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A B S T R A C T   

Soil thermal conductivity (λ) is an important thermal property that is crucial for surface energy balance and 
water balance studies. 1602 measured soil thermal conductivity values representing 189 soils were used to 
evaluate five empirical models (i.e., de Vries (1963) model (de Vries 1963), Campbell (1985) model (Camp
bell1985), Johansen (1975) model (Johansen 1975), Côté and Konrad (2005) model (Côté and Konrad 2005), 
and Lu et al. (2007) model (Lu 2007)) and seven machine learning (ML) algorithms (i.e., Decision Tree (DT), 
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Linear Regression (LR), K-Nearest Neighbors 
(KNN), Neural Network (NN), and Gaussian Process (GP)) to estimate λ. Our results demonstrated that the 
average root mean squared error (RMSE) values of ML were 66% and 82% of the empirical model values on 
validation and test sets respectively. The three best ML algorithms (GBDT, NN, RF) performed significantly better 
than the three best empirical models (Lu 2007, Côté and Konrad 2005, Johansen 1975): 0.183 < RMSE < 0.259 
(W m−1 K−1) for ML algorithms and 0.293 < RMSE < 0.320 (W m−1 K−1) for empirical models. For ML, we 
recommend the GBDT, NN and RF algorithms. For empirical models, we recommend to use three normalized 
models (Lu 2007, Côté and Konrad 2005, Johansen 1975) over the physically-based model (DV1963) and the 
regression model (CG1985). The feature importance rankings performed by the RF and GBDT algorithms show 
that soil moisture content and soil bulk density are the most critical factors affecting λ. Soil moisture content and 
soil bulk density together account for more than 80% of the influence importance value of λ. RF gives more 
consistent feature importance ranking results than GBDT, therefore, we recommend the use of RF for selecting 
features.   

1. Introduction 

Soil thermal conductivity (λ) is an important thermal property (Côté 
and Konrad, 2005; Johansen, 1975; Lu et al., 2007). λ is necessary for 
quantitative descriptions of soil heat transfer, hydrothermal coupling, 
and other related heat and mass transfer processes (He et al., 2018, 
2020a; Li and Shao, 2005; Peters-Lidard et al., 1998). Because rapid and 
accurate measurements of λ require specialized equipment and skill (He 
et al., 2020b), researchers have developed a number of empirical λ 
models (Côté and Konrad, 2005; Johansen, 1975; Lu et al., 2007). These 
models account for relationships between λ and other soil parameters 

such as texture, bulk density (ρb), water content (θ), and porosity (n) (He 
et al., 2020b). However, there is no widely recognized empirical model 
that is applicable to all soil types. 

Machine learning (ML) is a rapidly growing data analysis method 
(Jordan and Mitchell, 2015). It has been applied in natural science 
studies (Butler et al., 2018). ML is a general term for a class of algorithms 
that find implicit patterns in large numbers of datasets for classification 
and prediction. This method has also been applied to agricultural soil 
analysis (Liakos et al., 2018), such as for soil classification (Padarian 
et al., 2020), soil moisture inversion (Senanayake et al., 2021), and 
estimation of soil bulk density ρb (Al-Shammary et al., 2018). 

Abbreviations: DT, Decision Tree; GBDT, Gradient Boosting Decision Tree; GP, Gaussian Process; KNN, K-Nearest Neighbors; RF, Random Forest; LR, Linear 
Regression; ML, Machine learning; NN, Neural Network. 
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Recently, ML algorithms have been used to estimate λ (Liu et al., 
2020; Rizvi et al., 2020; Yurttakal, 2021; Zhang et al., 2020b). However, 
ML methods have not been tested extensively and comprehensively. 
Generally, ML algorithms require large training datasets to avoid over
fitting (Lever et al., 2016), however, the number of included data points 
has, thus far, been relatively small (40 < number of data points < 614, e. 
g. (Liu et al., 2020; Yurttakal, 2021; Zhang et al., 2020a; Zhang et al., 
2020b. See Appendix for more information). The generalizability of the 
ML algorithm results needs to be further tested by increasing the number 
of data points. In addition, prior studies included only a single soil type 
or only included a few of the factors that affect λ. For example Rizvi 
et al. (2020) only estimated λ for sandy soils, while Cui et al. (2020) only 
considered dry density and θ, while the effects of porosity, quartz con
tent and organic matter content were neglected. Moreover, most of the 
previous studies (Cui et al., 2020; Rizvi et al., 2020; Zhang et al., 2020b) 
did not rank the importance of the factors (ρb, n, soil moisture content (θ) 
and sand content (fsand), silt content (fsilt), clay content (fclay), organic 
matter content (fOM), quartz content (fq)) that affect λ. Furthermore, the 
vast majority of the earlier studies were based on Neural Network al
gorithms and their derivatives (Appendix and Liu et al., 2020; Zhang 
et al., 2020a; Zhang et al., 2020b), without considering other commonly 
used ML algorithms such as GBDT, RF, and GP. Therefore, there is a lack 
of comprehensive and extensive comparisons and evaluations of the 
performances of various ML algorithms. 

In this study, we evaluated and compared the ability of seven 
mainstream ML algorithms (Decision Tree (DT), Random Forest (RF), 
Gradient Boosting Decision Tree (GBDT), Linear Regression (LR), K- 
Nearest Neighbors (KNN), Neural Network (NN), and Gaussian Process 
(GP)) to estimate λ. The ability of these ML algorithms was also 
compared with five popular empirical λ models. Finally, we used feature 
importance ranking to analyze the contributions of eight factors, 
including fsand, fsilt, fclay, fOM, fq, ρb, n and θ to estimate λ values. 

