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Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States

Protective coatings based on two dimensional materials such as graphene
have gained traction for diverse applications. Their impermeability, inertness,
excellent bonding with metals, and amenability to functionalization renders
them as promising coatings for both abiotic and microbiologically influenced
corrosion (MIC). Owing to the success of graphene coatings, the whole
family of 2D materials, including hexagonal boron nitride and molybdenum
disulphide are being screened to obtain other promising coatings. Al-based
data-driven models can accelerate virtual screening of 2D coatings with
desirable physicaland chemical properties. However, lack of large experimental
datasets renders training of classifiers difficult and often results in over-fitting.
Generate large datasets for MIC resistance of 2D coatings is both complex
and laborious. Deep learning data augmentation methods can alleviate this
issue by generating synthetic electrochemical data that resembles the training
data classes. Here, we investigated two different deep generative models,
namely variation autoencoder (VAE) and generative adversarial network (GAN)
for generating synthetic data for expanding small experimental datasets. Our
model experimental system included few layered graphene over copper
surfaces. The synthetic data generated using GAN displayed a greater neural
network system performance (83-85% accuracy) than VAE generated synthetic
data (78-80% accuracy). However, VAE data performed better (90% accuracy)
than GAN data (84%-85% accuracy) when using XGBoost. Finally, we show
that synthetic data based on VAE and GAN models can drive machine learning
models for developing MIC resistant 2D coatings.

KEYWORDS

2D materials, coatings, graphene, hexagonal boron nitride, electrochemical
impedance spectroscopy, machine learning, microbial induced corrosion
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1. Introduction

Microbial induced corrosion (MIC) cause ~$30-50 billion of
the annual expenditure (Heitz et al., 1996; Guo et al., 2018) in the
oil and gas industry, marine infrastructure, water distribution
systems, and many other environmental and energy sectors. The
occurrence is unfortunately a spontaneous process that is
unavoidable and can only be delayed, not prevented. Currently to
delay this pipelines and holding tanks use solvent free epoxy
liners, thiol monolayers, self-assembled monolayers and biocides
to mitigate bacterial attachment and subsequent corrosion (Song
and Feng, 2020). Recently, a new class of protective coatings based
on 2D materials (e.g., graphene and hexagonal boron nitride) are
being developed for MIC prevention applications (Chilkoor et al.,
2019, 2020, 2021). This is due to their unique impermeability,
inertness, excellent bonding, and passivation properties that resist
the acts of corrosion. Unfortunately, other 2D materials are not
providing the same promising results, many newly discovered 2D
materials such as MoS,, NbSe,, and CrO, have not been explored
as extensively due to their structural instabilities in aggressive
environments (Tanjil et al., 2019). To date empirical approaches
have been the most common approach used in the development
of protective coatings and is no longer sufficient (Wilson and
Guan, 2020). Therefore, next generation methods based on
machine learning (ML) need to be considered when developing
next generation material coatings for microbial induced corrosion
mitigation. Specifically, we look into how electrochemical datasets
from corrosion experiments can be used to aid future ML models.
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ML has been used previously for corrosion detection (Galvao
et al., 2020; Xu et al., 2020; Diao et al., 2021; Coelho et al., 2022).
A vast majority of all of these works use environment conditions
and material composition as their selected input features. To our
understanding there have been no ML papers reporting on
microbial induced corrosion rates with the use of electrochemical
circuit parameters.

