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MITOGENOME ANNOUNCEMENT

Complete mitochondrial genome of a livebearing freshwater fish
(Cyprinodontiformes: Poeciliidae): Poecilia parae

Kayla M. Fasta , Alex W. Rakestrawa� and Michael W. Sandelb

aDepartment of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA; bDepartment of Wildlife,
Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA

ABSTRACT

Members of the fish family Poeciliidae (livebearing ‘tooth-carps’) have historically been used as models
in medical research, behavior ecology, and biological control. This group of primarily freshwater fishes
is highly tolerant to environmental factors such as salinity and warm temperatures and includes some
invasive species. Here, we present the mitochondrial genome of Poecilia parae. A representative of this
species was obtained from Suriname. The complete mitochondrial genome was sequenced using
Oxford Nanopore technology and is 16,559bp long. The genome contains 13 protein-coding genes,
two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and one control region (D-loop). Phylogenetic
analysis yielded topologies similar to those previously published. The data generated here will be use-
ful in future studies of comparative biology and those utilizing environmental DNA (eDNA).
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Introduction

For many decades, livebearing fishes of the family

Poeciliidae have been valuable models for research in evo-

lutionary ecology and comparative biology. Specifically,

the Guppy (Poecilia reticulata) and Southern Platyfish

(Xiphophorus maculatus) have served as indicator taxa and

as models for behavioral ecology, life history evolution,

and cancer biology (Schartl 2014; Reznick et al. 2017;

Goldberg et al. 2019; Gomes-Silva et al. 2020). Poeciliids,

including some invasive species, can use a wide range of

habitats because they are successful colonizers and have

high thermal and salinity tolerances (Meffe and Snelson

1989). Here, we present the mitochondrial genome of a

lesser-known species with close phylogenetic affinity to

P. reticulata, P. parae. We anticipate that the mitogenome

presented here will aid future research in comparative biol-

ogy and will be useful for noninvasive investigations of

watersheds using environmental DNA (eDNA).

Poecilia parae (Eigenmann, 1894) occupies a geographic

range from Guyana to northern Brazil (Figure 1). Poecilia

parae is a novel model system for the study of sex chromo-

some evolution and sexual polymorphism (Metzger et al.

2021; Sandkam et al. 2021). The International Union for

Conservation of Nature (IUCN) has not evaluated the conser-

vation status of P. parae. Congeners of Poecilia in the genus

Xiphophorus are important models for the study of sexual

dimorphism, sex chromosome evolution, and carcinogenesis

(Schartl 1990; Woolcock et al. 2006; Schartl and Walter 2016).

While many studies have examined the evolutionary history

of Poeciliids in the contexts of ornamentation and sexual

selection, few have used complete mitochondrial data (Morris

et al. 2001; Cui et al. 2013; Kang et al. 2013; Goldberg et al.

2019; M�endez-Janovitz et al. 2019; Metzger et al. 2021;

Sandkam et al. 2021).

Figure 1. Representative photograph of Poecilia parae (blue melanzona
morph).
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Materials and methods

An aquarium trade specimen of Poecilia parae (blue melan-

zona morph) was obtained from Suriname (5�5103600N,

55�704800W). The preserved specimen was deposited in the

University of West Alabama Zoological Collection (https://

www.uwa.edu/, kaylafast0@gmail.com) under voucher num-

ber AR20090201:03. Whole genomic DNA was extracted from

the pectoral fin using the DNeasy Blood and Tissue Kit fol-

lowing the manufacturer’s instructions (QIAGEN, Hilden,

Germany). DNA quality was confirmed by gel electrophoresis

using a 1.5% agarose gel stained with ethidium bromide. The

quantity of DNA was determined using a NanoDrop 2000

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).

Purified DNA was stored at 4 �C.

The sequencing library was prepared using the Oxford

Nanopore Ligation Sequencing Kit and loaded onto a Flongle

flow cell following the manufacturer’s instructions (Oxford

Nanopore, Oxford, UK). Sequencing was performed on a

MinION device using the Flongle adapter and monitored with

MinKNOW software v.22.08.9 (Figure S1; Oxford Nanopore,

Oxford, UK). Basecalling was done in Guppy v.6.2.11 using the

high-accuracy basecalling model and reads filtered to a min-

imum qscore ¼ 9. Reads were assembled using Geneious

Prime v.2022.2.2 under the Medium/Fast sensitivity setting and

iterative fine-tuning. The P. reticulata mitochondrial genome

(KJ460033) was selected as a reference sequence. A consensus

sequence was generated using a strict 50% threshold and then

checked by eye and ambiguous base calls resolved in BioEdit

v.7.2.5 (Hall 1999; Hall and Alzohairy 2011). The genome was

Figure 2. Mitochondrial genome map of Poecilia parae. The innermost circle of the image represents %GC per every 5 bp of the mitogenome; longer lines indicate
higher %GC.
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annotated in MitoAnnotator v.3.75 (Iwasaki et al. 2013; Sato

