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A B S T R A C T   

Large-scale modeling of coupled heat and water transfer (CHWT) is challenging due to the spatial variabilities of 
soil hydraulic and thermal properties. A multi-scale finite element method (MsFEM) has been designed for 
simulating liquid water fluxes in unsaturated soils. In this study, the MsFEM approach is expanded as a new 
scheme that can handle CHWT in soils. Two groups of MsFEM basis functions are constructed to incorporate the 
heterogeneities in soil hydraulic conductivity and thermal conductivity, and a Petrov-Galerkin formulation is 
adopted to implement the proposed MsFEM scheme. The MsFEM scheme is also exploited as a sequential solver 
when heat transfer and water transfer are expressed in a partially coupled formulation (Wang et al., 2022a). 
Numerical examples illustrate that, without essentially increasing the computing load, the MsFEM scheme can 
improve the accuracy by up-to 30% compared to the standard finite element method (FEM), especially for 
thermally driven water transfer. Some fine scale spatial variations in soil temperature can only be revealed with 
the MsFEM scheme. If the MsFEM sequential solver is applied, the coupled heat and water transfer model can be 
rewritten into a sequence of modules, where liquid water transfer, heat transfer and vapor transfer are solved 
step-by-step, but the thermally driven liquid water is omitted due to its relatively small value (Wang et al., 
2022a). With the MsFEM sequential solver, a flexible modeling architecture can be achieved at the cost of a 
relatively small increase of error (<5%). Therefore, the MsFEM scheme presented in this study is an effective 
numerical approach to simulating CHWT in heterogeneous soils.   

1. Introduction 

Simulation of soil heat and water dynamics is important in agricul
tural and environmental science, especially in arid and semiarid regions, 
where heat transfer and water transfer are coupled and water transfer 
occurs in both liquid and vapor phases (Scanlon and Milly, 1994; Zeng 
et al., 2011a,b). Besides the nonlinearity in the coupled heat and water 
transfer (CHWT) governing models, spatial heterogeneity in soil hy
draulic and thermal properties becomes another challenge to numerical 
simulations, especially when the study area is relatively large (Rienzner 
and Gandolfi, 2014; Shangguan et al., 2014) and when the soil is treated 
nonuniformly (e.g., local compaction or consolidation in Li et al., 2021; 

Wang et al., 2022b or uneven soil water content and solute distributions 
in Wang et al., 2017a; Wang et al., 2021a). When the finite element 
method (standard FEM, hereafter) is used, relatively fine spatial grids 
have to be adopted to elucidate the small-scale soil variabilities and to 
accurately predict the spatial distributions of soil water content and 
temperature. Refining the spatial grid will tremendously increase the 
computing load, execution time and the quantity of small-scale soil 
water and temperature data, which could be unnecessarily detailed for 
large-scale, regional soil management practices. However, using coarse 
grids may misrepresent soil heterogeneity and reduce the simulation 
accuracy, even for large-scale spatial domains. Therefore, a multiscale 
numerical method that can map small-scale soil properties onto coarse 
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grids and perform soil CHWT simulations on the coarse grids up to a 
required accuracy level is needed. 

The multiscale finite element method (MsFEM) is a “fine-to-coarse” 
numerical approach (Efendiev and Hou, 2009). MsFEM is based on the 
multiscale variational method, originally reported by Babuska and 
Osborn (1983), and then developed by Hou and Wu (1997) and Hou 
et al. (1999) for fluid mechanics in porous media. In fine grids, a series of 
localized, numerical MsFEM basis functions are chosen to incorporate 
the small-scale soil features. In coarse grids, the MsFEM basis functions, 
rather than polynomial basis functions in standard FEM, are used to 
establish a discretized numerical scheme, which is also referred to as the 
“global formulation”. By doing that, the small-scale soil heterogeneities 
in the fine grid are first absorbed by the MsFEM basis functions and then 
transferred to the global formulation in the coarse grid, which is to say 
“fine-to-coarse”. Basis functions and global formulations are two critical 
ingredients of MsFEM. From one aspect, MsFEM shares similarities with 
other multi-scale models with respect to those two ingredients, such as 
the upscaling-homogenization method, variational multiscale approach, 
heterogeneous multiscale method and multiscale enrichment method 
(Durlofsky, 1991; Li et al., 2016; Arbogast and Boyd, 2006; E et al., 
2005; Fish and Yuan, 2007). From another aspect, development and 
applications of MsFEM, especially for soil liquid water transfer, rely on 
modifications and improvements of the basis functions and the global 
formulations. 

From the perspective of MsFEM basis functions, the boundary values 
of each basis function relate to the accuracy of the global solution. He 
and Ren (2006) applied and tested the oscillatory boundary conditions 
and the oversampling techniques proposed by Hou and Wu (1997) to 
construct basis functions. Since soil hydraulic conductivity may involve 
both spatial and temporal variations due to changes in soil water con
tent, He and Ren (2009) adaptively updated the MsFEM basis functions 
during soil water transfer simulations. Moreover, Spiridonov et al. 
(2020) applied multiscale methods to construct 2D and 3D basis func
tions for unstructured fine grids to enable the FEM and discrete fracture 
approach in complex geometries. Additional endeavors to capture small- 
scale features include multiscale mapping and the limited use of global 
information (Efendiev et al. 2004; Aarnes et al., 2008). However, related 
techniques have not been applied in soil water transfer models yet. 

From the perspective of the global formulations, Galerkin and mul
tiscale finite volume methods have been reported in He and Ren (2005; 
2006). If global information is adopted, a mixed FEM is usually taken as 
the global formulation to ensure both local and global conservation of 
mass or energy. In order to implement MsFEM for nonlinear soil water 
transfer problems, some linearization should be incorporated to the 

global formulation, and a commonly used scheme is the relaxation 
presented by Slodicka (2002) and used in He and Ren (2006). Other 
types of multiscale methods exist. However, they may not belong to 
MsFEM in the narrow sense. For example, Chen and Ren (2008) pro
posed a finite difference heterogeneous multiscale method for soil water 
transfer modeling. Although the origin of such an algorithm is from the 
homogenization theory, it includes procedures that transfer small-scale 
properties from local representative volumes to the global formulations. 

MsFEM has been used for unsaturated soil water transfer. However, 

it has not been fully developed for CHWT problems, especially for the 
thermally driven water fluxes in relatively dry soils. Despite the two- 
phase water fluxes and the nonlinearity embedded in the governing 
models, one difficulty in applying MsFEM is that the hydraulic con
ductivity and the thermal conductivity may not share the same spatial 
variations (e.g., Li et al., 2019). Although MsFEM approaches in two- 
phase immiscible or miscible flows have been proposed for reservoir 
models (see Section 2.10 in Efendiev and Hou, 2009; Juanes and Patzek, 
2010), in those cases, the spatial heterogeneities can be simplified and 
represented by the flow in one phase using auxiliary parameters, such as 
“mobility”, “saturation” and “water/oil-cut”. However, for CHWT 
problems, two spatial variations in hydraulic and thermal conductivity 
cannot be simplified as they are in the reservoir models, and they must 
be handled separately. 