Electrochemical reactions at a material solution interface can
be broken down into a series of steps, including mass transport,
charge transfer processes and adsorption. Methods such as
electrochemical impedance spectroscopy (EIS) and linear
polarization resistance (LPR) are used to generate these datasets.
EIS is a rapid non-invasive technique widely applied to the
analysis of conductive materials (Mansfeld, 1990). The EIS
technique applies a frequency dependent sinusoidal input
potential that leads to a current. The results are the detected as the
changes in output potential and current. Because resistance is
independent of frequency, and capacitance is inversely dependent
to frequency, EIS measurements effectively differentiate between
resistance and capacitance (Wang et al., 2019). By comparing the
input values to the output values EIS is able to determine the
impact, efficiency and magnitude of different components within
the electrical circuit. The physical processes involved in
electrochemical reactions are commonly represented in circuit
elements. Understanding circuit elements provides information
on kinetics, mass transport behavior and diffusion coefficients
(Laschuk et al., 2019), providing surface coverage (Muthurasu and
Ganesh, 2012), characterizing corrosion processes (Ramanathan
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and Fasmin, 2017), and determining the mechanisms of surface
interactions with the electrode. Faradaic circuit components
include Ionic (Ry,,) and electric (Rq..) resistances that account for
the ionic and electronic movement within the electrode, Bulk
solution resistance (Rs) which accounts for the resistance between
the working and counter electrodes, and charge transfer resistance
(Rer) which is the electron transfer resistance across the electrode-
electrolyte interface. Non-faradaic components on the other hand
are responsible for capacitance circuit elements and these include
the double layer capacitance (Cg4) that gives the specific
capacitance at the interface of the electrolyte within the electrode,
and the coating capacitance (C,) is the observed capacitance
between the metal and electrolyte with the coating acting as the
dielectric. While electrochemical circuit components are often
used to estimate corrosion levels, there are no clear relationships
between all electrochemical data and specific corrosion systems.
The use of machine leaning (ML) algorithms may aid in the
extraction of complex relationships from collected data.
Commonly machine learning models are trained with data
sets ranging from tens of thousands to state of the art models on
the order of millions of labels. When ML is applied to
electrochemical data from corrosion studies these large datasets
do not exist. In addition, we further decrease the dataset sizes with
our criteria of electrochemical data from 2D materials used for
microbial induced corrosion prevention. The small datasets are
due to a few reasons: data generation from wet lab experiments is
time-consuming and the use of 2D materials in microbial
corrosive environments is in its infancy, as well as poor data
sharing practices in literature. To increase our dataset sizes from
our experimental work, we look into deep learning methods to
improve our small datasets. This is the premise of data
augmentation, where we quickly generate synthetic data to
eliminate the time and efforts needed for wet lab experimentation.
Data augmentation is a technique in which a training set is
expanded with class-preserving transformations (Dao et al., 2019).
There are two major families of deep generative models, variation
autoencoder (VAE) and generative adversarial network (GAN).
VAE’s have been used extensively in the fields of pathology
detection (Uzunova et al.,, 2019), medical data (Pesteie et al.,
2019), and image analysis (Biffi et al., 2019; Ahmad et al., 2022;
Alves and Traina, 2022). Where GAN was been used in
environmental monitoring (Wang et al., 2020), medical imaging
Yietal., 2019), and generation of synthetic test data for corroded
pipelines (He and Zhou, 2022). The following are questions
we aim to answer in the manuscript. (1) Can deep learning based
data augmentation be used to generate statistically relevant
electrochemical impedance parameters generated from small wet
lab experimentation datasets. (2) Can synthetic data be paired
with experimental data in machine learning models, XGBoost and
neural networks, to accurately predict corrosion rate groupings.
(3) Do larger electrochemical datasets generate insights,
predictions, and or recommendations that were previously
unavailable due to lack of relevant data. Here, we analyze synthetic
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data from VAE and GAN models for electrochemical modeling of
microbial corrosive systems using electrochemical parameters.

2. Materials and methods
2.1. Data preparation

All experimental work was done using Desulfovibrio
alaskensis strain G20 (DA-G20) that was anaerobically grown in
the Lactate C (L-C) medium containing the following constituents
(g/L): sodium lactate, 6.8; sodium sulfate, 4.5; sodium citrate, 0.3;
dehydrated calcium chloride, 0.06; ammonium chloride, 1.0;
magnesium sulfate, 2.0; potassium phosphate monobasic, 0.5 and
yeast extract, 1.0. The listed L-C medium components were mixed
thoroughly using type III ASTM Standards for Laboratory
Reagent Water 3 (ASTM D1193-91). The pH of the medium was
adjusted to 7.2 and then sterilized by autoclaving at 121 OC for
30 min. The DA-G20 cultures were grown in 150 ml serum bottles
containing 100 ml of L-C having a headspace of N2-H2 (95% N2
v/v and 5% H2 v/v) (Qiu et al., 2011). DA-G20 cultures were
incubated at 30°C using modest agitation (125 rpm) on an orbital
platform shaker for 48 h.