2. Materials and methods 

2.1. Database 

The measured λ values used in this study were extracted from the 
following articles: Wang et al. (2020) (e.g., soil numbers 10–26, 28–31, 
52–53, 57–62 of Table 1), Ghuman and Lal (1985), Ochsner et al. 
(2001), Bachmann et al. (2001), Lu et al. (2011), and Zhao et al. (2018). 

We collected a total of 1602 (189 soils) measured λ (θ) values for a range 
of water content θ values. Of the 1602 groups of λ (θ) data points, most 
were from China (1254) (See Appendix Fig. A1 for a spatial map of the 
sampling locations of the dataset) and Canada (282), and others were 
from Germany (24), the United States (20), Japan (18), and Nigeria (4). 
According to the spatial distribution of these data points, there is no 
noticeable spatial clustering. Because of the limited data source (1602 
data points from 189 soils), to avoid overfitting issues related to small 
datasets (Lever et al., 2016), we did not split the dataset into a training 
dataset and a test dataset based on soil type. 

All λ (θ) values were measured by transient methods (Table A-2 of the 
Appendix), including the traditional single-probe (SPHP) method and 
the dual-probe (DPHP) method. Bristow et al. (1994), Liu and Si (2011) 
and Kim and Oh (2020) report that SPHP and DPHP methods provide 
similar values of soil thermal conductivity (difference in results between 
the two methods is less than 10%). In this research, we include SPHP and 
DPHP values in the dataset. For the soil particle size analysis (and soil 
texture classification), either the pipette method or the laser particle size 
analyzer was used (Table A-2 of the Appendix). The 189 soil samples 
included silt loam (71 soils, 547 data points), loamy sand (31 soils, 291 
data points), sandy loam (31 soils, 285 data points), sand (33 soils, 284 
data points), loam (17 soils, 143 data points), clay loam (2 soils, 23 data 
points), clay (2 soils, 13 data points), silty clay (1 soil, 7 data points), and 
Peat (1 soil, 9 data points). Specific soil texture information according to 
USDA classification is presented in Fig 1. 

In the following analysis, we used two different datasets. Dataset A 
includes the whole dataset (189 soils and 1602 data points), and Dataset 
B (164 soils with 1398 data points) is a subset of Dataset A. Dataset B 
does not include data for the finer-textured soils only represented by a 
few soil samples (Fig. 1). We need Dataset B, which only includes soils 
with limited clay content (fclay < 20%), to test whether the performance 
of ML is improved or not when the sparse soil samples for a specific soil 
texture (in this case, we removed those soils with high clay content fclay) 
was abandoned. It is well known that the volumetric content of quartz is 
a key parameter for modeling soil thermal conductivity (Tarnawski 
et al., 2012). However, due to expensive experimental apparatus (such 
as X-ray diffraction and X-ray fluorescence), reliable and accurate data 
of fq for field soils is uncommon. Tarnawski et al. (2009) found weak 
correlations between fq with the sum of fsand and other soil materials. 
Therefore, if the original data sources did not provide fq values, we 
assumed fq = 0.5 fsand. This assumption was also used by Hu et al. (2017) 

Fig. 1. Soil samples of two dataset classifications plotted based on the USDA soil texture classification triangle. (a) Dataset A: 189 soils with 1602 data points;(b) 
Dataset B: 164 soils with 1398 datapoints (By removing the 25 hollow red circle of (a)). 
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and Zhao et al. (2018). Meanwhile, our ML predictions (results not 
presented here) indicate that RMSE difference between samples with fq 
= 0.5 fsand and fq = 1.0 fsand, is less than 3%. The 1602 λ (θ) data points 
we obtained included the following parameter values: fsand, fsilt, fclay, θ, 
fOM, ρb, n, fq. When soil particle density ρs was not reported, but n and ρb 
were known, ρs was calculated from the relationship n = 1-ρb/ρs. When 
ρs was not known directly, we assumed ρs = 2.65 g cm−3. We included 
both ρb and n in the analysis (ρb is strongly correlated with n and their 
correlation coefficient is 0.92, figure not shown here). For soil with a 
specified ρb value, n is determined by ρs, which is not a constant (Tolimir 
et al., 2020) but correlated to the soil mineral component (Birhanu et al., 
2016). 

To avoid spatial clustering (i.e., having the spatial location of the 
calibration data points close to the locations of test data points), we used 
a random data set split (Feinberg et al., 2018; Smirnov et al., 2020) 
based on the soil texture classification (Fig. 2). We randomly selected 
soils which contained approximately 20% of the data points in the total 
dataset (dataset A and dataset B) as the test set. In this way, the test 
dataset contained the entire λ (θ) data points of the selected soils. No 
partial λ (θ) data points of any of the 189 soils (or 164 soils for dataset B) 
existed in the test set. Therefore, all datapoints for the test set were 
unseen in the training-validation set, which insured that the test dataset 
was unbiased. As illustrated in Fig. 2, the training-validation/test split 
was accomplished by randomly selecting approximately 80% (based on 
the total datapoints of λ (θ)) of the soil data as the training-validation set, 
and the remaining 20% of the data (for dataset A: 1602 × 20% ≈ 320 
data points) was selected as the test dataset. As a result, there were no 
data points in the test set that also belonged to the soils in the 
training-validation set. The random k-folds cross validation method 
(Meyer et al., 2019) with k = 4 was used to further split the 
training-validation set. A 75:25 split ratio (Wada et al., 2019) was used 

to randomly divide the data into the training set and the validation set 
(Feinberg et al., 2018; Smirnov et al., 2020). In this way, for both dataset 
A and dataset B, the size of the validation (80% × 25% = 20% of the full 
dataset) was approximately the same as the size of the test set (20% of 
the full dataset). Note that, unlike the traditional method, to avoid the 
drawback (higher error rate when k ≤ 8 for k-fold cross validation (Guo 
et al., 2019)) of the traditional 4-fold cross validation (Wada et al., 
2019) (we performed traditional k-fold cross validation and the results 
showed that k = 4 resulted in a large variance for the predicted λ, which 
agreed with the findings of Bryce Meredig (2018). To overcome the 
shortcoming of a 4-fold cross validation, we used random splits (Fein
berg et al., 2018; Smirnov et al., 2020) to split the training/validation 
subset (a total of 10 splits were performed for each given train
ing/validation subset). 

