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Soil thermal conductivity (1) is an important thermal property that is crucial for surface energy balance and
water balance studies. 1602 measured soil thermal conductivity values representing 189 soils were used to
evaluate five empirical models (i.e., de Vries (1963) model (de Vries 1963), Campbell (1985) model (Camp-
bell1985), Johansen (1975) model (Johansen 1975), Coté and Konrad (2005) model (Coté and Konrad 2005),
and Lu et al. (2007) model (Lu 2007)) and seven machine learning (ML) algorithms (i.e., Decision Tree (DT),
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Linear Regression (LR), K-Nearest Neighbors
(KNN), Neural Network (NN), and Gaussian Process (GP)) to estimate A. Our results demonstrated that the
average root mean squared error (RMSE) values of ML were 66% and 82% of the empirical model values on
validation and test sets respectively. The three best ML algorithms (GBDT, NN, RF) performed significantly better
than the three best empirical models (Lu 2007, Coté and Konrad 2005, Johansen 1975): 0.183 < RMSE < 0.259
(W m~! K1) for ML algorithms and 0.293 < RMSE < 0.320 (W m~! K1) for empirical models. For ML, we
recommend the GBDT, NN and RF algorithms. For empirical models, we recommend to use three normalized
models (Lu 2007, Coté and Konrad 2005, Johansen 1975) over the physically-based model (DV1963) and the
regression model (CG1985). The feature importance rankings performed by the RF and GBDT algorithms show
that soil moisture content and soil bulk density are the most critical factors affecting 1. Soil moisture content and
soil bulk density together account for more than 80% of the influence importance value of A. RF gives more
consistent feature importance ranking results than GBDT, therefore, we recommend the use of RF for selecting
features.

such as texture, bulk density (pp), water content (6), and porosity (n) (He
et al., 2020b). However, there is no widely recognized empirical model
that is applicable to all soil types.

1. Introduction

Soil thermal conductivity (1) is an important thermal property (Coté

and Konrad, 2005; Johansen, 1975; Lu et al., 2007). 4 is necessary for
quantitative descriptions of soil heat transfer, hydrothermal coupling,
and other related heat and mass transfer processes (He et al., 2018,
2020a; Li and Shao, 2005; Peters-Lidard et al., 1998). Because rapid and
accurate measurements of A require specialized equipment and skill (He
et al., 2020b), researchers have developed a number of empirical A
models (Coté and Konrad, 2005; Johansen, 1975; Lu et al., 2007). These
models account for relationships between A and other soil parameters

Machine learning (ML) is a rapidly growing data analysis method
(Jordan and Mitchell, 2015). It has been applied in natural science
studies (Butler et al., 2018). ML is a general term for a class of algorithms
that find implicit patterns in large numbers of datasets for classification
and prediction. This method has also been applied to agricultural soil
analysis (Liakos et al., 2018), such as for soil classification (Padarian
et al., 2020), soil moisture inversion (Senanayake et al., 2021), and
estimation of soil bulk density pp (Al-Shammary et al., 2018).

Abbreviations: DT, Decision Tree; GBDT, Gradient Boosting Decision Tree; GP, Gaussian Process; KNN, K-Nearest Neighbors; RF, Random Forest; LR, Linear

Regression; ML, Machine learning; NN, Neural Network.
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Fig. 1. Soil samples of two dataset classifications plotted based on the USDA soil texture classification triangle. (a) Dataset A: 189 soils with 1602 data points;(b)
Dataset B: 164 soils with 1398 datapoints (By removing the 25 hollow red circle of (a)).

Recently, ML algorithms have been used to estimate 4 (Liu et al.,
2020; Rizvi et al., 2020; Yurttakal, 2021; Zhang et al., 2020b). However,
ML methods have not been tested extensively and comprehensively.
Generally, ML algorithms require large training datasets to avoid over-
fitting (Lever et al., 2016), however, the number of included data points
has, thus far, been relatively small (40 < number of data points < 614, e.
g. (Liu et al., 2020; Yurttakal, 2021; Zhang et al., 2020a; Zhang et al.,
2020b. See Appendix for more information). The generalizability of the
ML algorithm results needs to be further tested by increasing the number
of data points. In addition, prior studies included only a single soil type
or only included a few of the factors that affect A. For example Rizvi
et al. (2020) only estimated 4 for sandy soils, while Cui et al. (2020) only
considered dry density and 6, while the effects of porosity, quartz con-
tent and organic matter content were neglected. Moreover, most of the
previous studies (Cui et al., 2020; Rizvi et al., 2020; Zhang et al., 2020b)
did not rank the importance of the factors (pp, n, soil moisture content (6)
and sand content (finq), silt content (fg,), clay content (fqy), organic
matter content (fop), quartz content (fy)) that affect A. Furthermore, the
vast majority of the earlier studies were based on Neural Network al-
gorithms and their derivatives (Appendix and Liu et al., 2020; Zhang
et al., 2020a; Zhang et al., 2020b), without considering other commonly
used ML algorithms such as GBDT, RF, and GP. Therefore, there is a lack
of comprehensive and extensive comparisons and evaluations of the
performances of various ML algorithms.

