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Large-scale modeling of coupled heat and water transfer (CHWT) is challenging due to the spatial variabilities of
soil hydraulic and thermal properties. A multi-scale finite element method (MsFEM) has been designed for
simulating liquid water fluxes in unsaturated soils. In this study, the MSFEM approach is expanded as a new
scheme that can handle CHWT in soils. Two groups of MSFEM basis functions are constructed to incorporate the
heterogeneities in soil hydraulic conductivity and thermal conductivity, and a Petrov-Galerkin formulation is
adopted to implement the proposed MsFEM scheme. The MsFEM scheme is also exploited as a sequential solver
when heat transfer and water transfer are expressed in a partially coupled formulation (Wang et al., 2022a).
Numerical examples illustrate that, without essentially increasing the computing load, the MsFEM scheme can
improve the accuracy by up-to 30% compared to the standard finite element method (FEM), especially for
thermally driven water transfer. Some fine scale spatial variations in soil temperature can only be revealed with
the MSFEM scheme. If the MSFEM sequential solver is applied, the coupled heat and water transfer model can be
rewritten into a sequence of modules, where liquid water transfer, heat transfer and vapor transfer are solved
step-by-step, but the thermally driven liquid water is omitted due to its relatively small value (Wang et al.,
2022a). With the MsFEM sequential solver, a flexible modeling architecture can be achieved at the cost of a
relatively small increase of error (<5%). Therefore, the MSFEM scheme presented in this study is an effective
numerical approach to simulating CHWT in heterogeneous soils.
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1. Introduction

Simulation of soil heat and water dynamics is important in agricul-
tural and environmental science, especially in arid and semiarid regions,
where heat transfer and water transfer are coupled and water transfer
occurs in both liquid and vapor phases (Scanlon and Milly, 1994; Zeng
et al., 2011a,b). Besides the nonlinearity in the coupled heat and water
transfer (CHWT) governing models, spatial heterogeneity in soil hy-
draulic and thermal properties becomes another challenge to numerical
simulations, especially when the study area is relatively large (Rienzner
and Gandolfi, 2014; Shangguan et al., 2014) and when the soil is treated
nonuniformly (e.g., local compaction or consolidation in Li et al., 2021;

Wang et al., 2022b or uneven soil water content and solute distributions
in Wang et al., 2017a; Wang et al., 2021a). When the finite element
method (standard FEM, hereafter) is used, relatively fine spatial grids
have to be adopted to elucidate the small-scale soil variabilities and to
accurately predict the spatial distributions of soil water content and
temperature. Refining the spatial grid will tremendously increase the
computing load, execution time and the quantity of small-scale soil
water and temperature data, which could be unnecessarily detailed for
large-scale, regional soil management practices. However, using coarse
grids may misrepresent soil heterogeneity and reduce the simulation
accuracy, even for large-scale spatial domains. Therefore, a multiscale
numerical method that can map small-scale soil properties onto coarse
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grids and perform soil CHWT simulations on the coarse grids up to a
required accuracy level is needed.

The multiscale finite element method (MsFEM) is a “fine-to-coarse”
numerical approach (Efendiev and Hou, 2009). MsFEM is based on the
multiscale variational method, originally reported by Babuska and
Osborn (1983), and then developed by Hou and Wu (1997) and Hou
etal. (1999) for fluid mechanics in porous media. In fine grids, a series of
localized, numerical MSFEM basis functions are chosen to incorporate
the small-scale soil features. In coarse grids, the MsFEM basis functions,
rather than polynomial basis functions in standard FEM, are used to
establish a discretized numerical scheme, which is also referred to as the
“global formulation”. By doing that, the small-scale soil heterogeneities
in the fine grid are first absorbed by the MsFEM basis functions and then
transferred to the global formulation in the coarse grid, which is to say
“fine-to-coarse”. Basis functions and global formulations are two critical
ingredients of MSFEM. From one aspect, MSFEM shares similarities with
other multi-scale models with respect to those two ingredients, such as
the upscaling-homogenization method, variational multiscale approach,
heterogeneous multiscale method and multiscale enrichment method
(Durlofsky, 1991; Li et al., 2016; Arbogast and Boyd, 2006; E et al.,
2005; Fish and Yuan, 2007). From another aspect, development and
applications of MSFEM, especially for soil liquid water transfer, rely on
modifications and improvements of the basis functions and the global
formulations.

From the perspective of MSFEM basis functions, the boundary values
of each basis function relate to the accuracy of the global solution. He
and Ren (2006) applied and tested the oscillatory boundary conditions
and the oversampling techniques proposed by Hou and Wu (1997) to
construct basis functions. Since soil hydraulic conductivity may involve
both spatial and temporal variations due to changes in soil water con-
tent, He and Ren (2009) adaptively updated the MsFEM basis functions
during soil water transfer simulations. Moreover, Spiridonov et al.
(2020) applied multiscale methods to construct 2D and 3D basis func-
tions for unstructured fine grids to enable the FEM and discrete fracture
approach in complex geometries. Additional endeavors to capture small-
scale features include multiscale mapping and the limited use of global
information (Efendiev et al. 2004; Aarnes et al., 2008). However, related
techniques have not been applied in soil water transfer models yet.

From the perspective of the global formulations, Galerkin and mul-
tiscale finite volume methods have been reported in He and Ren (2005;
2006). If global information is adopted, a mixed FEM is usually taken as
the global formulation to ensure both local and global conservation of
mass or energy. In order to implement MsFEM for nonlinear soil water
transfer problems, some linearization should be incorporated to the
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it has not been fully developed for CHWT problems, especially for the
thermally driven water fluxes in relatively dry soils. Despite the two-
phase water fluxes and the nonlinearity embedded in the governing
models, one difficulty in applying MsFEM is that the hydraulic con-
ductivity and the thermal conductivity may not share the same spatial
variations (e.g., Li et al., 2019). Although MsSFEM approaches in two-
phase immiscible or miscible flows have been proposed for reservoir
models (see Section 2.10 in Efendiev and Hou, 2009; Juanes and Patzek,
2010), in those cases, the spatial heterogeneities can be simplified and
represented by the flow in one phase using auxiliary parameters, such as
“mobility”, “saturation” and “water/oil-cut”. However, for CHWT
problems, two spatial variations in hydraulic and thermal conductivity
cannot be simplified as they are in the reservoir models, and they must
be handled separately.