et al. 2018). The presence of appropriate start and stop codons

in protein coding genes was confirmed and internal stop

codons resolved in MEGA11: Molecular Evolutionary Genetics

Analysis v.11.0.10 (Tamura et al. 2021). The annotated mito-

chondrial genome is openly available in GenBank of NCBI at

https://www.ncbi.nlm.nih.gov (OP326603). Congeneric species

were identified using NCBI BLAST (Altschul et al. 1990; Miya

et al. 2003; Setiamarga et al. 2008; Bai et al. 2009; Dang et al.

2016; Jeon et al. 2016; Jiang et al. 2016; Kong et al. 2016;

K€unstner et al. 2016; Sung et al. 2016; Zhang et al. 2016;

Mateos et al. 2019; van Kruistum et al. 2020; Eastis et al. 2021).

Concatenated protein-coding sequences from the congener

mitochondrial genomes and a Xenotoca eiseni outgroup were

aligned using the MAFFT server v.7 before phylogenetic ana-

lysis (Katoh et al. 2002; Katoh and Standley 2013). Model selec-

tion and evolutionary analysis by the maximum-likelihood

method were performed in MEGA11. A maximum-likelihood

phylogenetic tree was reconstructed using the general time

reversible model with gamma and invariable sites allowed and

1000 bootstrap replications.

Results

The mitochondrial genome of P. parae is 16,559 bp long. The

nucleotide composition of the P. parae mitochondrial gen-

ome is 29.70% A, 27.25% C, 14.80% G, and 28.26% T. The

genome is circular, consisting of 13 protein-coding genes,

two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and

one control region (D-loop; Figure 2). The P. parae mitochon-

drial genome contains 29 forward genes and nine reverse

genes; all protein-coding genes use the start codon ATG.

Seven protein-coding genes in the P. parae mitochondrial

genome (ND1, COI, ATP8, ND4L, ND5, ND6, and CYTB) end

Figure 3. Maximum-likelihood phylogeny reconstructed using mitochondrial protein-coding sequences under the GTRþGþI model and 1000 bootstrap replicates.
The following sequences were used: AP005982 (Miya et al. 2003), KT594624 (Zhang et al. 2016), MW934558 (Eastis et al. 2021), ON797008, FJ226476 (Bai et al.
2009), FJ234985 (Bai et al. 2009), CM021098 (van Kruistum et al. 2020), KJ013505 (Kong et al. 2016), KJ460033 K€unstner et al. (2016), OP326603 (this study),
KT166983 (Dang et al. 2016), KT175513, KT307617 (Sung et al. 2016), KT715811, MK263672, KT175514, KT175512, KT175511, LC026151 (Jiang et al. 2016), KX229692
(Jeon et al. 2016), MZ681841, MK860197 (Mateos et al. 2019), KP013108, MK860198 (Mateos et al. 2019), OL825609, OL457416, AP004422 (Miya et al. 2003),
KP013085, KP013115, and AP006777 (Setiamarga et al. 2008). Numbers on nodes are bootstrap support values. The sequence generated in this study is written in
bold font and marked with an asterisk.
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with the complete TAA stop codon and six (ND2, COII, ATP6,

COIII, ND3, and ND4) end with an incomplete stop codon

which is completed by the addition of 30 A residues.

Discussion

Phylogenetic analysis using the maximum-likelihood method

places the genera Xiphophorus, Poecilia, Gambusia, and

Poeciliopsis each as monophyletic groups (Figure 3). Our data

place P. parae as the sister group to P. reticulata, the Guppy.

The phylogenetic tree topology of poeciliid genera is consist-

ent with recent phylogenetic studies performed on whole

poeciliid mitochondrial genomes (Pollux et al. 2014; Jeon

et al. 2016; Eastis et al. 2021) and one-to-one orthologs

(Mateos et al. 2019). Previous phylogenetic studies conducted

with a more exhaustive sampling of Poecilia support the

placement of P. parae (Pollux et al. 2014; M�endez-Janovitz

et al. 2019; Metzger et al. 2021; Sandkam et al. 2021). A wider

representation of Poecilia spp. in complete mitochondrial

data will further resolve the positions of these taxa. The mito-

chondrial genome that we generated will be conducive to

monitoring species presence using eDNA and aid in future

research in comparative biology.
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