In this study, we evaluated and compared the ability of seven
mainstream ML algorithms (Decision Tree (DT), Random Forest (RF),
Gradient Boosting Decision Tree (GBDT), Linear Regression (LR), K-
Nearest Neighbors (KNN), Neural Network (NN), and Gaussian Process
(GP)) to estimate A. The ability of these ML algorithms was also
compared with five popular empirical A models. Finally, we used feature
importance ranking to analyze the contributions of eight factors,
including fsand, fsits felay foms f pb, n and 6 to estimate 1 values.

2. Materials and methods
2.1. Database

The measured 4 values used in this study were extracted from the
following articles: Wang et al. (2020) (e.g., soil numbers 10-26, 28-31,

52-53, 57-62 of Table 1), Ghuman and Lal (1985), Ochsner et al.
(2001), Bachmann et al. (2001), Lu et al. (2011), and Zhao et al. (2018).

We collected a total of 1602 (189 soils) measured 4 (¢) values for a range
of water content 6 values. Of the 1602 groups of 4 (0) data points, most
were from China (1254) (See Appendix Fig. Al for a spatial map of the
sampling locations of the dataset) and Canada (282), and others were
from Germany (24), the United States (20), Japan (18), and Nigeria (4).
According to the spatial distribution of these data points, there is no
noticeable spatial clustering. Because of the limited data source (1602
data points from 189 soils), to avoid overfitting issues related to small
datasets (Lever et al., 2016), we did not split the dataset into a training
dataset and a test dataset based on soil type.

All 2 (0) values were measured by transient methods (Table A-2 of the
Appendix), including the traditional single-probe (SPHP) method and
the dual-probe (DPHP) method. Bristow et al. (1994), Liu and Si (2011)
and Kim and Oh (2020) report that SPHP and DPHP methods provide
similar values of soil thermal conductivity (difference in results between
the two methods is less than 10%). In this research, we include SPHP and
DPHP values in the dataset. For the soil particle size analysis (and soil
texture classification), either the pipette method or the laser particle size
analyzer was used (Table A-2 of the Appendix). The 189 soil samples
included silt loam (71 soils, 547 data points), loamy sand (31 soils, 291
data points), sandy loam (31 soils, 285 data points), sand (33 soils, 284
data points), loam (17 soils, 143 data points), clay loam (2 soils, 23 data
points), clay (2 soils, 13 data points), silty clay (1 soil, 7 data points), and
Peat (1 soil, 9 data points). Specific soil texture information according to
USDA classification is presented in Fig 1.

In the following analysis, we used two different datasets. Dataset A
includes the whole dataset (189 soils and 1602 data points), and Dataset
B (164 soils with 1398 data points) is a subset of Dataset A. Dataset B
does not include data for the finer-textured soils only represented by a
few soil samples (Fig. 1). We need Dataset B, which only includes soils
with limited clay content (fciqy < 20%), to test whether the performance
of ML is improved or not when the sparse soil samples for a specific soil
texture (in this case, we removed those soils with high clay content f;qy)
was abandoned. It is well known that the volumetric content of quartz is
a key parameter for modeling soil thermal conductivity (Tarnawski
et al., 2012). However, due to expensive experimental apparatus (such
as X-ray diffraction and X-ray fluorescence), reliable and accurate data
of f, for field soils is uncommon. Tarnawski et al. (2009) found weak
correlations between f; with the sum of fy;ng and other soil materials.
Therefore, if the original data sources did not provide f; values, we
assumed fy = 0.5 fygng. This assumption was also used by Hu et al. (2017)
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Fig. 2. Illustration of the split that we used in this study. According to soil texture classification, approximately 20% of the dataset A (1602 data points of 189 soils)
are randomly selected as the test set, never to be used during training and validation. The training-validation subset is randomly divided into training and validation
sets according to 75:25 split ratio (Here, we used random 4-fold cross-validation split with ten repetitions. For illustration purposes, we selected dataset A as

an example).

and Zhao et al. (2018). Meanwhile, our ML predictions (results not
presented here) indicate that RMSE difference between samples with f;
= 0.5 fsand and fq = 1.0 fiang, is less than 3%. The 1602 4 (¢) data points
we obtained included the following parameter values: fiung, fsito felay 6
fom P 1, fq. When soil particle density ps was not reported, but n and pj
were known, ps was calculated from the relationship n = 1-pp/ps. When
ps was not known directly, we assumed p; = 2.65 g cm 3. We included
both pp and n in the analysis (pp is strongly correlated with n and their
correlation coefficient is 0.92, figure not shown here). For soil with a
specified pp, value, n is determined by ps, which is not a constant (Tolimir
etal., 2020) but correlated to the soil mineral component (Birhanu et al.,
2016).

To avoid spatial clustering (i.e., having the spatial location of the
calibration data points close to the locations of test data points), we used
a random data set split (Feinberg et al., 2018; Smirnov et al., 2020)
based on the soil texture classification (Fig. 2). We randomly selected
soils which contained approximately 20% of the data points in the total
dataset (dataset A and dataset B) as the test set. In this way, the test
dataset contained the entire 1 (0) data points of the selected soils. No
partial 4 (0) data points of any of the 189 soils (or 164 soils for dataset B)
existed in the test set. Therefore, all datapoints for the test set were
unseen in the training-validation set, which insured that the test dataset
was unbiased. As illustrated in Fig. 2, the training-validation/test split
was accomplished by randomly selecting approximately 80% (based on
the total datapoints of 4 (0)) of the soil data as the training-validation set,
and the remaining 20% of the data (for dataset A: 1602 x 20% =~ 320
data points) was selected as the test dataset. As a result, there were no
data points in the test set that also belonged to the soils in the
training-validation set. The random k-folds cross validation method
(Meyer et al,, 2019) with k = 4 was used to further split the
training-validation set. A 75:25 split ratio (Wada et al., 2019) was used