Thus, the objectives of this study are to develop a MsFEM scheme 
that can account for spatial variations of soil properties in both heat 
transfer and water transfer, apply the MsFEM scheme to CHWT simu
lations, and present illustrative numerical examples. 

2. A MsFEM scheme for coupled heat and water transfer model 

In Section 2.1, we review a CHWT model [i.e., the Philip and de Vries 
(1957) model] and include the spatial heterogeneities of soil hydraulic 
conductivity and soil thermal conductivity into a set of governing 
equations. The spatial variability of soil properties is usually expressed 
via a random field with a pre-specified marginal distribution and spatial 
correlation functions, which is introduced in Section 2.2. In Section 2.3, 
we establish a MsFEM scheme for the CHWT model. Illustrative exam
ples with result comparisons and error analyses among a range of grid 
sizes are provided in Section 2.4. Therefore, Sections 2.1 and 2.2 can be 
treated as the problem statement, and Sections 2.3 and 2.4 can be 
treated as the solution. 

2.1. Review of the coupled water and heat transfer model 

When soil is relatively dry, vapor transfer driven by temperature 
gradients, rather than liquid water or vapor fluxes under water potential 
gradients, becomes the dominant means for soil water flux, due to the 
relatively large temperature gradients and high air-filled porosity. When 
vapor transfer governs the soil water redistribution, it also contributes to 
sensible and latent heat fluxes. Hence, in such cases, the heat and water 
transfer in soil is fully coupled and can be expressed by the following 
Philip and de Vries (1957) model.   

In Eq. (1), cθθ(cm−1), cθT(K−1), cTθ
(
J cm−3 cm−1)

and cTT
(
J cm−3 K−1)

are capacity terms related to changes in soil water potential [h, cm, or 
changes in soil water content 

(
θ, cm3 cm−3)

equivalently], and soil 
temperature (T, K). ∇ indicates the differential operator in a spatial 
domain Ω. In Eq. (1a), dmv(h, T)

(
cm s−1)

and dtv(h, T)(cm2 s−1 K−1)

represent vapor diffusivities under the water potential gradient and 
temperature gradient, respectively. Hence, qv(cm s−1) is the net vapor 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Water equation : cθθ
∂h
∂t

+ cθT
∂T
∂t

= ∇⋅

⎡

⎢
⎣dmv(h, T)∇h + dtv(h, T)∇T

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
≡−qv(h,T)

+ k(h, T)∇h + dtl(h, T)∇T
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

≡−ql(h,T)

⎤

⎥
⎦ (1a)

Heat equation : cTθ
∂h
∂t

+ cTT
∂T
∂t

= −∇⋅

⎡

⎢
⎣ −λ∇T + clρlql(T − T0) + [L0ρlqv + cvρlqv(T − T0) ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
=qh(h,T)

⎤

⎥
⎦ (1b)
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flux. Similarly, k(h, T)
(
cm s−1)

is the (unsaturated) hydraulic conduc
tivity and dtl(h, T)

(
cm2 s−1 K−1)

is the coefficient for thermally driven 
liquid water diffusion. Hence, ql(h, T) represents the net liquid water 
flux. In Eq. (1b), λ

(
W cm−1 K−1)

is the soil thermal conductivity; 
L0(J g−1) is the heat of vaporization of water at a pre-specified reference 
temperature T0(K); cl ≈ 4.187J g−1 K−1 and cv ≈ 1.864

(
J g−1K−1)

are 
the specific heats of liquid water and vapor; ρl ≈ 1.0g cm−3 is density of 
liquid water. Thus, clρlql(T −T0) and L0ρlqv +cvρlqv(T −T0) represent the 
sensible heat fluxes carried by liquid water, and the latent and sensible 
heat fluxes carried by vapor, relative to the internal energy of liquid 
water at T0. Following that, qh(h, T) becomes the net soil heat flux. 

The Philip and de Vries (1957) model is widely used in CHWT sim
ulations, and multiple improvements and validations of such a model 
have been reported. For example, Nassar and Horton (1989, 1997) 
included the osmotic potential and provided a coupled heat, water, and 
solute transfer model in wettable soils. Heitman et al. (2007, 2008) used 
the Philip and de Vries (1957) model to investigate thermally driven soil 
water redistribution. Zeng et al. (2011b) included dry air flow and 
illustrated the impact of gas flow on heat and water exchanges between 
the atmosphere and shallow soil profiles. The derivations of the Philip 
and de Vries (1957) model can be found in Heitman et al. (2008) and 
Wang et al. (2017b), and detailed discussion on some soil hydraulic or 
thermal properties, e.g., λ and dtl, can be found in Lu et al. (2014), 
Groenevelt and Kay (1974), Milly (1982) and Wang et al. (2022a). Two 

constitutive relations are implicitly assumed in Eq. (1). One is the soil 
water characteristic curve, representing the relationship between h and 
θ, and the other one represents how k(h, T) varies with respect to h and 
T, with the given saturated hydraulic conductivity ksat

(
cm s−1)

. 
In this study, spatial heterogeneities are assumed for both ksat and λ. 

From the experimental perspective, such spatial heterogeneities can be 
obtained by geospatial investigations. For numerical modeling, 2D 
random fields with pre-specified marginal distributions and spatial co
variances are used to represent the spatial variabilities (Simunek et al., 
1992). Hereafter, we use upper-case letters to represent coefficients with 
spatial randomness, and lower-case letters to represent deterministic 
coefficients. Therefore, replacing k(h,T), ksat , dtl(h, T) [dtl(h, T) is related 
to k(h, T), see the appendix in Wang et al. (2022a)] and λ in Eq. (1) by 
K(h,T), Ksat, Dtl(h, T) and Λ gives the following governing equations. 

2.2. Formulations of the spatial variability of Ksat and Λ 

For Ksat and Λ, suppose that the random portions and the deter
ministic portions can be separated, i.e., 

Ksat( x→) = CKsat ( x→)ksat, Λ( x→) = CΛ( x→)λ (3)  

where x→ ∈ Ω indicates the spatial position in a given soil sample. Then, 
constructing 2D random fields of Ksat and Λ can be reduced to creating 
the two random fields for the coefficients, C**( x→) s on Ω, where ** =

Ksat , Λ. 
If C**( x→) ∼ N(μ** = 0, σ2

**), with a pre-defined spatial covariance, 
the Karhunen-Loeve (KL) expansion can be employed. The intuition of 
the KL expansion is to separate the randomness and the spatial locations. 
Suppose C**( x→) are wide-sense stationary, such that the spatial 
covariance can be expressed with a kernel that only takes the distance 
between two positions x1

̅→
, x2
̅→

∈ Ω [i.e., dist( x1
̅→

, x2
̅→

)] and a correla
tion length (η, cm) as inputs, 

E[C**(x1
→)C**(x2

→) ] = σ2
**exp

(

−
dist(x1

→, x2
→)

η**

)

, where** = Ksat, Λ (4) 

Then, C**( x→) can be expanded by a group of (uncorrelated) random 
variables {ξn}n∈N and a group of spatial deterministic functions fn( x→), 

C**( x→) =
∑

n∈N

̅̅̅̅̅̅
ϖn

√
ξnfn( x→), where ** = Ksat, Λ (5) 

{ϖn, fn( x→) }n∈N 
are the eigenvalues and the (orthonormal) eigen

functions of the covariance kernel in Eq. (4). {ϖn, fn( x→) }n∈N 
can be 

determined via a characteristic equation shown in Eq. (6), which is also 
known as the homogeneous Fredholm integral equation of the second 
kind.  

where δij is the Kronecker symbol. Solving Eq. (6) is the critical step in 
implementing the KL expansion, and we provide two illustrative 
examples. 

