures and
Applications, 2004.

Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. Programmable calendar
queues for high-speed packet scheduling. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 685-699, Santa
Clara, CA, February 2020. USENIX Association.

Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. ReScue:
Crafting Regular Expression DoS Attacks. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, page
225-235, New York, NY, USA, 2018. Association for Computing Machinery.
Govind Sreekar Shenoy, Jordi Tubella, and Antonio Gonzalez. Improving the
Resilience of an IDS against Performance Throttling Attacks. In Angelos D.
Keromytis and Roberto Di Pietro, editors, Security and Privacy in Communication
Networks, pages 167-184, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
David Sidler, Gustavo Alonso, Michaela Blott, Kimon Karras, Kees Vissers, and
Raymond Carley. Scalable 10gbps tcp/ip stack architecture for reconfigurable hard-
ware. In 2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 36—43. IEEE, 2015.

Shan Sinha, Srikanth Kandula, and Dina Katabi. Harnessing TCP’s Burstiness
with Flowlet Switching. In Proc. 3rd ACM Workshop on Hot Topics in Networks
(Hotnets-III). Citeseer, 2004.

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling at line rate. In Proceedings
of the 2016 ACM SIGCOMM Conference, SSIGCOMM 16, page 44-57, New York,
NY, USA, 2016. Association for Computing Machinery.

Randy Smith, Cristian Estan, and Somesh Jha. Backtracking Algorithmic
Complexity Attacks against a NIDS. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC 06), pages 89-98, 2006.

Snort Project. SNORT Users Manual. https://www.snort.org/documents/snort-
users-manual, 2020.

V. Srinivasan, S. Suri, and G. Varghese. Packet Classification Using Tuple Space
Search. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SSIGCOMM ’99, page 135-146, New
York, NY, USA, 1999. Association for Computing Machinery.

Juha-Matti Tilli. CVE-2018-5390: Linux Kernel TCP Reassembly Algorithm
Lets Remote Users Consume Excessive CPU Resources on the Target System.
https://ubuntu.com/security/cve-2018-5390, 2018.

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin
Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing,
SOCC 13, New York, NY, USA, 2013. Association for Computing Machinery.
Colby Walsworth, Emile Aben, K Claffy, and D Andersen. The caida anonymized
2019 internet traces, 2019.

Hao Wang and Bill Lin. Per-flow queue management with succinct priority
indexing structures for high speed packet scheduling. IEEE Transactions on
Parallel and Distributed Systems, 24(7):1380-1389, 2013.

Wei Wang, Ben Liang, and Baochun Li. Low Complexity Multi-Resource Fair
Queueing with Bounded Delay. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, pages 1914-1922, 2014.

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=1a4f14bab1868b443f0dd3c55b689a478f82e72e
https://support.google.com/a/answer/172541
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
https://www.blackhat.com/us-19/briefings/schedule/#denial-of-service-with-a-fistful-of-packets-exploiting-algorithmic-complexity-vulnerabilities-16445
%20https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
%20https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.snort.org/documents/snort-users-manual
https://www.snort.org/documents/snort-users-manual
https://ubuntu.com/security/cve-2018-5390

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

[55] Yang Wang, Chuang Lin, Quan-Lin Li, and Yuguang Fang. A Queueing Analysis
for the Denial of Service (DoS) Attacks in Computer Networks. Comput. Netw.,
51(12):3564-3573, August 2007.

[56] Valentin Wiistholz, Oswaldo Olivo, Marijn J. Heule, and Isil Dillig. Static
Detection of DoS Vulnerabilities in Programs That Use Regular Expressions. In
Proceedings, Part II, of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems - Volume 10206, page 3-20, Berlin,
Heidelberg, 2017. Springer-Verlag.

[57] XiaoweiYang, David Wetherall, and Thomas Anderson. A DoS-limiting network ar-
chitecture. ACM SIGCOMM Computer Communication Review, 35(4):241-252, 2005.

[58] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine
Sherry. Achieving 100Gbps Intrusion Prevention on a Single Server. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 1083-1100. USENIX Association, November 2020.