Thus, the objectives of this study are to develop a MSFEM scheme
that can account for spatial variations of soil properties in both heat
transfer and water transfer, apply the MsFEM scheme to CHWT simu-
lations, and present illustrative numerical examples.

2. A MsFEM scheme for coupled heat and water transfer model

In Section 2.1, we review a CHWT model [i.e., the Philip and de Vries
(1957) model] and include the spatial heterogeneities of soil hydraulic
conductivity and soil thermal conductivity into a set of governing
equations. The spatial variability of soil properties is usually expressed
via a random field with a pre-specified marginal distribution and spatial
correlation functions, which is introduced in Section 2.2. In Section 2.3,
we establish a MSFEM scheme for the CHWT model. Illustrative exam-
ples with result comparisons and error analyses among a range of grid
sizes are provided in Section 2.4. Therefore, Sections 2.1 and 2.2 can be
treated as the problem statement, and Sections 2.3 and 2.4 can be
treated as the solution.

2.1. Review of the coupled water and heat transfer model

When soil is relatively dry, vapor transfer driven by temperature
gradients, rather than liquid water or vapor fluxes under water potential
gradients, becomes the dominant means for soil water flux, due to the
relatively large temperature gradients and high air-filled porosity. When
vapor transfer governs the soil water redistribution, it also contributes to
sensible and latent heat fluxes. Hence, in such cases, the heat and water
transfer in soil is fully coupled and can be expressed by the following
Philip and de Vries (1957) model.

oh aT
Water equation : Cons, + C()TE =V |dw(h, T)Vh+dy(h, T)VT + k(h, T)Vh + dy(h, T)VT (1a)
=—qy(h.T) =—q(h.T)
. oh oT
Heat equation : crys -+ crrs-= =V-| —AVT + apig(T —To) + [Lopigs + cpiay(T — To) | (1b)

=qu(h.T)

global formulation, and a commonly used scheme is the relaxation
presented by Slodicka (2002) and used in He and Ren (2006). Other
types of multiscale methods exist. However, they may not belong to
MsFEM in the narrow sense. For example, Chen and Ren (2008) pro-
posed a finite difference heterogeneous multiscale method for soil water
transfer modeling. Although the origin of such an algorithm is from the
homogenization theory, it includes procedures that transfer small-scale
properties from local representative volumes to the global formulations.

MSsFEM has been used for unsaturated soil water transfer. However,

In Eq. (1), cop(em™), cor(K™1), cro(Tem™3em™1) and crr(Jem 3 K1)
are capacity terms related to changes in soil water potential [h,cm, or
changes in soil water content (¢,cm®cm™3) equivalently], and soil
temperature (T, K). V indicates the differential operator in a spatial
domain Q. In Eq. (1a), dmy(h,T)(cms™!) and dy(h, T)(cm?s 1K)
represent vapor diffusivities under the water potential gradient and
temperature gradient, respectively. Hence, g,(cms™!) is the net vapor
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flux. Similarly, k(h, T) (cm s’l) is the (unsaturated) hydraulic conduc-
tivity and dy(h, T)(em?s~! K™!) is the coefficient for thermally driven
liquid water diffusion. Hence, q;(h, T) represents the net liquid water
flux. In Eq. (1b), A(Wem ™K !) is the soil thermal conductivity;
Lo(Jg™1) is the heat of vaporization of water at a pre-specified reference
temperature To(K); ¢; ~ 4.187Jg 1 K™! and ¢, ~ 1.864(Jg 'K™') are
the specific heats of liquid water and vapor; p; = 1.0gcm 2 is density of
liquid water. Thus, ¢;p;qi(T —To) and Lop,qy +cvpiqv(T —To) represent the
sensible heat fluxes carried by liquid water, and the latent and sensible
heat fluxes carried by vapor, relative to the internal energy of liquid
water at Ty. Following that, gx(h, T) becomes the net soil heat flux.
The Philip and de Vries (1957) model is widely used in CHWT sim-
ulations, and multiple improvements and validations of such a model
have been reported. For example, Nassar and Horton (1989, 1997)
included the osmotic potential and provided a coupled heat, water, and
solute transfer model in wettable soils. Heitman et al. (2007, 2008) used
the Philip and de Vries (1957) model to investigate thermally driven soil
water redistribution. Zeng et al. (2011b) included dry air flow and
illustrated the impact of gas flow on heat and water exchanges between
the atmosphere and shallow soil profiles. The derivations of the Philip
and de Vries (1957) model can be found in Heitman et al. (2008) and
Wang et al. (2017b), and detailed discussion on some soil hydraulic or
thermal properties, e.g., 4 and dy, can be found in Lu et al. (2014),
Groenevelt and Kay (1974), Milly (1982) and Wang et al. (2022a). Two

N

characteristic equation

{&)hen &~ A (W=0,6"=1) and E[£,&]=0,

{mmfn(?) }nEN : /5;62~exp< - M)f (*)

constitutive relations are implicitly assumed in Eq. (1). One is the soil
water characteristic curve, representing the relationship between h and
0, and the other one represents how k(h, T) varies with respect to h and
T, with the given saturated hydraulic conductivity ke (cms™).

In this study, spatial heterogeneities are assumed for both ks, and 4.
From the experimental perspective, such spatial heterogeneities can be
obtained by geospatial investigations. For numerical modeling, 2D
random fields with pre-specified marginal distributions and spatial co-
variances are used to represent the spatial variabilities (Simunek et al.,
1992). Hereafter, we use upper-case letters to represent coefficients with
spatial randomness, and lower-case letters to represent deterministic
coefficients. Therefore, replacing k(h,T), ksa, dy(h, T) [da(h, T) is related
to k(h, T), see the appendix in Wang et al. (2022a)] and 2 in Eq. (1) by
K(h,T), Ksar, Dg(h, T) and A gives the following governing equations.