2.2. Five empirical models 

There are at least 38 empirical thermal conductivity models of un
frozen soils (He et al., 2020b). Each empirical model is usually only 
applicable to specific soil types (e.g., sandy soils or peaty soils). None of 
them can be used to model all soil types (He et al., 2021). In this study, 
four widely evaluated and accepted empirical models (Campbell, 1985; 
Johansen, 1975; Côté and Konrad, 2005; Lu et al., 2007) and a mixing 
model (de Vries, 1963) are selected for comparison with selected ML 
algorithms. 

de Vries (1963) is a physically based model which uses the weighted 
average of the thermal conductivity value of each soil component. 

λ =
θλw + ka(n − θ)λa + ks(1 − n)

(
λfq

q λ1−fq
o

)

θ + ka(n − θ) + ks(1 − n)
(1) 

Fig. 2. Illustration of the split that we used in this study. According to soil texture classification, approximately 20% of the dataset A (1602 data points of 189 soils) 
are randomly selected as the test set, never to be used during training and validation. The training-validation subset is randomly divided into training and validation 
sets according to 75:25 split ratio (Here, we used random 4-fold cross-validation split with ten repetitions. For illustration purposes, we selected dataset A as 
an example). 
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In our calculation, we set air thermal conductivity λa = 0.025 W m−1 

K−1 (Montgomery, 1947). λq (thermal conductivity of quartz) = 7.7 W 
m−1 K−1 (Clauser and Huenges, 1995), λo (thermal conductivity of other 
minerals) = 2.0 W m−1 K−1 (fq > 0.2), λo = 3.0 W m−1 K−1 (fq < 0.2), λw 
(thermal conductivity of water) = 0.57 W m−1 K−1 were set in this study. 
For dry soil, the de Vries (1963) model introduced a correction multi
plier (1.25) into the Eq. (1). Farouki (1981) calculated the weighting 
factor k as 

ks =
1
3

⎡

⎣ 2

1 + 0.125
[(

λfq
q λ1−fq

o

)/
λw − 1

] +
1

1 + 0.75
[(

λfq
q λ1−fq

o

)/
λw − 1

]

⎤

⎦

(2)  

ka =
1
3

⎡

⎣ 2

1 + ga

[(
λfq

q λ1−fq
o

)/
λw − 1

] +
1

1 + (1 − 2ga)
[(

λfq
q λ1−fq

o

)/
λw − 1

]

⎤

⎦

(3)  

where ga is a shape factor 

ga =

{
0.333 − (0.333 − 0.035)(n − θ)/n for 0.09 ≤ θ ≤ n

0.013 + 0.944θ for 0 ≤ θ ≤ 0.09 (4) 

Campbell (1985) proposed the following empirical regression 
equation for λ 

λ = A + Bθ − (A − D)exp
[

− (Cθ)
E]

(5)  

where A = 0.65-0.78ρb+0.60ρb 
2, B = 1.06ρbθ, C = 1+2.6 fclay 

−0.5, D =
0.03+0.10ρb

2, and E = 4. 
Johansen (1975) presented a λ (θ) model for unsaturated soils which 

used a relationship between the Kersten coefficient (Ke) and λ. 

λ = Ke
(
λsat − λdry

)
+ λdry (6)  

Ke =

{ 0.7lgSr + 1

lgSr + 1

Sr > 0.05

Sr > 0.1

coarse

fine
(7) 

Here, for unfrozen soil, fine soil and coarse soil is defined as fclay >

5% and fclay ≤ 5%, respectively (He et al., 2021). Ke is related to soil 
saturation Sr (Sr =θ/n), where λsat and λdry are the thermal conductivity 
values of saturated and dry soil, respectively. 

λsat = λn
w

(
λfq

q λ1−fq
o

)1−n
(8)  

λdry =
0.135ρb + 64.7
2700 − 0.947ρb

(9) 

Côté and Konrad (2005) improved the Johansen (1975) model by 
introducing a parameter k that reflects soil texture, and the relationship 
between Ke and Sr is 

Ke = k⋅Sr / [1 + (k − 1)Sr] (10) 

For gravels (and coarse sands), medium sand (and fine sands), silty 
soils and peaty soils, k is 4.60, 3.55, 1.90 and 0.60, respectively. Based 
on the values of fsand and fclay, He et al. (2021) gave detailed standards to 
distinguish various soils according to their texture (fine, medium and 
coarse; See Table 3 of He et al. (2021) for more details). In this study we 
followed these standards. Because the complete mineral compositions of 
the majority of our soil are unknown, λsat is calculated according to the 
Johansen (1975) model (Eq. (8)), but λdry is computed by 

λdry = χ10−ηn (11)  

where χ and η are parameters related to soil texture as described by Côté 
and Konrad (2005). For natural soils, χ and η is 0.75 and 1.20, 
respectively. 