To establish an electrochemical database for 2D materials
we extracted 49 sets of EIS and LPR data, equivalent circuits and
corresponding corrosion rates from current laboratory
experimentation and published papers (Chilkoor et al., 2019, 2020,
2021). All data can be found in supplementary information. To
observe how 2D materials increase corrosion resistance, corrosion
rates were normalized to the bare metal samples ran in the same
conditions. Therefore, samples with normalized corrosion rates
less than 1, observed improve corrosion resistance, where rates
larger than 1 observed decreases in corrosion resistance versus
their bare metal controls. Data was then classified as effective
coatings if normalized rates were less than 0.999, and a failed
coating if higher than 1. From the classified corrosion resistances
values seven input components (Cy, C., m, OCP, Ry, Re, and Ry)
were synthetically generated to match respective corrosion
resistances. These parameters were chosen due to their importance
in understanding physical processes during corrosion, such as,
kinetics, mass transport and diffusion coefficients (Laschuk
etal., 2019).

All electrochemical data was collected at discrete timepoints.
Therefore, when the electrochemical impedance parameters
were used as labels for the supervised learning model, the
corrosion rate target were continuous variables. While
continuous variables are easy to relate to it is difficult from a
predictive modeling point of view. Due to our small dataset the
target corrosion rate variables were binned, meaning that the
continuous variables were divided into two groupings, effective
coatings (less than 0.999) and failed coatings (greater than
1.000), making it easier to discover patterns. The seven labels
remained as continuous variables (Figure 1).
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FIGURE 1
(A) Nyquist plot from electrochemical impedance spectroscopy. (B) Corrosion rates from linear polarization resistance. (C) equivalent circuit
model derived from spectra.

2.2. Data augmentation

To increase the number of training samples, variation
autoencoder (VAE) and generative adversarial network (GAN)
were used to generate synthetic samples for each class of corrosion
resistances. First synthetic data was generated based on discrete
corrosion rates, but provided worse results than when classified by
effective coatings (less than 0.999) and failed coatings (greater
than 1.000). 100 synthetic data points were added to the original
49 data points collected via experimentation and literature. Fifty
of the samples were effective in coating resistance (encoded as 0),
50 of the samples were failed in coating resistance (encoded as 1).
Corresponding equivalent circuit parameters were generated with
respect to the coating resistance classification.

2.3. Machine learning models

Electrochemical reactions at a material solution interface can
be broken down into a series of steps, including mass transport,
charge transfer processes and adsorption. EIS is able to determine
the impact, efficiency and magnitude of different components
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within the electrical circuit. The physical processes involved in
electrochemical reactions are commonly represented in these
circuit elements. Understanding circuit elements provides
information on kinetics, mass transport behavior and diffusion
coeflicients (Laschuk et al., 2019), providing surface coverage
(Muthurasu and Ganesh, 2012), characterizing corrosion
processes (Ramanathan and Fasmin, 2017), and determining the
mechanisms of surface interactions with the electrode. EIS
spectra are commonly represented as a Nyquist or Bode plot. A
Nyquist plot represents the mass transfer and kinetic behavior,
while the Bode plot represents frequency dependent behavior.
Nyquist plots represent a combination of resistances, capacitances
or inductances, and faradaic impedances. Faradaic circuit
components include ionic (R,,) and electric (Rq..) resistances
that account for the ionic and electronic movement within the
electrode, Bulk solution resistance (R,,,) which accounts for the
resistance between the working and counter electrodes, and
charge transfer resistance (R.) which is the electron transfer
resistance across the electrode-electrolyte interface. Non-faradaic
on the other hand is responsible for capacitance circuit elements
and these include the double layer capacitance (Cy) that gives the
specific capacitance at the interface of the electrolyte within the
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electrode. The coating capacitance (C,) is the capacitance of the
coating that is covering the substrate. These circuit elements help
describe the presence and magnitude of the corrosion process
(Ahmad et al, 2021). Deep Neural Network with back
propagation and XGBoost were performed in Python using
Keras and Scikit Learn to verify the data generated from the EIS
model. Seven components (Cg, C., m, OCP, Ry R, and R;,,)
were chosen as the features of the dataset and were used as input
for the machine learning models (Figure 2). Normalized
corrosion rates were chosen as the model output. 1,000 pairs of
inputs and outputs obtained at different timeframes were fed into
the model with 75% used as training data and 25% used as

10.3389/fmicb.2022.1059123

3. Results and discussion
3.1. Data augmentation

In order to verify the effectiveness of the augmentation,
we visualize the original charge transfer resistance (Rct), open
circuit potential (OCP) and solution resistance (Rsoln) data and
the new samples generated by VAE and GAN augmentation
models. Tables 1-3 show the statistics of the experimentation
corrosion data and the synthetic corrosion data generated from
GAN and VAE models. Figure 3 shows the original data generated
doing wet lab experimentation. Figures 4, 5 show the distribution

testing data. of original and synthetic data points using GAN and VAE models.