Vm # n
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where X € Q indicates the spatial position in a given soil sample. Then,
constructing 2D random fields of Ky and A can be reduced to creating
the two random fields for the coefficients, C«+(X) s on Q, where ** =
Kiat, A

If Cee(X) ~ N(ptsn = 0, 6%,), with a pre-defined spatial covariance,
the Karhunen-Loeve (KL) expansion can be employed. The intuition of
the KL expansion is to separate the randomness and the spatial locations.
Suppose C«(X) are wide-sense stationary, such that the spatial
covariance can be expressed with a kernel that only takes the distance
between two positions X1, X5 € Q [i.e., dist(X7, X2 )] and a correla-
tion length (17,cm) as inputs,

dist(x7, ;)

e

E[Ce(37)Co+(X7) ] = Gf*exp( — > ,where*™ = K., A (€))
Then, C--() can be expanded by a group of (uncorrelated) random
variables {&,},. and a group of spatial deterministic functions f, (),

Cor(X) = > _Vwl fu(X), where ** = Ky, A 5)
neN
{@n,f2(X) },n, are the eigenvalues and the (orthonormal) eigen-
functions of the covariance kernel in Eq. (4). {@,fo(X) },., can be
determined via a characteristic equation shown in Eq. (6), which is also

known as the homogeneous Fredholm integral equation of the second
kind.

 (B)d%; = wfy(B) and / AEU(F)T = 5,
Q

©

where §; is the Kronecker symbol. Solving Eq. (6) is the critical step in
implementing the KL expansion, and we provide two illustrative
examples.

Example 2.1. (Manhattan distance).

Let Q = [0,L] x [0,L], X1 = (x1,¥1), X2 = (X2,Y2) € Q, and define
def
the Manhattan distance as dist(X;, X2 )= |x1 —X2| + |y1 —Y2|- The
covariance kernel becomes oZexp[ —(|x1 — x2| + [y1 —¥2|)/n], and the
eigenvalues and eigenfunctions can be solved analytically.
Starting with exp(—|x; —x2|/n), assume f(x) = ywcoswx + sinwx,

and we can obtain fé exp( —ba=x| ) fOc)de, =  2Ge) 4

n 1+Pw?

Trow exp ( —L’%) [(#*w?* — 1)sinwL —2ywcoswL ]. Compared this inte-

oh or
Water equation : Corg, + Corg- = V-(K(h,T) + dp(h,T) )Vh + (dp(h,T) + Dy(h,T) )VT] (2a)
. oh JaT
Heat equation : crog, + gy = —V-[ = AVT + cip,qi(T — Ty) + [Lop,gv + cvp1q:(T — To) 1] (2b)

2.2. Formulations of the spatial variability of Ky, and A

For Ky and A, suppose that the random portions and the deter-
ministic portions can be separated, i.e.,

Kyt (%) = Cipy (X ksar, A(X) = CA(X)A ()]

gral with the characteristic equation in Eq. (6), the eigenvalues and
eigenfunctions of exp(—|x; —x2|/n), i.e., {ﬁ,fn(A;)} , can be
ne

observed as,
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w, = 2,fn( xX) =

g i [wncosw,x + sinw,x]

where {wp},.\ satisfies (n*w?—1)sinwL —2ywcoswL = 0, and A, =

L : dinwesd2die |2 = T(n2w? 1/2
n n n -
[fo [ Wncoswyx + sinwpX] dx} [(*w2+1)L/2+ 1] are the

normalizers for f;(;).
Following the
o®exp[—(Ix1 — x2| + 1

result above, for o2exp(—dist(xy, X2 )/n) =

=y2|)/n],

I e =D G G anay
Q=[] n

L _ . L
:(72/0 exp(—%)ﬁn(m)dxl/o CXP( |y ﬂy2‘>f( )dy1

(xz) X wtff(yz)

=o', Tn@,0° X fu(2)fi(32)

@,

Z
Ja(X)

Thus, the eigenvalues and eigenfunctions of exp( —dist(X1 , Xz )/1),

ie., {@n,fu(X)},cn> becomes {ﬁﬁﬂzvf;(;)f@ }m,leN

o),
exp( —|x1 — x2|/n) and exp( —|y1 — ¥2|/n ), respectively.

, where {(im,

and {ﬁ, f?(;) }leN are the eigenvalues and eigenfunctions of

Example 2.2. (Euclidean distance).

Let Q = [0,L] x [0,L], X1 = (%1,¥1), X2 = (x2,¥2) € Q, and define

def

the  Euclidean distance as  dist(x1, X2)= ||[x1 — X2 || =

\/(Xl — X2)2 + (yl —yz)z. The
o%exp(— | X1 =Xz ||/n). Compared to the Manhattan distance, the
Euclidean distance is more natural in physical applications. However,
analytically solving the eigenvalues and eigenfunctions can be chal-
lenging. Hence, a semi-analytic method via 2D Fourier expansion was
proposed in Li et al. (2006). Suppose the 2D Fourier expansion of the
eigen function can be expressed as.

covariance  kernel = becomes

A@)= Y o)

For simplicity, we use ¢; and ¢;(x,y) to represent the Fourier co-
efficients and the 2D trigonometric bases, where ¢;(x,y) #0 are
orthonormal with respect to i.

The characteristic equation implies.

N
// o exp< I H)Zl Oci(pi(xhy])dxldyl = anj:ucj(ﬂ,-(xzyyﬁ

Multiply both side by ¢ (x2,¥2),k =1,2, -,

,ZZO:C' {62//9%()“2%)//;@( _

= WnC

N and integrate over Q,

- =
X1 — X2

) @;(x1,y1)dx,dy dxdy, }

=By

Therefore, the characteristic equation can be reformulated into a
linear system, ®C = w¢, where @ = [@;] € R¥Vand¢ = [¢] € RV, and
determining the eigenvalues and eigenfunctions can be transformed to
computing the eigenvalues and eigenvectors of matrix ®.

A.

In soil physics studies, Ki; and A, hence C:+(X) s, are usually
assumed to follow lognormal distributions. Therefore, the KL expansion
should be modified as an iterative method (Phoon et al. 2002; Dai et al.,
2019), such that the marginal distribution at each spatial position fol-
lows the desired lognormal distributions. The intuition of the iterative
method is to use distribution transformations to approach the marginal
distribution (i.e., the lognormal distribution in this study), and use Latin
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hypercube sampling (or similar methods) to un-correlate the random
seeds {£,},,cy in the KL expansion [see Eq. (5)]. The iterative method can
be summarized as follows.