Example 2.1. (Manhattan distance). 

Let Ω = [0, L] × [0, L], x1
̅→

= (x1, y1), x2
̅→

= (x2, y2) ∈ Ω, and define 

the Manhattan distance as dist( x1
̅→

, x2
̅→

)=

def

|x1 −x2| + |y1 −y2|. The 
covariance kernel becomes σ2exp[ −(|x1 − x2| + |y1 − y2| )/η ], and the 
eigenvalues and eigenfunctions can be solved analytically. 

Starting with exp( −|x1 − x2|/η ), assume f(x) = ηwcoswx + sinwx, 

and we can obtain 
∫ L

0 exp
(

−
|x1−x2 |

η

)
f(x1)dx1 =

2ηf(x2)

1+η2w2 +

η
1+η2w2 exp

(
−L−x2

η
)[(

η2w2 − 1
)
sinwL −2ηwcoswL

]
. Compared this inte

gral with the characteristic equation in Eq. (6), the eigenvalues and 

eigenfunctions of exp( −|x1 − x2|/η ), i.e., 
{

ϖ̃n, ̃fn(x)
}

n∈N
, can be 

observed as, 

⎧
⎪⎪⎨

⎪⎪⎩

Water equation : cθθ
∂h
∂t

+ cθT
∂T
∂t

= ∇⋅[(K(h, T) + dmv(h, T) )∇h + (dtv(h, T) + Dtl(h, T) )∇T ] (2a)

Heat equation : cTθ
∂h
∂t

+ cTT
∂T
∂t

= −∇⋅[ − Λ∇T + clρlql(T − T0) + [L0ρlqv + cvρlqv(T − T0) ] ] (2b)

{ϖn, fn( x→) }n∈ℕ :

∫

Ω
σ2

**exp
(

−
dist(x1

→, x2
→)

η**

)

fn(x1
→)dx1

→ = ϖnfn(x2
→)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
characteristic equation

and
∫

Ω
fi( x→)fj( x→)d x→ = δij

{ξn}n∈ℕ : ξn ∼ N
(
μ = 0, σ2 = 1

)
and E[ξmξn] = 0, ∀m ∕= n

(6)   
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ϖ̃n =
2η

1 + η2w2
n
, f̃n(x) =

1
An

[ηwncoswnx + sinwnx]

where {wn}n∈N satisfies 
(
η2w2 −1

)
sinwL −2ηwcoswL = 0, and An =

[ ∫ L
0 [ ηwncoswnx + sinwnx]

2dx
]1/2

=
[(

η2w2
n + 1

)
L/2 + η

]1/2 are the 

normalizers for ̃fn(x). 
Following the result above, for σ2exp( −dist( x1

̅→
, x2
̅→

)/η ) =

σ2exp[ −(|x1 − x2| + |y1 − y2| )/η ], 
∫∫

Ω=[0,L]2
σ2exp

(

−
dist(x1

→, x2
→)

η

)
̃fm(x1) ̃fl(y1)dx1dy1

= σ2
∫ L

0
exp

(

−
|x1 − x2|

η

)
̃fm(x1)dx1

∫ L

0
exp

(

−
|y1 − y2|

η

)
̃fl(y1)dy1

= σ2ϖ̃m
̃fm(x2) × ϖ̃l

̃fl(y2) = ϖ̃mϖ̃l⏟̅̅ ⏞⏞̅̅ ⏟
σ2

ϖn

× ̃fm(x2) ̃fl(y2)
⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

fn( x→)

Thus, the eigenvalues and eigenfunctions of exp( −dist( x1
̅→

, x2
̅→

)/η ), 

i.e., {ϖn, fn( x→) }n∈N
, becomes 

{
ϖ̃mϖ̃lσ2, ̃fm(x)f̃l(y)

}

m,l∈N
, where 

{
ϖ̃m,

̃fm(x)
}

m∈N 
and 

{
ϖ̃l, f̃l(y)

}

l∈N 
are the eigenvalues and eigenfunctions of 

exp( −|x1 − x2|/η ) and exp( −|y1 − y2|/η ), respectively. 
△. 

Example 2.2. (Euclidean distance). 

Let Ω = [0, L] × [0, L], x1
̅→

= (x1, y1), x2
̅→

= (x2, y2) ∈ Ω, and define 

the Euclidean distance as dist( x1
̅→

, x2
̅→

)=

def

‖ x1
̅→

− x2
̅→

‖ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)
2

+ (y1 − y2)
2

√

. The covariance kernel becomes 

σ2exp( − ‖ x1
̅→

− x2
̅→

‖/η). Compared to the Manhattan distance, the 
Euclidean distance is more natural in physical applications. However, 
analytically solving the eigenvalues and eigenfunctions can be chal
lenging. Hence, a semi-analytic method via 2D Fourier expansion was 
proposed in Li et al. (2006). Suppose the 2D Fourier expansion of the 
eigen function can be expressed as. 

fn( x→)=

def ∑N

i=0
ciφi(x, y)

For simplicity, we use ci and φi(x, y) to represent the Fourier co
efficients and the 2D trigonometric bases, where φi(x, y) ∕= 0 are 
orthonormal with respect to i. 

The characteristic equation implies. 
∫∫

Ω
σ2exp

(

−
‖x1

→ − x2
→‖

η

)
∑N

i=0
ciφi(x1, y1)dx1dy1 = ϖn

∑N

j=0
cjφj(x2, y2)

Multiply both side by φk(x2, y2), k = 1, 2, ⋯, N and integrate over Ω, 

∑N

i=0
ci

[

σ2
∫∫

Ω
φk(x2, y2)

∫∫

Ω
exp

(

−
x1
→ − x2

→

η

)

φi(x1, y1)dx1dy1dx2dy2

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
=Φk,i

= ϖnck 

Therefore, the characteristic equation can be reformulated into a 
linear system, Φc̃ = ϖc̃, where Φ =

[
Φk,i

]
∈ RN×N and ̃c = [ck] ∈ RN, and 

determining the eigenvalues and eigenfunctions can be transformed to 
computing the eigenvalues and eigenvectors of matrix Φ. 

△. 
In soil physics studies, Ksat and Λ, hence C**( x→) s, are usually 

assumed to follow lognormal distributions. Therefore, the KL expansion 
should be modified as an iterative method (Phoon et al. 2002; Dai et al., 
2019), such that the marginal distribution at each spatial position fol
lows the desired lognormal distributions. The intuition of the iterative 
method is to use distribution transformations to approach the marginal 
distribution (i.e., the lognormal distribution in this study), and use Latin 

hypercube sampling (or similar methods) to un-correlate the random 
seeds {ξn}n∈N in the KL expansion [see Eq. (5)]. The iterative method can 
be summarized as follows.  

