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Many applications, such as system identification, classification of time series, direct 
and inverse problems in partial differential equations, and uncertainty quantification 
lead to the question of approximation of a non-linear operator between metric spaces 
X and Y. We study the problem of determining the degree of approximation of such 
operators on a compact subset KX ⊂ X using a finite amount of information. If 
F : KX → KY, a well established strategy to approximate F(F ) for some F ∈ KX

is to encode F (respectively, F(F )) in terms of a finite number d (respectively m) 
of real numbers. Together with appropriate reconstruction algorithms (decoders), 
the problem reduces to the approximation of m functions on a compact subset of 
a high dimensional Euclidean space Rd, equivalently, the unit sphere Sd embedded 
in Rd+1. The problem is challenging because d, m, as well as the complexity 
of the approximation on Sd are all large, and it is necessary to estimate the 
accuracy keeping track of the inter-dependence of all the approximations involved. 
In this paper, we establish constructive methods to do this efficiently; i.e., with the 
constants involved in the estimates on the approximation on Sd being O(d1/6). We 
study different smoothness classes for the operators, and also propose a method 
for approximation of F(F ) using only information in a small neighborhood of F , 
resulting in an effective reduction in the number of parameters involved. To further 
mitigate the problem of large number of parameters, we propose prefabricated 
networks, resulting in a substantially smaller number of effective parameters. The 
problem is studied in both deterministic and probabilistic settings.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

While much of approximation theory deals with the question of approximation of functions on subsets 
of a Euclidean space, many applications require an approximation of non-linear functionals and even non-
linear operators defined on compact subsets of function spaces. We give a few examples here; many more 
are listed in the references cited in Section 2.
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1. In system identification problems, the hidden states of a non-linear system are not known, but need to 
be modeled using observations of the input-output relationships of the system (e.g., [46,20]). Both the 
input signals and the output signals are functions of time, and the model is thus an unknown non-linear 
operator which needs to be approximated.

2. In prediction of time series, a time series (t!)∞!=0 is modeled by a functional relationship

t!+q = F (t!, · · · , t!+q−1), ! = 0, 1, · · · ,

for a judiciously chosen q, where F is some possibly non-linear function (e.g., [46,39]). In order to use 
such a model for classification of time series, different time series are modeled by different functions F , 
so that the class label is a non-linear functional on a class of functions.

3. In the theory of non-linear partial differential equations (PDEs), the mapping from the initial/boundary 
conditions to the solution or in the case of inverse problems, from the solution to the initial/boundary 
conditions or the coefficient functions in the differential equations are all non-linear operators.

4. In uncertainty quantification problems, the coefficients of the PDEs are random functions of the vari-
ables, and one is interested in some quantity of interest (e.g., [4]). Clearly, the quantity of interest is a 
possibly non-linear functional on the space of functions involved.

An obvious and natural way to solve such problems is to encode the input functions as well as output 
functions using finitely many parameters, and treat the problem as a problem of approximation of functions 
between finite dimensional Euclidean spaces. For example, a time series can be encoded in a variety of 
ways, such as thresholded PCA components of snippets [26], values of the empirical mode decomposition 
at certain points [27], parameters of an ARMA model [59], etc. In the context of PDEs, the input and 
output functions can be encoded using values of the functions involved [24], coefficients with respect to 
certain frames/bases [9], random features [16], etc. Clearly, any encoder needs to be associated with a 
decoder which can approximate the input and output functions well.2 The exact nature of the encoder 
and decoder need to depend upon the specific application, but it is clear intuitively that the number of 
parameters defined by the encoders must be very large in order for the corresponding decoders to achieve 
a good approximation. Therefore, even though the idea behind the reduction to the problem of operator 
approximation to that approximation of functions between Euclidean spaces is obvious, the dimensions of 
these spaces poses a formidable problem. In this paper, we assume that the appropriate encoder/decoder 
pairs have been selected, and focus on the technical problems arising from the high dimensionality of the 
Euclidean spaces to which the parameters generated/desired by the encoders belong. We will discuss the 
issues involved in Section 3.1.

After pointing out a few papers related to the current paper in Section 2, we will formalize in Section 3
the intuitive thinking just described in an abstract manner. We will explain there how the problem can be 
reduced to the problem of efficient approximation of functions on a high dimensional sphere, and highlight 
the technical contributions of the current paper. In the rest of the paper, we will focus on approximation on a 
high dimensional sphere. In Section 4, we will review some preparatory material required both to formulate 
our results and to prove them. In Section 5, we will formulate our main theorems about approximation on 
the sphere. In Section 6, we illustrate an example on the application of our theory for approximation of 
operators defined on the space of continuous functions on a smooth, compact, Riemannian manifold. The 
proofs of all the new results in this paper are given in Section 7. In Appendix A, we make some comments on 
a possible computational scheme for the kernels introduced in Section 4.4. In Appendix B, we give another 

2 An encoder is referred to also as a parameter selection, feature map, or information operator. A decoder is referred to also as 
approximation operator, or reconstruction algorithm.
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example to illustrate a certain technical point which could not be commented upon in the main part of the 
paper.

2. Related work

An early and widely cited work on the problem of functional/operator approximation is the paper [3] by 
Chen and Chen. They consider approximation by neural networks for nonlinear operators using what is some-
times called trunk and branch networks. First, one obtains an approximation of F(F )(y) ≈

∑
k βk(F )τk(y), 

where τk is a basis for range space of F . The trunk networks are neural network approximations to τk, and 
the branch networks approximate the coefficients βk(F ). In turn, each branch network is a composition of 
two networks, one to approximate F and one to approximate βk as a function of the parameters of the 
network to approximate F . The authors prove universal approximation theorems for the resulting networks. 
While this approach is adequate for universal approximation theorems, it introduces extra error terms due 
to the approximation of F(F ) in the indicated format (see Appendix B).

From the point of view of system identification, the problem was studied already in early works of 
Sandberg [53,52], Modha and Hecht-Nielsen [44], Dingankar [8], among others. This work motivated our 
own work [36].

In [36], we have taken a simpler approach than that of [3] for the approximation of nonlinear functionals 
(such as βk) on spaces of the form Lp([−1, 1]s). We have constructed networks with a single hidden layer 
by considering the functional as a function of the coefficients of F in a tensor product Legendre polynomial 
series. We have proved estimates on the degree of approximation in terms of the size of the networks, 
and proved that they are optimal in the sense of non-linear widths. The current paper is a substantial 
generalization and refinement of this work. The paper [55] obtains results similar to those in [36] in the case 
when the activation function is an ReLU function.

The problem of approximation of functions of infinitely many variables, especially on tensor product 
domains has a long history of research in the information based complexity community - there are too many 
papers in the Journal of Complexity alone to give a reasonably good bibliography. A detailed treatment from 
this point of view can be found in the series of books by Novak and Woźniakowski [49]. We point out only 
two recent papers. In [60], Werschulz and Woźniakowski study the tractability of approximating solutions 
of Volterra equations in high dimensions. In [18], Kritzer, Pillichshammer, and Woźniakowski study the 
tractability of approximation of operators between tensor product weighted Hilbert spaces.

In the last couple of years, a great deal of interest in this direction is triggered by possible applications to 
the solutions of direct and inverse problems involving partial differential equations (PDEs). For example, in 
[21,47] the authors introduce the concept of Fourier neural networks, and examine the feature selection and 
training algorithms for solutions of PDEs. The paper [16] establishes a universal approximation theorem for 
deep networks in the topology of uniform convergence on compact sets using Hilbert space norms. This paper 
has a long list of related papers and the correspondingly long discussion. Universal approximation property 
for deep networks is established also in [15,6], where the rates of convergence are studied for special PDEs. 
The paper [19] follows the approach of Chen and Chen, approximating the functionals βk(F ) using values of 
F . Error estimates are given in terms of an appropriate L2 norm. Lower bounds are established on the degree 
of approximation and it is pointed out that the curse of dimensionality is avoided for holomorphic functions 
and solutions of certain PDEs. We note that every compact set of functions on Rq has a non-linear width, 
depending necessarily on q, usually increasing with q. In [23], the authors give statistical estimates on the 
error in approximation in the presence of noisy data for the solution of judiciously formulated optimization 
problems involved in training the networks used for approximation.
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3. Approximation of operators

In this section, we wish to formulate the problem of approximation of operators in an abstract setting. 
Before doing so in Section 3.2, we illustrate the main technical problems by means of a simple example in 
Section 3.1. After discussing in Section 3.3 the transformation of the problem of approximating functions 
on Rd to that of approximating functions on the unit sphere Sd embedded in Rd+1, we discuss the main 
technical contributions of the current paper in Section 3.4.

3.1. An elementary example

The purpose of this section is illustrate the issues that arise in our approach to the approximation of 
operators. Although we will strive to keep the notation consistent with the rest of the paper, the notation 
here will expire at the end of this subsection.

Let T = R/(2πZ), so that functions on T are exactly the 2π-periodic function on R. The space L2

comprises measurable functions F : T → C for which

‖F‖ =





1
2π

π∫

−π

|F (t)|2dt






1/2

< ∞,

where two functions are considered equal if they are equal almost everywhere with respect to the Lebesgue 
measure. In this example, we are interested in approximating a possibly non-linear operator F : L2 → L2

that satisfies

‖F(F1) − F(F2)‖ ≤ ‖F1 − F2‖, F1, F2 ∈ L2. (3.1)

For F ∈ L2, we define

F̂ (k) = 1
2π

π∫

−π

F (t)e−iktdt, k ∈ Z.

For integer n ≥ 1, the Fourier partial sum operator is defined by

sn(F )(x) =
∑

|k|<n

F̂ (k) exp(ikx).

It is well known that limn→∞ sn(F ) = F in L2 so that for every n, an information operator (encoder) is 
defined by In(F ) = (F̂ (k))|k|<n ∈ Rn, and the corresponding reconstruction algorithm (decoder) is defined 
by An((ak)|k|<n) =

∑
|k|<n ak exp(ik◦). In particular, sn(F ) = An(In(F )).

Although the operator F itself is defined on L2, we are interested in approximating it only on the compact 
subset K ⊂ L2 comprising F ∈ L2 for which

‖F‖L = ‖F‖ + max
0<h<1

‖F (◦ + h) − F (◦)‖
h

≤ 1. (3.2)

It is well known that there exists an absolute constant c1 such that

sup
F∈K

‖F − sn(F )‖ ≤ c1/n, n ∈ N. (3.3)



198 H.N. Mhaskar / Appl. Comput. Harmon. Anal. 64 (2023) 194–228

Since F is continuous, it maps K into another compact set, say K1. Then it is well known that there exists 
a non-increasing sequence {δm}∞m=1 converging to 0 as m → ∞ such that

sup
G∈K1

‖G− sm(G)‖ ≤ δm, m ∈ N. (3.4)

Thus, for any F ∈ K, we obtain using (3.4), (3.1), and (3.3) that

‖F(F ) − sm(F(sn(F )))‖ ≤ ‖F(F ) − sm(F(F ))‖ + ‖sm(F(F )) − sm(F(sn(F )))‖
≤ δm + ‖F(F ) − F(sn(F ))‖ ≤ δm + ‖F − sn(F )‖
≤ δm + c1/n.

(3.5)

The estimate (3.5) is entirely due to our set up and well known results on approximation by trigonometric 
polynomials to the function classes under consideration. The main problem here to learn F from a training 
data comprising a number of functions F , more precisely, the features of the functions F , given by their 
Fourier coefficients. We note that

sm(F(sn(F ))) = Am (Im(F(An(In(F )))) .