In order to extend the λ (θ) model to small water content conditions, 

Lu et al. (2007) modified the Ke expression to 

Ke = exp
{

α
[
1 − S(α−1.33)

r

]}
(12)  

where α is a soil texture parameter, which is 0.96 and 0.27 for coarse- 
textured and fine-textured soils respectively. For the Lu (2007) model, 
λsat is calculated using the Johansen (1975) model (Eq. (8)), and λdry is 
assumed to be linearly related to porosity (n) (Lu et al. (2007). 

λdry = −0.56n + 0.51 (13) 

Johansen (1975), Côté and Konrad (2005) and Lu (2007) models 
were called normalized soil thermal conductivity models (He et al., 
2020a). After evaluating the performance of 38 normalized empirical 
models on a dataset which contained 669 data points (71 soils), He et al. 
(2020b) recommended the use of Johansen (1975), Côté and Konrad 
(2005), Lu (2007) model. 

2.3. Seven ML algorithms 

We include the following ML algorithms: Decision Tree (DT), 
Gradient Boosting Decision Tree (GBDT), Neural Network (NN), 
Random Forest (RF), Gaussian Process (GP), K-Nearest Neighbors 
(KNN), and Linear Regression (LR). Detailed descriptions of these al
gorithms can be found in Aurélien (2017). DT is based on a tree-like 
structure for making decisions, and has the advantage of being very 
interpretable. RF is a type of DT in which each tree has a release to 
extract a portion of the training set. It can be used for classification and 
regression problems and can handle high-dimensional data. GBDT is a 
boosting algorithm based DT, which first gives an estimation of the 
target value, and then uses another "tree" to estimate the error between 
the estimated value and the true value. This method obtains the final 
estimated value by continuously reducing the error, but the training is 
time consuming. LR refers to the use of a linear function to estimate the 
relationship between variables and target values. This algorithm can 
give regression formulas, a feature that significantly distinguishes it 
from other machine learning algorithms. The principle of KNN is to 
calculate the distance of a given value from all other samples and rank 
them. The disadvantage of this algorithm is that the computation is time 
consuming when the amount of data is large. NN in this study refers to 
artificial neural network (ANN), which is a supervised learning algo
rithm. NN is mainly divided into input layer, hidden layer, and output 
layer. The principle is to find the weights of the connections between 
neurons and the threshold values of the neurons. Because the initial 
values of the neural network are given randomly, a large amount of data 
is needed to improve the estimation accuracy. Statistics and Bayesian 
theory help GP to be suitable for processing high-dimensional nonlinear 
small samples. All ML algorithms and calculations were performed with 
Wolfram Mathematica 12.1 (Wolfram Research, Inc., Champaign, IL). 
The "L2Regularization" (Smirnov et al., 2020) of "LogisticRegression", as 
well as "FeatureFraction" (Quezada, 2019), "LeafSize" (Song and Lu, 
2015) and "DistributionSmoothing" (Quezada, 2019) were used to pre
vent overfitting of data. 

2.4. Model performance assessment 

In this study, root mean square error (RMSE), Nash–Sutcliffe effi
ciency (NSE) (Nash and Sutcliffe, 1970) and average deviations (AD), 
were selected to evaluate the estimation accuracy of both ML algorithms 
and empirical thermal conductivity models. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1(Yi − Ŷ i)
2

m

√

(14)  

NSE = 1 −

∑m
i=1(Yi − Ŷ i)

2

∑m
i=1(Yi − Y)

2 (15) 
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AD =

∑m
i=1(Ŷ i − Yi)

m
(16)  

where Yi and Ŷi represent measured and predicted values of λ, 
respectively. Y is the mean value of Yi and m represents the total 
number of data points. In our analysis, we found that mean absolute 
error (MAE) was strongly correlated with RMSE (Pearsons’ correlation 
coefficient is r ≈ 0.94). Therefore, we decide not to use MAE. In this 
study, analyses of variance and correlation analyses were performed 

using SPSS software (version 21.0, SPSS Inc., Chicago, IL). The com
parisons of different ML algorithms, as well as empirical models were 
performed by using one-way ANOVA, followed by a least significant 
difference test (P < 0.05). 

Fig. 3. Performance of seven ML algorithms with five empirical models. (a), (b), (c): 189 different soils (1602 data points, see Fig 1(a) for classification of soils 
according to texture); (d), (e), (f): 164 different soils (1398 data points, see Fig 1(b) for classification of soils according to texture). (Note: The green pentagram 
represents the result of using the full dataset or all datapoints (dataset A: 1602 data points, dataset B: 1398 data points)). 
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3. Results and discussion 

3.1. Empirical models versus machine learning algorithms 

Fig. 3a, b, d, and e indicate that among all of the ML algorithms, 
GBDT, NN, and RF perform the best. For dataset A (Fig. 3a–c), on the 
validation dataset, GBDT > NN > RF, (0.183 W m−1 K−1 < RMSE <

0.210 W m−1 K−1, 0.854 < NSE < 0.889, -0.005 W m−1 K−1 < AD <

0.008 W m−1 K−1). While, for the test dataset, NN > RF > GBDT, (0.238 
W m−1 K−1 < RMSE < 0.259 W m−1 K−1, 0.767< NSE < 0.804, 0.003 W 
m−1 K−1 < AD < 0.030 W m−1 K−1). The significance test results showed 
that RF, which ranked third, was significantly different from GBDT, NN 
in the validation dataset, while there was no significant difference 
among these three algorithms in the test set. We ranked the seven ML 
algorithms based on their performances for dataset A (both the valida
tion and test set): GBDT or NN > RF > KNN > (DT/GP/LR). Overall, 