(a) Assume C**( x→) ∼ Lognormal(μ** = 1, σ2
**). Define a “shifted 

lognormal distribution” as D**( x→) = C**( x→) −1, such that the 
expectation and variance of D**( x→) are 0 and σ2

**. Generate M 
realizations of random numbers, i.e., {ξn(m) }n∈N,m=1,2,⋯,M, as the 
initial samples based on the distribution of D**( x→).  

(b) Compute the random fields Dp
**( x→, m) with Eq. (7), where p 

represents the number of iterations. 

Dp
**( x→, m) =

∑

n∈N

̅̅̅̅̅̅
ϖn

√
ξn(m)fn( x→), where** = Ksat, Λ, m = 1, 2, ⋯, M (7)    

(c) For a specific position x→#
∈ Ω, assume the empirical cumulative 

distribution functions of the marginal distribution of Dp
**( x→#

, m)

and the shifted log-normal distribution are F#

Dp
** 

and FLogN , 

respectively. The random vector 
{
Dp

**( x→#
, m)

}

m=1,2,⋯,M can be 

Fig. 1. An example spatial discretization used to develop the MsFEM scheme. 
In the upper figure, the black lines demarcate a 4 × 4 coarse grid, where each 
black box presents a coarse element. A coarse element is further divided into a 
4 × 4 fine grid. Hereafter, we use Cm×mFn×n to define the MsFEM spatial grid, 
and m = n = 4 in the upper figure. In the lower figure, we emphasize one coarse 
element x→1 x→2 x→3 x→4, where φ(M,i)

h or T, i = 1, 2, 3, 4 are MsFEM basis functions for 
soil water potential (h) or soil temperature (T) at the four coarse nodes, and the 
four edges (Edges I, II, III, and IV), which will be used to embed boundary 
conditions for φ(M,i)

h or T, are labeled in a counterclockwise direction. 
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transformed from its empirical distribution to the shifted log- 
normal marginal distribution using Eq. (8). 

D̃p
**( x→#

, m) = F−1
LogN

[
F#

Dp
**

[
Dp

**( x→#
, m)

] ]
, where ** = Ks, Λ; m

= 1, 2, ⋯, M; x→#
∈ Ω

(8)  

Then, ξn(m) can be updated using Eq. (9), where EM indicates 
the expectation is taken with respect to the number of realizations 
(M). 

ξn(m)←
1
̅̅̅̅̅̅ϖn

√

∫

Ω

[
D̃p

**( x→, m) − EM

[
D̃p

**( x→, m)
] ]

fn( x→)d x→, where m

= 1, 2, ⋯, M
(9)  

Without loss of generality, {ξn(m) }n∈N,m=1,2,⋯,M has zero mean 
and unit variance. Otherwise, {ξn(m) }n∈N,m=1,2,⋯,M can be simply 
standardized with respect to m. Possible correlations of 
{ξn(m) }n∈N,m=1,2,⋯,M with respect to n can be reduced following 
the method similar to Latin hypercube sampling, proposed in 
Phoon et al. (2005), where the correlations are measured with 
Pearson product-moment rather than Spearman rank method.  

(d) Redo the computation of Eq. (7) using the updated 
{ξn(m) }n∈N,m=1,2,⋯,M, and repeat Eqs. (7)-(9) for p iterations, until 
the marginal distribution of Dp

**( x→, m) at ∀ x→ ∈ Ω approximates 
the target, shifted log-normal distribution. Then, C**( x→) =

Dp
**( x→, m) +1 is the desired random field. Although Phoon et al. 

(2005) strove to suppress the undesired heavy tails in the simu
lated marginal distributions, in practice, they may not be totally 
removed and need to be truncated at the end of the construction. 

2.3. Construction of the MsFEM scheme 

Recall the two ingredients of MsFEM are the basis functions and the 
global formulations. The basis functions are determined in a fine grid to 
capture the small-scale soil properties, while the global formulations are 
established in a coarse grid to solve the governing equations [Eq. (2)]. 
To clarify this exposition, we first present a discretization of the spatial 
domain that includes a coarse grid and a fine grid. In Fig. 1, the spatial 
domain is first discretized into a 4 × 4 coarse grid (C4×4) and each coarse 
element is further discretized into a 4 × 4 fine grid (F4×4). Hereafter, we 
use the format “Cm×mFn×n” to describe the MsFEM grids. In the MsFEM 
grids, 

(
hM,i, TM,i

)
is used to denote the nodal values of the soil water 

potential and soil temperature for a coarse element M ∈ Cm×m and coarse 

node i, i = 1, 2, 3, 4, see the lower diagram in Fig. 1. 
(

h̃, T̃
)

is used to 

represent the nodal soil water potential and soil temperature in the fine 
grid. For standard FEM, only one scale is considered, and the grid can be 
presented as “Cm×m”. In this study, when a grid is expressed in the format 
“Cm×mFn×n”, MsFEM will be used as the numerical solver; when a grid is 
expressed in the format “Cm×m”, the associated numerical method will be 
the standard FEM. 

For a given coarse element M (Fig. 1), the basis functions, namely 
φ(M,i), i = 1,2,3,4, can be solved based on the fine grid within the given 
coarse element. In standard FEM, bilinear functions are usually adopted 
as the basis functions, and we include them into a functional space 

V 0 =
{

φ(M,i)
0

}

M∈Cm×m ,i=1,2,3,4
. In order to represent the spatial variabil

ities of Ksat and Λ, two groups of MsFEM basis functions must be ob
tained by solving the following homogeneous equations. 

⎧
⎪⎨

⎪⎩

∇ •
[
Ksat∇φ(M,i)

h

]
+ ζ∇ •

[
Dtl,sat∇φ(M,i)

T

]
= 0(10a)

∇ •
[
Λ∇φ(M,i)

T

]
= 0(10b)

φ(M,i)
h represents the MsFEM basis functions for soil water potential 

and φ(M,i)
T represents the MsFEM basis functions for soil temperature, 

which satisfy φ(M,i)
h

(

x→j

)

= φ(M,i)
T

(

x→j

)

= δij, i, j = 1, 2, 3, 4 (see Fig. 1, 

lower diagram). Dtl,sat is the saturated value of Dtl(h, T) with the initial 
soil temperature. Equation (10a) indicates that φ(M,i)

h and φ(M,i)
T are 

correlated, and the effects of spatial variations in Ksat and Λ on the 
CHWT model are not independent. We denote two functional spaces for 

the MsFEM basis functions as V h
=

{
φ(M,i)

h

}

M∈Cm×m ,i=1,2,3,4 
and V T

=

{
φ(M,i)

T

}

M∈Cm×m ,i=1,2,3,4
. ζ ≈ 0.01 is an empirical scaling factor. From a 

mathematical perspective, ζ is used to ensure that φ(M,i)
h ≥ 0 and 

φ(M,i)
T ≥ 0. From a physical perspective, ζ exists because (a) the soil water 

potential has a scale of 103 − 104cm and changes nonlinearly with 
respect to soil water content, while the soil temperature has a scale of 
101◦C; (b) based on measurements, the liquid water flow under tem
perature gradient is typically < 5% of the liquid water flow under water 
potential gradient (Prunty, 2009). 