to randomly divide the data into the training set and the validation set
(Feinberg et al., 2018; Smirnov et al., 2020). In this way, for both dataset
A and dataset B, the size of the validation (80% x 25% = 20% of the full
dataset) was approximately the same as the size of the test set (20% of
the full dataset). Note that, unlike the traditional method, to avoid the
drawback (higher error rate when k < 8 for k-fold cross validation (Guo
et al., 2019)) of the traditional 4-fold cross validation (Wada et al.,
2019) (we performed traditional k-fold cross validation and the results
showed that k = 4 resulted in a large variance for the predicted A, which
agreed with the findings of Bryce Meredig (2018). To overcome the
shortcoming of a 4-fold cross validation, we used random splits (Fein-
berg et al., 2018; Smirnov et al., 2020) to split the training/validation
subset (a total of 10 splits were performed for each given train-
ing/validation subset).

2.2. Five empirical models

There are at least 38 empirical thermal conductivity models of un-
frozen soils (He et al., 2020b). Each empirical model is usually only
applicable to specific soil types (e.g., sandy soils or peaty soils). None of
them can be used to model all soil types (He et al., 2021). In this study,
four widely evaluated and accepted empirical models (Campbell, 1985;
Johansen, 1975; Coté and Konrad, 2005; Lu et al., 2007) and a mixing
model (de Vries, 1963) are selected for comparison with selected ML
algorithms.

de Vries (1963) is a physically based model which uses the weighted
average of the thermal conductivity value of each soil component.

Oy + ko(n1 — O)4s + k(1 — 1) (/lf;'l},’fq)

O+ ka(n—0)+ k(1 —n) )
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In our calculation, we set air thermal conductivity 1, = 0.025 W m!
K! (Montgomery, 1947). 14 (thermal conductivity of quartz) = 7.7 W
m ! K ! (Clauser and Huenges, 1995), 1, (thermal conductivity of other
minerals) = 2.0 Wm 'K (f; > 0.2), 2, =3.0 Wm 'K (f, < 0.2), 4,
(thermal conductivity of water) = 0.57 W m ! K1 were set in this study.
For dry soil, the de Vries (1963) model introduced a correction multi-
plier (1.25) into the Eq. (1). Farouki (1981) calculated the weighting
factor k as

il 2 1
“73 1 +0.025 [ (2207 [2, ~1] "o [(#ea#) fa, 1]
(2)
- : ; !
U3 ke (a ) -] 1 (= 2e0) [ (2a) fa0 1]
3
where g, is a shape factor
_ {0.333 — (0333 - 0.035)(n — 0) /n for0.09 <0 <n @
“ 0.013 +0.9440 for0 < 6 < 0.09

Campbell (1985) proposed the following empirical regression
equation for 1

A=A+ B0~ (A—D)exp| — (CO)*] )

where A = 0.65-0.780p,+0.60pp %, B = 1.06pp6, C = 14+2.6 friay °>, D =
0.03+0.10p2, and E = 4.

Johansen (1975) presented a 4 (¢) model for unsaturated soils which
used a relationship between the Kersten coefficient (K,) and 4.

A=K, (/1\-11: - /‘[dry) + Aary (6)
{ 0.71gS,+1 S, >0.05 coarse o
-~ Lgs, +1 S,>0.1 fine

Here, for unfrozen soil, fine soil and coarse soil is defined as fiqy >
5% and fiqy < 5%, respectively (He et al., 2021). K, is related to soil
saturation Sy (S, =6/n), where Ao and Agry are the thermal conductivity
values of saturated and dry soil, respectively.

=2 (1) @

_0.135p, +64.7

Ay =
72700 — 0.947p,

9

Coté and Konrad (2005) improved the Johansen (1975) model by
introducing a parameter k that reflects soil texture, and the relationship
between K, and S, is

K, =kS, /[1+ (k=15 10)

For gravels (and coarse sands), medium sand (and fine sands), silty
soils and peaty soils, k is 4.60, 3.55, 1.90 and 0.60, respectively. Based
on the values of fing and fiqy, He et al. (2021) gave detailed standards to
distinguish various soils according to their texture (fine, medium and
coarse; See Table 3 of He et al. (2021) for more details). In this study we
followed these standards. Because the complete mineral compositions of
the majority of our soil are unknown, A is calculated according to the
Johansen (1975) model (Eq. (8)), but A4y is computed by

Aary = 7107 an

where y and 5 are parameters related to soil texture as described by Coté
and Konrad (2005). For natural soils, y and n is 0.75 and 1.20,
respectively.

In order to extend the 1 (¢) model to small water content conditions,
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Lu et al. (2007) modified the K, expression to

K. = exp{a[l — s ¥} (12)

where « is a soil texture parameter, which is 0.96 and 0.27 for coarse-
textured and fine-textured soils respectively. For the Lu (2007) model,
Asat is calculated using the Johansen (1975) model (Eq. (8)), and Agry is
assumed to be linearly related to porosity (n) (Lu et al. (2007).