A Proofs for DF Analysis
A.1 Proof of Claim 1 (DF of FCFS)

Proor. Consider any innocent input traffic rate r; and any packet
size and job size distributions with expectations E[P] and E[J]. Ob-
serve that, over any time period of length T seconds, the number
of class I packets appearing on the ingress link is Ny = %. Simi-
larly, the number of class A packets appearing on the link over the
same period is Ny = ;’:13;' FCFS guarantees that these (Ny+ N4)
jobs will be scheduled before any jobs that arrive afterwards. Also,
the total time required to serve these jobs is (N7-E[J]+N4 - Jmax)
seconds, yielding in expectation Ny - E[P] bits worth of innocent
traffic on the egress link. Thus, in the long-run, the goodput oy can
be upper-bounded as follows:

Nr-E[P] _ I

oo Ny E[]]+NA'Jmax %'H"A ’I,ﬁ

We can then lower-bound the DF apcps (r7) as follows:

OI(VI,VA) < hm

min{ry,rmax } —or(rz,ra)

apcrs(rr) =sup @)
rA rA
1 rr
2 sup = min{rp) - 57— |9
A "I B[P] *TA" Pin
Jmax min{ry,"max })
" P 2 1)’
i ZrI(min{rI Tmax } N Tmax)

where recall that ryax =]E[]] , (2) is true since the goodput is min{ry,
rmax } under FCFS in the absence of adversarial traffic, (3) applies

the upper bound on o7 (ry,r4), and (4) is obtained by setting r4 as
71 Pmin 2
e

follows: r4 =
]max
as Prin

fnax \ MIN{77,Fmax} Fmax

) Therefore, apcps (17) — +00

— +00. O

A.2 Proof of Claim 2 (DF of FQ)

PRrROOF. Assume that the input traffic rate for innocent traffic, ry,
is split equally among k innocent flows, while each packet of adver-
sarial traffic corresponds to a distinct attack flow. As in FCFS, the
adversary maximizes the harm to the system by crafting packets
with the smallest possible packet size P, and the largest possible
job size Jimax.

Consider the state of the system at time T > Jipax. Observe that,
in expectation, the maximum number ofinnocent jobs in each of the
k flow queues with virtual clock < T is Ny =]E[T Conversely, the
number of adversarial jobs with virtual clock <T is given by Ny =

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

M FQ ensures that all (N4 +k-Ny) jobs will be scheduled
before any jobs that arrive afterwards. Also, the total time required
to serve these jobs is given by the expression: % - Jmax+k-T.
Then, the goodput oy can be upper-bounded as follows:

T
k- BT -E[P]

0o (T=Jmax)7A] ax+k T

min

or(rrra) < 11m

k- rmax

rA- 1]3’:1—""; +k)
where recall that rp.x = %. We can then lower-bound the DF
apg(ry) as follows:

aFQ(rI):Supmln{rlarmax}_OI(rIsrA))
ra rA

k-
> sup| min{ry,rmax } — _Bmax (6)

.]mﬂx
ra A P +k
Jmax min{ry,"max })
" Prin 2kr 2 Y
max min{rr,Fmax} ’max

where (5) is true since the goodput is min{ry,rmax } under FQ in the ab-
sence of adversarial traffic, (6) applies the upper bound on o7 (ry,r4),
kTmax Pmin (2 1

and (7) is obtained by setting r4 =
]max

fmax min{r1.fmax) max)

Therefore, apg (r7) — +o0 as — 400, O

A.3 Proof of Theorem 1 (DF of SJF)

Optimal attack strategy: We first characterize the optimal attack
strategy of the adversary under SJF for a given innocent input traffic
rate ry and a given adversarial input traffic rate r4. It is easy to see
that the adversary should craft packets with the smallest possible
packet size Ppjy, since the job scheduling under SJF does not depend
on packet sizes.

To reason about the optimal choice of adversarial job sizes, we
first consider the case where the adversary picks certain job size J4.
Then innocent jobs with size < J4 and adversarial jobs have priority
over innocent jobs with size > J4. Therefore, innocent jobs with size
> J4 will be ‘displaced’, i.e., never get served, if r4 is large enough
to overload the processor with innocent jobs with size < J4 and
adversarial jobs. Consequently, the goodput consists of innocent
packets whose job sizes are no larger than J4.

4 pdf of J

Innocent jobs with
size > Ja will be
dropped

Goodput

I
Figure 18: Optimal choice of adversarial job size J4.

We now argue that the adversary only needs to pick one deter-
ministic job size without loss of optimality. To see this, suppose the
adversary crafts packets whose job sizes are either J or J, where

SURGEPROTECTOR: Mitigating Temporal Algorithmic
Complexity Attacks using Adversarial Scheduling

Ja < J}- But if the adversary swaps the packets with job size J}
for packets with job size J4, they can only displace more or equal
innocent traffic. Therefore, we can restrict our attention to attack
strategies with one deterministic job size.

We characterize the adversary’s optimal choice for the job size
in Lemma 1 below. Here for simplicity, we assume that the innocent
packet size P and job size] are independent. We will remove this
assumption when we present WSJF for SURGEPROTECTOR. Recall
that the pdf of the innocent job size J is denoted by f7(-).

LEMMA 1 (OPTIMAL ATTACK STRATEGY FOR SJF). Consider the
SJF policy for job scheduling and any innocent input traffic rate ry and
any adversarial input traffic rate r 5. Then the adversary can mini-
mize the goodput by choosing the job size,], to be the solution of the
following equation if the solution satisfies Jo < Jmax:

Ja
aior | B A ®

and J4 = Jmax otherwise.