The values of the MsFEM basis functions along the boundaries of the 
coarse element M, namely Edges I, II, III, and IV, can reflect the goodness 
of the basis functions in representing the small-scale soil properties, and 
significantly affect the accuracy of the global MsFEM scheme. Failing to 
correctly define the boundary conditions may cause interactions be
tween the soil heterogeneities and the coarse grid size, and lead to errors 
known as “scale resonance” (Hou and Wu, 1997). Applying the oscilla
tory boundary conditions, i.e., a 1D form of Eq. (10) along the four 
edges, or an oversampling technique can ameliorate the behaviors of the 
MsFEM basis functions, and He and Ren (2006) showed that both 
methods produce similar improvements in soil water transfer modeling. 
In this study, we focus on the oscillatory boundary conditions because 
they can be easily expressed with analytical solutions and lead to a 

Table 1 
Soil Physical Properties for Examples 2.3 and 2.4.  

Ida (fine-silty, mixed, superactive, calcareous, mesic Typic Udorthents) 

Soil Textural Properties  
Sand 

(
fsand, g g−1)

0.022 
Silt 

(
fsilt , g g−1)

0.729 

Clay 
(

fclay, g g−1
)

0.249 

Organic matter 
(
g g−1)

0.044 
Specific surface area 

(
Sa, cm2 cm−3)

† 2.44 × 106 

Bulk density 
(
ρb, g cm−3)

1.20 

Hydraulic Properties  
Saturated water content 

(
θsat, cm3 cm−3)

0.547 

Saturated hydraulic conductivity at 
T0

(
ksat, cm s−1)

3.80 × 10−5 

Water characteristic function h = −13.0 × (θ/θs)
−6.53 

Hydraulic conductivity 
(
k, cm s−1)

k = [μ(T0)/μ(T) ] × (θ/θs)
16.06ksat‡

Thermal Properties  
Thermal conductivity 

(
λ,

W cm−1 K−1)

(Lu et al., 2014) 

λ = 0.01
(
λdry + exp(β − θ−α)

)

λdry = −0.56θs + 0.51

α = 0.67fclay + 0.24

β = 1.97fsand + 1.87ρb − 1.36fsandρb − 0.95 

† The specific surface area is defined for a unit soil volume, i.e., 1 cm3. 
‡ μ(T) represents the dynamic viscosity of water, as a function of soil tempera
ture.  

C. Luo et al.                                                                                                                                                                                                                                      



Journal of Hydrology 612 (2022) 128028

6

conforming FEM scheme in the global formulation. 
For instance, along Edge I in coarse element M, where x→ = (x, 0),

x ∈ [0, L], the boundary values of φ(M,1)

h ( x→) and φ(M,1)

T ( x→) satisfy a 1D 
elliptic equation system degraded from Eq. (10), i.e., 
⎧
⎪⎪⎨

⎪⎪⎩

∂
∂x

Ksat
∂
∂x

φ(M,1)

h + ζ
∂
∂x

Dtl,sat
∂
∂x

φ(M,1)

T = 0

∂
∂x

Λ
∂
∂x

φ(M,1)

T = 0
(11) 

At the two ending points of Edge I, x→1 = (0, 0) and x→2 = (0, L) (see 
Fig. 1, lower diagram), φ(M,1)

h ( x→1) = φ(M,1)

T ( x→1) = 1 and φ(M,1)

h ( x→2) =

φ(M,1)

T ( x→2) = 0. Then, the solution to Eq. (11) can be calculated 
analytically.   

After solving φ(M,1)

h ( x→) and φ(M,1)

T ( x→) along Edge I, the values of 

φ(M,2)

h ( x→) and φ(M,2)

T ( x→) along Edge I can be obtained via φ(M,2)

h ( x→) =

1 −φ(M,1)

h ( x→) and φ(M,2)

T ( x→) = 1 −φ(M,1)

T ( x→), respectively. In addition, 

φ(M,3)

h ( x→) = φ(M,3)

T ( x→) = φ(M,4)

h ( x→) = φ(M,4)

T ( x→) = 0 along Edge I, similar 
to the requirements in standard FEM. 

The procedures can be repeated for Edges II, III, and IV. In practice, 
since h and T (hence Ksat, Dtl,sat and Λ) are discretized in the spatial 
domain Ω, the boundary values of the basis function can also be solved 
numerically. Based on the choice of the boundary conditions, it is easy to 
show that 

∑
i=1,2,3,4φ(M,i)

h ( x→) ≡
∑

i=1,2,3,4φ(M,i)
T ( x→) ≡ 1, ∀ x→ in the coarse 

element (M). 
The target of the global formulation is to transform the governing 

equations [Eq. (2)] into a discretized scheme and solve the nodal soil 
water potential and temperature (hm, Tm) [or equivalently, soil water 
content and temperature (θm, Tm)] on the coarse grid Cm×m (see Fig. 1, 
upper diagram), where the small-scale variabilities of soil properties are 
accounted for by the MsFEM basis functions. Since we have two groups 
of MsFEM basis functions V h and V T, Petrov-Galerkin FEM can be used 
as the global formulation (Hou et al., 2004; Reddy, 2006). Let 
∑

M∈Cm×m

[∑
i=1,2,3,4hM,iφ

(M,i)
h

]
and 

∑
M∈Cm×m

[∑
i=1,2,3,4TM,iφ

(M,i)
T

]
be the 

MsFEM trial solutions for the soil water potential and the soil temper
ature, where hM,i and TM,i are the nodal values. The global formulation 
derived from Eq. (2) are shown as follows.   

On the right-hand side of Eq. (13b), T is replaced by the temperature 
from the upwind direction, i.e., Tup, for the advective heat fluxes. The 
time domain differentiation can be discretized using an explicit or an 
implicit Euler scheme. Because the MsFEM basis functions φ(M,i)

h and 

φ(M,i)
T can be pre-determined for each coarse element using Eqs. (10)- 

(12), all of the integrals shown in Eq. (13) can be pre-calculated. 
Therefore, compared to the standard FEM, the MsFEM scheme pro
posed in this study does not requires additional computing loads, except 
for the time spent in initializing the MsFEM basis functions at the 
beginning of the simulation. 