Out of these, Am is “domain knowledge”, In(F ) ∈ R2n−1 is the “input variable”. Different points in R2n−1

will correspond to different functions (actually, trigonometric polynomials). Thus the problem reduces to 
approximation of the map from R2n−1 → R2m−1 given by

f(x) = Im(F(An(x))). (3.6)

We observe that even though F(F ) may not be in K, (3.1) can be used to show that f is a Lipschitz 
continuous function. Given that for every F ∈ K, In(F ) ∈ Bd, where d = 2n − 1, and Bd is the unit ball 
of Rd, we may approximate each component of f and focus on approximation of complex valued Lipschitz 
continuous functions on Bd. There are many results known for such an approximation using various kind of 
approximations. Typically, with an approximation G(f) of f involving N parameters, one has an estimate 
of the form

‖f −G(f)‖ ≤ c2(d)
N1/d .

Thus, using the N parameter approximation process G for each component of f , and abusing the notation 
somewhat, we obtain in the end

‖F(F ) −G(sn(F ))‖ ≤ δm + c/n +
√
mc2(d)
N1/d . (3.7)

It is clear that to get a good approximation, m and n (and hence, d = 2n −1), as well as N should be large. 
The first two terms on the right hand side of (3.7) are characteristic of our problem. The main technical
difficulty is to control the last term. Here, the factor √m comes because the process G is applied to each 
component of f , and an estimate in the sense of L2 norm is desired. We don’t consider this to be a major 
technical problem - it is only a question of the norm involved. Under the assumption of Lipschitz continuity 
alone, the term N−1/d is unimprovable as well. So, the main technical challenge is how to control c2(d)
as a function of d. The other technical challenge is how to work efficiently with the large number of input 
variables and the parameters in the process G; in particular, how to reduce the space and time complexity 
of the process.
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Fig. 1. Schematics for operator approximation, see text for the explanation of symbols. The output of the box labeled Am,KY
is 

actually an approximation to F(F ) as indicated in (3.11).

In this paper, we will address these issues as follows. First, unlike the currently used approaches, we will 
separate the pre-processing and post-processing steps involved in the construction of information opera-
tors (encoders) and reconstruction algorithms (decoders) from the main technically challenging question of 
approximating the components of f as in (3.6). Second, we will transform this problem into a problem of 
approximation on the unit sphere in Rd+1. Then we will define higher smoothness conditions on F (equiv-
alently, components of f) to improve upon the factor N−1/d. Again, the central technical problem is to 
define the smoothness as well as the operators so as to keep the constant c2(d) dependent sub-polynomially 
on d. Finally, we design our approximation process so that in approximating f(x) for some point x (equiv-
alently, an input function F ), we need to utilize only those points which are in a small neighborhood of x
(equivalently, input functions in a small neighborhood of F ).

3.2. Problem formulation

Let (X, ρX), (Y, ρY) be metric spaces, KX, (respectively, KY) be a compact subset of X (respectively, 
Y), F : KX → KY be a continuous function. The goal is to approximate F , with estimates on the accuracy 
in approximation. The idea is the following.

In the theory of optimal recovery [41,42,7], it is customary to define an approximation as a composition 
Ad,KX ◦Id,KX of two (possibly nonlinear) operators: The information operator (encoder) Id,KX : KX → Rd, 
and the (reconstruction) algorithm (decoder) Ad,KX : Rd → X.

The worst case error with these operators is defined to be

wor(KX;Ad,KX , Id,KX) = sup
F∈KX

ρX

(
F,Ad,KX

(
Id,KX(F )

))
. (3.8)

The best choice for Id,KX , Ad,KX is described by the non-linear d-width of KX defined by

widthd,X(KX) = inf
Id,KX

,Ad,KX

wor(KX;Ad,KX , Id,KX), (3.9)

where the infimum is over all continuous information operators and all algorithms.
In our theory, we assume that an appropriate (if not optimal) choice of the operators Id,KX, Ad,KX , 

Im,KY , Am,KY is already made based on domain knowledge. The problem of approximating F(F ) for any 
F ∈ KX is thus reduced to the problem of approximating m functions of the form fj : Rd → R so that 
fj(Id,KX(F )) is the j-th component of Im,KY (F(Ad,KX (Id,KX(F )))). This idea is presented pictorially in 
Fig. 1.
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To illustrate the error estimate in the approximation of F while keeping the notation relatively simple, 
let us assume that F , Id,KX , Ad,KX , Im,KY , Am,KY are all Lipschitz continuous. Because of continuity and 
compactness, there exists a compact subset KS ⊂ C0(Rd) such that each fj ∈ KS . We emphasize that KS

need not consist of the possible fj ’s alone; the only requirement is that they all be in KS. Suppose we find 
an approximation operator Gd;N : KS → C0(Rd) depending upon N parameters such that

sup
f∈KS

‖f −Gd;N (f)‖∞ ≤ εd,N , (3.10)

then it is easy to deduce that

sup
F∈KX

ρY

(
F(F ),Am,KY

(
{(Gd;N (fj)(Id,KX(F )))}

))

≤ L
{
wor(KX;Ad,KX , Id,KX) + εd,N + wor(KY;Am,KY , Im,KY)

}
,

(3.11)

where L depends upon the various Lipschitz constants involved. A crude estimate of the number of param-
eters in the process is dNm.

3.3. A transformation

In (3.11), the two worst case errors come from the application domain and the choice of Id,KX , Ad,KX , 
Im,KY , Am,KY In order to make the two wor expressions small, one needs to make d, m large. To keep 
εd,N under control, one has to make N large also. Thus, the problem involves an approximation of a large 
number m of functions on a space of a large dimension d by a class with high complexity N . It is clear that 
the bottleneck is the estimation of εd,N , so that it is critical to investigate the dependence of εd,N on both 
d and N .

Before describing the contributions of our paper, we find it convenient to make a transformation of this 
problem. For integer n ≥ 1, we use the notation x = (x1, · · · , xn) ∈ Rn,

|x|n =
(

n∑

k=1
x2
k

)1/2

.

We map Rd to the unit sphere:

Sd = {x ∈ Rd+1 : |x|d+1 = 1},

and its upper hemisphere:

Sd
+ = {x ∈ Sd : xd+1 > 0}.

One of the reasons for this transformation is that the compactness of Sd simplifies the analysis rather than 
using the compact open topology on Rd directly. We consider the mapping π∗ : Rd → Sd

+ given by

π∗(x1, · · · , xd) =
(

x1√
1 + |x|2d

, · · · , xd√
1 + |x|2d

,
1√

1 + |x|2d

)
. (3.12)

We note that

(π∗)−1(u1, · · · , ud+1) =
(

u1
ud+1

, · · · , ud

ud+1

)
. (3.13)
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The Frobenius norms of the Jacobians dπ∗ and d(π∗)−1 are given by

‖dπ∗‖2
F = d + (d− 1)|x|2d

(1 + |x|2d)2
, ‖d(π∗)−1‖2

F = d− 1
u2
d+1

+
|(u1, · · · , ud+1)|2d+1

u2
d+1

. (3.14)

We note two consequences of (3.14).
First, it is elementary calculus to verify using (3.14) that for any compact set K ⊂ Rd, there exist positive 

constants c1(d, K), c2(d, K) such that

c1(d,K)|π∗(x) − π∗(y)|d+1 ≤ |x − y|d ≤ c2(d,K)|π∗(x) − π∗(y)|d+1, x,y ∈ K.

We note that the dependence on d of c1(d, K), c2(d, K) is ∼ d1/2.
Second, π∗ is a diffeomorphism from Rd to Sd

+. Continuous functions on Rd vanishing at infinity are 
mapped to continuous, even functions on Sd, preserving smoothness. In particular, there is no loss of 
generality or smoothness of the functions involved if the operator Id;KX takes values in Sd rather than 
Rd. Thus, the problem of approximating a function of Id;KX(F ) may be transformed into the problem of 
approximation of a function on Sd.

Similar transformations from a Euclidean ball to the sphere are well known in approximation theory 
(e.g., [5,43]). We have only given one example of how such a transformation can be made in general. As 
argued in [40], the transformation simplifies the study of neural networks with ReLU activation function by 
representing them as zonal function networks instead. (A zonal function network is a function of the form 
x .→

∑n
k=1 akφ(wk · x), wk, x ∈ Sd, ak ∈ R.)

For approximation on the sphere, spherical polynomials are the most natural class of approximants. In 
several papers [37,29,34], we have described how spherical polynomials can be synthesized as zonal function 
networks with fixed weights independent of the function being approximated (target function). Our zonal 
function networks are linear operators on C(Sd), and can be written as linear combination of pre-fabricated 
networks with coefficients given by the values of the target function at scattered data on the sphere. This 
feature is extremely important in our current problem where a lot of functions need to be approximated. 
It ensures that the networks don’t need to be trained separately for each function as is done, e.g., in [24]. 
Given the close connection between zonal function networks and spherical polynomials already established 
in our previous papers, we will focus in this paper on approximation by spherical polynomials, mainly with 
the objective of dealing with the trade-off mentioned at the beginning of this sub-section.

3.4. Contributions of this paper

We highlight some of the main contributions of this paper.

1. Our construction in the “main processing” step in Fig. 1 involves pre-fabricated “networks” Gd;N using 
N parameters in each sub-box of that box, so that the entire process involves mN pre-computed pa-
rameters. There is no training involved in the traditional sense. The actual computation of F(F ) then 
involves only m matrix vector multiplications. Thus, the total number of parameters is (d +N)m rather 
than dNM .

2. Unlike most other papers on the subject of approximation of operators, we provide error estimates in 
the supremum norm rather than a Hilbert space norm, and in fact, provide pointwise estimates in both 
deterministic and probabilistic sense (rather than in the sense of an expected value of a loss function).

3. While approximation on the sphere is very well studied, the error bounds for approximation of smooth 
target functions typically involve unspecified constants depending upon the dimension of the sphere. The 
known examples where the constants can be computed explicitly involve constants that grow exponen-
tially with the dimension (e.g., [14,31]). Part of the problem is in the definition of the right smoothness 
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classes. We define a smoothness class that is a natural generalization of the notion of Lipschitz continu-
ity, and prove approximation results with constants of the form d1/6. In [48], Newman and Shapiro have 
given bounds with constants that are independent of the dimension, but these hold only for Lipschitz 
continuous functions. We could not find a reference where similar bounds are achieved for functions 
with higher smoothness.

4. We achieve approximation using linear operators for which we give explicit constructions using either 
values of the target function at arbitrary locations on Sd (scattered data, in contrast to designated 
locations such as the points at which special quadrature formulas such as Driscoll-Healy hold), or 
Fourier-Laplace coefficients of f .

5. We prove two kinds of local approximation results.
(a) One is that the approximation of f ∈ C(Sd) near a point x ∈ Sd involves only the values of f in a 

small neighborhood of x. This mitigates the effect of requiring a large number of functions in KX

to obtain an approximation to F(F ) even for a single function F .
(b) The second aspect is to construct a globally defined operator for approximation with the property 

that the degree of approximation at any point adjusts automatically according to the smoothness 
of the target function at that point.

6. The ideas in the paper can be extended in various ways.
(a) Since KX is a compact set, for every ε > 0, there exists a finite cover of the set with finitely many 

balls of radius < ε. Denoting the centers of this ball by F!, a possibly time consuming approximation 
of F(F!) at the centers of each of these balls would give us a table so that F(F ) can be computed 
using a table look-up, where we find F! close to F and return the value of F(F!) as an approximation 
to F(F ).