Proor. We have argued that the adversary only needs to pick
one deterministic job size. It remains to show that the r4 given in
the lemma minimizes the goodput. In (8), if the solution satisfies

JA < Jmax, the term Ef—}] OJA
cessor contributed by innocent packets with job size < J4. Since
these packets get served by the processor, they constitute the good-
put. We consider the following two cases: (i) The adversary picks a
Jjobsize larger than] 4. In this case, more innocent jobs will get served
since smaller jobs are prioritized, resulting in a larger goodput. (ii)
The adversary picks a job size | ;1 < Ja.In this case, the total workload

from innocent jobs with size < J and adversarial jobs is given by

Jj-f7(j)dj is the workload for the pro-

rr]1:‘ . N g, TA ’
m/o]'f](])dj"'ﬁ‘]A <L
So some innocent jobs with size > J; will also get served. More pre-
cisely, the processor has more capacity left for innocent jobs when
the adversarial job size is J, compared to when the adversarial job
size is J4. Thus the goodput is higher under J}. Combining the two
cases, it follows that the solution Jy4 to (8) is the optimal choice for
the adversary.

When the solution to (8) satisfies J4 > Jmax, the adversary cannot
displace any innocent traffic no matter what the job size is. So simply
setting Ja = Jmax is an optimal choice. |

The remainder of the proof for Theorem 1 is very similar to that
for Theorem 2 in the next section. As such, we elide this part of the
proof for the sake of brevity.

A.4 Proof of Theorem 2 (DF of WSJF)

Optimal attack strategy: We again first characterize the optimal
attack strategy of the adversary under WSJF for a given innocent
input traffic rate r; and a given adversarial input traffic rate r4. Under
WSJF, the harm that an adversary can induce is fully determined by
the job-to-packet-size ratio of the adversarial traffic, denoted as Z4,
as opposed to the individual values of job size and packet size. To
see this, note that WSJF schedules jobs solely based on their job-to-
packet-size ratios, and that the rate at which the adversary generates
work for the processor is r4 - Z 4, which also depends on the job size

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

and packet size only through their ratio. Therefore, we assume that
the adversary uses packet size P, without loss of optimality, and
picks a job-to-packet-size ratio Z4 that results in job size Z4 - Pyin.

The reasoning for the optimal choice of Z4 is similar to that for
the optimal choice of J4 under SJF. The only difference is that under
WSJF, whether an innocent packet gets displaced or not is determined
by its job-to-packet-size ratio rather than its job size. Following sim-
ilar arguments, we establish Lemma 2 below, whose proof is omitted
for the sake of brevity. Here we use fp j(p,j) to denote the joint pdf
of the innocent packet size and job size. Note that we do not make
independence assumptions between them.

LEMMA 2 (OPTIMAL ATTACK STRATEGY FOR WSJF). Consider
the WSTFF policy for job scheduling and any innocent input traffic rate
rr and any adversarial input traffic rate r 5. Then the adversary can
minimize the goodput by choosing the job-to-packet-size ratio, Zy,
to be the solution of the following equation if the solution satisfies
Z A Pryin < Jmax:

r

T Prax p'ZA
j- J)djdp+ra-Za=1, 9
s] i Eaen ez, ©)

andZ, = 1]3“;;"11 otherwise.

DF analysis: We now formally prove the upper bound on the DF
of WSJF below.

Proor. We divide the discussion into two cases: r7 < rmax (under-
loaded by innocent traffic) and r; > rmax (overloaded by innocent
traffic).

Case 1 (r] < rmax): Consider a period of T seconds, with a total of
N innocent packets arriving during this period. Let S ={(p1,j1),(p2,
J2)s--(PN>JN)} denote this set of arrivals, where p; € [Pmin, Pmax]
and j; € [0, Jinax] denote the packet size and job size corresponding
to the i’th packet, respectively. Without loss of generality, we choose
the index of each packet, i, such that ;7’1 < ;,’l—: Vi.

We now turn to the service order of these N innocent packets
under WSJF. In particular, note that since WSJF serves packets in in-
creasing order of their job-size-to-packet-size-ratio, packet 11is served
before packet 2, packet 2 before packet 3, and so on. Further, since
we assumed that r; < rpgy, it follows that in steady state (i.e., for
sufficiently large T), all N jobs will be served. Now, consider an ad-
versary who wishes to displace k € {1, ..., N} innocent packets. In
order to do this, they must inject some x > 0 attack packets with
packet size p4 and job size j4. Note that the attacker’s input traffic
rate can be written as: rg =lim7_, o X'TPA. Now, in order to both be
served and displace k innocent packets, x, p4, and j4 must satisfy
the following constraints with probability 1:

JjA < IN—k+1) (10)
PA PN-k+1

N-k

D Jitx-ja=T-o(T), (11)

i=

where (11) further implies that

1 N-k
xZZ(T—o(T)—IZin). (12)

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

In particular, (12) ensures that the adversarial workload pushes the
system to capacity (otherwise, this slack would be applied towards
serving additional traffic, implying that the adversary would fail to
displace k innocent packets). Similarly, (10) ensures that all x adver-
sarial packets are served before packets {N—k+1, ..., N} (otherwise,
some of the last k innocent packets would be prioritized over the
adversary’s traffic).