After obtaining the solutions on the coarse grid, the MsFEM basis 
functions can be used to reconstruct the fine grid soil water potential and 
temperature, where the x→ can take the positions of fine grid nodes. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

m∈cm×m

∑

i=1,2,3,4

[

cθθ
∂hM,i

∂t

∫∫

Ω
φ(M,i)

h ψdω + cθθ
∂TM,i

∂t

∫∫

Ω
φ(M,i)

T ψdω
]

= −
∑

m∈cm×m

∑

i=1,2,3,4

[

(K + dmv)hM,i

∫∫

Ω
∇φ(M,i)

h ⋅∇ψdω + (dtv + Dtl)TM,i

∫∫

Ω
∇φ(M,i)

T ⋅∇ψdω
]

−

∫

∂Ω

(
qExt

k + qExt
k

)
ψdl

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
external water or vapor fluxes as boundary conditions

∀ψ ∈ v0 (13a)

∑

m∈cm×m

∑

i=1,2,3,4

[

cTθ
∂hM,i

∂t

∫∫

Ω
φ(m,i)

h ψdω + cTT
∂TM,i

∂t

∫∫

Ω
φ(M,i)

T ψdω
]

= −
∑

m∈cm×m

∑

i=1,2,3,4

[

ΛhM,i

∫∫

Ω
∇φ(M,i)

T ⋅∇ψdω
]

+

∫∫

Ω

[
clplql

(
Tup − T0

)
+

[
L0plqv + cvplqv

(
Tup − T0

)]]
⋅∇ψdω

−

∫

∂Ω
qExt

h ψdl
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

external conductive heat fluxes as boundary conditions

−

∫

∂Ω

[
clplql

(
Tup − T0

)
+

[
L0plqv + cvplqv

(
Tup − T0

)]]
ψdl

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
exernal sensible and latent heat fluxes as boundary conditions

∀ψ ∈ v0 (13b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(M,1)

h (x, 0) = 1 +
ζ

∫ L

0

1
Λ

ds

∫ x

0

Dtl(h, T)

K(h, T)Λ
ds −

⎡

⎢
⎢
⎢
⎣

1
∫ L

0

1
K(h, T)

ds
+

ζ
∫ L

0

1
K(h, T)

ds
∫ L

0

1
Λ

ds

∫ L

0

Dtl(h, T)

K(h, T)Λ
ds

⎤

⎥
⎥
⎥
⎦

∫ x

0

1
K(h, T)

ds

φ(M,1)

T (x, 0) = 1 −
1

∫ L

0

1
Λ

ds

∫ x

0

1
Λ

ds

(12)   
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h̃ =
∑

M∈Cm×m

[
∑

i=1,2,3,4
hM,iφ(M,i)

h ( x→)

]

, T̃ =
∑

M∈Cm×m

[
∑

i=1,2,3,4
TM,iφ(M,i)

T ( x→)

]

(14) 

However, the motivation of the MsFEM scheme is to use basis 
functions to absorb the small-scale soil variabilities, such that soil water 
potential and temperature can be solved for large-scale applications 
without resolving small-scale features. Hence, reconstruction of the fine 
grid values is not the priority of the MsFEM scheme in this study. 

2.4. Illustrative Example 

In this section, we provide examples to demonstrate the efficacy of 
the model presented in Sections 2.1 to 2.3. Applications of MsFEM on 
soil liquid water transfer have been reported in multiple studies [e.g., He 
and Ren (2005; 2006)]. Therefore, in the following examples, we focus 
on applications of the MsFEM scheme on CHWT problems, emphasizing 
on the thermally driven water flux. 

Example 2.3. (Soil water redistribution under temperature 
gradients). 

Consider a Ω = [0, 100 cm] × [0, 100 cm] horizontally placed soil 
sample, and the soil physical properties are listed in Table 1. The 2D 
random fields that simulate the spatial variabilities of Ksat and Λ are 
lognormally distributed, and a covariance kernel based on the Man
hattan distance (see Example 2.1) is used with the random variables ξ ∼

Lognormal(μ = 1, σ2 = 104) and η = 5 cm. The lognormal distribution is 
truncated below the 0.01 fractile and above the 0.99 fractile to prevent 
extreme values in the random fields (i.e., the tail distributions). Fig. 2 
presents the two 2D random fields used in this example, namely CKsat and 
CΛ. The 2D random fields are positive and relatively uniform, with only 
a few spikes reaching values near 100. 

The soil sample has an initial water content of 0.2 cm3 cm−3 and an 
initial temperature of 25◦ C. The boundary of the soil sample is assumed 
to be impermeable for liquid water and vapor transfer, and two steady 
boundary temperatures, 20◦ C and 30◦ C, are imposed on the two oppo
site edges of the soil sample. The MsFEM grid used for this simulation is 
C20×20F5×5, and a 10-day simulation of soil water and temperature 
redistribution is performed. 

The soil water content and temperature on both coarse and fine grids 
at the 10th day in the simulation are presented in Fig. 3. The soil water 
content near the low temperature edge (y = 0cm) reaches the highest 

Fig. 3. The simulation results of soil water content 
and temperature using the MsFEM scheme and the 
C20×20F5×5 grid. The soil water content and temper
ature on the coarse grid are shown in (a) and (b); 
while the reconstructed soil water content and tem
perature on the fine grid are shown in (c) and (d). For 
presentation, the coordinate systems in (a, c) and the 
coordinate systems in (b, d) are not placed in the same 
direction. To emphasize the details in the soil tem
perature variations, contour plots are provided in (b, 
d).   

Fig. 2. The two 2D random fields CKsat and CΛ in Example 2.3.  

C. Luo et al.                                                                                                                                                                                                                                      



Journal of Hydrology 612 (2022) 128028

8

value; while near the high temperature edge (y = 100cm), the soil water 
content is relatively low. That is because water near the high tempera
ture edge tends to vaporize, transfer under the temperature gradient, 
and condense near the low temperature edge, which is known as 
“thermally driven soil water flux”. However, due to the heterogeneities 
in soil hydraulic conductivity, local fluctuations occur in the soil water 
content distribution. For Fig. 3a and c, the reconstructed soil water 

content in the fine grid is smoother than the soil water content distri
bution in the coarse grid. Some local maxima values in Fig. 3c are pre
sented as “spikes” with relatively narrow spatial expansions. That is 
reasonable since the local maxima in Ksat and Λ are also “spikes” shown 
in Fig. 2. For Fig. 3b and d, the soil temperature distribution in the 
coarse grid changes almost linearly from the high temperature edge to 
the low temperature edge, and some small variations, presented by the 

Fig. 4. The evolution of RMSE with respect to time, 
including (a) the solution error in soil water content, 
(b) the solution error in soil temperature, (c) the “sub- 
grid capturing error” in soil water content, and (d) the 
“sub-grid capturing error” in soil temperature. The 
MsFEM results are presented by solid lines with grids 
C25×25F4×4, C20×20F5×5 and C10×10F10×10. The stan
dard FEM results are plotted by dashed lines with 
grids C25×25, C20×20 and C10×10. A small figure in (d) 
presents that for soil temperature, although the ad
vantages of the MsFEM scheme in reducing the errors 
are limited, the “sub-grid capturing error” decreases 
faster compared to the standard FEM at the early 
stage of the simulation.   

Fig. 5. The evolution of RMSE with respect to time for the three methods: the MsFEM scheme with C20×20F5×5 grid, the MsFEM sequential solver (Seq) with 
C20×20F5×5 grid, and the standard FEM with C20×20 grid, including (a) the solution error in soil water content, (b) the solution error in soil temperature, (c) the “sub- 
grid capturing error” in soil water content, and (d) the “sub-grid capturing error” in soil temperature. 
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contours, can only be observed when the fine grid temperature solution 
is reconstructed in Fig. 3d. 

△. 

Example 2.4. (Scale selection and error analyses). 