(b) It is possible to iterate this paradigm somewhat trivially to the case when one wants to approximate 
an operator acting on the space of operators, and so on.

4. Preparatory material

In order to state our main results in Section 5, we need to describe some background on approximation 
on the sphere. It is necessary for our proofs also to introduce some basic concepts about Jacobi polynomials. 
Section 4.1 discusses some elementary facts about Jacobi polynomials. In Section 4.2, we introduce some 
basic facts about the sphere, including spherical polynomials and their connection with Jacobi polynomials. 
An essential role in our theory is played by quadrature formulas on the sphere, which are discussed in 
Section 4.3. The kernels and operators which are used in our constructions are described in Section 4.4.

4.1. Jacobi polynomials

A standard reference for the material here is the book [58] of Szegö. For α, β > −1, x ∈ (−1, 1) and 
integer ! ≥ 0, the Jacobi polynomials p(α,β)

! are defined by the Rodrigues’ formula [58, Formulas (4.3.1), 
(4.3.4)]

(1−x)α(1+x)βp(α,β)
! (x) =

{2! + α + β + 1
2α+β+1

Γ(! + 1)Γ(! + α + β + 1)
Γ(! + α + 1)Γ(! + β + 1)

}1/2 (−1)!
2!!!

d!

dx!

(
(1 − x)!+α(1 + x)!+β

)
.

(4.1)
Each p(α,β)

! is a polynomial of degree ! with positive leading coefficient. We have the orthogonality relation

1∫

−1

p(α,β)
! (x)p(α,β)

j (x)(1 − x)α(1 + x)βdx = δ!,j , (4.2)
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and

p(α,β)
! (1) =

{2! + α + β + 1
2α+β+1

Γ(! + 1)Γ(! + α + β + 1)
Γ(! + α + 1)Γ(! + β + 1)

}1/2 Γ(! + α + 1)
Γ(α + 1)Γ(! + 1)

=
{2! + α + β + 1

2α+β+1
Γ(! + α + 1)Γ(! + α + β + 1)

Γ(! + 1)Γ(! + β + 1)

}1/2 1
Γ(α + 1) .

(4.3)

We have ([58, Formula (4.5.3), (4.3.4)], [31, Formula (41), (42)])

K(α,β)
n (x) =

n−1∑

!=0
p(α,β)
! (1)p(α,β)

! (x) = 2α + 2
2n + α + β

p(α+1,β)
n−1 (1)p(α+1,β)

n−1 (x), (4.4)

and

K(α,β)
n (1) =

n−1∑

!=0
p(α,β)
! (1)2 = 1

2α+β+1Γ(α + 1)Γ(α + 2)
Γ(n + α + 1)Γ(n + α + β + 1)

Γ(n)Γ(n + β) (4.5)

Clearly, for any polynomial P of degree < n,

1∫

−1

P (x)K(α,β)
n (x)(1 − x)α(1 + x)βdx = P (1), (4.6)

and in particular,

1∫

−1

(
K(α,β)

n (x)
)2

(1 − x)α(1 + x)βdx = K(α,β)
n (1). (4.7)

4.2. Spherical polynomials

Most of the following information is based on [45], [57, Section IV.2], and [1, Chapter XI], although we 
use a different notation. Let d ≥ 1 be an integer, Sd denote the unit sphere

Sd = {x = (x1, · · · , xd+1) : |x|2d+1 = x2
1 + · · · + x2

d+1 = 1}. (4.8)

For δ ∈ (0, 2], let

B(x, δ) = {y ∈ Sd : |x − y|d+1 ≤ δ}. (4.9)

Let µ∗
d be the Riemannian volume measure on Sd, normalized so that µ∗

d(Sd) = 1. We note that the volume 
of Sd itself is given by

ωd = 2π(d+1)/2

Γ((d + 1)/2) =
√
πΓ(d/2)

Γ((d + 1)/2)ωd−1 =






ωd−1

1∫

−1

(1 − x2)d/2−1dx, if d ≥ 2,

2π, if d = 1,

(4.10)

and the measure µ∗
d is defined recursively by
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dµ∗
d =






ωd−1
ωd

dµ∗
d−1(x′) sind−1 θdθ, x = (x′ sin θ, cos θ) ∈ Sd, x′ ∈ Sd−1, if d ≥ 2,

1
2πdθ, x = (sin θ, cos θ) ∈ S1, if d = 1.

(4.11)

The measure µ∗
d is rotation invariant. Therefore, it is easy to verify that if f : [−1, 1] → R and t .→

f(t)(1 − t2)d/2−1 is integrable with respect to the Lebesgue measure on [−1, 1], then

∫

Sd

f(x · y)dµ∗
d(y) = ωd−1

ωd

1∫

−1

f(t)(1 − t2)d/2−1(t)dt, x ∈ Sd. (4.12)

For a fixed integer ! ≥ 0, the restriction to Sd of a homogeneous harmonic polynomial of exact degree !
is called a spherical harmonic of degree !. The class of all spherical harmonics of degree ! will be denoted by 
Hd

! . The spaces Hd
! are mutually orthogonal relative to the inner product of L2(µ∗

d). An orthonormal basis 
for Hd

! is {Y!,k}k=1,··· ,dim(Hd
! ).

One has the well-known addition formula [45] and [1, Chapter XI, Theorem 4] connecting Y!,k’s with 
Jacobi polynomials defined in (4.1):

dim(Hd
! )∑

k=1
Y!,k(x)Y!,k(y) = ωd

ωd−1
p(d/2−1,d/2−1)
! (1)p(d/2−1,d/2−1)

! (x · y), ! = 0, 1, · · · . (4.13)

For n ≥ 0, we denote by Πd
n the set of restrictions to Sd of all algebraic polynomials of degree < n. In this 

definition, we allow n to be a non-integer, so as to be able to write, for example, Πd
n/2 rather than the more 

cumbersome Πd
'n/2(. For integers n, !, d ≥ 1, we have

dim(Πd
n) =





(2n + d− 2) Γ(n + d− 1)

Γ(n)Γ(d + 1) if n ≥ 2,

1, if n = 1,
dim(Hd

! ) =





dim(Πd−1

! ) if d ≥ 2,

2 if d = 1.
(4.14)

In view of (4.13), the reproducing kernel Kd;n for Πd
n is defined using Jacobi polynomials by

Kd;n(x) = ωd

ωd−1
K(d/2−1,d/2−1)

n (x) = 2√πΓ((d + 2)/2)
Γ((d + 1)/2)(2n + d− 2)p

(d/2,d/2−1)
n−1 (1)p(d/2,d/2−1)

n−1 (x), x ∈ [−1, 1].

(4.15)
Thus, we have the reproduction formula

P (x) =
∫

Sd

P (y)Kd;n(x · y)dµ∗
d(y), P ∈ Πd

n. (4.16)

Using (4.16) with Kd;n(x · y) in place of P , and using (4.13), we deduce that

dim(Πd
n) = Kd;n(1) =

∫

Sd

Kd;n(x · y)2dµ∗
d(y), x ∈ Sd. (4.17)

4.3. Quadrature formula

Definition 4.1. Let n ≥ 1. A measure ν on Sd is called a quadrature measure of order n if for every P ∈ Πd
n,

∫

Sd

Pdν =
∫

Sd

Pdµ∗. (4.18)
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A measure ν is called a Marcinkiewicz-Zygmund measure of order n (abbreviated by ν ∈ MZ(d; n)) if for 
every P ∈ Πd

n/2:

∫

Sd

|P |2d|ν| ≤ c

∫

Sd

|P |2dµ∗, (4.19)

for some positive constant c. The infimum of all such constants will be denoted by ‖ |ν‖ |d;n. A measure ν is 
called a Marcinkiewicz-Zygmund quadrature measure of order n (abbreviated by ν ∈ MZQ(d; n)) if (4.18)
holds for every P ∈ Πd

n, and (4.19) holds for every P ∈ Πd
n/2.

Remark 4.1. This definition is essentially a special case of the definition given in Section 6.1. In [12], we 
have proved that the condition (4.19) is equivalent to the same condition with the L2 norm replaced by the 
L1 norm. However, the constants there depend upon the dimension of the manifold (sphere in this context). 
The use of L2 norm, and requiring (4.19) to hold for Πn/2 instead of Πn in the definition allows us to use 
positive quadrature formulas such as the one described in Theorem 4.1 below directly. !

Remark 4.2. It is clear that if n < m then a quadrature measure (respectively, Marcinkiewicz-Zygmund 
measure, respectively, Marcinkiewicz-Zygmund quadrature measure) of order m is also a quadrature measure 
(respectively, Marcinkiewicz-Zygmund measure, respectively, Marcinkiewicz-Zygmund quadrature measure) 
of order n, and ‖ |ν‖ |d;n ≤ ‖ |ν‖ |d;m. !

Remark 4.3. In [38,12], we have proved if C ⊂ Sd is any finite set, there exist constant c1, c2 > 0 depending 
on d with the following property: if

sup
x∈Sd

min
y∈C

|x − y| ≤ c1/n,

then there exists ν ∈ MZQ(d; n) such that supp(ν) is a subset of C containing at most c2dim(Πd
n) points. 

Existence of a positive measure ν ∈ MZQ(d; n) is also proved in the same papers under the same conditions 
except for a smaller value of c1. In [33], we have estimated the cardinality of a random sample C that allows 
the condition mentioned above to be within a logarithmic multiple of dim(Πd

n). The various constants in all 
these constructions depend upon d in an unspecified manner. !

Remark 4.4. It is clear that if ν is a positive measure satisfying (4.18) for all P ∈ Πd
n, then it satisfies (4.19)

automatically for P ∈ Πd
n/2, so that ν ∈ MZQ(d; n) with ‖ |ν‖ |d;n = 1. !

Remark 4.5. We note the following theorem, called Tchakaloff’s theorem [51, Exercise 2.5.8, p. 100], that 
asserts in particular the existence of a positive quadrature formula satisfying (4.18) for all P ∈ Πd

n based 
on exactly dim(Πd

n) points.

Theorem 4.1. Let X be a compact topological space, {φj}N−1
j=0 be continuous real valued functions on X, 

φ0 ≡ 1, and µ∗ be a probability measure on X (i.e., µ∗ is a positive Borel measure with µ∗(X) = 1). Then 
there exist N points x1, · · · , xN in X, and non–negative numbers w1, · · · , wN such that

N∑

k=1
wkφj(xk) =

∫

X

φj(x)dµ∗(x), j = 0, · · · , N − 1. (4.20)

An optimization procedure to compute the nodes and weights in this theorem is suggested in [32]. !
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4.4. Kernels and operators

Let r ≥ 0. In Section 5, r will be a parameter that defines the smoothness of the target function. In this 
paper, we will use heavily the following kernels, motivated by [14,13,31]:

Φ̃d;n,r(x) = Kd;(d+2)n(x)p
(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

, (4.21)

and

Φd;n,r(x) = Φ̃d;n,r(x)
(1 + x

2

)n

= Kd;(d+2)n(x)p
(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

(1 + x

2

)n

. (4.22)

Corresponding to the two kernels, we define two operators as follows. If ν is a measure on Sd having bounded 
total variation and f is integrable with respect to ν, we define

σ̃d;n,r(ν, f)(x) =
∫

Sd

f(y)Φ̃d;n,r(x · y)dν(y), n > 0, x ∈ Sd, (4.23)

and

σd;n,r(ν, f)(x) =
∫

Sd

f(y)Φd;n,r(x · y)dν(y), n > 0, x ∈ Sd. (4.24)

The operators defined above provide good approximation in the sense which we now describe.