Fig. 4. Performance of the ML algorithms 
and the empirical models in dataset A. Lines 
(red and blue) are the best fitted lines with 
linear regression. R2 and standard error (S) 
are the coefficient of determination and 
standard error of each linear regression. 
Abbreviation: Gradient Boosting Decision 
Tree (GBDT), Neural Network (NN), 
Random Forest (RF), Gaussian Process (GP), 
Nearest Neighbors (KNN), Decision Tree 
(DT), Linear Regression (LR), Lu et al. 
(2007) model (L2007), Côté and Konrad 
(2005) model (CK2005), Johansen (1975) 
model (JO1975), Campbell (1985) model 
(CG1985), and de Vires (1963) model 
(DV1963). Fig. 4a–g and Fig. 4h–g are the 
results of 10 repetitions for random sam
pling of the validation set and the test set, 
respectively. For both Fig. 4a–g and 
Fig. 4h–n, there are roughly 3200 data 
points (1602 × 20% × 10 ≈ 3200). The 
different color points indicate the results of 
repetitions of the ML algorithms in 
Fig. 4a–n. For the five empirical models, the 
full dataset (all 1602 data points) were 
included in the plot and RMSEs calculation. 
Here m represents the total number of data 
points.  (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the web version of this article.).   

T. Zhao et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 323 (2022) 109080

7

Fig. 3a, b, d, and e show that our ML ranking is similar to other reports. 
For example, NN outperformed RF (Ahmad et al., 2017), KNN (Alireza 
et al., 2010) and DT (Li et al., 2019); RF outperformed KNN (Ren et al., 
2020), GP (Hultquist et al., 2014; Ly et al., 2021); GBDT outperformed 
DT (Lv et al., 2021). For saturated hydraulic conductivity predictions, 
Fig. 3 of Araya and Ghezzehei (2019) illustrated that the overall per
formance is BRT (similar to GBDT) > RF > KNN, which agrees with our 
results of Fig. 4. We expect a similar ranking of the performance of these 
seven ML algorithms when they were used in other branch of soil 
physics. However, to our knowledge, few publications exist to test this 
statement. 

We selected three indicators (RMSE, NSE and AD) to analyze the 
performance of each model (Fig. 3), and the ranking given by these three 
indicators was quite consistent. RMSE and NSE values in Fig. 3 are 

highly correlated with the Pearsons’ correlation coefficient (r > 0.98). 
AD did not perform as well as RMSE and NSE, e.g., it is difficult to see the 
ranking of GBDT, NN, RF, KNN, DT, GP in Fig. 3c and f. However, Fig. 3 
clearly demonstrated that ML algorithms performed significantly better 
than the empirical models. As to the empirical models, Campbell (1985) 
and de Vries (1963) were significantly different from the other empirical 
models: the AD of the other models ranged from -0.085 W m−1 K−1 to 
0.032 W m−1 K−1 except for the Campbell (1985) and de Vries (1963) 
(AD of Campbell (1985) < -0.165 W m−1 K−1 and the AD of de Vries 
(1963) > 0.336 W m−1 K−1). 

Similar to the conclusion of Li et al. (2017) and Jahan et al. (2021), 
Fig. 3a, b, d, and e also show that DT and LR perform the worst. The 
linear assumption of LR was not suitable to capture the nonlinear λ (θ) 
relationship, and thus, performed poorly. GBDT, which was derived 

Fig. 5. Feature importance for sand content (fsand), silt content (fsilt), clay content (fclay), organic matter content (fOM), quartz content (fq), soil bulk density (ρb), soil 
porosity (n), and soil water content (θ). Eight factors are sorted in (a) and seven factors (θ was excluded) are sorted in (b). Error bars of each column represent 
standard deviation. 
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directly from the classical DT, significantly outperformed DT (Lv et al., 
2021). We also found that, unlike other ML methods, the results of the 
GP method had a large variance (Fig. 3a and b), especially for dataset A. 
The reason might be that the GP method assumed that the data points 
had a Gaussian normal distribution (Hultquist et al., 2014), and thus, for 
cases when the dataset was more discrete or only had a few data points, 
the accuracy of the GP prediction decreased. 

Fig. 3 also indicates that ML algorithms generally outperform the 
empirical models for both the validation and test cases. For dataset A 
(Fig. 3a–c), comparing the three best performing ML algorithms (GBDT, 
NN, RF) with the three empirical models Lu (2007), Côté and Konrad 
(2005), Johansen (1975), we find that for the validation set, the average 
RMSE of these three ML algorithms was 62.4% of the average RMSE of 
the three empirical models. For the test set, the prediction accuracy of 
the three ML algorithms decreased slightly, and the average RMSE value 
was 82.5% of the RMSE values for the three empirical models. In the 
validation set, when the best performing empirical model ((Lu, 2007), 
RMSE = 0.306 W m−1 K−1 in the validation, RMSE = 0.293 W m−1 K−1 

in the test set) was selected for comparison, the RMSEs of GBDT, NN and 
RF were reduced by 31.4 to 40.4%, and NSE was improved by 23.2 to 
28.3%; in the test set, the RMSE of GBDT, NN and RF decreased by 11.6 
to 18.8%, and NSE improved by 7.7 to 12.9%. ML algorithms always 
performed better on the validation set compared to the test set. One 
possible explanation was that the soils of the test set (and thus the λ (θ) 
curve) were absolutely independent from the soils of the training set, 
and the soils of these two sets had zero common shared elements 
(intersection was zero). On the contrary, the soils of the validation set 
could overlap with the soils in the training set. In other words, the 
validation set contained a partial portion of the specific λ (θ) curve of a 
given soil that had already been used in the training set. Therefore, to 
ensure an unbiased prediction for the ML training, a test that was 
completely independent from the training set (λ (θ) data sets belonging 
to different textured soils) should be used. Although our results 
demonstrated that ML algorithms outperform the empirical models, this 
is not surprising, because these empirical models used few soils (8 soils 
for Lu (2007) as an example) for calibrating various parameters. On the 
contrary, our ML algorithms used at least 90 soils (for Dataset B: 60% of 
164 soils is roughly 98 soils) for training. 