Let g denote the number of innocent bits displaced by the adversary
using x - p4 bits of their own traffic. We have: g(k) = Zg\iN_kai.
Now, in steady state, the displacement factor under WSJF can be
expressed as follows with probability 1:

ri—or(rr.ra)
rA

k

- lim 9%
T—oo X-pA

N .
- lim ZisN-kniPi
T—o0 X pA

awsye(r1, ra) =

(13)

N .
< lim M JA (14)
T—>oo T-— Zl 1]1 PA
Term (R1)

i JN=k+1
Pi';

. i=N—-k+1 PN-k+1
<fm N
T—eo T_Zi:1 Ji

, (15)

where (14) is obtained by substituting the expression for x we derived
in (12) into (13), and (15) is obtained by substltutmg the expression
for 44 p we derlved in (10) into (14). Now, since ;}’ < j ol *> implying
that pjy1- Pi L < ji41 Vi, we can upper-bound Term (Rl) as follows.

N Nk N
IN—-k+1 .
Z pi . Z Ji

i=N-k+1 PN-k+1 i=N-k+1
N N-k
< D= Qi
i=1 i=1
Substituting this expression back into (15), we have:
N . _ vN-k.
Zi 1]i_zi 1 Ji
—N .
Zl 1 Ji
Observe that the RHS is of the form h(x) = % where t = Z,Iilji <T
(i.e., the cumulative service time for innocent packets in the ab-
sence of adversarial traffic, which is constant for a given ry), and
x = Zﬁ;k Jji € [0, t]. Since h is a decreasing function of x on its

domain, it follows that awsjr (71, r4) achieves its maximum value
when x =0. Therefore, we can write:

awsye(rr, ra) < lim
T—o0

< lim h(0)= li —<1 = 16
aws(rp) < lim h(0)= lim — < lim TZJI (16)

Now;, for a given distribution of innocent packets and job sizes,
the input rate and maximum serviceable rate for innocent traffic (r;

Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, Justine Sherry

and rmqx, respectively), can be expressed as follows:

N
1
= lim = i, W.p.1 17
rI TﬂoT;plaWp > ()
N
E[P i—1Pi 1
max = —[]= lim LisiPi = lim &— Zipi w.p.1. (18)

E[]] T—o0 N Z;L]l T—>oo Zz]l
N

Then, we can define the load on the system due to innocent traffic,
p, as follows:

= lim —Z]1<1 w.p.1. (19)

ax T—>oo

p(rp) = -

Observe that (19) is identical to the RHS of (16). Thus, we can rewrite
the maximum DF under WSJF: awsjr(r7) < p, as required.

Case 2 (r] > rmax): In this case, one can verify that there exists K < N
such that the system is underloaded with respect to packets with a
job-size-to-packet-size-ratio of % (i-e., the distribution of innocent
traffic served is effectively truncated at this point). Following the
same arguments as of those for Case 1 (the worst case being ry =rpmax.,
corresponding to p=1), we have:

awsye(rp) < p.

Combining Case 1 and Case 2 completes the proof of Theorem 2.
O

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Problem Definition
	3.1 System Model
	3.2 Threat Model
	3.3 Quantifying Vulnerability

	4 Mitigating ACAs using Scheduling
	4.1 First-Come First-Serve (FCFS)
	4.2 Fair Queueing
	4.3 Shortest Job First (SJF)
	4.4 Weighted Shortest Job First (WSJF)
	4.5 SurgeProtector

	5 Implementation & Practical Issues
	5.1 Overview of Vulnerable Components
	5.2 Predicting Job Sizes
	5.3 Keeping (TCP) Flows In-Order
	5.4 Designing Adversary-Proof Schedulers

	6 Evaluation
	6.1 SurgeProtector + Pigasus
	6.2 SurgeProtector in Simulation
	6.3 SurgeProtector Scheduler

	7 Limitations and Open Questions
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Proofs for DF Analysis
	A.1 Proof of Claim 1 (DF of FCFS)
	A.2 Proof of Claim 2 (DF of FQ)
	A.3 Proof of Theorem 1 (DF of SJF)
	A.4 Proof of Theorem 2 (DF of WSJF)