(a) Assume Cs+(X) ~ Lognormal(u.. = 1, 6%.). Define a “shifted
lognormal distribution” as D«+(X) = C«+(X) —1, such that the
expectation and variance of Ds«(X) are 0 and ¢%. Generate M
realizations of random numbers, i.e., {&,(M) }pcn o1 2... > @S the
initial samples based on the distribution of D«x(X).

(b) Compute the random fields D%.(X,m) with Eq. (7), where p
represents the number of iterations.

DL(F,m) = \/mé,(m)f,(X), where**

neN

=K, A, m=1,2,--\M @

(c) For a specific position x7 e Q, assume the empirical cumulative
distribution functions of the marginal distribution of D, (?#, m)
and the shifted log-normal distribution are Fﬁp and Frogr,

can be

respectively. The random vector {Df.( ", m) |

C4><4
= {(hpm, T):m = 1,2,..., 25}

0 Coarse element M X
/
(hM 4y TM,4) (hM 3 TM,3)
M, 4 M,3
Ororr®y = (L,0) oreet s = (L,L)

Edge I11

Edge IV Edge I1

Edge I
(hM 1 TM,l) (hM 2 TM 2)
M,1 M,2
(pl(l or’)F' X1 = (0 0) q’f(l or')T' = (O L)

Fig. 1. An example spatial discretization used to develop the MSFEM scheme.
In the upper figure, the black lines demarcate a 4 x 4 coarse grid, where each
black box presents a coarse element. A coarse element is further divided into a
4 x 4 fine grid. Hereafter, we use CpxmFaxn to define the MSFEM spatial grid,
and m = n = 4 in the upper figure. In the lower figure, we emphasize one coarse
element X', X2 X'3 X 4, where (pﬁl\g:)w i=1,2,3,4 are MsFEM basis functions for
soil water potential (h) or soil temperature (T) at the four coarse nodes, and the
four edges (Edges I, II, III, and IV), which will be used to embed boundary

conditions for ¢ Or)T, are labeled in a counterclockwise direction.
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transformed from its empirical distribution to the shifted log-
normal marginal distribution using Eq. (8).

Di, (7#, m) = anlg P [Fﬁ, [DL. (7#, m)] ], where ** = K, A;m

=1,2,M; X7 €Q
®

Then, &,(m) can be updated using Eq. (9), where Ey indicates
the expectation is taken with respect to the number of realizations
(M).

£, (m)« ! [)[DA"JA(T m) — Ey [DA”J(? m)] ]fn(?)d?, where m

wﬂ
=1,2,M
9

Without loss of generality, {&,(m) },cy me1.2...; DS Zero mean
and unit variance. Otherwise, {£,(m) }neN.m:l,Z,»-’-.M can be simply
standardized with respect to m. Possible correlations of
{€:.(m) }cnme1 2. With respect to n can be reduced following
the method similar to Latin hypercube sampling, proposed in
Phoon et al. (2005), where the correlations are measured with
Pearson product-moment rather than Spearman rank method.

(d) Redo the computation of Eq. (7) wusing the updated
{&(mM) } e me1 2....m» and repeat Eqgs. (7)-(9) for p iterations, until
the marginal distribution of D%, (X, m) at VX € Q approximates
the target, shifted log-normal distribution. Then, Cs(X) =
D?.(X,m)+1 is the desired random field. Although Phoon et al.
(2005) strove to suppress the undesired heavy tails in the simu-
lated marginal distributions, in practice, they may not be totally
removed and need to be truncated at the end of the construction.

2.3. Construction of the MsFEM scheme

Recall the two ingredients of MSFEM are the basis functions and the
global formulations. The basis functions are determined in a fine grid to
capture the small-scale soil properties, while the global formulations are
established in a coarse grid to solve the governing equations [Eq. (2)].
To clarify this exposition, we first present a discretization of the spatial
domain that includes a coarse grid and a fine grid. In Fig. 1, the spatial
domain is first discretized into a 4 x 4 coarse grid (C44) and each coarse
element is further discretized into a 4 x 4 fine grid (F4x4). Hereafter, we
use the format “Cy,xmFnxn” to describe the MSFEM grids. In the MSFEM
grids, (hM7i7 TM,i) is used to denote the nodal values of the soil water
potential and soil temperature for a coarse element M € Cpym and coarse

node i,i = 1,2, 3,4, see the lower diagram in Fig. 1. (E, T‘) is used to

represent the nodal soil water potential and soil temperature in the fine
grid. For standard FEM, only one scale is considered, and the grid can be
presented as “Cpxn . In this study, when a grid is expressed in the format
“CmxmFnxn”s MSFEM will be used as the numerical solver; when a grid is
expressed in the format “Cp,.,”, the associated numerical method will be
the standard FEM.

For a given coarse element M (Fig. 1), the basis functions, namely
@M i = 1,23, 4, can be solved based on the fine grid within the given
coarse element. In standard FEM, bilinear functions are usually adopted
as the basis functions, and we include them into a functional space

70 _ { (M,i)}
0 S MeCumic1234

ities of Ky and A, two groups of MsFEM basis functions must be ob-
tained by solving the following homogeneous equations.

. In order to represent the spatial variabil-
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Ve [Ks,“anzM‘i) ] +(Ve {D[,,.Yqua(TM'i) ] =0(10a)
Ve {AW;M-"] = 0(10b)

(p,(lM'i) represents the MsFEM basis functions for soil water potential

and (p¥"‘i> represents the MsFEM basis functions for soil temperature,

which satisfy (p,(lM'i) (?J> = ¢¥Wi) (71)

lower diagram). Dy, is the saturated value of Dy(h, T) with the initial
soil temperature. Equation (10a) indicates that ga,ﬂMi) and (/)(TM'” are
correlated, and the effects of spatial variations in K, and A on the

CHWT model are not independent. We denote two functional spaces for
the MsFEM basis functions as 7" = {(/J,(IM’i) and 77 =

=8;,1,j=1,2,3,4 (see Fig. 1,

}MEmem.i:1.2.3‘4

{(p(TM ) } . {=~0.01 is an empirical scaling factor. From a
MeECrm i=1234

mathematical perspective, ¢ is used to ensure that ¢;1M.i) >0 and
@MY > 0. From a physical perspective, ¢ exists because (a) the soil water
potential has a scale of 10° — 10*cm and changes nonlinearly with
respect to soil water content, while the soil temperature has a scale of
101°C; (b) based on measurements, the liquid water flow under tem-
perature gradient is typically < 5% of the liquid water flow under water
potential gradient (Prunty, 2009).