Aary = —0.56n +0.51 13)

Johansen (1975), Coté and Konrad (2005) and Lu (2007) models
were called normalized soil thermal conductivity models (He et al.,
2020a). After evaluating the performance of 38 normalized empirical
models on a dataset which contained 669 data points (71 soils), He et al.
(2020b) recommended the use of Johansen (1975), Coté and Konrad
(2005), Lu (2007) model.

2.3. Seven ML algorithms

We include the following ML algorithms: Decision Tree (DT),
Gradient Boosting Decision Tree (GBDT), Neural Network (NN),
Random Forest (RF), Gaussian Process (GP), K-Nearest Neighbors
(KNN), and Linear Regression (LR). Detailed descriptions of these al-
gorithms can be found in Aurélien (2017). DT is based on a tree-like
structure for making decisions, and has the advantage of being very
interpretable. RF is a type of DT in which each tree has a release to
extract a portion of the training set. It can be used for classification and
regression problems and can handle high-dimensional data. GBDT is a
boosting algorithm based DT, which first gives an estimation of the
target value, and then uses another "tree" to estimate the error between
the estimated value and the true value. This method obtains the final
estimated value by continuously reducing the error, but the training is
time consuming. LR refers to the use of a linear function to estimate the
relationship between variables and target values. This algorithm can
give regression formulas, a feature that significantly distinguishes it
from other machine learning algorithms. The principle of KNN is to
calculate the distance of a given value from all other samples and rank
them. The disadvantage of this algorithm is that the computation is time
consuming when the amount of data is large. NN in this study refers to
artificial neural network (ANN), which is a supervised learning algo-
rithm. NN is mainly divided into input layer, hidden layer, and output
layer. The principle is to find the weights of the connections between
neurons and the threshold values of the neurons. Because the initial
values of the neural network are given randomly, a large amount of data
is needed to improve the estimation accuracy. Statistics and Bayesian
theory help GP to be suitable for processing high-dimensional nonlinear
small samples. All ML algorithms and calculations were performed with
Wolfram Mathematica 12.1 (Wolfram Research, Inc., Champaign, IL).
The "L2Regularization" (Smirnov et al., 2020) of "LogisticRegression", as
well as "FeatureFraction" (Quezada, 2019), "LeafSize" (Song and Lu,
2015) and "DistributionSmoothing" (Quezada, 2019) were used to pre-
vent overfitting of data.

2.4. Model performance assessment

In this study, root mean square error (RMSE), Nash-Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe, 1970) and average deviations (AD),
were selected to evaluate the estimation accuracy of both ML algorithms
and empirical thermal conductivity models.

m v \2

RMSE = —Z":‘(Z* Y) 14
m v \2

NsE — 1 - i Vi) (15)
Zi’:](Yi - Y)z
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Fig. 3. Performance of seven ML algorithms with five empirical models. (a), (b), (c): 189 different soils (1602 data points, see Fig 1(a) for classification of soils
according to texture); (d), (e), (f): 164 different soils (1398 data points, see Fig 1(b) for classification of soils according to texture). (Note: The green pentagram
represents the result of using the full dataset or all datapoints (dataset A: 1602 data points, dataset B: 1398 data points)).

AD =

where Y; and

i (Yi—Y)

(16)

/171 represent measured and predicted values of 4,

respectively. Y is the mean value of Y; and m represents the total
number of data points. In our analysis, we found that mean absolute
error (MAE) was strongly correlated with RMSE (Pearsons’ correlation
coefficient is r ~ 0.94). Therefore, we decide not to use MAE. In this
study, analyses of variance and correlation analyses were performed

using SPSS software (version 21.0, SPSS Inc., Chicago, IL). The com-
parisons of different ML algorithms, as well as empirical models were
performed by using one-way ANOVA, followed by a least significant
difference test (P < 0.05).
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3. Results and discussion

3.1. Empirical models versus machine learning algorithms

Fig. 3a, b, d, and e indicate that among all of the ML algorithms,
GBDT, NN, and RF perform the best. For dataset A (Fig. 3a—c), on the
validation dataset, GBDT > NN > RF, (0.183 W m ! K ! < RMSE <
0.210 Wm ™! K™}, 0.854 < NSE < 0.889, -0.005 W m ' K™ < AD <

00 05 10 15 20

Measured 2 (W m™' K) Measured 1 (W m™ K™')

.0
00 05 10 15 20 25 30

Measured A (W m! K1)
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Fig. 4. Performance of the ML algorithms
and the empirical models in dataset A. Lines
(red and blue) are the best fitted lines with
linear regression. R? and standard error (S)
are the coefficient of determination and
standard error of each linear regression.
Abbreviation: Gradient Boosting Decision
Tree (GBDT), Neural Network (NN),
Random Forest (RF), Gaussian Process (GP),
Nearest Neighbors (KNN), Decision Tree
(DT), Linear Regression (LR), Lu et al
(2007) model (1.2007), Coté and Konrad
(2005) model (CK2005), Johansen (1975)
model (JO1975), Campbell (1985) model
(CG1985), and de Vires (1963) model
(DV1963). Fig. 4a-g and Fig. 4h-g are the
results of 10 repetitions for random sam-
pling of the validation set and the test set,
respectively. For both Fig. 4a-g and
Fig. 4h-n, there are roughly 3200 data
points (1602 x 20% x 10 ~ 3200). The
different color points indicate the results of
repetitions of the ML algorithms in
Fig. 4a-n. For the five empirical models, the
full dataset (all 1602 data points) were
included in the plot and RMSEs calculation.
Here m represents the total number of data
points. (For interpretation of the references
to colour in this figure legend, the reader is
referred to the web version of this article.).