The results for dataset A (Fig. 3a, b, c) and dataset B (Fig. 3d, e, f) 
showed that the ML algorithms based on dataset B (removing the data of 
soils that were sparsely distributed in the soil texture map: 25 soils and 
204 data points of dataset A) had higher accuracy and reduced fluctu
ation (especially for GP). This agrees with our intuition, by limiting the 
types of soils of dataset B only to soils (for a specific texture) with suf
ficient samples, we can improve the prediction accuracy of ML algo
rithms. Switching from dataset A to dataset B, we noticed that, for both 
RMSE and NSE, the number of ML algorithms that outperformed the 
empirical models increased from three (GBDT, NN, RF) to six (GBDT, 
NN, RF, GP, KNN, DT). Comparing Fig. 3a and b and Fig. 3d and e, we 
found that the variance of GP on dataset B decreased significantly 
(40.5% for the RMSE indicators (from 0.084 to 0.050) and 75.5% for the 
NSE indicators (from 0.318 to 0.078)), which indicated that the GP al
gorithm was more sensitive to the spatial aggregation, or that the GP 
prediction accuracy was improved by removing the 25 soil samples (204 
data points) that were more discrete in the spatial distribution map of 
soil texture (Fig. 1a). We concluded that although dataset A contained 
more soil textures than dataset B, the distribution of λ (θ) data points for 
each texture classification was not uniform, and sparsely distributed 
soils could reduce the ML prediction accuracy. In the future, we can 
systematically extend the soil thermal conductivity dataset of each 
specific texture, to avoid sparse datasets (in the soil texture classification 
map, e.g., Fig. 1a in the red circle part of the data volume) caused errors, 
and to further improve the ML prediction accuracy. 

Fig. 4 shows the prediction of the ML algorithms for dataset A versus 

Table A1 
Summary of the dataset and methods used in this research and in other 
publications.   

Data 
points 

Soil texture ML method Feature 
importance 
ranking 

this 
research 

1602 sand, loam, clay, 
peat 

RF, LR, DT, 
GBDT, KNN, 
NN, GP 

Yes 

Liu et al. 
(2020) 

40 clay BPNN, GA- 
BPNN 

No 

Zhang et al. 
(2020a) 

257 sand, loam, clay ANN No 

Zhang et al. 
(2020b) 

614 sand, clay ANN No 

Rizvi et al. 
(2020) 

80 sand GMDH No 

Cui et al. 
(2020) 

609 sand, clay, 
boulder, breccia, 
weathered rock 

SVR No 

Yurttakal 
(2021) 

257 sand, loam, clay XGBoost, 
LightGBM 

Yes 

Abbreviations: ML, Machine learning; DT, Decision Tree; RF, Random Forest; 
GBDT, Gradient Boosting Decision Tree; XGBoost, Extreme Gradient Boosting 
Decision Tree; LightGBM, Light Gradient Boosting Decision Tree; LR, Linear 
Regression; K-Nearest Neighbors; GP, Gaussian Process; KNN, NN, Neural 
Network; ANN, Artificial Neural Network; BPNN, Back Propagation Neural 
Network; GA-BPNN, Back Propagation Neural Network optimized by genetic 
algorithm; SVR, Support Vector Regression; GMDH, Group Method of Data 
Handling. 

Table A2 
References for the soil texture classification and the soil thermal property measurements of 189 soils (1602 data points) that we used.  

Literature source Data 
points 

No. of 
soil 

Country Soil texture Method of soil particle-size 
analysis 

Method of λ 
measurement 

Bachmann et al. 
(2001) 

24 1 Germany Loamy sand Null DPHP 

Chen et al. (2012) 484 42 China Silt loam, Sandy loam, Sand, Loamy sand Laser Particle Size Analyzer SPHP 
Ghuman and Lal 

(1985) 
4 1 Nigeria Clay Null SPHP 

Kasubuchi et al. 
(2007) 

18 2 Japan Loam, Clay Null DPHP 

Lu et al. (2007) 118 10 China, US Loam, Silt loam, Sandy loam, Clay loam, 
Sand 

Pipette method Thermo-TDR 

Lu et al. (2011) 6 1 China Silty clay Pipette method Thermo-TDR 
Ochsner et al. (2001) 49 4 China Silt loam, Sandy loam, Clay loam Pipette method Thermo-TDR 
Tarnawski et al. 

(2015) 
234 39 Canada Loam, Silt loam, Sandy loam, Sand, Loamy 

sand 
Laser Particle Size Analyzer Thermal-conductivity 

probe 
Zhao et al. (2018) 617 85 China Loam, Silty loam, Sandy loam, Sand, Loamy 

sand 
Laser Particle Size Analyzer DPHP 

Zhao et al. (2019) 48 4 Canada Sand, Loamy sand Null DPHP  
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the empirical models. Consistent with the results in Fig. 3, ML algo
rithms generally outperform the empirical models. The three best per
forming ML algorithms (GBDT, NN, RF) correspond to scatter plots with 
the least data dispersion (Fig. 4a, b, c, h, i, j), however, the predictions of 
the empirical models (1602 data points) are loosely distributed around 
the 1:1 line. The standard errors of ML algorithms are significantly 
smaller than the empirical models (Fig. 4o–s)). The standard errors of 
the three best performing ML algorithms are between 0.18 and 0.23, 
while the standard errors of the best three empirical models (Lu (2007), 
Côté and Konrad (2005), Johansen (1975)) are distributed between 0.28 
and 0.29. The three empirical models mentioned above have at least 
21.7% higher standard errors compared to the three best performing ML 
algorithms. Similar to the results displayed in Fig. 3, the scatter plot in 
Fig. 4 vividly demonstrates that the accuracy of the validation set is 
higher than that of the test set. However, an independent test set (and 
cross validation), other than the validation set should be used to further 
evaluate ML algorithms to obtain unbiased results. 