The values of the MSFEM basis functions along the boundaries of the
coarse element M, namely Edges I, I, III, and IV, can reflect the goodness
of the basis functions in representing the small-scale soil properties, and
significantly affect the accuracy of the global MSFEM scheme. Failing to
correctly define the boundary conditions may cause interactions be-
tween the soil heterogeneities and the coarse grid size, and lead to errors
known as “scale resonance” (Hou and Wu, 1997). Applying the oscilla-
tory boundary conditions, i.e., a 1D form of Eq. (10) along the four
edges, or an oversampling technique can ameliorate the behaviors of the
MSFEM basis functions, and He and Ren (2006) showed that both
methods produce similar improvements in soil water transfer modeling.
In this study, we focus on the oscillatory boundary conditions because
they can be easily expressed with analytical solutions and lead to a

Table 1
Soil Physical Properties for Examples 2.3 and 2.4.

Ida (fine-silty, mixed, superactive, calcareous, mesic Typic Udorthents)

Soil Textural Properties

Sand (funa, gg71) 0.022
Silt (fo, ggt) 0.729
Clay <fc|ay, gg’l) 0.249
Organic matter (gg~?) 0.044
Specific surface area (S,, cm2cm™3)f  2.44 x 10°
Bulk density (p,, gem™3) 1.20
Hydraulic Properties
Saturated water content 0.547
(Bgar, cm® cm=3)
Saturated hydraulic conductivity at 3.80 x 1075
To (ke cms ™)
Water characteristic function h=-130x (0 /es)*ﬁ 53

Hydraulic conductivity (k, cms™!)

,,.
I

[(To)/1(T) ] x (8/6)'* Pkt

Thermal Properties

Thermal conductivity (2, A= 0.01(hary +exp(p—07%))
Wem 1K) Aary = —0.560; + 0.51
(Lu et al., 2014) o = 0.67fuey +0.24

B = 1.97fgna + 1.87p, — 1.36fnapy, — 0.95

+ The specific surface area is defined for a unit soil volume, i.e., 1 cm?>.
1 W(T) represents the dynamic viscosity of water, as a function of soil tempera-
ture.
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conforming FEM scheme in the global formulation.

For instance, along Edge I in coarse element M, where X = (x,0),

x € [0, L], the boundary values of (/),SM‘U (X) and <p(TM '1)(?) satisfy a 1D
elliptic equation system degraded from Eq. (10), i.e.,

J 7} J
aK\ma (M b + Z_:_Drl \ara [p;_M,l) =0
PR an
— A" =0
Oox Ox

At the two ending points of Edge I, X; = (0,0) and X, = (0,L) (see
Fig. 1, lower diagram), ga,(,lM'l)(?l) = oMY (X;) =1 and (le (Xy) =

qo(TM‘l)(?z) = 0. Then, the solution to Eq. (11) can be calculated

analytically.

(M.1)

<ﬂh (x0)71+

Journal of Hydrology 612 (2022) 128028

equations [Eq. (2)] into a discretized scheme and solve the nodal soil
water potential and temperature (hy, T;;) [or equivalently, soil water
content and temperature (6, Tr,)] on the coarse grid Cpmym (see Fig. 1,
upper diagram), where the small-scale variabilities of soil properties are
accounted for by the MsFEM basis functions. Since we have two groups
of MSFEM basis functions 7™ and 7T, Petrov-Galerkin FEM can be used
as the global formulation (Hou et al., 2004; Reddy, 2006). Let

M, M.
ZMeCW,,. [Zi:l.2.3,4hM-i‘/’;l l)] and ZMec,,.xm Zi:1‘2.3.4TM-i(/J(T l)] be the

MSFEM trial solutions for the soil water potential and the soil temper-
ature, where hy; and Ty; are the nodal values. The global formulation
derived from Eq. (2) are shown as follows.

& [ Du(h,T) 1
/0 K, TIA® 1 +

/0 G /OLKM, n® /

(/’T (x 0) =

Ads

o // ”’d“’}

M. i (M.i)
ng // (p,, y/dw + ng
mec,,,x,,,! 1 234 Q

-5

MECmxmi=

_ /; (qEX[JrqEX[)l[/dl

external water or vapor fluxes as boundary conditions

Ohy, (m,)
Z |:C7‘g Mﬂ [ l//dw+Cr[

MECmxmi=1,234

Yy €0

a // "’d“’}

MECyxmi=1,2,34

_ / Exlwdl
—_——

/ ,lhT /X 1 ds
ds K(h,T)"™
d/—d 0 (7)
1 1
/Ll /OKdS
0

12)

{ (K + dp) g / Vo). Vydw + (dy + Dy) Ty, / Vot .Vy/dw}
1234 Q Q

(13a)

= Z Z |:AhM’/ V(p(IMl)dew:| +// [c]plql(TW - TO) + [LOPI‘]v + Cvplqv(Tup - TU)HVde
Q Q

- / [cpiqi (T — To) + [Lopigy + copigy (Tup — To) [ Jwdl Yy €1° (13b)
o0

external conductive heat fluxes as boundary conditions

After solving (p}(IM’l (X) and ¢M1>( x') along Edge I, the values of

(p}(lm,z)( x) and ¢ Mz)( ) along Edge I can be obtained via (p(M 2>( X) =
1 (,o(Ml)( x') and (p ( ) =1 (p( )( X'), respectively. In addition,
(p,(IM 3)( xX) = ¢(TM3)(x) = ¢§IM'4)(X) = ¢(M4>( Xx') = 0 along Edge I, similar

to the requirements in standard FEM.

The procedures can be repeated for Edges II, III, and IV. In practice,
since h and T (hence K, Dys and A) are discretized in the spatial
domain Q, the boundary values of the basis function can also be solved
numerically. Based on the choice of the boundary conditions, it is easy to

show that Zi:1_2,3.4¢1(1M'i)( )=

element (M).
The target of the global formulation is to transform the governing

i 1234</J<M)( X) =1, VX in the coarse

exernal sensible and latent heat fluxes as boundary conditions

On the right-hand side of Eq. (13b), T is replaced by the temperature
from the upwind direction, i.e., Ty, for the advective heat fluxes. The

time domain differentiation can be discretized using an explicit or an

(M,i)

implicit Euler scheme. Because the MsFEM basis functions ¢, and

¢¥” 9 can be pre-determined for each coarse element using Egs. (10)-

(12), all of the integrals shown in Eq. (13) can be pre-calculated.
Therefore, compared to the standard FEM, the MSFEM scheme pro-
posed in this study does not requires additional computing loads, except
for the time spent in initializing the MsFEM basis functions at the
beginning of the simulation.