0.008 Wm ™' K™1). While, for the test dataset, NN > RF > GBDT, (0.238
Wm 'K <RMSE < 0.259 Wm ' K™%, 0.767< NSE < 0.804, 0.003 W
m ! K! < AD < 0.030 Wm™! K™1). The significance test results showed
that RF, which ranked third, was significantly different from GBDT, NN
in the validation dataset, while there was no significant difference
among these three algorithms in the test set. We ranked the seven ML
algorithms based on their performances for dataset A (both the valida-
tion and test set): GBDT or NN > RF > KNN > (DT/GP/LR). Overall,
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Fig. 5. Feature importance for sand content (fyana), silt content (fg), clay content (f.q,), organic matter content (fou), quartz content (fy), soil bulk density (pp), soil
porosity (n), and soil water content (). Eight factors are sorted in (a) and seven factors (¢ was excluded) are sorted in (b). Error bars of each column represent

standard deviation.

Fig. 3a, b, d, and e show that our ML ranking is similar to other reports.
For example, NN outperformed RF (Ahmad et al., 2017), KNN (Alireza
et al., 2010) and DT (Li et al., 2019); RF outperformed KNN (Ren et al.,
2020), GP (Hultquist et al., 2014; Ly et al., 2021); GBDT outperformed
DT (Lv et al., 2021). For saturated hydraulic conductivity predictions,
Fig. 3 of Araya and Ghezzehei (2019) illustrated that the overall per-
formance is BRT (similar to GBDT) > RF > KNN, which agrees with our
results of Fig. 4. We expect a similar ranking of the performance of these
seven ML algorithms when they were used in other branch of soil
physics. However, to our knowledge, few publications exist to test this
statement.

We selected three indicators (RMSE, NSE and AD) to analyze the
performance of each model (Fig. 3), and the ranking given by these three
indicators was quite consistent. RMSE and NSE values in Fig. 3 are

highly correlated with the Pearsons’ correlation coefficient (r > 0.98).
AD did not perform as well as RMSE and NSE, e.g., it is difficult to see the
ranking of GBDT, NN, RF, KNN, DT, GP in Fig. 3c and f. However, Fig. 3
clearly demonstrated that ML algorithms performed significantly better
than the empirical models. As to the empirical models, Campbell (1985)
and de Vries (1963) were significantly different from the other empirical
models: the AD of the other models ranged from -0.085 W m~! K™! to
0.032 W m ™! K™! except for the Campbell (1985) and de Vries (1963)
(AD of Campbell (1985) < -0.165 W m~! K ! and the AD of de Vries
(1963) > 0.336 Wm ™ K™ 1).

Similar to the conclusion of Li et al. (2017) and Jahan et al. (2021),
Fig. 3a, b, d, and e also show that DT and LR perform the worst. The
linear assumption of LR was not suitable to capture the nonlinear 1 (6)
relationship, and thus, performed poorly. GBDT, which was derived
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Table Al
Summary of the dataset and methods used in this research and in other
publications.

Data Soil texture ML method Feature
points importance
ranking
this 1602 sand, loam, clay, RF, LR, DT, Yes
research peat GBDT, KNN,
NN, GP
Liu et al. 40 clay BPNN, GA- No
(2020) BPNN
Zhang et al. 257 sand, loam, clay ANN No
(2020a)
Zhang et al. 614 sand, clay ANN No
(2020b)
Rizvi et al. 80 sand GMDH No
(2020)
Cui et al. 609 sand, clay, SVR No
(2020) boulder, breccia,
weathered rock
Yurttakal 257 sand, loam, clay XGBoost, Yes
(2021) LightGBM

Abbreviations: ML, Machine learning; DT, Decision Tree; RF, Random Forest;
GBDT, Gradient Boosting Decision Tree; XGBoost, Extreme Gradient Boosting
Decision Tree; LightGBM, Light Gradient Boosting Decision Tree; LR, Linear
Regression; K-Nearest Neighbors; GP, Gaussian Process; KNN, NN, Neural
Network; ANN, Artificial Neural Network; BPNN, Back Propagation Neural
Network; GA-BPNN, Back Propagation Neural Network optimized by genetic
algorithm; SVR, Support Vector Regression; GMDH, Group Method of Data
Handling.

directly from the classical DT, significantly outperformed DT (Lv et al.,
2021). We also found that, unlike other ML methods, the results of the
GP method had a large variance (Fig. 3a and b), especially for dataset A.
The reason might be that the GP method assumed that the data points
had a Gaussian normal distribution (Hultquist et al., 2014), and thus, for
cases when the dataset was more discrete or only had a few data points,
the accuracy of the GP prediction decreased.