For a given soil sample, if self-similarity is assumed or soil properties 
are represented with fractal methods (e.g., Shen et al., 2019; Jin et al., 
2017), the characteristic scales of soil hydraulic conductivity and ther
mal conductivity may disappear. Therefore, in soil modeling, the choice 
of the coarse grid and the fine grid can be arbitrary, and may even 
depend on the scales where measurements are performed rather than the 
characteristic scales of the soil properties. Moreover, the small-scale 
features in Ksat and Λ only contain their local information, and inter
mediate structures, such as pore connectivity and tortuosity, may not be 
fully reflected based on the local variabilities of Ksat and Λ. Therefore, 
with the selected coarse and fine scales, some characteristics belonging 
to the intermediate scale can be missed. Thus, rather than saying the 
usage of the MsFEM basis functions is to capture the small-scale soil 
variabilities, it is more appropriate to claim the MsFEM basis functions 
are for computing the effective soil hydraulic and thermal properties. 

Choosing a different spatial grid may exert effects on the CHWT 
simulation results. Therefore, in this example, we redo the simulation in 
Example 2.3 using MsFEM with three grids, C25×25F4×4, C20×20F5×5, 
C10×10F10×10, as well as using the standard FEM with grids C25×25, C20×20 
and C10×10. To demonstrate the efficacy of the MsFEM scheme in 
“upscaling” the small-scale features, simulation results from the MsFEM 
scheme and the standard FEM scheme are compared. For reference, the 
soil water content and temperature on the underlying grid, C100×100, are 
simulated with the standard FEM scheme. The differences are expressed 
in two ways: (a) the root mean squared error (RMSE) of simulation re
sults is calculated with the nodal values on the coarse grid, and (b) the 
RMSE of “sub-grid capturing (Efendiev and Hou, 2009)” is calculated on 
the underlying fine grid, related to the reference soil water content and 
temperature values solved on C100×100. Errors exist because we apply a 
discretized scheme to approximate the continuous governing equations. 
For the numerical scheme design, demarcating the error magnitudes, 
and studying how the errors change with respect to time are the critical 
issues. A desirable numerical scheme should have a relatively small 
error and a relatively small error growth rate with respect to time. 

The evolution of errors with respect to time is presented in Fig. 4. 
Based on the MsFEM results, the simulation errors and the “sub-grid 
capturing errors” for soil water content are of the order 10−3, and the 
errors for soil temperature are of the order 10−1. Considering the initial 
water content 

(
0.2 cm3 cm−3)

and the initial temperature of (25◦ C), the 
levels of relative errors of soil water content and soil temperature fall 
into the range of 10−3 −10−2, which are similar to the literature results 
(e.g., He and Ren, 2006). 

For soil water content, the MsFEM scheme can increase the accuracy 
by as much as 30% compared to the standard FEM scheme, and the 
largest improvement of accuracy occurs on the C10×10 coarse grid (see 
Fig. 4a). That indicates the MsFEM basis functions can provide better 

representations of the effective soil hydraulic and thermal properties 
than the bilinear basis functions used in the standard FEM, when the 
mesh size of the coarse grid is relatively big. 

For soil temperature, the advantage of using the MsFEM scheme is 
not profound. Two possible reasons are (a) the boundary conditions 
enforce a strong trend of soil temperature distribution; (b) more 
importantly, the magnitude of variations in Λ, with respect to soil water 
content and temperature, is smaller than that for K (i.e., K is more 
sensitive to the changes in soil water potential and temperature than Λ). 
Therefore, both the MsFEM and the standard FEM simulated tempera
ture stably approach the steady state values at the end of the simulation, 
and the error values become constant with respect to time. However, we 
can still observe some benefits of MsFEM at the early stage of the 
simulation, where the errors in the MsFEM results decrease faster than 
the errors produced by the standard FEM scheme (see Fig. 4b, d and the 
small figure in Fig. 4d). Recall that in this study, the MsFEM basis 
functions are pre-calculated, so there is only a limited (or negligible) 
increase in the computing load to achieve the accuracy promotion via 
the MsFEM scheme. 

△. 

3. Partially coupled heat and water transfer and the MsFEM 
sequential solver 

Implementation of MsFEM for CHWT simulations has been described 
in Section 2. However, for numerical applications, the heat and water 
transfer in soil is not always expressed as a fully coupled version, but 
rather as a partially coupled version. For example, in Hydrus, the two 
equations in Eq. (1) [or equivalently, in Eq. (2)] are solved one-by-one 
within a given time step (Saito et al., 2006; Zheng et al., 2021). In 
2DSOIL, Eq. (1) is decoupled into three steps, which are liquid water 
transfer, heat transfer, and vapor flux (Wang et al., 2022a). Solving 
water and heat transfer one-by-one in a discrete time step provides two 
advantages: (a) to avoid solving high dimensional linear systems 
generated from the numerical schemes; (b) to enable a design that as
signs liquid water, heat, and vapor transfers into three separate modules, 
which provides flexible programming architectures and adaptable con
trols for relatively complex Soil-Vegetation-Atmosphere-Transfer 
(SVAT) simulators (e.g., Timlin et al., 2019; Wang et al., 2020; Wang 
et al., 2021b; Wang et al., 2021c; Wang et al., 2022a). In this section, a 
partially coupled version of CHWT model used in 2DSOIL is considered 
as an example, and the MsFEM scheme proposed in Section 2 is gener
alized as a solver that can sequentially compute soil water content and 
soil temperature. 

3.1. The partially coupled version of heat and water transfer model 

Let Eq. (2) be the starting point. The partially coupled version of soil 
heat and water transfer in Wang et al. (2022a) is to rewrite Eq. (2) into 
the equations of the following three separate steps.  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step I (liquid water transfer) : cw
∂h
∂t

= ∇ • [K(h, T)∇h ] (15a)

Step II (heat transfer) : ch
∂T
∂t

= −∇ • [ − Λ∇T + clρlql(T − T0) ] (15b)

Step III (vapor transfer) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cθθ
∂h
∂t

+ cθT
∂T
∂t

= ∇ • [dmv(h, T)∇h + dtv(h, T)∇T ] (15c)

cTθ
∂h
∂t

+ cTT
∂T
∂t

= −∇ • [L0ρlqv + cvρlqv(T − T0) ] (15d)
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In Eq. (15), cw(cm−1) represent the soil water capacity, and 
ch

(
J cm−3 K−1)

is the soil volumetric heat capacity. For each discrete 
time step, the three steps are processed one-by-one. When solving liquid 
water transfer [Step I, Eq. (15a)], soil temperature is assumed to be 
unchanged with respect to time. When soil temperature is computed 
[Step II, Eq. (15b)], soil water content is supposed to be steady, and the 
liquid water flux ql can be determined from Eq. (15a). Finally, in Eqs. 
(15c, d), both soil water potential and temperature are updated again 
based on the vapor flux, as well as the sensible and latent heat carried by 
the vapor flux. The “thermally driven liquid water flow [Dtl(h, T) ]” is 
omitted in Eq. (15), because (a) Dtl(h, T) is not included in the initial 
version of 2DSOIL (Timlin et al., 1996) and (b) the liquid water flow 
under temperature gradient contributes < 5% of the total liquid water 
flow (Prunty, 2009; Wang et al., 2022a), and it is often negligible in 
CHWT problems as reported by Lu et al. (2020). 