After obtaining the solutions on the coarse grid, the MSFEM basis
functions can be used to reconstruct the fine grid soil water potential and
temperature, where the X can take the positions of fine grid nodes.
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Random Field: ¢, .
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3

S
oo
"

100

100 '

Random Field: Ca

100

Y (cm) 00 X (cm)

Fig. 2. The two 2D random fields Ck_, and C, in Example 2.3.
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However, the motivation of the MsFEM scheme is to use basis
functions to absorb the small-scale soil variabilities, such that soil water
potential and temperature can be solved for large-scale applications
without resolving small-scale features. Hence, reconstruction of the fine
grid values is not the priority of the MSFEM scheme in this study.

2.4. Illustrative Example

In this section, we provide examples to demonstrate the efficacy of
the model presented in Sections 2.1 to 2.3. Applications of MSFEM on
soil liquid water transfer have been reported in multiple studies [e.g., He
and Ren (2005; 2006)]. Therefore, in the following examples, we focus
on applications of the MSFEM scheme on CHWT problems, emphasizing
on the thermally driven water flux.

Example 2.3. (Soil water redistribution under temperature
gradients).

Consider a Q = [0, 100cm] x [0,100cm] horizontally placed soil
sample, and the soil physical properties are listed in Table 1. The 2D
random fields that simulate the spatial variabilities of Ky, and A are
lognormally distributed, and a covariance kernel based on the Man-
hattan distance (see Example 2.1) is used with the random variables & ~
Lognormal(u = 1,62 = 10*) and # = 5cm. The lognormal distribution is
truncated below the 0.01 fractile and above the 0.99 fractile to prevent
extreme values in the random fields (i.e., the tail distributions). Fig. 2
presents the two 2D random fields used in this example, namely Cx,, and
Cx. The 2D random fields are positive and relatively uniform, with only
a few spikes reaching values near 100.

The soil sample has an initial water content of 0.2cm® cm~2 and an
initial temperature of 25°C. The boundary of the soil sample is assumed
to be impermeable for liquid water and vapor transfer, and two steady
boundary temperatures, 20°C and 30°C, are imposed on the two oppo-
site edges of the soil sample. The MSFEM grid used for this simulation is
Caox20Fsx5, and a 10-day simulation of soil water and temperature
redistribution is performed.

The soil water content and temperature on both coarse and fine grids
at the 10th day in the simulation are presented in Fig. 3. The soil water
content near the low temperature edge (y = Ocm) reaches the highest

~—_ (©) 0215 Fig. 3. The simulation results of soil water content
T~

and temperature using the MSFEM scheme and the
Ca0x20Fsxs grid. The soil water content and temper-
0205 ature on the coarse grid are shown in (a) and (b);

while the reconstructed soil water content and tem-

perature on the fine grid are shown in (c) and (d). For
0.195  presentation, the coordinate systems in (a, ¢) and the
019  coordinate systems in (b, d) are not placed in the same
direction. To emphasize the details in the soil tem-
perature variations, contour plots are provided in (b,
018 d).

20
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value; while near the high temperature edge (y = 100cm), the soil water
content is relatively low. That is because water near the high tempera-
ture edge tends to vaporize, transfer under the temperature gradient,
and condense near the low temperature edge, which is known as
“thermally driven soil water flux”. However, due to the heterogeneities
in soil hydraulic conductivity, local fluctuations occur in the soil water
content distribution. For Fig. 3a and c, the reconstructed soil water
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Elasped Time (h)

200
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Fig. 4. The evolution of RMSE with respect to time,
including (a) the solution error in soil water content,
(b) the solution error in soil temperature, (c) the “sub-
grid capturing error” in soil water content, and (d) the
“sub-grid capturing error” in soil temperature. The
MsFEM results are presented by solid lines with grids
Cosx25Fax4, Ca0x20F5x5 and CioxioFiox10. The stan-
dard FEM results are plotted by dashed lines with
grids Casx25, Ca0x20 and Ciox10- A small ﬁgure in (d)
presents that for soil temperature, although the ad-
vantages of the MSFEM scheme in reducing the errors
are limited, the “sub-grid capturing error” decreases
faster compared to the standard FEM at the early
stage of the simulation.

content in the fine grid is smoother than the soil water content distri-
bution in the coarse grid. Some local maxima values in Fig. 3c are pre-
sented as “spikes” with relatively narrow spatial expansions. That is
reasonable since the local maxima in K, and A are also “spikes” shown
in Fig. 2. For Fig. 3b and d, the soil temperature distribution in the
coarse grid changes almost linearly from the high temperature edge to
the low temperature edge, and some small variations, presented by the

-3
5 <10 03
i @ 025y (®)
] =
IS 5
=4 =002
s 5
o =
£35 205
k= =
2 3 @ 0.1
B =
2.5 0.05
2 - 0
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e | (o) £ s (@ GgaoMs, s
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Fig. 5. The evolution of RMSE with respect to time for the three methods: the MSFEM scheme with Caox20Fsxs grid, the MSFEM sequential solver (Seq) with
Caox20Fsxs grid, and the standard FEM with Cagx20 grid, including (a) the solution error in soil water content, (b) the solution error in soil temperature, (c) the “sub-
grid capturing error” in soil water content, and (d) the “sub-grid capturing error” in soil temperature.
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contours, can only be observed when the fine grid temperature solution
is reconstructed in Fig. 3d.

A.

Example 2.4. (Scale selection and error analyses).