Fig. 3 also indicates that ML algorithms generally outperform the
empirical models for both the validation and test cases. For dataset A
(Fig. 3a—c), comparing the three best performing ML algorithms (GBDT,
NN, RF) with the three empirical models Lu (2007), Coté and Konrad
(2005), Johansen (1975), we find that for the validation set, the average
RMSE of these three ML algorithms was 62.4% of the average RMSE of
the three empirical models. For the test set, the prediction accuracy of
the three ML algorithms decreased slightly, and the average RMSE value
was 82.5% of the RMSE values for the three empirical models. In the
validation set, when the best performing empirical model ((Lu, 2007),
RMSE = 0.306 Wm ™! K™ in the validation, RMSE = 0.293 Wm ! K}
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in the test set) was selected for comparison, the RMSEs of GBDT, NN and
RF were reduced by 31.4 to 40.4%, and NSE was improved by 23.2 to
28.3%j; in the test set, the RMSE of GBDT, NN and RF decreased by 11.6
to 18.8%, and NSE improved by 7.7 to 12.9%. ML algorithms always
performed better on the validation set compared to the test set. One
possible explanation was that the soils of the test set (and thus the A ()
curve) were absolutely independent from the soils of the training set,
and the soils of these two sets had zero common shared elements
(intersection was zero). On the contrary, the soils of the validation set
could overlap with the soils in the training set. In other words, the
validation set contained a partial portion of the specific 4 (6) curve of a
given soil that had already been used in the training set. Therefore, to
ensure an unbiased prediction for the ML training, a test that was
completely independent from the training set (1 (0) data sets belonging
to different textured soils) should be used. Although our results
demonstrated that ML algorithms outperform the empirical models, this
is not surprising, because these empirical models used few soils (8 soils
for Lu (2007) as an example) for calibrating various parameters. On the
contrary, our ML algorithms used at least 90 soils (for Dataset B: 60% of
164 soils is roughly 98 soils) for training.

The results for dataset A (Fig. 3a, b, ¢) and dataset B (Fig. 3d, e, f)
showed that the ML algorithms based on dataset B (removing the data of
soils that were sparsely distributed in the soil texture map: 25 soils and
204 data points of dataset A) had higher accuracy and reduced fluctu-
ation (especially for GP). This agrees with our intuition, by limiting the
types of soils of dataset B only to soils (for a specific texture) with suf-
ficient samples, we can improve the prediction accuracy of ML algo-
rithms. Switching from dataset A to dataset B, we noticed that, for both
RMSE and NSE, the number of ML algorithms that outperformed the
empirical models increased from three (GBDT, NN, RF) to six (GBDT,
NN, RF, GP, KNN, DT). Comparing Fig. 3a and b and Fig. 3d and e, we
found that the variance of GP on dataset B decreased significantly
(40.5% for the RMSE indicators (from 0.084 to 0.050) and 75.5% for the
NSE indicators (from 0.318 to 0.078)), which indicated that the GP al-
gorithm was more sensitive to the spatial aggregation, or that the GP
prediction accuracy was improved by removing the 25 soil samples (204
data points) that were more discrete in the spatial distribution map of
soil texture (Fig. 1a). We concluded that although dataset A contained
more soil textures than dataset B, the distribution of 1 (9) data points for
each texture classification was not uniform, and sparsely distributed
soils could reduce the ML prediction accuracy. In the future, we can
systematically extend the soil thermal conductivity dataset of each
specific texture, to avoid sparse datasets (in the soil texture classification
map, e.g., Fig. 1a in the red circle part of the data volume) caused errors,
and to further improve the ML prediction accuracy.

Fig. 4 shows the prediction of the ML algorithms for dataset A versus

Table A2
References for the soil texture classification and the soil thermal property measurements of 189 soils (1602 data points) that we used.
Literature source Data No. of Country Soil texture Method of soil particle-size Method of A
points soil analysis measurement
Bachmann et al. 24 1 Germany Loamy sand Null DPHP
(2001)
Chen et al. (2012) 484 42 China Silt loam, Sandy loam, Sand, Loamy sand Laser Particle Size Analyzer SPHP
Ghuman and Lal 4 1 Nigeria Clay Null SPHP
(1985)
Kasubuchi et al. 18 2 Japan Loam, Clay Null DPHP
(2007)
Lu et al. (2007) 118 10 China, US Loam, Silt loam, Sandy loam, Clay loam, Pipette method Thermo-TDR
Sand
Lu et al. (2011) 6 1 China Silty clay Pipette method Thermo-TDR
Ochsner et al. (2001) 49 4 China Silt loam, Sandy loam, Clay loam Pipette method Thermo-TDR
Tarnawski et al. 234 39 Canada Loam, Silt loam, Sandy loam, Sand, Loamy  Laser Particle Size Analyzer Thermal-conductivity
(2015) sand probe
Zhao et al. (2018) 617 85 China Loam, Silty loam, Sandy loam, Sand, Loamy  Laser Particle Size Analyzer DPHP
sand
Zhao et al. (2019) 48 4 Canada Sand, Loamy sand Null DPHP
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Fig. A1. Map of the Chinese sampling locations (140 soils, 1254 data points). In this study, we collected a total of 1602 (189 soils) values of 1 (9). Of the 1602 data

points, the majority were from China (1254) and Canada (282).

the empirical models. Consistent with the results in Fig. 3, ML algo-
rithms generally outperform the empirical models. The three best per-
forming ML algorithms (GBDT, NN, RF) correspond to scatter plots with
the least data dispersion (Fig. 4a, b, ¢, h, i, j), however, the predictions of
the empirical models (1602 data points) are loosely distributed around
the 1:1 line. The standard errors of ML algorithms are significantly
smaller than the empirical models (Fig. 40-s)). The standard errors of
the three best performing ML algorithms are between 0.18 and 0.23,
while the standard errors of the best three empirical models (Lu (2007),
Coté and Konrad (2005), Johansen (1975)) are distributed between 0.28
and 0.29. The three empirical models mentioned above have at least
21.7% higher standard errors compared to the three best performing ML
algorithms. Similar to the results displayed in Fig. 3, the scatter plot in
Fig. 4 vividly demonstrates that the accuracy of the validation set is
higher than that of the test set. However, an independent test set (and
cross validation), other than the validation set should be used to further
evaluate ML algorithms to obtain unbiased results.