Fig. 3 shows that the ranking of the three best performaning 
empirical models is: Lu (2007), Côté and Konrad (2005) and Johansen 
(1975). For dataset A (Fig. 3a–c), the mean values of RMSE, NSE and AD 
for the three models on the validation set are 0.314 W m−1 K−1, 0.677, 
and -0.049 W m−1 K−1, respectively. On the test set, the mean values of 
RMSE, NSE, and AD are 0.303 W m−1 K−1, 0.692, -0.052 W m−1 K−1, 
respectively. We note that for our dataset, the RMSE of Lu (2007) is 
roughly twice the value reported by Lu et al. (2007). Although this is one 
of the best empirical models, it failed to achieve the accuracy reported 
by Lu et al. (2007), when the soil sample set is large and contains a 
variety of soil textures. This result is consistent with He et al. (2020a), 
who evaluated 24 empirical models on 16 soils (439 data points), and 
found that none of the empirical thermal conductivity models applied 
well to the entire range of soils. In addition, our results (Figs. 3 and 4) 
further show that even the best performing empirical models (Lu et al. 
(2007), Côté and Konrad (2005), Johansen (1975) do not perform as 

well as the best ML algorithms (GBDT, NN, RF). Specifically, for the 
validation set, the average RMSE of the three ML algorithms is 60.2% of 
the RMSE of the three empirical models. For the test set, the average 
RMSE of the three ML algorithms is 77.1% of the RMSE of the three 
empirical models. Except for LR, all of the ML algorithms outperform the 
empirical models. However, most recent studies on soil thermal con
ductivity with ML algorithms do not consider cross validation (Cui et al., 
2020; Rizvi et al., 2020; Zhang et al., 2020a). 

The prediction accuracy of all 5 empirical models were ranked as Lu 
(2007) > Côté and Konrad (2005) > Johansen (1975) > Campbell 
(1985) > de Vries (1963). Among them, Campbell (1985) and de Vries 
(1963) performed the worst (with RMSE > 0.43 W m−1 K−1 and NSE <
0.37). This agrees with the results of both He et al. (2020a) and Liu et al. 
(2021). The prediction accuracy of the normalized empirical models (Lu 
(2007), Côté and Konrad (2005) and Johansen (1975)) was higher than 
those of the semi-physical model (de Vries (1963)) and the regression 
model (Campbell (1985)). The significance test based on RMSE, R2 and 
NSE revealed that (except for the NSE of Johansen (1975) on the vali
dation set which was significantly different from Lu (2007)) there was 
no significant difference among the three models (Lu (2007), Côté and 
Konrad (2005) and Johansen (1975)). Tong et al. (2016); Yan et al. 
(2019); Zhang et al. (2018); Zhao et al. (2019) also found that although 
Lu (2007) and Côté and Konrad (2005) redefined the Ke~Sr and λdry 
relationship based on the Johansen (1975) model, the performance of 
these three models were similar. However, we have to emphasize that 
Lu (2007) was proposed to improve the performance of Côté and Kon
rad (2005) at low water content, especially on fine-textured soils. If we 
compare these three models at low Sr, we might find superiority of Lu 
(2007) over both Côté and Konrad (2005) and Johansen (1975). The 
poor predictions of the Campbell (1985) model were related to the fact 
that the model needed to be calibrated for different soils to obtain the 
model parameters. The Campbell (1985) model was prone to underes
timation (Wang et al. (2012) when parameters were not calibrated. This 

Fig. A1. Map of the Chinese sampling locations (140 soils, 1254 data points). In this study, we collected a total of 1602 (189 soils) values of λ (θ). Of the 1602 data 
points, the majority were from China (1254) and Canada (282). 
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was consistent with our results (Fig. 4r: Campbell (1985) model 
underestimated thermal conductivity by 30%). Another drawback was 
that the Campbell (1985) model was not suitable for soils with zero clay 
content (Campbell, 1985) . The de Vries (1963) model was the worst 
performer, compared to all of the ML algorithms as well as the other 
empirical models. The poor performance of the de Vries (1963) model 
might originate from the underlying model assumptions. To calculate 
the temperature gradient ratios, soil solid particles were assumed to be 
ellipsoidal (de Vries, 1963 pp. 214), whereas the actual soil particles 
were not always ellipsoidal (Tang and Li, 2018). Based on the above 
results and analysis, for empirical model, we do not recommend the use 
of the Campbell (1985) and de Vries (1963) models. This statement 
needs to be further validated in the future for datasets which include a 
wide range of soil textures and data points. 

3.2. Feature importance 

It is important to quantify the influence of major parameters or 
factors (θ, fsand, fsilt, fclay, fOM, fq, ρb, n) on the soil thermal conductivity. In 
ML, feature importance ranking can measure contributions of each input 
feature (factor) to the performance of a ML model. This method has 
become a powerful tool for facilitating understanding of a learning 
system and discovery of key factors in a specific domain. By ranking the 
importance scores, we used feature importance (Casalicchio et al., 2018) 
to analyze the importance of different features and identified the most 
important potential feature of the model. In this study, we used two 
feature importance ranking algorithms, the RF algorithm (Albert and 
Linville, 2020) and the GBDT algorithm (Weng et al., 2019). We ranked 
the characteristic importance of eight parameters (θ, fsand, fsilt, fclay, fOM, 
fq, ρb, n). As shown in Fig. 5, the importance rankings given by the two 
algorithms are basically the same. Both RF and GBDT show that θ and ρb 
are the two most important features, and their combined importance 
value exeeds 80%. In particular, the importance value of θ exceeds the 
sum of the importance values of the other factors, and ρb is the second 
most important feature as expected. Significance tests show that the 
feature importance of θ is significantly higher than that of ρb for both RF 
and GBDT. Meanwhile, both θ and ρb are significantly higher than the 
other factors importance. fq is the third most important feature, which 
agrees with the conclusion of He et al. (2020a), therefore, it is necessary 
to consider the effect of quartz content on λ prediction. 