For a given soil sample, if self-similarity is assumed or soil properties
are represented with fractal methods (e.g., Shen et al., 2019; Jin et al.,
2017), the characteristic scales of soil hydraulic conductivity and ther-
mal conductivity may disappear. Therefore, in soil modeling, the choice
of the coarse grid and the fine grid can be arbitrary, and may even
depend on the scales where measurements are performed rather than the
characteristic scales of the soil properties. Moreover, the small-scale
features in Ky and A only contain their local information, and inter-
mediate structures, such as pore connectivity and tortuosity, may not be
fully reflected based on the local variabilities of Ky and A. Therefore,
with the selected coarse and fine scales, some characteristics belonging
to the intermediate scale can be missed. Thus, rather than saying the
usage of the MSFEM basis functions is to capture the small-scale soil
variabilities, it is more appropriate to claim the MsFEM basis functions
are for computing the effective soil hydraulic and thermal properties.

Choosing a different spatial grid may exert effects on the CHWT
simulation results. Therefore, in this example, we redo the simulation in
Example 2.3 using MSFEM with three grids, Casx25F4x4, C20x20F5x5,
Crox10F10x10, as well as using the standard FEM with grids Casx2s, C20x20
and Ciox10. To demonstrate the efficacy of the MSFEM scheme in
“upscaling” the small-scale features, simulation results from the MSFEM
scheme and the standard FEM scheme are compared. For reference, the
soil water content and temperature on the underlying grid, C190x100, are
simulated with the standard FEM scheme. The differences are expressed
in two ways: (a) the root mean squared error (RMSE) of simulation re-
sults is calculated with the nodal values on the coarse grid, and (b) the
RMSE of “sub-grid capturing (Efendiev and Hou, 2009)” is calculated on
the underlying fine grid, related to the reference soil water content and
temperature values solved on Cygpx100. Errors exist because we apply a
discretized scheme to approximate the continuous governing equations.
For the numerical scheme design, demarcating the error magnitudes,
and studying how the errors change with respect to time are the critical
issues. A desirable numerical scheme should have a relatively small
error and a relatively small error growth rate with respect to time.

The evolution of errors with respect to time is presented in Fig. 4.
Based on the MSFEM results, the simulation errors and the “sub-grid
capturing errors” for soil water content are of the order 103, and the
errors for soil temperature are of the order 10!, Considering the initial
water content (0.2cm? cm~%) and the initial temperature of (25 C), the
levels of relative errors of soil water content and soil temperature fall
into the range of 1073 —1072, which are similar to the literature results
(e.g., He and Ren, 2006).

For soil water content, the MSFEM scheme can increase the accuracy
by as much as 30% compared to the standard FEM scheme, and the
largest improvement of accuracy occurs on the Cygx19 coarse grid (see
Fig. 4a). That indicates the MSFEM basis functions can provide better

h
Step I (liquid water transfer) : cw(;—t =V e [K(h,T)Vh]

aT
Step II (heat transfer) : ¢)— = —V o [ — AVT + ¢;p,q:/(T — Tp) |

ot

ot ot

oh oT
C%E + CHTE =Vedw(h,T)Vh+d,(h,T)VT]
Step III (vapor transfer) : h ar
cro— + crr—=—= —V & [Lop,g, + ¢,p,q, (T — Ty) ]
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representations of the effective soil hydraulic and thermal properties
than the bilinear basis functions used in the standard FEM, when the
mesh size of the coarse grid is relatively big.

For soil temperature, the advantage of using the MSFEM scheme is
not profound. Two possible reasons are (a) the boundary conditions
enforce a strong trend of soil temperature distribution; (b) more
importantly, the magnitude of variations in A, with respect to soil water
content and temperature, is smaller than that for K (i.e., K is more
sensitive to the changes in soil water potential and temperature than A).
Therefore, both the MSFEM and the standard FEM simulated tempera-
ture stably approach the steady state values at the end of the simulation,
and the error values become constant with respect to time. However, we
can still observe some benefits of MSFEM at the early stage of the
simulation, where the errors in the MSFEM results decrease faster than
the errors produced by the standard FEM scheme (see Fig. 4b, d and the
small figure in Fig. 4d). Recall that in this study, the MsFEM basis
functions are pre-calculated, so there is only a limited (or negligible)
increase in the computing load to achieve the accuracy promotion via
the MSFEM scheme.

A.

3. Partially coupled heat and water transfer and the MSFEM
sequential solver

Implementation of MSFEM for CHWT simulations has been described
in Section 2. However, for numerical applications, the heat and water
transfer in soil is not always expressed as a fully coupled version, but
rather as a partially coupled version. For example, in Hydrus, the two
equations in Eq. (1) [or equivalently, in Eq. (2)] are solved one-by-one
within a given time step (Saito et al., 2006; Zheng et al., 2021). In
2DSOIL, Eq. (1) is decoupled into three steps, which are liquid water
transfer, heat transfer, and vapor flux (Wang et al., 2022a). Solving
water and heat transfer one-by-one in a discrete time step provides two
advantages: (a) to avoid solving high dimensional linear systems
generated from the numerical schemes; (b) to enable a design that as-
signs liquid water, heat, and vapor transfers into three separate modules,
which provides flexible programming architectures and adaptable con-
trols for relatively complex Soil-Vegetation-Atmosphere-Transfer
(SVAT) simulators (e.g., Timlin et al., 2019; Wang et al., 2020; Wang
et al., 2021b; Wang et al., 2021c; Wang et al., 2022a). In this section, a
partially coupled version of CHWT model used in 2DSOIL is considered
as an example, and the MsFEM scheme proposed in Section 2 is gener-
alized as a solver that can sequentially compute soil water content and
soil temperature.

3.1. The partially coupled version of heat and water transfer model

Let Eq. (2) be the starting point. The partially coupled version of soil
heat and water transfer in Wang et al. (2022a) is to rewrite Eq. (2) into
the equations of the following three separate steps.

(15a)
(15b)
(15¢)

(15d)
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In Eq. (15), cy(cm™!) represent the soil water capacity, and
cn(Jem™3 K1) is the soil volumetric heat capacity. For each discrete
time step, the three steps are processed one-by-one. When solving liquid
water transfer [Step I, Eq. (15a)], soil temperature is assumed to be
unchanged with respect to time. When soil temperature is computed
[Step 11, Eq. (15b)], soil water content is supposed to be steady, and the
liquid water flux g; can be determined from Eq. (15a). Finally, in Egs.
(15c, d), both soil water potential and temperature are updated again
based on the vapor flux, as well as the sensible and latent heat carried by
the vapor flux. The “thermally driven liquid water flow [Dy(h,T)]” is
omitted in Eq. (15), because (a) Dy(h,T) is not included in the initial
version of 2DSOIL (Timlin et al., 1996) and (b) the liquid water flow
under temperature gradient contributes < 5% of the total liquid water
flow (Prunty, 2009; Wang et al., 2022a), and it is often negligible in
CHWT problems as reported by Lu et al. (2020).