Fig. 3 shows that the ranking of the three best performaning
empirical models is: Lu (2007), Coté and Konrad (2005) and Johansen
(1975). For dataset A (Fig. 3a—c), the mean values of RMSE, NSE and AD
for the three models on the validation set are 0.314 W m™! K™, 0.677,
and -0.049 W m~! K1, respectively. On the test set, the mean values of
RMSE, NSE, and AD are 0.303 W m ™! K™}, 0.692, -0.052 Wm ' K},
respectively. We note that for our dataset, the RMSE of Lu (2007) is
roughly twice the value reported by Lu et al. (2007). Although this is one
of the best empirical models, it failed to achieve the accuracy reported
by Lu et al. (2007), when the soil sample set is large and contains a
variety of soil textures. This result is consistent with He et al. (2020a),
who evaluated 24 empirical models on 16 soils (439 data points), and
found that none of the empirical thermal conductivity models applied
well to the entire range of soils. In addition, our results (Figs. 3 and 4)
further show that even the best performing empirical models (Lu et al.
(2007), Coté and Konrad (2005), Johansen (1975) do not perform as

well as the best ML algorithms (GBDT, NN, RF). Specifically, for the
validation set, the average RMSE of the three ML algorithms is 60.2% of
the RMSE of the three empirical models. For the test set, the average
RMSE of the three ML algorithms is 77.1% of the RMSE of the three
empirical models. Except for LR, all of the ML algorithms outperform the
empirical models. However, most recent studies on soil thermal con-
ductivity with ML algorithms do not consider cross validation (Cui et al.,
2020; Rizvi et al., 2020; Zhang et al., 2020a).

The prediction accuracy of all 5 empirical models were ranked as Lu
(2007) > Coté and Konrad (2005) > Johansen (1975) > Campbell
(1985) > de Vries (1963). Among them, Campbell (1985) and de Vries
(1963) performed the worst (with RMSE > 0.43 W m 'K ! and NSE <
0.37). This agrees with the results of both He et al. (2020a) and Liu et al.
(2021). The prediction accuracy of the normalized empirical models (Lu
(2007), Coté and Konrad (2005) and Johansen (1975)) was higher than
those of the semi-physical model (de Vries (1963)) and the regression
model (Campbell (1985)). The significance test based on RMSE, R? and
NSE revealed that (except for the NSE of Johansen (1975) on the vali-
dation set which was significantly different from Lu (2007)) there was
no significant difference among the three models (Lu (2007), Coté and
Konrad (2005) and Johansen (1975)). Tong et al. (2016); Yan et al.
(2019); Zhang et al. (2018); Zhao et al. (2019) also found that although
Lu (2007) and Coté and Konrad (2005) redefined the K,~S, and Agr,
relationship based on the Johansen (1975) model, the performance of
these three models were similar. However, we have to emphasize that
Lu (2007) was proposed to improve the performance of Coté and Kon-
rad (2005) at low water content, especially on fine-textured soils. If we
compare these three models at low S;, we might find superiority of Lu
(2007) over both Coté and Konrad (2005) and Johansen (1975). The
poor predictions of the Campbell (1985) model were related to the fact
that the model needed to be calibrated for different soils to obtain the
model parameters. The Campbell (1985) model was prone to underes-
timation (Wang et al. (2012) when parameters were not calibrated. This
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was consistent with our results (Fig. 4r: Campbell (1985) model
underestimated thermal conductivity by 30%). Another drawback was
that the Campbell (1985) model was not suitable for soils with zero clay
content (Campbell, 1985) . The de Vries (1963) model was the worst
performer, compared to all of the ML algorithms as well as the other
empirical models. The poor performance of the de Vries (1963) model
might originate from the underlying model assumptions. To calculate
the temperature gradient ratios, soil solid particles were assumed to be
ellipsoidal (de Vries, 1963 pp. 214), whereas the actual soil particles
were not always ellipsoidal (Tang and Li, 2018). Based on the above
results and analysis, for empirical model, we do not recommend the use
of the Campbell (1985) and de Vries (1963) models. This statement
needs to be further validated in the future for datasets which include a
wide range of soil textures and data points.

3.2. Feature importance

It is important to quantify the influence of major parameters or
factors (6, fsand, fsitw felay foms fo» Pb 1) on the soil thermal conductivity. In
ML, feature importance ranking can measure contributions of each input
feature (factor) to the performance of a ML model. This method has
become a powerful tool for facilitating understanding of a learning
system and discovery of key factors in a specific domain. By ranking the
importance scores, we used feature importance (Casalicchio et al., 2018)
to analyze the importance of different features and identified the most
important potential feature of the model. In this study, we used two
feature importance ranking algorithms, the RF algorithm (Albert and
Linville, 2020) and the GBDT algorithm (Weng et al., 2019). We ranked
the characteristic importance of eight parameters (6, fsand fsito felay, foms
fo P n). As shown in Fig. 5, the importance rankings given by the two
algorithms are basically the same. Both RF and GBDT show that 6 and p,
are the two most important features, and their combined importance
value exeeds 80%. In particular, the importance value of 0 exceeds the
sum of the importance values of the other factors, and pj is the second
most important feature as expected. Significance tests show that the
feature importance of 4 is significantly higher than that of p;, for both RF
and GBDT. Meanwhile, both 6 and pp, are significantly higher than the
other factors importance. f; is the third most important feature, which
agrees with the conclusion of He et al. (2020a), therefore, it is necessary
to consider the effect of quartz content on 4 prediction.