Constant convention

In the sequel, the notation A " B will denote A ≤ cB for a positive constant c that may depend upon 
fixed parameters under discussion, such as the smoothness parameter r to be introduced in Section 5, but 
independent of d, n, f , or the points on the sphere. The notation A # B will mean B " A, and A ∼ B will 
mean A " B " A. The notation A = B + O(C) will mean |A −B| " C. !

For f ∈ C(Sd), we denote

Ed;n(f) = min
P∈Πd

n

‖f − P‖∞. (4.25)

Theorem 4.2. Let d ≥ 3, r ≥ 0, n ≥ 2(d + 1), and f ∈ C(Sd).
(a) If P ∈ Πn, and ν is a quadrature measure of order 2(d + 2)n, then σd;n,r(ν, P ) = P , σ̃d;n,r(P ) = P .
(b) If ν ∈ MZQ(d; 2(d + 2)n), then

Ed;2(d+2)n(f) ≤ ‖f − σ̃d;n,r(ν, f)‖∞ " d1/6‖|ν‖|d;2(d+2)nEd;n(f), (4.26)

and

Ed;2(d+2)n(f) ≤ ‖f − σd;n,r(ν, f)‖∞ " d1/6‖|ν‖|d;2(d+2)nEd;n(f). (4.27)
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5. Main results

In this section, we describe our main results on the degree of approximation on Sd. We recall from 
Section 3.2 that each point on Sd is potentially π∗(Id,KX(F )) (cf. (3.12)) for some F ∈ KX. So, for example, 
when we discuss points in a neighborhood of x = π∗(Id,KX(F )) ∈ Sd, it is understood that the discussion 
refers to functions in a neighborhood of F .

Our first theorem deals with local approximation of smooth functions. There are many definitions of 
smoothness of a function on the sphere (e.g., [5]). Unlike the moduli of smoothness defined in the cited 
book, our definition (motivated by [56, Chapter VI, Section 2.3]) is coordinate free. We find it also more 
natural, and it leads to the right constants in our theorem below.

We recall that a function f ∈ C(Sd) satisfies a Hölder condition of order r ∈ (0, 1] if

|f(x) − f(y)| ≤ c(f)|x − y|rd+1, x,y ∈ Sd.

A local smoothness in this sense at x ∈ Sd would require the above estimate for all y in a neighborhood of 
x. Fixing x one can think of f(x) ∈ Πd

1. Thus, one can say that f is locally Hölder at x if

min
P∈Πd

1

max
y∈B(x,δ)

|f(y) − P (y)|
|x − y|rd+1

< ∞.

These considerations motivate the following Definition 5.1.

Definition 5.1. Let f ∈ C(Sd), r > 0 and x ∈ Sd. The function f is said to be r-smooth at x if there exists 
δ = δ(d; f, x) > 0 such that

‖f‖d;r,x := ‖f‖∞ + min
P∈Πd

r

max
y∈B(x,δ)

|f(y) − P (y)|
|x − y|rd+1

< ∞. (5.1)

The class of all f ∈ C(Sd) for which ‖f‖d;r,x < ∞ will be denoted by Wd;r,x. The class Wd;r will denote the 
set of all f ∈ C(Sd) for which

‖f‖d;r = sup
x∈Sd

‖f‖d;r,x < ∞. (5.2)

We note that for f ∈ Wd;r, we may choose δ(d; f) in (5.1) to be independent of x.

Remark 5.1. If r is an integer and f is r-times differentiable in a neighborhood of x, then the function 
z .→ f(z/|z|d+1), z ∈ Rd+1 is also r-times differentiable in a Euclidean neighborhood of x. The restriction 
to Sd of a Taylor polynomial of this function on the Euclidean neighborhood works as one of the polynomials 
in the definition (5.1). !

Remark 5.2. In the definition of local smoothness of f at x, it is tempting to let δ be independent of x by 
noting (cf. Lemma 7.3) that

‖f‖d;r,x ≤ ‖f‖∞ + min
P∈Πr

max
y∈Sd

|f(y) − P (y)|
|x − y|rd+1

" δ−r
x ‖f‖d;r,x.

In Theorem 5.1, we wish to allow n to be dependent on δx (in particular the smallest n that satisfies all the 
conditions of that theorem). Therefore, the factor δ−r

x may destroy the degree of approximation if we use 
in the definition the whole sphere rather than a ball of radius dependent on x. Moreover, we feel that our 
definition underlines the role of local smoothness better than using the whole sphere in this definition. !
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Our first theorem gives the local approximation properties of the operators for smooth functions.

Theorem 5.1. Let d ≥ 3, x ∈ Sd, r = r(x) > 0, and f ∈ Wd;r,x. Let nd ≥ (d +r+1)2, ν ∈ MZQ(d; 2(d +2)n). 
If n is large enough so that

δn =
√

16r logn
n

≤ δ(d; f,x), (5.3)

then

|f(x) − σd;n,r(ν, f)(x)| " d1/6

dim(Πd
2(2+d)n)r/d ‖f‖Wd;r,x‖|ν‖|d;2(d+2)n. (5.4)

Moreover,
∣∣∣∣∣∣∣
f(x) −

∫

B(x,δn)

Φd;n,r(x · y)f(y)dν(y)

∣∣∣∣∣∣∣
" d1/6

dim(Πd
2(d+2)n)r/d ‖f‖Wd;r,x‖|ν‖|d;2(d+2)n. (5.5)

All the constants involved in " depend only upon r(x) but are otherwise independent of f , x, n, and d.

Remark 5.3. The estimate (5.5) shows that for any x, the approximation of f(x) is accomplished using only 
values of f in a small neighborhood of x. In the case when f ∈ Wd;r(x),x for every x ∈ Sd for some r(x) > 0, 
then the quantity δ(d; f, x) may be chosen independent of x. The estimate (5.4) then shows that at each 
point x ∈ Sd, the error |f(x) − σd;n,r(ν, f)(x)| adjusts automatically to the smoothness of f at x, even 
though the operator is defined in a global manner without requiring any smoothness on f at all. !

Remark 5.4. In the statement of Theorem 5.1, the operator seems to depend upon the smoothness of f near 
x. It will be clear from the proof that one does not need to know this smoothness beforehand; any r greater 
than the actual smoothness will work. We chose to write the theorem in this way to avoid unnecessarily 
complicated notation that does not add much insight. !

The following theorem is a global version of Theorem 5.1.

Theorem 5.2. Let d ≥ 3, n ≥ 2(d + 1), and f ∈ C(Sd). If r > 0, f ∈ Wd;r, and n is large enough so that 
dn ≥ (d + r + 1)2 and (5.3) is satisfied with δ(d; f) in place of δ(d; f, x), then

Ed;2(d+2)n(f) " d1/6

dim(Πd
2(d+2)n)r/d ‖f‖Wd;r . (5.6)

Remark 5.5. Theorem 4.1 shows the existence of a positive measure ν ∈ MZQ(d; 2(d + 2)n) supported on 
exactly dim(Πd

2(d+2)n) points. Theorems 4.2 and 5.2 show that the operator σ̃d;n,r (and also σd;n,r) provide 
optimal approximation in the sense of nonlinear widths based on the minimal number of samples of the 
target function. !

Next, we discuss approximation of analytic functions. The following definition is motivated by a theorem 
of Siciak [54] regarding approximation of functions on a unit cube which are analytic in a so-called polyellipse.

Definition 5.2. Let f ∈ C(Sd), x ∈ Sd, ρ > 0. The function f is said to be ρ-analytic at x if there is exists 
δ = δ(d; f, x) > 0 such that
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‖f‖Ad;ρ,x = ‖f‖∞ + sup
n≥0

{
exp (ρn) min

P∈Πd
n

‖f − P‖∞,B(x,δ)

}
< ∞. (5.7)

The class of all f for which ‖f‖Ad;ρ,x < ∞ will be denoted by Ad;ρ,x. The class Ad;ρ will denote the set of 
all f ∈ C(Sd) for which

‖f‖Ad;ρ = ‖f‖∞ + sup
n>0

{exp (ρn)Ed;n(f)} < ∞. (5.8)

We note that if f ∈ Ad;ρ then we may choose δ(d; f, x) in (5.7) to be independent of x.

The following theorem describes the analogue of Theorem 5.1 for locally analytic functions. The global 
version is immediate from Theorem 4.2 and the definitions.

Theorem 5.3. Let d ≥ 3, r ≥ 0, nd ≥ (d + r + 1)2, ν ∈ MZQ(d; 2(d + 2)n). If x ∈ Sd, f ∈ Ad;ρ,x, and 
δ = δ(d; f, x) be as in Definition 5.2. Then

|f(x) − σd;n,r(ν, f)(x)| " d1/6 exp
(
−min(ρ, δ2/4 − 2 log(4/δ))n

)
‖f‖Ad;ρ,x‖|ν‖|2(d+2)n, (5.9)

and
∣∣∣∣∣∣∣
f(x) −

∫

B(x,δ(d;f,x))

Φd;n,r(x · y)f(y)dνn(y)

∣∣∣∣∣∣∣
" d1/6 exp

(
−min(ρ, δ2/4 − 2 log(4/δ))n

)
‖f‖Ad;ρ,x‖|ν‖|2(d+2)n.

(5.10)

In applications to uncertainty quantification, the samples of the input functions F (which correspond to 
the points on Sd at which the target function f is sampled) are taken from a probability distribution. Our 
next theorem describes the approximation properties in this set up. We consider only global approximation 
of smooth functions. A result for approximation of analytic functions can be proved similarly. The local 
approximation would involve two options. One can assume random samples from a distribution supported 
on a neighborhood of the point at which local approximation is considered. This case is covered by taking 
the function f0 in the following theorem to be supported on this neighborhood. The other option is to take 
the random sample on the entire sphere, but use only those which lie in a small neighborhood of the point 
in question. This would involve the use of multiplicative Chernoff bounds. This line of work will take us too 
far away from the main theme of this paper.

Theorem 5.4. Let r > 0, d ≥ 3, ε > 0. Let M ≥ 2, and C = {y1, · · · , yM} ⊂ Sd be random samples drawn 
from a probability distribution dτ = f0dµ∗

d for some f0 ∈ C(Sd). Let f ∈ C(Sd), r > 0, f0f ∈ Wd;r, n be 
large enough to satisfy the conditions of Theorem 5.2(b). We define

σ̂d;n,r(C, f)(x) = 1
M

M∑

j=1
f(yj)Φd;n,r(x · yj), x ∈ Sd. (5.11)

With Dn = dim(Πd
2(d+2)n) = Kd;2(d+2)n(1), if

M # 2−dd−1/3 ‖f‖∞
‖f0f‖∞

D(2r+d)/d
n (logDn + (d + 1) log d + d log(π/e) + log(1/ε)) , (5.12)

with an appropriate constant involved in the inequality, then with τ -probability > 1 − ε,



210 H.N. Mhaskar / Appl. Comput. Harmon. Anal. 64 (2023) 194–228

‖f0f − σ̂d;n,r(C, f)‖∞ " d1/6

Dr/d
n

‖f0f‖Wd;r (5.13)

Equivalently, with

B = (2r + d)
{

log d + log(32e2/π) − 1
2d log(d + 1)

}
, M̃ = (2r + d)2d

d2/3 M,

and

n ∼
{

M̃

log M̃ + B

}1/(2r+d)

∼
{

M

logM + (2r + d) log d

}1/(2r+d)
(5.14)

we have

‖f0f − σ̂d;n,r(C, f)‖∞ " d1/6
{

M

logM + (2r + d) log d

}−r/(2r+d)
. (5.15)

6. An example

In this section, we illustrate how to apply the theory in order to approximate an operator F : C(X1) →
C(X2), where X1, X2 are smooth compact manifolds. This requires a considerable background on the 
theory of function approximation on manifolds, which we summarize in Section 6.1. The details for the 
approximation of the operator itself are given in Section 6.2.