Solving Steps I-III in Eq. (15) one-by-one in each discrete time step 
should provide results similar to the coupled version in Eq. (2). 
Compared to the fully coupled version [Eq. (2)], the interaction between 
water transfer and heat transfer is weakened in the partially coupled 
version, and it is only explicitly shown in the vapor transfer step [Eqs. 
(15c, d)]. However, interaction between water transfer and heat transfer 
can be included recursively through multiple time steps. A compre

hensive comparison between the fully coupled version [Eq. (1)] and the 
partially coupled version [Eq. (15)] of soil heat and water transfer is 
shown in Wang et al. (2022a). 

3.2. Establishment of a MsFEM sequential solver 

For the partially coupled heat and water transfer, the MsFEM basis 
functions for soil water potential and soil temperature can be computed 
individually, following the leading differential terms in Eqs. (15a, b), 

respectively. Therefore, for a given coarse element M (Fig. 1), Eq. (10) 
can be converted as follows. 
⎧
⎪⎨

⎪⎩

∇ •
[
Ksat∇φ(M,i)

h

]
= 0

∇ •
[
Λ∇φ(M,i)

T

]
= 0

, i = 1, 2, 3, 4 (16) 

And the oscillatory boundary conditions for the MsFEM basis func
tion along Edge I in coarse element M [see Fig. 1, lower diagram, and Eq. 
(11)] can also be simplified as. 
⎧
⎪⎪⎨

⎪⎪⎩

∂
∂x

Ksat
∂
∂x

φ(M,1)

h = 0

∂
∂x

Λ
∂
∂x

φ(M,1)

T = 0
(17) 

Apparently, the connections between the two groups of basis func
tions V h and V T are neglected due to the elimination of Dtl(h, T). 
However, the correlation between V h and V T always exists due to the 
interactions between soil water potential and soil temperature. The 
Petrov-Galerkin global formulation derived from Eq. (15) can be given 
as follows.   

In a given discretized time step, nodal values of soil water potential 
and temperature on the coarse grid can be obtained by solving Eq. (18) 
as the three proposed steps. The soil water potential and temperature 
values on the fine grid can be reconstructed using Eq. (14). 

3.3. Illustrative Example 

Example 2.5. (Application of the MsFEM Sequential Solver). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step I :
∑

M∈Cm×m

∑

i=1,2,3,4
cw

∂hM,i

∂t

∫∫

Ω
φ(M,i)

h ψdω

= −
∑

M∈Cm×m

∑

i=1,2,3,4
KhM,i

∫∫

Ω
∇φ(M,i)

h ⋅∇ψdω −

∫

∂Ω

(
qExt

l + qExt
v

)
ψdl

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
external water or vapor fluxesas boundary conditions

, ∀ψ ∈ V
0, (18a)

Step II :
∑

M∈Cm×m

∑

i=1,2,3,4
ch

∂TM,i

∂t

∫∫

Ω
φ(M,i)

T ψdω

= −
∑

M∈Cm×m

∑

i=1,2,3,4

[

ΛhM,i

∫∫

Ω
∇φ(M,i)

T ⋅∇ψdω
]

+

∫∫

Ω

[
clρlql

(
Tup − T0

) ]
⋅∇ψdω

−

∫

∂Ω
qExt

h ψdl
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

external conductive heat fluxes asboundary conditions

−

∫

∂Ω

[
clρlql

(
Tup − T0

)
+

[
L0ρlqv + cvρlqv

(
Tup − T0

) ] ]
ψdl

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
external sensible and latent heat fluxes as boundary conditions

, ∀ψ ∈ V
0
, (18b)

Step III:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

M∈Cm×m

∑

i=1,2,3,4

[

cθθ
∂hM,i

∂t

∫∫

Ω
φ(M,i)

h ψdω + cθθ
∂TM,i

∂t

∫∫

Ω
φ(M,i)

T ψdω
]

= −
∑

M∈Cm×m

∑

i=1,2,3,4

[

dmvhM,i

∫∫

Ω
∇φ(M,i)

h ⋅∇ψdω + dtvTM,i

∫∫

Ω
∇φ(M,i)

T ⋅∇ψdω
]

, ∀ψ ∈ V
0
, (18c)

∑

M∈Cm×m

∑

i=1,2,3,4

[

cTθ
∂hM,i

∂t

∫∫

Ω
φ(M,i)

h ψdω + cTT
∂TM,i

∂t

∫∫

Ω
φ(M,i)

T ψdω
]

=

∫∫

Ω

[
L0ρlqv + cvρlqv

(
Tup − T0

) ]
⋅∇ψdω , ∀ψ ∈ V

0, (18d)
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In this example, to demonstrate the MsFEM sequential solver pre
sented in Section 3.2, we redo the simulation in Example 2.3 using three 
methods: the MsFEM scheme with C20×20F5×5 grid, the MsFEM 
sequential solver with C20×20F5×5 grid, and the standard FEM with 
C20×20 grid. Then, the solution error and the “sub-grid capturing error” 
of the three methods are computed relative to the standard FEM solution 
on the underlying grid C100×100. The evolution of errors with respect to 
time are presented in Fig. 5. 

Due to the elimination of “thermally driven liquid water flow” and 
the decreasing of soil water and temperature interaction, the errors 
produced by MsFEM sequential solver slightly increase (about 5%) 
compared to the MsFEM scheme. However, the MsFEM scheme and the 
MsFEM sequential solver still outperform the standard FEM for both the 
soil water content and temperature solved on the coarse grid and the 
reconstructed values on the fine grid. 

△. 

4. Summary and future topics 

The application of a multiscale finite element method (MsFEM) on 
coupled heat and water transfer (CHWT) problems is investigated in this 
study. Two groups of MsFEM basis functions are constructed to absorb 
the local variabilities of soil hydraulic and thermal conductivity, and a 
global formulation based on Petrov-Galerkin finite element method 
(FEM) is adopted to implement the proposed MsFEM scheme. Because 
partially coupled versions of heat and water transfer are used in existing 
soil simulators, such as Hydrus (Saito et al., 2006; Zheng et al., 2021) 
and 2DSOIL (Timlin et al., 1996; Wang et al., 2021c), the MsFEM scheme 
proposed in this study is exploited as a sequential solver to handle such 
variations. Since the MsFEM basis functions in this study can be deter
mined in advance, using the MsFEM scheme does not essentially in
crease the computing load, and the illustration examples indicate that 
the MsFEM scheme can reduce the simulation errors by up-to 30% 
compared to the standard FEM, especially for the soil water content. 
Therefore, the MsFEM approach proposed in this study provides an 
effective numerical method for CHWT simulations in soils. 

Spatial heterogeneities are only assumed in soil hydraulic and ther
mal conductivity in this study. Similar spatial variabilities may also 
occur for vapor transfer coefficients, such as dmv or dtv. Unfortunately, 
related soil studies are relatively rare. However, if those studies exist, 
the MsFEM scheme proposed in this study can be generalized by simply 
revising the construction of the MsFEM basis functions [Eq. (10) or 
(16)]. Furthermore, the MsFEM basis functions are pre-calculated in this 
study and not changed during time evolution. Thus, research on the 
adaptive updates of the basis functions can be a future development of 
the MsFEM scheme proposed in this study (e.g., Chung et al., 2015; 
Chung et al., 2016), which can be fulfilled either with the conventional 
partial differential equation solvers or with learning-based approaches. 
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