The feature importance analysis is valuable for empirical model
development. By selecting the most important features and omitting
those with low feature importance scores, more robust and concise
empirical models can emerge with prediciton accuracy comparable to
the ML algorithms.

Fig. 5(a) and (b) differed in the number of features involved in the
ranking. Fig. 5(a) included 8 features, while 0 was removed in Fig. 5(b)
in order to test whether the ranking of the remaining 7 features was
sentitive or not to the presence of 6. Although the results of the GBDT
and RF algorithms are similar (Fig. 5), the consistency of the results of
the RF algorithm is better. The order of importance values given by the
RF method in Fig. 5(a) is completely consistent with that of Fig. 5(b) (pp
> fq > n > fom > faay > fsit > frand)- The following mechamism can
explain why the bulk density and quartz content are more important
than other factors. Higher bulk density leads to the decrease in porosity
and more solid contacts. As thermal conductivity of soil solid is higher
than that of water and air, thus more solid contact also leads to an in-
crease in A. Thermal conductivity of quartz is much higher than other
minerals thus dominant in determining A (Campbell, 1985). The big
differences on the importance of p, and n could be related to the
violation of the commonly used constant soil particle density (2.65 g
cm’?’) assumption. According to the research of Flint and Flint (2002)
and Keller and Hakansson (2010), there exist significant soil particle
density variations (Tolimir et al., 2020) especially for soil samples across
the continental scale, just like the samples we used. There are two in-
consistencies (or contradictions) in GBDT (yellow arrows in Fig. 5a)

10

Agricultural and Forest Meteorology 323 (2022) 109080

indicating that f; > n, which contradicts the results in Fig. 5(b) (f; < n);
green arrows of Fig. 5(a) indicate that fom < fii, which contradicts with
the results in Fig. 5(b) (fonr > fisite)-

Our results presented above demonstrate that feature importance
ranking using the RF algorithm is more reliable than using the GBDT
algorithm. Therefore, we recommend using RF for future feature
importance ranking. Our GBDT results differ from the GBDT results of
Yurttakal (2021) (which contain 257 A values), who report the top three
parameters as fqy, fq and S;. The differing results may be related to
different sizes of datasets analyzed, for example our 1602 values versus
their 257 values. Another possible explaination is that their analysis did
not consider fg and fou, and they used S, instead of 6.

Although fiang, fsits felays fo fom are the components of soil solids, the
sum of the feature importance of these five components is not close to
that of soil bulk density. For the RF algorithm, we find that, the sum of
the feature importance score of these five variables (fsana, fsito felay for
fom) is 0.152, which is smaller than the feature importance score of soil
bulk density (0.253). For the GBDT algorithm, the trend is similar to that
of RF. The sum of the feature importance score of these five variables is
0.135, which is also smaller than the feature importance score of soil
bulk density (0.275).

Although we find that the ML methods significantly improve the
accuracy of 1 estimations, thus, provide a potential way to improve soil
heat flux and energy balance estimations. Other soil thermal conduc-
tivity related research, such as thermal inertia (Colombo et al., 2019)
and soil moisture monitoring will also benefit from improved A predic-
tion. We also realize that the ML estimation process is a "black box" and
cannot provide a physically meaningful interpretation of the estimation
results. The feature importance ranking does quantify the key factors
affecting 4, which can lead to fine tuning or further development of
empirical soil thermal conductivity models. However, in this research,
there are only a limited number of training data points for clay and peat
soils, which cause the performances of the ML algorithms to worsen for
these soil types. To further test and evaluate the effectiveness of ML
algorithms to estimate thermal conductivity and to validate the findings
of this study, additional soil types (especially for clay and peat soils) can
be evaluated and the number of data points can be expanded further.

4. Conclusions

By evaluating seven ML algorithms and five empirical models of soil
thermal conductivity (Campbell, 1985; Coté and Konrad, 2005; de
Vries, 1963; Johansen, 1975; Lu et al., 2007), we found that three of the
ML algorithms (GBDT, NN, RF) provided much better and consistent 4
estimations than the empirical models. GBDT, NN and RF reduced RMSE
by at least 11.6% and improved NSE by 7.7% on the test set of dataset A
compared with the empirical models. All three reduced RMSE by at least
16.0% and improved NSE by 12.7% on the test set of the smaller dataset
B compared with the empirical models. Our study demonstrated that 1
values of a wide variety of soil types could be effectively estimated by
ML algorithms. Empirical models based on the concept of normalization
(Lu et al., 2007; Coté and Konrad, 2005, Johansen, 1975) outperformed
physical models (de Vries (1963)) and regression models (Campbell
(1985)). Feature importance ranking of RF was more consistent than the
ranking of GBDT. The RF-based feature importance ranking indicated
that the sum of the importance values for 6 and p;, was 81%.
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