6.1. Background

Let X be a compact, smooth, orientable manifold, with the geodesic metric ρ, and the Riemannian volume 
measure µ∗, normalized to be a probability measure. Let {φk} be the basis of L2(µ∗) comprising eigenfunc-
tions of the Laplace–Beltrami operator on X, orthonormal with respect to µ∗, with each φk corresponding 
to the eigenvalue −λ2

k. We assume that φ0 ≡ 1, λ0 = 0, and that λk ↑ ∞ as k → ∞. For n > 0, we write 
Πn = span{φk : λk < n}, and assume that 

⋃
n>0 Πn is dense in C(X). We assume further the strong product 

assumption: there exists A∗ ≥ 2 such that for any P, Q ∈ Πn, the product PQ ∈ ΠA∗n. We encode all these 
assumptions by stating that the quintuple Ξ = (X, ρ, µ∗, {φk}, {λk}) is a system. We will mention Ξ in the 
notation whenever it is necessary to prescribe the system to avoid confusion; for example, we will write 
Πn(Ξ) for Πn, En(Ξ; f) for En(f) below, etc. In this appendix, ", #, ∼ will involve constants that depend 
upon the system Ξ. We note that if the dimension of X is q, then dim(Πn) ∼ nq.

A signed (or positive) measure ν on X with bounded total variation is called a Marcinkiewicz-Zygmund 
quadrature measure of order n (i.e., ν ∈ MZQ(n)) if both of the following conditions are satisfied for all 
P ∈ ΠA∗n:

∫

X

Pdν =
∫

X

Pdµ∗,

∫

X

|P |dν ≤ ‖|ν‖|n
∫

X

|P |dµ∗ (6.1)

for a (minimal) positive constant ‖ |ν‖ |n. In [11,12], we have proved that there exists a constant B > 0 with 
the following property: If C ⊂ X (generally, a finite subset) satisfies

sup
x∈X

min
y∈C

ρ(x, y) ≤ B/n,

then there exists ν ∈ MZQ(n) with supp(ν) ⊂ C. When C is finite, we may choose |supp(ν)| ∼ dim(ΠA∗n) ∼
nq.
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For f ∈ C(X), we write

En(f) = min
P∈Πn

‖f − P‖∞;X.

If ν is a signed (or positive) measure on Xj with bounded total variation, we define

f̂(ν, k) =
∫

X

fφkdν.

If f ∈ C(X), and r > 0, we say that f ∈ Wr if there exists Dr(f) ∈ C(X) such that D̂r(f)(µ∗, k) =
λr
kf̂(µ∗, k), k ∈ N0, and write

‖f‖Wr = ‖f‖∞,X + ‖Dr(f)‖∞,X. (6.2)

Then the unit ball Kr = {f ∈ Wr : ‖f‖Wr ≤ 1} is a compact subset of C(X).
Let H : R → [0, 1] be infinitely differentiable function with H(t) = 1 for 0 ≤ t ≤ 1/2 and H(t) = 0 for 

t ≥ 1. We define

Φn(x, y) =
∞∑

k=0
H

(
λk

n

)
φk(x)φk(y), x, y ∈ X,

and define

σn(ν, f) =
∫

X

f(y)Φn(x, y)dν(y). (6.3)

We have proved in [25,30,10] that if ν ∈ MZQ(A∗n) then

‖f − σn(ν, f)‖∞,X " n−r ∼ (dim(Πn))−r/q, f ∈ Kr. (6.4)

Let C ⊂ X be a finite subset, and

η = min
x,y∈C,x *=y

ρ(x, y).

It can be shown (see [26, Theorem 6.1]) for a recent proof) using the localization properties of the kernels 
Φn proved in [25] that the following statement holds. Let v = (vx)x∈C ∈ R|C|. For n # η−1, the following 
system of equations has a unique solution (bz)z∈C :

∑

z∈C
bzΦn(x, z) = vx, x ∈ C. (6.5)

We will denote the function x .→
∑

z∈C bzΦn(x, z) by Fv. Clearly, the function Fv ∈ Wr for every r > 0.

6.2. Approximation of the operator

We illustrate the application of our main results in the case of approximation of operators defined on func-
tions on a manifold. In the sense of the Section 6.1, we assume two systems Ξj = (Xj , ρj , µ∗

j , {φk,j}, {λk,j}), 
j = 1, 2. The constants involved in ", #, ∼ may depend upon both the systems. In this case, the operator 
F : C(X1) → C(X2), and it is desired that the approximation of this operator should take place on the unit 
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Pre-computation

• Find a finitely supported quadrature measure ν ∈ MZ(d; 2(d + 2)n), supp(ν) = {y1, · · · , yM} ⊂ Sd, wk = ν({yk}).
• Find fk ∈ Ws1 (Ξ1) , k = 1, · · · , M such that

yk = π∗ ((fk(x))x∈C1 ) .

• Compute

zk = (F(fk)(z))z∈C2
,

Approximation of the operator

Given F ,

• Compute

x = π∗ ((F (x))x∈C1) .

• Compute

b =
M∑

k=1
wkzkΦd;n,r(x · yk).

• Return

A2(b).

Fig. 2. Algorithm for approximation of F : C(X1) → C(X2).

ball KX of Ws1(Ξ1) ⊂ C(X1). We assume that the image of KX under F , denoted by KY is a (necessarily 
compact in C(X2)) subset of Ws2(Ξ2) ⊂ C(X2). For j = 1, 2, we consider finite subsets Cj ⊂ Xj , such that 
there are measures νj ∈ MZQ(Ξj , A∗(Ξj)nj) supported on Cj . Necessarily |Cj | = mj ∼ n

qj
j . For j = 1, 2, 

we consider the information operators (encoders) Ij : C(Xj) → Rmj given by Ij(f) = (f(x))x∈Cj , and the
corresponding reconstruction operators given by Aj = σnj (Ξj ; νj ; ◦). Then (cf. (6.4))

‖Aj(Ij(f)) − f‖C(Xj) " m
−sj/qj
j ‖f‖Wsj (Ξj), f ∈ Wsj (Ξj), j = 1, 2. (6.6)

The question of approximating F(F ) is now reduced to approximating the function from Rm1 → Rm2 whose 
value at I1(F ) is I2(F)(F ). After the transformation to the sphere, the method suggested in Section 5 now 
yields the degree of approximation for this function. We summarize the application of our theory in the 
form of an algorithm (Fig. 2).

In this section, we write Gy = F(π∗)−1(y) for y ∈ Sq. We may view the operator σm1;n,r(Ξ1; ν, ◦) in 
(4.24) as a pre-fabricated network using the functions {Gy : y ∈ supp(ν1)} as training data, and f(y)
replaced by each of the components F(σn1(Ξ1; ν1, Gy))(z) for y ∈ supp(ν1), z ∈ C2 in turn. The total 
number of parameters in this process is Nm, where N = dim(Πd

2(d+2)n). All these parameters are pre-
computed and fixed for approximation of F(F ) for any F ∈ Ws1(Ξ1). After this, for any F ∈ Ws1(Ξ1), the 
approximation of F(F ) involves only dm further parameters. Thus, the overall complexity of main processing 
(cf. Fig. 1) in terms of parameters, including pre-computation, is O((d + N)m) rather than O(dNm). For 
local approximation at F ∈ Ws1(Ξ1), we need to use only those Gy’s out of the pre-computed functions 
that are close to F as indicated in Theorem 5.1, resulting in a further reduction of complexity.
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7. Proofs

The main purpose of this section is to prove all the theorems in Section 5. As expected, a major part 
of the proofs is to obtain estimates on the Lebesgue constant for Φd;n,r. It is convenient to summarize 
some of the required calculations in the context of Jacobi polynomials in general. Accordingly, we prove in 
Section 7.1 some estimates on some integrals involving Jacobi polynomials. The estimates on the Lebesgue 
constants and some other technical estimates about spherical polynomials are proved in Section 7.2. The 
proofs of the theorems in Sections 4.2 and 5 are given in Section 7.3.

7.1. Estimates on Jacobi polynomials

In this sub-section only, the notation A " B will denote A ≤ cB for an absolute positive constant, A # B

will mean B " A, and A ∼ B will mean A " B " A. The notation A = B + O(C) will mean |A −B| " C.
The following theorem summarizes some of the important estimates we will use in this paper.

Theorem 7.1. (a) Let a ≥ b ≥ 0, A ≥ B ≥ 1, 0 < p < ∞, 2b ≥ pB + p/2, and 2a + 2 < pA + p/2. Further 
assume that

n # A

{ 2a + 2
p(A + 1/2) − 2a− 2

}1/p
. (7.1)

We have

1∫

−1

∣∣∣∣∣
p(A,B)
n (x)
p(A,B)
n (1)

∣∣∣∣∣

p

(1 − x)a(1 + x)bdx

" 2a+b

2a + 2

{
A1/6

2(A+B−1)/2p(A,B)
n (1)

}(2a+2)/(A+1/2) { 2a + 2
p(A + 1/2) − 2a− 2

}(2a+2)/p(A+1/2)
(7.2)

(b) If α ≥ β ≥ 2, r ≥ s > −1, n ≥ (2α + r + 1)2, then

1∫

−1

∣∣∣∣∣
p(α+r+1,β−1)
n (x)
p(α+r+1,β−1)
n (1)

∣∣∣∣∣

2

(1 − x)s+α(1 + x)βdx

" 2α+β+s(α + r + 1)1/3Γ(α + r + 2)(4α+4s+4)/(2α+2r+3)n−2α−2s−2.

(7.3)

(c) If α ≥ β ≥ 2, r ≥ s > −1, n ≥ (2α + r + 1)2, m ≥ (α + β)2, then

K(α,β)
m (1)

1∫

−1

∣∣∣∣∣
p(α+r+1,β−1)
n (x)
p(α+r+1,β−1)
n (1)

∣∣∣∣∣

2

(1 − x)s+α(1 + x)βdx

" e2r−2s2s
(m
n

)2α+2s+2
m−2s Γ(α + r + 2)2

Γ(α + 1)Γ(α + 2)(α + r + 2)2s−2r−2/3.