Minimize

difference
X — Encoder Decoder — 5 % e X

network network
Latent e
Input Recognition variables Reconstruction Apy
FIGURE 2

Conditional Variational AutoEncoder and Deep Neural Network).

Generate tabular synthetic data using GAN architect. (Improving the Classification Effectiveness of Intrusion Detection by Using Improved

TABLE 1 Characteristics of the real corrosion data used in machine learning model.

Index OCP Rsotn Rt Rpo C. m Ca
Max -678.00 95.87 1.91x10° 1.65x10° 1.39x107 0.89 2.49%x107?
Min -815.10 33.88 427%x107" 1.34x 107" 8.00x10° 0.43 2.50x 107"
Mean =770.90 42.30 1.66x 10* 8.59x 10° 421x10™* 0.79 1.22x107
Std 37.32 12.38 3.98x 10" 2.94x 10" 2.46x 107" 0.08 4.12x1073
TABLE 2 Characteristics of the VAE based synthetic corrosion data used in machine learning model.
Index OCP Reotn Re Rpo C. m Ca
Max —-734.56 61.73 2.48E+04 2.50E+04 7.62E-04 0.86 2.18E-03
Min -804.21 34.13 5.11E+03 6.48E+03 2.29E-04 0.70 —7.33E-04
Mean -787.26 38.50 6.40E+03 2.72E+03 4.63E-04 0.81 4.31E-04
Std 12.66 3.03 5.59E+03 4.12E+03 7.30E-05 0.03 5.70E-04
TABLE 3 Characteristics of the GAN based synthetic corrosion data used in machine learning model.
Index OCP Rsoin Ret Rpo G m Ca
Max ~678.00 95.87 1.92E+05 1.65E+05 1.39E-03 0.89 2.49%1072
Min -815.10 33.88 4.27E-01 1.37E-01 8.00E-06 0.43 2.50x10™"
Mean -766.25 56.26 8.94E+04 5.13E+04 3.79E-04 0.62 2.79x107
Std 36.75 24.22 6.94E+04 3.99E+04 4.01E-04 0.11 5.78x107°
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Visualization of the distributions of different columns (A) Rct (B) OCP (C) Rsoln (D) m of original dataset. Color coded by the label where pink is a
failed coating (normalized corrosion rates greater than 1.000), and black is an effective coating (normalized corrosion rates under 0.999).
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3.2. Model training and testing

As the solution for quantifying important electrochemical
parameter pertaining to microbial corrosion resistance using
equivalent circuit components is not straightforward, we turned
to machine learning to help leverage our growing database.
eXtreme Gradient Boosting (XGBoost) and Neural Networks
were tested in Python using Keras and Scikit learn and applied to
check which model accurately classified the corrosion resistance
data based on seven input variables (Cy, C., m, OCP, Ry, Ry, and
R,) and to verify if the data generated from the experiment can
be tested using machine learning model. The Neural Network
gave 45-50% accuracy at predicting the output of corrosion
resistance. XGBoost outperformed all the other models with
90-92% accuracy in classifying the data accurately.

3.2.1. Neural network

Seven input parameters (Cy, C., m, OCP, Ry, Ri, and R,) were
fed into the first hidden layer of neural network consisting of 12 nodes.
The output from first hidden layer was then fed into second hidden
layer consisting of 8 nodes in order to improve training. The first and
second layer both used ReLU activation function (Qiu et al., 2011).
ReLU function utilizes maximizer operation and can be written as:

Sflx) =max{0, z} (1)
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The sigmoid function maps the output received from hidden
layers between 0 to 1 or 1 to —1 and can be used as a predictive
model. The model is represented by:

1
l+e* (2)

/(%)=

The model was trained 50 times where a final accuracy of
model was noted along with confusion matrix in Figure 6. The
final accuracy of the model was calculated after implementing the
testing dataset. Applying our Neural Network model on VAE
augmented dataset, the training and evaluation accuracies
obtained were 83.3 and 83.3% respectively, whereas when
we applied k-fold cross validation, the testing accuracy obtained
was 85.43% (+5.72%). Similarly, for GAN augmented dataset, the
training and evaluation accuracies obtained were 86.11 and
88.9%, respectively, and the k-fold cross validation testing
accuracy was 81.57% (£13.89%).