The feature importance analysis is valuable for empirical model 
development. By selecting the most important features and omitting 
those with low feature importance scores, more robust and concise 
empirical models can emerge with prediciton accuracy comparable to 
the ML algorithms. 

Fig. 5(a) and (b) differed in the number of features involved in the 
ranking. Fig. 5(a) included 8 features, while θ was removed in Fig. 5(b) 
in order to test whether the ranking of the remaining 7 features was 
sentitive or not to the presence of θ. Although the results of the GBDT 
and RF algorithms are similar (Fig. 5), the consistency of the results of 
the RF algorithm is better. The order of importance values given by the 
RF method in Fig. 5(a) is completely consistent with that of Fig. 5(b) (ρb 
> fq > n > fOM > fclay > fsilt > fsand). The following mechamism can 
explain why the bulk density and quartz content are more important 
than other factors. Higher bulk density leads to the decrease in porosity 
and more solid contacts. As thermal conductivity of soil solid is higher 
than that of water and air, thus more solid contact also leads to an in
crease in λ. Thermal conductivity of quartz is much higher than other 
minerals thus dominant in determining λ (Campbell, 1985). The big 
differences on the importance of ρb and n could be related to the 
violation of the commonly used constant soil particle density (2.65 g 
cm−3) assumption. According to the research of Flint and Flint (2002) 
and Keller and Håkansson (2010), there exist significant soil particle 
density variations (Tolimir et al., 2020) especially for soil samples across 
the continental scale, just like the samples we used. There are two in
consistencies (or contradictions) in GBDT (yellow arrows in Fig. 5a) 

indicating that fq > n, which contradicts the results in Fig. 5(b) (fq < n); 
green arrows of Fig. 5(a) indicate that fOM < fsilt, which contradicts with 
the results in Fig. 5(b) (fOM > fsilt). 

Our results presented above demonstrate that feature importance 
ranking using the RF algorithm is more reliable than using the GBDT 
algorithm. Therefore, we recommend using RF for future feature 
importance ranking. Our GBDT results differ from the GBDT results of 
Yurttakal (2021) (which contain 257 λ values), who report the top three 
parameters as fclay, fq and Sr. The differing results may be related to 
different sizes of datasets analyzed, for example our 1602 values versus 
their 257 values. Another possible explaination is that their analysis did 
not consider fsilt and fOM, and they used Sr instead of θ. 

Although fsand, fsilt, fclay, fq, fOM are the components of soil solids, the 
sum of the feature importance of these five components is not close to 
that of soil bulk density. For the RF algorithm, we find that, the sum of 
the feature importance score of these five variables (fsand, fsilt, fclay, fq, 
fOM) is 0.152, which is smaller than the feature importance score of soil 
bulk density (0.253). For the GBDT algorithm, the trend is similar to that 
of RF. The sum of the feature importance score of these five variables is 
0.135, which is also smaller than the feature importance score of soil 
bulk density (0.275). 

Although we find that the ML methods significantly improve the 
accuracy of λ estimations, thus, provide a potential way to improve soil 
heat flux and energy balance estimations. Other soil thermal conduc
tivity related research, such as thermal inertia (Colombo et al., 2019) 
and soil moisture monitoring will also benefit from improved λ predic
tion. We also realize that the ML estimation process is a "black box" and 
cannot provide a physically meaningful interpretation of the estimation 
results. The feature importance ranking does quantify the key factors 
affecting λ, which can lead to fine tuning or further development of 
empirical soil thermal conductivity models. However, in this research, 
there are only a limited number of training data points for clay and peat 
soils, which cause the performances of the ML algorithms to worsen for 
these soil types. To further test and evaluate the effectiveness of ML 
algorithms to estimate thermal conductivity and to validate the findings 
of this study, additional soil types (especially for clay and peat soils) can 
be evaluated and the number of data points can be expanded further. 

4. Conclusions 

By evaluating seven ML algorithms and five empirical models of soil 
thermal conductivity (Campbell, 1985; Côté and Konrad, 2005; de 
Vries, 1963; Johansen, 1975; Lu et al., 2007), we found that three of the 
ML algorithms (GBDT, NN, RF) provided much better and consistent λ 
estimations than the empirical models. GBDT, NN and RF reduced RMSE 
by at least 11.6% and improved NSE by 7.7% on the test set of dataset A 
compared with the empirical models. All three reduced RMSE by at least 
16.0% and improved NSE by 12.7% on the test set of the smaller dataset 
B compared with the empirical models. Our study demonstrated that λ 
values of a wide variety of soil types could be effectively estimated by 
ML algorithms. Empirical models based on the concept of normalization 
(Lu et al., 2007; Côté and Konrad, 2005, Johansen, 1975) outperformed 
physical models (de Vries (1963)) and regression models (Campbell 
(1985)). Feature importance ranking of RF was more consistent than the 
ranking of GBDT. The RF-based feature importance ranking indicated 
that the sum of the importance values for θ and ρb was 81%. 
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