(7.4)

The proof of this theorem requires some preparation. We will observe a fundamental estimate on the 
ratio of Gamma functions in Lemma 7.1, and apply it in Corollary 7.1 to obtain some detailed asymptotics 
for the various quantities introduced in Section 4.1.
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Lemma 7.1. For x ≥ y ≥ 1, we have

log Γ(x + y) − log Γ(x) = y log x + O
(
y2

x

)
. (7.5)

In particular, if x # y2 then

Γ(x + y)
Γ(x) ∼ xy. (7.6)

Proof. The Stirling approximation ([50, Section 4.1]) states that for z ≥ 1,

log Γ(z) = (z − 1/2) log z − z + (1/2) log(2π) = O(1/z). (7.7)

Hence, for x, y ≥ 1,

log Γ(x + y) − log Γ(x) = (x + y − 1/2) log(x + y) − (x− 1/2) log x− y + O
( 1
x

)
. (7.8)

Now,

(x + y − 1/2) log(x + y) = (x + y − 1/2) log x + x
(
1 + y

x

)
log(1 + y/x) − 1

2 log(1 + y/x). (7.9)

Using Taylor’s theorem, a simple calculation shows that for x ≥ y ≥ 1,

(
1 + y

x

)
log(1 + y/x) = y/x + O

(
y2

x2

)
, log(1 + y/x) = y/x + O

(
y2

x2

)
. (7.10)

So, we obtain from (7.9) that

(x + y − 1/2) log(x + y) = (x + y − 1/2) log x + y + O
(
y2

x

)
.

This estimate and (7.8) lead to (7.5). !

Corollary 7.1. For α ≥ β ≥ −1/2, n ≥ (α + |β|)2,

p(α,β)
n (1) ∼ nα+1/2

2(α+β)/2Γ(α + 1) , (7.11)

and

K(α,β)
n (1) ∼ 1

2α+βΓ(α + 1)Γ(α + 2)n
2α+2, (7.12)

where we note that the constants involved in ∼ are absolute constants, independent of n, α, β.

Proof. The estimate (7.11) (respectively, (7.12)) follows using (4.3) (respectively, (4.5)) and Lemma 7.1. !

The following proposition summarizes some inequalities for Jacobi polynomials.
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Proposition 7.1. Let α ≥ β ≥ −1/2, n ≥ 0 be an integer.
(a) We have

max
x∈[−1,1]

|p(α,β)
n (x)| ≤ p(α,β)

n (1). (7.13)

(b) If α ≥ β ≥ (1 +
√

2)/4 ≈ 0.6036, n ≥ α, then for θ ∈ (0, π),

|p(α,β)
n (cos θ)| ≤ 2α1/6(1 − cos θ)−α/2−1/4(1 + cos θ)−β/2−1/4. (7.14)

Proof. Part (a) follows from [58, Theorem 7.32.1]. Part (b) follows from [17, Theorem 2]. !

We are now in a position to prove Theorem 7.1.

Proof of Theorem 7.1. Let 0 < δ ≤ π/2 to be chosen later. Since b ≥ 0, (7.13) leads to

2δ∫

0

|p(A,B)
n (cos θ)|p(1 − cos θ)a(1 + cos θ)b sin θdθ ≤ 2a+b+1|p(A,B)

n (1)|p
2δ∫

0

sin(θ/2)2a+1 cos(θ/2)2b+1dθ

≤ 2a+b+1|p(A,B)
n (1)|p

2δ∫

0

sin(θ/2)2a+1 cos(θ/2)dθ " 2a+b

2a + 2 |p
(A,B)
n (1)|p(sin δ)2a+2.

(7.15)
In view of (7.14), and the facts that 2b ≥ pB + p/2, 2a + 2 < pA + p/2,

π∫

2δ

|p(A,B)
n (cos θ)|p(1 − cos θ)a(1 + cos θ)b sin θdθ

" 2pAp/6
π∫

2δ

(1 − cos θ)a−pA/2−p/4(1 + cos θ)b−pB/2−p/4 sin θdθ

" Ap/62a+b−p(A+B−1)/2
π∫

2δ

(sin(θ/2))2a+1−pA−p/2(cos(θ/2))2b+1−pB−p/2dθ

" Ap/62a+b−p(A+B−1)/2
π/2∫

δ

(sin θ)2a+1−pA−p/2 cos θdθ

" Ap/62a+b−p(A+B−1)/2

pA + p/2 − 2a− 2 (sin δ)2a+2−pA−p/2.

(7.16)

We now choose δ such that

2a+b

2a + 2 |p
(A,B)
n (1)|p(sin δ)2a+2 = Ap/62a+b−p(A+B−1)/2

pA + p/2 − 2a− 2 (sin δ)2a+2−pA−p/2;

i.e.,

sin δ =
{

A1/6

2(A+B−1)/2p(A,B)
n (1)

}1/(A+1/2) { 2a + 2
p(A + 1/2) − 2a− 2

}1/p(A+1/2)
.
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(In view of (5.14) and (7.11), it is not difficult to verify that 0 < sin δ ≤ 1.) Then (7.15) and (7.16) lead to 
(7.2).

Taking a = α + s, b = β, A = α + r + 1, B = β − 1, and p = 2, (7.2) becomes

1∫

−1

∣∣∣∣∣
p(α+r+1,β−1)
n (x)
p(α+r+1,β−1)
n (1)

∣∣∣∣∣

2

(1 − x)s+α(1 + x)βdx

" 2α+β+s

2α + 2s + 2

{
(α + r + 1)1/6

2(α+β+r−1)/2p(α+r+1,β−1)
n (1)

}(2α+2s+2)/(α+r+3/2)

×
{2α + 2s + 2

2r − 2s + 1

}(2α+2s+2)/(2α+2r+3)

(7.17)

In this proof only, let

γ = 2α + 2s + 2
2α + 2r + 3 , 1 − γ = 2r − 2s + 1

2α + 2r + 3 , 0 < γ < 1. (7.18)

We have

(21/2(α + r + 1)1/6)(2α+2s+2)/(α+r+3/2) = (21/2(α + r + 1)1/6)2γ " (α + r + 1)1/3, (2r − 2s + 1)−γ ≤ 1,

and

(2α + 2s + 2)(2α+2s+2)/(2α+2r+3)−1 = (2α + 2s + 2)γ−1 " 1.

Hence, using (7.11), (7.17) simplifies to (7.3).
Next, to prove part (c), we use (7.12) and (7.3) to deduce that

K(α,β)
m (1)




1∫

−1

∣∣∣∣∣
p(α+r+1,β−1)
n (x)
p(α+r+1,β−1)
n (1)

∣∣∣∣∣

2

(1 − x)s+α(1 + x)βdx




2

" m2α+2

2α+βΓ(α + 1)Γ(α + 2)2α+β+s(α + r + 1)1/3Γ(α + r + 2)(4α+4s+4)/(2α+2r+3)n−2α−2s−2

" 2s(α + r + 1)1/3 Γ(α + r + 2)2
Γ(α + 1)Γ(α + 2)Γ(α + r + 2)2γ−2

(m
n

)2α+2s+2
m−2s.

(7.19)
Using Stirling’s approximation, we find that

(1 − γ) log Γ(α + r + 2) = 2r − 2s + 1
2α + 2r + 3 log Γ(α + r + 2)

= (r − s + 1/2) log(α + r + 2) − 2r − 2s + 1
2α + 2r + 3(α + r + 2) + O(1)

# (r − s + 1/2) log(α + r + 2) − (r − s) − c

for some absolute constant c. Therefore,

Γ(α + r + 2)2γ−2 " e2r−2s(α + r + 2)2s−2r−1.

The estimate (7.4) is easy to deduce using this last estimate in (7.19). !
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7.2. Estimates on spherical polynomials

We will use the following proposition without explicitly referring to it.

Proposition 7.2. For d ≥ 1 and n ≥ d2, we have

Kd;n(1) = dim(Πd
n) ∼ nd

Γ(d + 1) . (7.20)

We note that the constants involved in ∼ are independent of n and d.

Proof. The relation (7.20) follows by using Lemma 7.1 in (4.14). !

Next, we prove the required estimates on the Lebesgue constants for the kernels Φd;n,r and Φ̃d;n,r. These 
estimates will play a crucial role in the proof of Theorem 5.1. Therefore, we formulate them as a theorem 
below.

Theorem 7.2. Let d ≥ 3, r ≥ s ≥ 0, nd ≥ (d + r + 1)2, and ν ∈ MZ(d; 2(d + 2)n). Then

sup
x∈Sd

∫

Sd

|Φ̃d;n,r(x · y)|(1 − x · y)s/2d|ν|(y) = sup
x∈Sd

∫

Sd

|Φd;n,r(x · y)|(1 − x · y)s/2
(1 + x · y

2

)−n

d|ν|(y)

" d1/6

ns
‖|ν‖|d;2(d+2)n. (7.21)

Proof. In this proof, we will assume the normalization that ‖ |ν‖ |d;2(d+2)n = 1. We also assume that s > 0, 
and d ≥ 6. The case s = 0 is much simpler; the approximation described in (7.22) below is then not 
necessary. The case 3 ≤ d ≤ 5 does not require an elaborate book-keeping as is done here; the same ideas 
work in a much simpler manner. Using the direct theorem for approximation by trigonometric polynomials 
to approximate the function θ .→ | sin(θ/2)|s, we obtain an algebraic polynomial P ∈ Πn such that

max
x∈[−1,1]

∣∣∣(1 − x)s/2 − P (x)
∣∣∣ " n−s. (7.22)

Since ν ∈ MZ(d; 2(d + 2)n), we deduce using (7.22) and Schwarz inequality that

∫

Sd

|Φ̃d;n,r(x · y)|(1 − x · y)s/2d|ν|(y) "
∫

Sd

|Φ̃d;n,r(x · y)||P (x · y)|d|ν|(y) + n−s

∫

Sq

|Φ̃d;n,r(x · y)|d|ν|(y)

"






∫

Sd

Kd;(d+2)n(x · y)2d|ν|(y)






1/2 



∫

Sd

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x · y)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

|P (x · y)|2d|ν|(y)






1/2

+ n−s






∫

Sd

Kd;(d+2)n(x · y)2d|ν|(y)






1/2 



∫

Sd

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x · y)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

d|ν|(y)






1/2

"






∫

Sd

Kd;(d+2)n(x · y)2dµ∗
d(y)






1/2 



∫

Sd

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x · y)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

|P (x · y)|2dµ∗
d(y)






1/2
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+ n−s






∫

Sd

Kd;(d+2)n(x · y)2dµ∗
d(y)






1/2 



∫

Sd

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x · y)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

dµ∗
d(y)






1/2

. (7.23)

We note that (7.22) implies that for all x ∈ [−1, 1],

|P (x)|2 ≤ |P (x) − (1 − x)s/2 + (1 − x)s/2|2 ≤ 2|P (x) − (1 − x)s/2|2 + 2(1 − x)s " n−2s + (1 − x)s.

In view of (4.17) and (4.12), we now conclude that





∫

Sd

|Φ̃d;n,r(x · y)|(1 − x · y)s/2d|ν|(y)
}2

" ωd−1
ωd

Kd;(d+2)n(1)
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

|P (x)|2(1 − x2)d/2−1dx

+ ωd−1
ωd

Kd;(d+2)n(1)n−2s
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

(1 − x2)d/2−1dx

" ωd−1
ωd

Kd;(d+2)n(1)
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

(1 − x)s+d/2−1(1 + x)d/2−1dx

+ ωd−1
ωd

Kd;(d+2)n(1)n−2s
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2
dn (1)

∣∣∣∣∣

2

(1 − x2)d/2−1dx.