3.2.2. XGBoost

The seven input parameters were fed into the XGBoost model
to predict corrosion resistance classification. The model is built
from XGBClassifier object of XGBoost python package. Gradient
Boosting algorithm is the implemented form for XGBoost model.
The model was trained and tuned using the training dataset of
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Confusion matrices showing the system performance of neural network (A) on VAE based synthetic data (B) on GAN based synthetic data. ROC
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synthetic data from both VAE and GAN models. The model was
trained for 100 times and final accuracy of model was noted along
with confusion matrix in Figure 7. The final accuracy of the
model was calculated after implementing the testing dataset.
XGBoost model loss function (Figures 7E,F) represents how
well the model’s predictions fit the training data. Here, we find
that XGBoost model is the most accurate model in predicting the
corrosion resistance of 2D materials. Meaning that input
impedance parameters can be used to accurately predict if 2D
material coatings are effective or failed coatings to 90% accuracy.
This information could increase accuracy of other corrosion
models based on chemical and environmental conditions by
introducing the accuracy generated from impedance parameters.
Figure 8 shows that the open circuit potential (OCP) and
charge transfer resistance (R,) are the two most important
features for accurate corrosion resistance prediction. OCP is
widely known in corrosion research as having a strong correlation
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with corrosion. This is because materials with a naturally high
corrosion potential, meaning an increased corrosion is expected
(Bastos et al., 2004). The charge transfer resistance (Rct) is a
function for the electrochemical corrosion reactions intensity at
coating/metal interface. The higher value of (Rct) implies the
higher integrity of the coating system and then the slower
development of corrosion reactions under the coatings. Knowing
these input feature are the most important feature in predicting
corrosion resistance for 2D material coatings implies our
augmented data is in line with experimental and theoretical work.

3.3. Generalizability of machine learning
models

Typical corrosion rate prediction models use chemical
compositions as the input feature, and therefore have been
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Confusion matrices showing the system performance of XGBoost on (A) VAE based synthetic data (B) GAN based synthetic data. ROC curve of
XGBoost model on (C) VAE based synthetic data (D) GAN based synthetic data. Loss function for train and test set of XGBoost on (E) VAE based
synthetic data (F) GAN based synthetic data.
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Feature component analysis using XGBoost. Of (A) VAE based synthetic data (B) GAN based synthetic data.

limited to certain metals such as steel, copper, and aluminum induced due to their limited generalizability. The use of
(Wei et al., 2020). Challenges arise when predicting specific electrochemical impedance parameters as input functions in
forms of corrosion such as atmospheric, marine and microbial this study was firstly applied to generalize corrosion rate
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prediction. Meanwhile, the impedance features proposed an
effective way to understand the influence of impedance
components in an electrochemical system experiencing
microbial induced corrosion. This approach has important
application value in the future for guiding research into the
use of impedance parameters for improved corrosion
prediction models.

3.4. Challenges

In general, electrochemical studies always have some
error while comparing the results obtained by different
techniques and even by one technique measured on the
equipment from different manufacturers. In the case of LPR
and EIS, these different
electrochemical parameters of the system. LPR provides real-

techniques measure two
time kinetics of the electrochemical processes. In opposite,
EIS data is usually obtained at the OCP and provides
measured values of the overall interfacial resistance at the
electrode-electrolyte interface. Therefore, the prediction of
corrosion rates derived from EIS impedance parameters adds
a level of uncertainty. With larger datasets researchers will
begin to understand trends within the electrochemical data
and how it can be leveraged for many corrosion applications.
Including, more accurate corrosion predictions models for
specific environments and increased accuracy for 2D material
development for specific applications.

4. Conclusion

In conclusion, we demonstrated a first-generation machine
learning based electrochemical impedance spectroscopy model
that predicts the corrosion resistance of 2D material coatings
subjected to microbial induced corrosion. Data augmentation
methods were used to increase the number of training samples to
enhance neural networks and XGBoost algorithms feature
representation. GAN synthetic data performed better in our
neural network model up to 88.9%, while VAE models performed
at 83.3%. Whereas VAE synthetic data performed better in our
XGBoost model at 90.9% and GAN models performed at 84.1%.
Experiment results show that augmented data can be used to
increase algorithm performance. Prediction accuracy of 90.9%
were observed using XGBoost. Note that our study is based on a
small EIS sample set. Work will continue to be done to obtain
additional EIS samples from different labs, including new 2D
materials, environmental conditions and microbes. For more
incorporation of machine learning within the corrosion
community, efforts should be made to improve data sharing
practices. Corrosion researchers would significantly benefit from
increased access to high quality electrochemical datasets.
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