Solving Steps I-III in Eq. (15) one-by-one in each discrete time step
should provide results similar to the coupled version in Eq. (2).
Compared to the fully coupled version [Eq. (2)], the interaction between
water transfer and heat transfer is weakened in the partially coupled
version, and it is only explicitly shown in the vapor transfer step [Egs.
(15¢, d)]. However, interaction between water transfer and heat transfer
can be included recursively through multiple time steps. A compre-
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respectively. Therefore, for a given coarse element M (Fig. 1), Eq. (10)
can be converted as follows.

v.[ K Vo™ ‘]:0 _
i=1,2,3,4 16)

Ve {Av¢§M=‘>] -0

And the oscillatory boundary conditions for the MSFEM basis func-
tion along Edge I in coarse element M [see Fig. 1, lower diagram, and Eq.
(11)] can also be simplified as.

o) _

;Kmlad(/)h =0
x
a7)
EAE <TM»‘) -0
ox  Ox

Apparently, the connections between the two groups of basis func-
and 77
However, the correlation between 7™ and 7" always exists due to the
interactions between soil water potential and soil temperature. The
Petrov-Galerkin global formulation derived from Eq. (15) can be given
as follows.

tions 77" are neglected due to the elimination of Dy(h, T).

oh
Step I e // Dyde
M&C,,,XWI l 234
T Kh““’/ Vo Vo - / (g + ¢ )l Ve 70 (18a)
MECnxmi=1234 Q .
external water or vapor fluxesas boundary conditions
0T
Step IT : eyt // de
MEcmxml 1234
= — Z [AhM_,;/ V(/,(TM,i).Vy/dw} +// [C’plql(Tup _ To) } Vydw
MEChxmi=1234 Q o
_ / gyl —/ [uﬂl(h( up — To) [Lop,q, + c‘p,qt( w — To) ] }l//dl, Yy e 77, (18b)
—— o
external conductive heat fluxes asboundary conditions external sensible and latent heat fluxes as boundary conditions
Oy // 0Ty, // (M.i)
Con Nydw + oo @r ydow
M;m:xmz 1234{ ot or J) o
=— Z Z |:dmth,,'// V{/}LM'i),VI//dw + d,t,TM:,-/ V(/)(TM,i).Vy/da):| s Yy € «7/0’ (18¢)
MeCyxmi=1234 Q Q
Step III:
Ohy
S5 [l o e[ gyl
MeCyxmi=1,2,3,4
B // (Lopi@: + .o (T = T0) |- Vo Wpe 70 (18d)
Q

hensive comparison between the fully coupled version [Eq. (1)] and the
partially coupled version [Eq. (15)] of soil heat and water transfer is
shown in Wang et al. (2022a).

3.2. Establishment of a MSFEM sequential solver

For the partially coupled heat and water transfer, the MsFEM basis
functions for soil water potential and soil temperature can be computed
individually, following the leading differential terms in Egs. (15a, b),

10

In a given discretized time step, nodal values of soil water potential
and temperature on the coarse grid can be obtained by solving Eq. (18)
as the three proposed steps. The soil water potential and temperature
values on the fine grid can be reconstructed using Eq. (14).

3.3. Illustrative Example

Example 2.5. (Application of the MsFEM Sequential Solver).
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In this example, to demonstrate the MsFEM sequential solver pre-
sented in Section 3.2, we redo the simulation in Example 2.3 using three
methods: the MSFEM scheme with Cyox20Fsxs grid, the MsFEM
sequential solver with Cyox20Fs5x5 grid, and the standard FEM with
Co0x20 grid. Then, the solution error and the “sub-grid capturing error”
of the three methods are computed relative to the standard FEM solution
on the underlying grid Cioox100- The evolution of errors with respect to
time are presented in Fig. 5.

Due to the elimination of “thermally driven liquid water flow” and
the decreasing of soil water and temperature interaction, the errors
produced by MsFEM sequential solver slightly increase (about 5%)
compared to the MsFEM scheme. However, the MSFEM scheme and the
MsFEM sequential solver still outperform the standard FEM for both the
soil water content and temperature solved on the coarse grid and the
reconstructed values on the fine grid.

A.
4. Summary and future topics

The application of a multiscale finite element method (MsFEM) on
coupled heat and water transfer (CHWT) problems is investigated in this
study. Two groups of MSFEM basis functions are constructed to absorb
the local variabilities of soil hydraulic and thermal conductivity, and a
global formulation based on Petrov-Galerkin finite element method
(FEM) is adopted to implement the proposed MsFEM scheme. Because
partially coupled versions of heat and water transfer are used in existing
soil simulators, such as Hydrus (Saito et al., 2006; Zheng et al., 2021)
and 2DSOIL (Timlin et al., 1996; Wang et al., 2021c), the MsFEM scheme
proposed in this study is exploited as a sequential solver to handle such
variations. Since the MsFEM basis functions in this study can be deter-
mined in advance, using the MsFEM scheme does not essentially in-
crease the computing load, and the illustration examples indicate that
the MSFEM scheme can reduce the simulation errors by up-to 30%
compared to the standard FEM, especially for the soil water content.
Therefore, the MSFEM approach proposed in this study provides an
effective numerical method for CHWT simulations in soils.

Spatial heterogeneities are only assumed in soil hydraulic and ther-
mal conductivity in this study. Similar spatial variabilities may also
occur for vapor transfer coefficients, such as dp,, or dy,. Unfortunately,
related soil studies are relatively rare. However, if those studies exist,
the MSFEM scheme proposed in this study can be generalized by simply
revising the construction of the MsFEM basis functions [Eq. (10) or
(16)]. Furthermore, the MSFEM basis functions are pre-calculated in this
study and not changed during time evolution. Thus, research on the
adaptive updates of the basis functions can be a future development of
the MsSFEM scheme proposed in this study (e.g., Chung et al., 2015;
Chung et al., 2016), which can be fulfilled either with the conventional
partial differential equation solvers or with learning-based approaches.
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