(7.24)

We now recall (cf. (4.15)) that

ωd−1
ωd

Kd;(d+2)n(x) = K(d/2−1,d/2−1)
(d+2)n (x),

and apply Theorem 7.1(c) with α = d/2 − 1.
If d < r then (7.24) and (7.4) (used once with s and once with 0 in place of s) together yield (7.21)

directly. In the remainder of the proof, we therefore assume that d ≥ r.
Since d ≥ r, Lemma 7.1 implies that

Γ(α + r + 2)2
Γ(α + 1)Γ(α + 2) = Γ(d/2 + r + 1)2

Γ(d/2)Γ(d/2 + 1) " d2r+1. (7.25)

Using the fact that d/2 + r + 1 ∼ d and (7.25) in the right hand side of (7.4) in Theorem 7.1(c), we obtain 
that

ωd−1
ωd

Kd;(d+2)n(1)
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

(1 − x)s+d/2−1(1 + x)d/2−1dx " d2s+1/3 ((d + 2)n)−2s " d1/3n−2s.

(7.26)
We use the same estimate with s = 0 to obtain

ωd−1
ωd

Kd;(d+2)n(1)
1∫

−1

∣∣∣∣∣
p(d/2+r,d/2−2)
dn (x)
p(d/2+r,d/2−2)
dn (1)

∣∣∣∣∣

2

(1 − x2)d/2−1dx " d1/3. (7.27)
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The estimates (7.24), (7.26), and (7.27) lead to (7.21). !

We end this section with some results on spherical polynomials which will be used in the proofs of various 
results in Section 5.

The proof of Theorem 5.3 requires an analogue of the so-called Bernstein-Walsh estimate for spherical 
polynomials; i.e., an estimate on the supremum norm of a spherical polynomial on Sd in terms of that on 
a spherical cap. The following lemma was proved in [28, Lemma 8].

Lemma 7.2. Let r ≥ 1 be an integer, R be a trigonometric polynomial of order ≤ r, 0 < γ < γ1 ≤ π/2, and 
maxt∈[−2γ,2γ] |R(t)| = 1. Then

max
t∈[−2γ1,2γ1]

|R(t)| ≤
(2 sin γ1

sin γ

)2r
≤

(
πγ1
γ

)2r
. (7.28)

Lemma 7.3. Let r ≥ 1 be an integer, P ∈ Πd
r , x ∈ Sq, δ ∈ (0, 2]. Then

‖P‖∞ ≤
(4
δ

)2r
‖P‖∞,B(x,δ). (7.29)

Proof. Since the restriction of P to any geodesic through x is a trigonometric polynomial of order r, the 
lemma follows directly from Lemma 7.2. !

The following lemmas will be used in the proof of Theorem 5.4.

Lemma 7.4. There exists an absolute constant C > 0 such that if 0 < ρ ≤ Cd−1/2, then

µ∗
d(B(x, ρ)) ∼ d−1/2ρd, x ∈ Sd. (7.30)

Consequently, Sd can be expressed as a union of O(d1/2ρ−d) balls, each of radius ρ.

Proof. We note that if θ0 ≤ π/2 is such that ρ = 2 sin(θ0/2), then

µ∗
d(B(x, ρ)) = ωd−1

ωd

θ0∫

0

sind−1 θdθ. (7.31)

In view of (4.10) and Stirling’s approximation, we have

ωd−1
ωd

∼ d1/2. (7.32)

We note further the elementary facts that for any α ≥ 1,

0 ≤ 1 − (1 − x)α " αx, 0 ≤ x ≤ 1/4, (7.33)

so that

| sinα θ0 − ρα| = ρα
∣∣1 − (1 − ρ2/4)α

∣∣ " αρα+2, (7.34)

where the constants involved in both the above inequalities are independent of α. Finally, since the function 
x .→ (sin x)/x is decreasing on x ∈ [0, π/2], we deduce that
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sinα+1 θ0
α + 1 = sinα θ0

θα0

θα+1
0

α + 1 ≤
θ0∫

0

sinα θdθ ≤ (sinα θ0)θ0 ≤ 2
π

sinα+1 θ0. (7.35)

Using integration by parts, we see that

θ0∫

0

sind−1 θdθ = sind θ0
d

cos θ0 + d + 1
d

θ0∫

0

sind+1 θdθ = ρd

d

(
1 − ρ2

4

)d/2 (
1 − ρ2

2

)
+ d + 1

d

θ0∫

0

sind+1 θdθ.

Hence,

d

ρd

θ0∫

0

sind−1 θdθ =
(

1 − ρ2

4

)d/2 (
1 − ρ2

2

)
+ d + 1

ρd

θ0∫

0

sind+1 θdθ.

The estimates (7.33), (7.34), and (7.35) now lead to
∣∣∣∣∣∣
1 − d

ρd

θ0∫

0

sind−1 θdθ

∣∣∣∣∣∣
" dρ2.

This proves (7.30). !

Lemma 7.5. With C as in Lemma 7.4, let n ≥ 2d1/2/(πC). Then there exists a finite set C ⊂ Sd with 
|C| ∼ d1/2(πn)d with the property that for every P ∈ Πd

n,

(1/2)‖P‖∞ ≤ max
z∈C

|P (z)| ≤ ‖P‖∞. (7.36)

Proof. Let C be a minimal set such that Sd =
⋃

z∈C B(z, 1/(πn)). In view of Lemma 7.4, |C| ∼ d1/2(πn)d. Let 
P ∈ Πd

n, and ‖P‖∞ = |P (x∗)| for some x∗ ∈ Sd. Since the restriction of P to any geodesic is a trigonometric 
polynomial of degree < n, the Bernstein inequality for trigonometric polynomials yields

∣∣∣∣|P (y)|− |P (x∗)|
∣∣∣∣ ≤ |P (y) − P (x∗)| ≤ n cos−1(x∗ · y)‖P‖∞ ≤ πn

2 |x∗ − y|d+1‖P‖∞, y ∈ Sd.

Since there exists z ∈ C such that |x∗ − z|d+1 ≤ 1/(πn), the estimate (7.36) is now clear. !

7.3. Proofs of the theorems in Sections 4.4 and 5

We start with the proof of Theorem 4.2.

Proof of Theorem 4.2. To prove part (a), let x ∈ Sd. The polynomial R defined by

R(y) = p(d/2+r,d/2−2)
dn (x · y)
p(d/2+r,d/2−2)
dn (1)

(1 + x · y
2

)n

P (y), y ∈ Sd

is in Πd
(d+2)n and satisfies R(x) = P (x). In view of (4.16) applied with R in place of P , and the fact that ν

is a quadrature measure of order 2(d + 2)n, we get

σd;n,r(ν, P )(x) =
∫

Sd

Kd;(d+2)n(x · y)R(y)dν(y) =
∫

Sd

Kd;(d+2)n(x · y)R(y)dµ∗
d(y) = R(x) = P (x).
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The proof that σ̃d;n,r(P ) = P is similar. This proves part (a).
Next, we observe that the first estimate in (4.26) is obvious since σ̃d;n,r(ν, f) ∈ Πd

2(d+2)n. Using Theo-
rem 7.2 with s = 0, it is easy to deduce that

‖σ̃d;n,r(ν, g)‖∞ ≤ ‖σd;n,r(ν, g)‖∞ " d1/6‖|ν‖|d;2(d+2)n‖g‖∞, g ∈ C(Sq).

In view of Theorem 4.2(a), for any P ∈ Πd
n, we have

‖f − σ̃d;n,r(ν, f)‖∞ = ‖f − P − σ̃d;n,r(ν, f − P )‖∞ ≤ ‖f − P‖∞ + ‖σ̃d;n,r(ν, f − P )‖∞
" d1/6‖|ν‖|d;2(d+2)n‖f − P‖∞.

The second estimate in (4.26) is now clear. The estimate (4.27) is proved similarly. !

Next, we prove Theorem 5.1.

Proof of Theorem 5.1. In this proof, we assume without loss of generality that ‖f‖Wd;r,x = 1, and write δ
in place of δn. Let P ∈ Πd

r satisfy

|f(y) − P (y)| ≤ |x − y|rd+1 = 2r(1 − x · y)r/2, y ∈ B(x, δ). (7.37)

Clearly, ‖P‖∞,B(x,δ) " ‖f‖∞ ≤ 1. In view of Lemma 7.3, we see that

‖f − P‖∞ ≤ ‖f‖∞ + ‖P‖∞ ≤ ‖f‖∞ + (4/δ)2r‖P‖∞,B(x,δ) " (4/δ)2r. (7.38)

Moreover, for y ∈ Sd \ B(x, δ),

1 + x · y
2 = 1 −

|x − y|2d+1
4 ≤ exp

(
−
|x − y|2d+1

4

)
≤ exp(−δ2/4). (7.39)

Using (7.38), (7.39), Theorem 7.2 (with 0 in place of s), and the definition

δ =
√

16r logn
n

we deduce that
∫

Sd\B(x,δ)

|Φd;n,r(x · y)||f(y) − P (y)|d|ν|(y)

≤ exp(−nδ2/4)‖f − P‖∞
∫

Sd

|Φd;n,r(x · y)|
(1 + x · y

2

)−n

d|ν|(y)

" d1/6‖|ν‖|d;2(d+2)nδ
−2r exp

(
−nδ2/4

)

" d1/6(16r logn)−rn−3r‖|ν‖|d;2(d+2)n.

(7.40)

Similarly,
∫

Sd\B(x,δ)

|Φd;n,r(x · y)||f(y)|d|ν|(y) " d1/6n−4r‖|ν‖|d;2(d+2)n. (7.41)
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Next, we note that since P ∈ Πd
r ⊂ Πd

n, (7.37) implies that

f(x) = P (x) = σd;n,r(ν, P )(x).

Consequently, using Theorem 4.2(a), (7.37), (7.40), and Theorem 7.2 (with r in place of s), we obtain

|f(x) − σd;n,r(ν, f)(x)| = |σd;n,r(ν, f − P )(x)| ≤
∫

Sd

|Φd;n,r(x · y)||f(y) − P (y)|d|ν|(y)

≤
∫

B(x,δ)

|Φd;n,r(x · y)||f(y) − P (y)|d|ν|(y)

+
∫

Sd\B(x,δ)

|Φd;n,r(x · y)||f(y) − P (y)|d|ν|(y)

"
∫

Sd

|Φd;n,r(x · y)|(1 − x · y)r/2d|ν|(y) + d1/6‖|ν‖|d;2(d+2)n(16r log n)−rn−3r

" d1/6

nr
‖|ν‖|d;2(d+2)n + d1/6(16r log n)−rn−3r‖|ν‖|d;2(d+2)n.

(7.42)

Since (cf. Proposition 7.2, and Stirling approximation),

(dim(Πd
2(d+2)n))1/d ∼ n,

the estimates (5.4) follows from (7.42). Further, since
∫

B(x,δn)

Φd;n,r(x · y)f(y)dν(y) = σd;n,r(ν, f)(x) −
∫

Sd\B(x,δ)

Φd;n,r(x · y)f(y)dν(y),

and the estimate (5.5) follows from (5.4) and (7.41). !

Theorem 5.2 is now very easy to prove.

Proof of Theorem 5.2. We note that the definition of δ(d; f) and the condition on n implies that the condi-
tion (5.3) holds with δ(d; f, x) = δ(d; f) for all x ∈ Sd. Therefore, the theorem follows from Theorem 5.1. !

Next, we prove Theorem 5.3.

Proof of Theorem 5.3. The proof is very similar to that of Theorem 5.1. We sketch the changes. We assume 
without loss of generality that ‖f‖A(d;r,x) = 1, and write δ = δ(d; f, x). Then we choose P ∈ Πn such that

‖f − P‖∞,B(x,δ) ≤ exp(−nρ). (7.43)

Then, as before,

‖f − P‖∞ ≤ ‖f‖∞ + (4/δ)2n‖P‖∞,B(x,δ) " (4/δ)2n. (7.44)

Using (7.39), we conclude as in (7.40) that
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∫

Sd\B(x,δ)

|Φd;n,r(x ·y)||f(y)−P (y)|d|ν|(y) " d1/6‖|ν‖|d;2(d+2)n
{
(4/δ)2n exp(−nδ2/4) + exp(−nρ)

}
. (7.45)

The rest of the proof is almost verbatim the same as that of Theorem 5.1 with obvious changes. !

The main idea behind the proof of Theorem 5.4 is to use the following concentration inequality. This 
inequality is stated below as Proposition 7.3, and is a reformulation of [2, Section 2.1, 2.7].

Proposition 7.3. (Bernstein concentration inequality) Let Z1, · · · , ZM be independent real valued random 
variables such that for each j = 1, · · · , M , |Zj | ≤ R, and E(Z2

j ) ≤ V . Then for any t > 0,

Prob





∣∣∣∣∣∣
1
M

M∑

j=1
(Zj − E(Zj))

∣∣∣∣∣∣
≥ V t/R



 ≤ 2 exp
(
− MV t2

2R2(1 + t)

)
. (7.46)

A straightforward application with Zj = f(yj)Φd;n,r(z · yj), z ∈ Sd, would give the points yj dependent 
on z. We will use a covering argument (Lemma 7.5) to obtain bounds on the supremum norm of σ̂d;n,r(C, f)
defined in (5.11).

Proof of Theorem 5.4. We will first fix z ∈ Sd, and apply Proposition 7.3 with the random variables

Zj = f(yj)Φd;n,r(z · yj).

In view of the definition (4.22), it is clear that

|Zj | ≤ ‖f‖∞Kd;(d+2)n(1), j = 1, · · · ,M. (7.47)

Since dτ = f0dµ∗
d, it is clear that

Eτ (Zj) =
∫

Sd

f(y)Φd;n,r(z · y)dτ(y) = σd;n,r(µ∗
d, f0f)(z). (7.48)

Further, using (4.17), we see that

Eτ (Z2
j ) =

∫

Sd

f(y)2Φd;n,r(z · y)2dτ(y) =
∫

Sd

f0(y)f(y)2Φd;n,r(z · y)2dµ∗
d(y)

≤ ‖f0f‖∞‖f‖∞
∫

Sd

Kd;(d+2)n(z · y)2dµ∗
d(y) = ‖f0f‖∞‖f‖∞Kd;(d+2)n(1).

(7.49)

Hence, Proposition 7.3 implies that for each z ∈ Sd and t > 0,

Prob
(
|σ̂d;n,r(C, f)(z) − σd;n,r(µ∗

d, f0f)(z)| ≥ ‖f0f‖∞t

)
≤ 2 exp

(
−M‖f0f‖∞t2

2‖f‖∞Kd;(d+2)n(1)(1 + t)

)
. (7.50)

Since σ̂d;n,r(C, f) − σd;n,r(µ∗
d, f0f) ∈ Πd

2(d+2)n, we may use Lemma 7.5 to obtain a set {z1, · · · , zN} with 
N ∼ d1/2(8(d + 2)n/π)d such that

(1/2)‖σ̂d;n,r(C, f) − σd;n,r(µ∗
d, f0f)‖∞ ≤ max

1≤k≤N
|σ̂d;n,r(C, f)(zj) − σd;n,r(µ∗

d, f0f)(zj)|

≤ ‖σ̂d;n,r(C, f) − σd;n,r(µ∗
d, f0f)‖∞.

(7.51)
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In view of Proposition 7.2 and Stirling’s approximation, we have

N ∼
(
πd

e

)d+1
Kd;2(d+2)n(1) =

(
πd

e

)d+1
Dn, Kd;(d+2)n(1) ∼ 2−dKd;2(d+2)n = 2−dDn. (7.52)

Using (7.50) with each zj , we conclude that for each t > 0,

Prob
(
‖σ̂d;n,r(C, f) − σd;n,r(µ∗

d, f0f)‖∞ ≥ 2‖f0f‖∞t

)
"

(
πd

e

)d+1
Kd;2(d+2)n exp

(
−M2d‖f0f‖∞t2

2‖f‖∞Dn(1 + t)

)
.

(7.53)
Setting t = D−r/d

n we see that the right hand side of (7.53) is ≤ ε if (5.12) is satisfied with a suitable 
constant. Thus, with probability ≥ 1 − ε, we have

‖σ̂d;n,r(C, f) − σd;n,r(µ∗
d, f0f)‖∞ " ‖f0f‖∞D−r/d

n ≤ ‖f0f‖Wd;rD
−r/d
n .

Together with Theorem 5.2(b) used with f0f in place of f , we now deduce that the estimate (5.13) holds with 
probability ≥ 1 − ε. The equivalent formulation can be derived by a little tedious but simple computation 
using Proposition 7.2 and the solution of an equation involving Lambert functions [35, Lemma 6.1]. !
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Appendix A. Comments on computation of the kernel

We make some remarks about the computation of the kernel Φd;n,r. First, we recall that the orthonor-
malized Jacobi polynomials satisfy the recurrence relations

1 + t

2 p(α,β)
k (t) = ρ(α,β)

k p(α,β)
k+1 (t) + d(α,β)

k p(α,β)
k (t) + ρ(α,β)

k−1 p(α,β)
k−1 (t), (A.1)

with

p(α,β)
−1 (t) = 0, p(α,β)

0 (t) =
√

Γ(α + β + 2)
2α+β+1Γ(α + 1)Γ(β + 1) , (A.2)

where

ρ(α,β)
0 := 1

α + β + 2

√
(α + 1)(β + 1)

α + β + 3 , d(α,β)
0 := 1

2 + β − α

2α + 2β + 3 , (A.3)

and for k = 1, 2, · · · ,

ρ(α,β)
k :=

√
(k + 1)(k + α + 1)(k + β + 1)(k + α + β + 1)

(2k + α + β + 1)(2k + α + β + 2)2(2k + α + β + 3) ,

d(α,β)
k := 1

2 + β2 − α2

2(2k + α + β)(2k + α + β + 1) . (A.4)

The quantity Kd;(d+2)n(x) 
(1 + x

2

)n

can be computed using (4.15) and the recurrence relations repeatedly.
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Writing

R(α,β)
n (x) = p(α,β)

n (x)
p(α,β)
n (1)

,

the recurrence relations for these are:

(2n + α + β − 1)(2n + α + β)(2n + α + β − 2)xRn−1(x)
= 2(n + α + β)(2n + α + β − 2)(n + α)Rn(x) − (2n + α + β − 1)(α2 − β2)Rn−1(x)

+ 2(2n + α + β)(n + β − 1)(n− 1)Rn−2(x), n = 1, 2, · · · ,
(A.5)

with the initial conditions

R−1(x) = 0, R0(x) = 1. (A.6)

Finally, let {Pk}, {P̃k} be families of orthogonal polynomials (not necessarily normalized) satisfying

xPk(x) = ρkPk+1(x) + dkPk(x) + rkPk−1(x),
xP̃k(x) = ρ̃kP̃k+1(x) + d̃kP̃k(x) + r̃kP̃k−1(x),

with

P−1(x) = P̃−1(x) ≡ 0, P0, P̃0 constants.

Let

PkP̃j =
∞∑

!=0
C(!; k, j)P!,

where C(!; k, j) = 0 if ! < 0 or ! > k + j or k < 0 or j < 0. Then we have the Gautschi 5-point recurrence

C(!; k, j + 1) = 1
ρ̃j

{
ρ!−1C(!− 1; k, j) + (d! − d̃j)C(!; k, j) + r!+1C(! + 1; k, j) − r̃jC(!; k, j − 1)

}
.

Together with (A.1) and (A.5), this helps to compute Φd;n,r in terms of {p(d/2,d/2−1)
! }2(d+2)n

!=0 .

Appendix B. Example

The purpose of this example is to show that the branch and trunk network approach in the paper [3]
might not always be the best way to achieve a good degree of approximation.

Let X be a separable Hilbert space with inner product 〈◦, ◦〉 (with the corresponding norm ‖ ◦ ‖X), and 
{pj}∞j=0 be an orthonormal basis for the space. For F ∈ X, let F̂ (j) = 〈F, pj〉. Let s > 1/2, and

KX = {F ∈ X :
∞∑

j=1
j2s|F̂ (j)|2 ≤ 1}.

It is not difficult to prove using Lemma 7.4 below that for any t ∈ (0, 1), KX is contained in a union of 
O
(
t−1/(2s) exp((2/t)1/s log(2/t))

)
balls of radius at most t. For d ≥ 1, we take Id,KX(F ) = (F̂ (j))d−1

j=0 ∈ Rd, 
and define Ad,KX(a) =

∑d−1
j=0 ajpj , a = (a0, · · · , ad−1) ∈ Rd. It is easy to see that
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wor(KX;Ad,KX , Id,KX) ≤ d−s.

The range of Id,KX is a subset of the unit ball of Rd, so that we may take KS to be this ball.
The operator in this example is motivated by neural operators [22,15]. In analogy to neural networks 

where each layer acts by taking multiplying the input vector by a matrix, these are defined by applying a 
linear operator to the input function. Thus, each layer with activation function σ evaluates

x .→ σ ((KθF )(x) + b(x)) ,

where Kθ is one member of a parametrized family of operators, b is a function that plays the role of the 
threshold in usual neural networks, and F is the input function. In neural Fourier operators, the operator 
Kθ is a convolution operator. Our operator in the example is a generalization and abstraction of this idea.

We choose Y = C([−1, 1]), and define the operator F : KX → C([−1, 1]) as follows. Let Gout : [−1, 1] ×
[−1, 1] → [0, 1], Gin : X ×X → [−1, 1] be Lipschitz continuous functions, and τ be a probability measure on 
KX. We define

F(F )(y) =
∫

KX

Gout(y,Gin(F, g))dτ(g). (B.1)

Thus, for example, in analogy to neural Fourier operator, Gin(F, g) is an inner product of F̂ with ĝ, 
Gout(y, Gin(F, g)) = σ(b(y) +Gin(F, g)), and the sum which appears implicitly with different parameters in 
the convolution kernel is replaced by an integral over g with respect to a general probability measure. Using 
Hoeffding’s inequality [2, Theorem 2.8], one can deduce using the same ideas as in the proof of Theorem 5.4
in this paper that there exist g1, · · · , gm ∈ KX such that

max
y∈[−1,1], F∈KX

∣∣∣∣∣∣
F(F )(y) − 1

m

m∑

j=1
Gout(y,Gin(F, gj))

∣∣∣∣∣∣
"

( logm
m

)s/(2s+1)
.

So, we take Im,KY(F(F )) = (Gin(F, gj))mj=1 and the reconstruction algorithm to be

Am,KY(a) = 1
m

m∑

j=1
Gout(y, aj), a = (a1, · · · , am) ∈ [−1, 1]m.

Then

wor(KY;Am,KY , Im,KY) "
( logm

m

)s/(2s+1)
.

For j = 1, · · · , m, we may define fj : KS → R, by fj(a) = Gin (Ad,KX(a), gj). The main difficulty in 
approximating the operator F is to find an approximation operator Gd,N : KS → R to approximate each 
fj . We note that the information operators Im,KY are not continuous. Moreover, it is more natural to use 
an approximation of the form 

∑
k wkGout(◦, ak) directly rather than taking an eigendecomposition of G as 

a branch and trunk approach would require.
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